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1Dipartimento di Fisica, Università di Catania, Via Santa Sofia 64, I-95123 Catania, Italy

2INFN, Sezione di Catania, I-95123 Catania, Italy

(Received 18 April 2018; published 9 July 2018)

The cosmological evolution can be described in terms of directly measurable cosmological scalar
parameters (deceleration q, jerk j, snap s, etc...) constructed out of high order derivatives of the scale factor.
Their behavior at the critical temperature of the quantum chromodynamics (QCD) phase transition in early
universe could be a specific tool to study the transition, analogously to the fluctuations of conserved
charges in QCD. We analyze the effect of the crossover transition from quarks and gluons to hadrons in
early universe on the cosmological scalars and on the gravitational wave spectrum, by using the recent
lattice QCD equation of state and including the electroweak degrees of freedom. Near the transition the
cosmological parameters follow the behavior of QCD trace anomaly and of the speed of sound of the entire
system. The effects of deconfinement turn out to be more relevant for the modification of the primordial
spectrum of gravitational waves rather than for the evolution of the cosmological parameters. Our complete
analysis, based on lattice QCD simulations and on the hadron resonance gas below the critical temperature,
refines previous results.
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I. INTRODUCTION

QuantumChromodynamics (QCD) deconfinement phase
transition has an interesting role at cosmological level,
modifying, for example, the primordial spectrum of the
gravitational waves [1–3].
Other consequences of the QCD transition show up in

the cosmological parameters (deceleration q, jerk j, etc.)
which involve the derivatives of the scale factor aðtÞ [4].
Indeed, the fluctuations of the cosmological parameters
with higher order derivatives are strongly enhanced by the
phase transition.
This effect is similar to the fluctuations of conserved

charges (net baryon-number, net electric charge, net
strangeness) evaluated in lattice QCD at finite temperature,
which require the calculation of the higher order cumulants,
i.e., high order derivatives of the logarithm of the QCD
partition function. These fluctuations provide a wealth of
information on the properties of strong-interaction matter in
the transition region from the low temperature hadronic
phase to the quark-gluon plasma phase and, in particular,

they can be used to quantify deviations from the hadron
resonance gas (HRG) model [5–7].
Previous analyses [4,8–10] considered the evolution of

the first cosmological parameters (q, j) and of the energy
density fluctuations during the deconfinement transition by
a specific parametrization of the QCD equation of state
(EoS) or less recent lattice data.
In this paper we discuss the behavior of a larger set of

cosmological scalars, with higher order derivatives of the
scale factor, and take into account the electroweak sector
and the strongly interacting sector. Moreover the tran-
sition (cross-over) between the quark-gluon phase and the
hadronic phase is described by recent lattice QCD EoS
[11] and by the HRG [12] below the critical temperature
Tc ≃ 150 MeV.
Finally, the detailed treatment of the EoS above and

below Tc permits a refined analysis of the modification of
the primordial spectrum of the gravitational waves.
The paper is organized as follows: the definition of the

cosmological parameters is given in Sec. II; the relevant
degrees of freedom (d.o.f.) and the role of the different
contributions to the total energy density and to the EoS of
the whole system are discussed in Sec. III; Sections IV
and V contain respectively the results on the speed of sound
and on the fluctuations of the cosmological parameters
during the deconfinement transition; Section VI is devoted
to the modification of the primordial gravitational wave
spectrum due to the transition; comments and conclusions
are in Sec. VII.
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II. COSMOLOGICAL PARAMETERS

The standard model of the cosmological evolution is
based on the Friedmann-Lemaître-Robertson-Walker
(FLRW) equations and a set of equations of state for the
different contributions to the total energy density. By
defining the total energy density εT and the total pressure
pT as

εT ¼ εs þ εew þ εd þ εΛ; ð1Þ

pT ¼ ps þ pew þ pd þ pΛ; ð2Þ

where

εΛ ≡ Λ
8πG

; ð3Þ

pΛ ≡ −εΛ; ð4Þ

are the dark energy contributions and the other terms
correspond to strong (s), electroweak (ew) and dark matter
(d) sectors, the FLRW equations for a flat Universe are
given by

�
1

a
da
dt

�
2

¼ 8πG
3

εT;

1

a
d2a
dt2

¼ −
4πG
3

ðεT þ 3pTÞ: ð5Þ

with a the scale factor.
The cosmological parameters are defined as [13,14]

H ≡ 1

a
da
dt

; q≡ −
1

aH2

d2a
dt2

;

An ≡ 1

aHn

dna
dtn

ðn > 2Þ ð6Þ

and their evolution is directly related to the EoS. Indeed, An
can be written as the sum of terms containing the first
n − 1 derivatives of the Hubble parameter H, which can be
expressed in terms of thew≡ pT=εT , of the speed of sound,
c2s ≡ ∂pT=∂εT , and its derivatives. For example, the jerk, j,
is given by

j ¼ A3 ¼ 1þ 3
_H
H2

þ Ḧ
H3

ð7Þ

and, by FLRW equations, one has

_H
H2

¼ −
3

2

�
1þ pT

εT

�
;

Ḧ
H3

¼ 9

2
ð1þ c2sÞ

�
1þ pT

εT

�
: ð8Þ

The complete set of relations for various cosmological
parameters is given in Appendix A.
The cosmological evolution can be described by the

Hubble parameterH, the deceleration q, the jerk j, the snap
(s ¼ A4) and the others cosmological parameters since they
specify the various terms of the Taylor expansion of the
scale factor:

aðtÞ ¼ aðt�Þ
�
1þHðt�Þðt − t�Þ − ðqH2Þðt�Þ

2!
ðt − t�Þ2

þ ðjH3Þðt�Þ
3!

ðt − t�Þ3 þ � � �
�
: ð9Þ

In Sec. V the effect of the QCD deconfinement transition on
the cosmological parameters will be analyzed and, as
discussed in the introduction, higher order derivatives of
aðtÞ show larger fluctuations.

III. THE EQUATION OF STATE IN
THE EARLY UNIVERSE

Early Universe was a hot and dense plasma and during
the cosmological evolution the number of d.o.f. changed
due to various phase transitions (see Fig. 1.1 of Ref. [1]).
Since we are interested in the effect of the deconfinement
phase transition on the cosmological parameters and on the
spectrum of gravitational waves, we consider the temper-
ature T in the range 70 MeV < T < 400 MeV and the
number of d.o.f. and the equations of state for strong and
electroweak sectors, neglecting the dark energy and the
dark matter contributions in Eqs. (1,2).

A. Strong and electroweak sectors

The QCD deconfinement transition rapidly reduces the
number of the strongly interacting d.o.f., gs. However, lattice
QCD simulations indicates that the transition is not so sharp
and it is indeed a cross-over between a system of quarks and
gluons and a hadron gas [11,15,16]. The (pseudo) critical
temperature turns out to be Tc ∼ 150–160 MeV by the
analysis of chiral susceptibility.
Starting from the lattice QCD partition function, one

defines the trace anomaly ΘμμðTÞ as the derivative with
respect to the lattice spacing al [11]

ΘμμðTÞ ¼ −
T
V
d lnZ
d ln al

ð10Þ

and one evaluates all other thermodynamical quantities,
i.e., the pressure

pðtÞ
T4

¼ p0

T4
0

þ
Z

T

T0

dT 0 Θ
μνðT 0Þ
T 05 ; ð11Þ

where p0 is the pressure at a fixed temperature T0, the
energy density
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ε ¼ 3pþ Θμν; ð12Þ

the entropy density s

s ¼ εþ p
T

; ð13Þ

and the speed of sound

c2s ¼
∂p
∂ε ¼ s

CV
¼ ∂p=∂T

∂ε=∂T ; ð14Þ

where CV is the specific heat.
The pressure obtained by lattice simulations, plattice,

by the HotQCD collaboration can be parametrized as
follows [11]:

platticeðTÞ ¼
T4

2
½1þ tanh ½ctðt − t0Þ��fðTÞ; ð15Þ

where

fðTÞ ¼ pid þ an
t þ bn

t2 þ cn
t3 þ bn

t4

1þ ad
t þ bd

t2 þ cd
t3 þ bd

t4
ð16Þ

and t ¼ T=Tc, Tc ¼ 154 MeV, pid ¼ 95=180π2 is the
ideal gas value of p=T4 for massless 3-flavor QCD and
the value of the other parameters are summarized in Table I.
In the temperature region T < Tc all thermodynamic

quantities are well described by the hadron resonance gas
(HRG) model where the grand canonical partition function
can be expressed as a sum of one-particle partition
functions, Z1

i , over all hadrons and resonances [17]. If
mmax is the maximum mass one includes, the trace anomaly
can be written as a sum over all particles species with mass
mi ≤ mmax [7,11],

�
Θμμ

T4

�
HRG

¼
X

mi≤mmax

di
2π2

X∞
k¼1

ð−ηiÞkþ1

k

�
mi

T

�
3

K1

�
kmi

T

�
;

ð17Þ
where ηi ¼ −1ðþ1Þ for bosons (fermions), K1 is the
modified Bessel function, di are the degeneracy factors.

The trace anomaly for the HRG has been parametrized
as [12]

�
ε − 3p
T4

�
HRG

¼ a1T þ a2T3 þ a3T4 þ a4T10; ð18Þ

with ai given in Table II and, by interpolation with lattice
data, the pressure is given by

pHRGðTÞ ¼ platticeðTlÞ
�
T
Tl

�
4

þ gðTÞ; ð19Þ

where platticeðTlÞ is the pressure at Tl ¼ 130 MeV and

gðtÞ ¼ T4

�
a1ðT − TlÞ þ

a2
3
ðT3 − T3

l Þ

þ a3
4
ðT4 − T4

l Þ þ
a4
10

ðT10 − T10
l Þ

�
: ð20Þ

The electroweak sector is included as a relativistic gas of
massless particles, i.e.,

εew ¼ 3pew ¼ gew
π2

30
T4; ð21Þ

where gew ¼ 14.45 is the effective number of electroweak
d.o.f. [4].

IV. THE COSMOLOGICAL DECONFINEMENT
TRANSITION

By the previous parametrization of the EoS of strongly
interacting and electroweak sectors, we now analyze the
Eos of the entire system in the temperature range
70 MeV ≤ T ≤ 400 MeV, by interpolating the lattice data
and the HRG results at Tl ≃ 130 MeV.
The results for the w ¼ pT=εT and for the speed of sound

c2s are summarized in Fig. 1, where the continuous curves
indicate the speed of sound and the dashed lines the value
of w. The blue lines give the results for the strong sector and
the red ones contain the electroweak sector.
The arrows indicate the temperature of the transition,

defined as the temperature at the minimum of the speed of
sound, which goes from the Ts

t ¼ 147 MeV including the
strong interaction only, to Tew

t ¼ 158 MeV adding the
electroweak sector.

TABLE I. Parameters used in Eqs. (15) and (16) for the
pressure of (2þ 1)-flavor QCD in the temperature interval T ∈
½100 MeV; 400 MeV� [11].
ct an bn cn dn

3.8706 −8.7704 3.9200 0 0.3419

t0 ad bd cd dd

0.9761 −1.2600 0.8425 0 −0.0475

TABLE II. Parameters used in Eqs. (18) and (20) [12].

a1 a2

4.654 GeV−1 −879 GeV−3

a3 a4

8081 GeV−4 −7039000 GeV−10
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The relation between the temperature and the cosmo-
logical time is

t ¼ t0 þ
1ffiffiffiffiffiffiffiffiffiffiffi
24πG

p
Z

T0

T

dT̄
T̄c2s

ffiffiffi
ε

p ; ð22Þ

which is numerically solved (with T0 ¼ 500 MeV and
t0 ¼ 1 μs [4]). In Fig. 2 we have shown how the temper-
ature decrease in the different cases previously discussed
and in the pure radiation era (red dotted line). The
transition time is reduced by adding the electroweak
sector: tst ¼ 36.39 μs, tewt ¼ 18.71 μs.
Finally, Fig. 3 shows the behavior of the speed of

sound as a function of the cosmological time. For the
whole system, after about 100 μs the values of w and c2s
come back to be that ones of a radiation dominated era.

V. EVOLUTION OF THE COSMOLOGICAL
PARAMETERS

The results in the previous sections are the starting point
to study the behavior of the cosmological parameters
during the deconfinement transition. Since the cosmo-
logical parameters can depend on the higher order
derivatives of the Hubble parameter, i.e., on the higher
order derivative of the thermodynamical quantities, it
could be possible that some effects show up near the
critical temperature [4].
We have analyze two different cases: strong sector only

(blue curves in the figures) and strong plus electroweak
sector (red curves). In all figures, the arrows indicate the
transition time.
In Figs. 4 and 5 are respectively depicted the time

behavior of the scale factor aðtÞ (normalized to the value at
400 MeV, a�) and of HðtÞ. The final result is essentially
independent on the specific setting.
In Figs. 6–10 the time evolution of q, j, s, A5 and A6

is plotted. As expected the parameters with high order
derivative show larger deviations from the typical
values of a radiation dominated era. However once the
transition is over, the Universe is again dominated by
radiation.

FIG. 1. The speed of sound c2s (continuous curves) and w
(dashed lines) for the different sectors: QCD (blue) and QCD plus
electroweak sector (red).

FIG. 2. Temperature as a function of the cosmological time in
the different sectors (blue for QCD and red for QCD plus EW),
compared with the behavior of the pure radiation era (red dotted
line).

FIG. 3. The sound speed c2s (continuous line) and the EoS w
(dashed lines) for the different sector as a function of time: QCD
(blue) and QCD plus electroweak sector (red).

FIG. 4. The scale factor a=a� as a function of cosmological
time in the different sectors: QCD (blue) and QCD plus
electroweak sector (red).
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VI. MODIFICATION OF THE PRIMORDIAL
SPECTRUM OF THE GRAVITATIONAL WAVES

According to previous results, the fluctuations of the
cosmological parameters in the whole system are
limited to a short time interval of about 100 μs.

From this point of view the deconfinement transition
turns out to be more effective in modifying the primordial
spectrum of the gravitational waves, proposed in [2],
that will be recalled in this section and reevaluated on
the basis of the detailed description of the transition
in Sec. IV.

FIG. 5. The Hubble parameter H as a function of cosmological
time in the different sectors: QCD (blue) and QCD plus
electroweak sector (red).

FIG. 6. Cosmological deceleration q as a function of cosmo-
logical time in the different sectors: QCD (blue) and QCD plus
electroweak sector (red).

FIG. 7. The jerk, j, as a function of cosmological time in the
different sectors: QCD (blue) and QCD plus electroweak sector
(red).

FIG. 8. The snap, s, as a function of cosmological time in the
different sectors: QCD (blue) and QCD plus electroweak sector
(red).

FIG. 9. A5 as a function of cosmological time in the different
sectors: QCD (blue) and QCD plus electroweak sector (red).

FIG. 10. A6 as a function of cosmological time in the different
sectors: QCD (blue) and QCD plus electroweak sector (red).
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During the inflation era the wavelengths of the quantum
fluctuations are stretched to scales greater than the
casually connected region and the fluctuations of the
metric tensor result in a background of stochastic gravi-
tational waves [18].
In the transverse traceless (TT) gauge, tensor perturba-

tions hij of the FLRWmetric satisfy the linearized equation
of motion

hij;μ;μ ¼ 0; ð23Þ

where “;” indicates the covariant derivative, and the
corresponding Fourier modes take the form

hij ¼
Z

d3k

ð2πÞ3=2
X
λ

eλijhk;λe
ik·x; ð24Þ

where λ ¼ ðþ;×Þ are the two polarization states and eλij is
the symmetric polarization tensor (eii ¼ 0, kieij ¼ 0). In
conformal time, η, the equation of motion for the pertur-
bations reads [3]

h00k;λðηÞ þ 2
a0

a
h0k;λðηÞ þ k2hk;λðηÞ ¼ 0; ð25Þ

where d=dη is denoted by prime “ 0”. By defining
μkλ ¼ ahkλ, Eq. (25) can be written as

μ00k;λðηÞ þ
�
k2 −

a00

a

�
μk;λðηÞ ¼ 0: ð26Þ

Two different regimes are physically relevant and corre-
spond to fluctuations well inside the Hubble horizon or well
outside the horizon. Since a00=a ∼ ðaHÞ2, when k ≫ aH
the wavelength is smaller than the horizon: this is the
subhorizon regime. In this case Eq. (26) is that of a
harmonic oscillator, hence, μkðηÞ ∼ eikη and for the per-
turbation one obtains

hk ∼ a−1; ð27Þ

which implies that the amplitude decreases in time. In the
superhorizon regime, i.e., for k ≪ aH, Eq. (26) has two
independent solutions: a decaying mode μk ∼ a−2, which
we neglect, and μk ∼ a that leads to

hk ∼ const; ð28Þ

that is the amplitudes are almost frozen, being outside the
casually connected region.
Therefore, during the inflation era the amplitudes are

stretched to size larger than the horizon, where they remain
constant, but when inflation ends the comoving Hubble
horizon ðaHÞ−1 grows in time and each mode crosses the
horizon and reenters inside the casually connected region

when the wavelength is comparable to the horizon size, i.e.,
k ¼ aH. In this case, a general solution of Eq. (26) can be
written introducing a factor depending on the mode’s
amplitude in the superhorizon regime and a transfer
function, T kðηÞ, as

hk;λðηÞ ¼ hprimk;λ T kðηÞ; ð29Þ

where hprimk;λ is the amplitude when the mode left the horizon
during the inflationary period and T kðηÞ describes the
evolution of the gravitational wave after it crosses the
horizon. In a radiation dominated universe, the solution
reads

hk;λðηÞ ¼ hprimk;λ j0ðkηÞ; ð30Þ

where j0ðxÞ is the spherical Bessel function [18].
Let us define the power spectrum of gravitational waves.

The energy density is given by

εhðηÞ ¼
1

32πGa2
hh0ijh0iji: ð31Þ

and in k space the spatial average reads

hh0k;λh0k0;λ0 i ¼ ð2πÞ3δλλ0δ3ðkþ k0Þjh0k;λj2: ð32Þ

Moreover, one assumes that the primordial gravitational
waves are unpolarized, that is jh0k;þðηÞj2 ¼ jh0k;×ðηÞj2.
Using Eq. (29), we can write the energy density as

εhðηÞ ¼
1

32πGa2

Z
dk
k
Δ2

h;prim½T 0
kðηÞ�2; ð33Þ

where Δ2
k;prim is the primordial amplitude which in de Sitter

inflation turns out to be

Δ2
h;prim ¼ 2

π2
k3jhprimk j2 ¼ 16

π

�
HdS

MPl

�
2

; ð34Þ

HdS and MPl being the Hubble constant in de Sitter
inflation and the Planck mass, respectively.
The logarithmic energy density is defined as dεh=d ln k

and the fractional energy density is given by

Ωðη; kÞ ¼ dεhðη; kÞ
d ln k

1

εcðηÞ
¼ Δ2

h;prim½T 0
kðηÞ�2

32πGa2εcðηÞ
; ð35Þ

where εc is the critical energy density.
From Friedman equations (5) we finally get

Ωðη; kÞ ¼ Δ2
h;prim

12H2ðηÞa2 ½T
0
kðηÞ�2: ð36Þ
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A gravitational wave of mode k has frequency f ¼ 2πk=a.
Because of redshift, once a wave crosses the horizon its
frequency decreases. From the definition of fractional
energy density follows that Ω decreases as a−4H−2, since
gravitational waves are decoupled from the rest of the
Universe and εc ∼H2 from Friedman equation. For waves
that reentered at a certain time η, the fractional energy
density today is

Ω0 ¼ Ωðη; fÞ a
4ðηÞH2ðηÞ
a40H

2
0

; ð37Þ

and the frequency today is f0 ¼ 2πk=a0, where a0 and H0

are the scale factor and the Hubble parameter today.
The evolution of the hk modes and of the crossing

condition, k ¼ aH, are controlled by the scale factor a and
the modification of the spectrum of gravitational waves
from the primordial one depends on the content of matter in
the epoch they reenter the horizon. As previously shown
(see Fig. 3), during the QCD transition the speed of sound
c2s is strongly modified since the Universe stands no longer
in a pure radiation era and, correspondingly, the primordial
gravitational waves cross the horizon near that transition
time at different rates.
By lattice QCD simulations, by the HRG model and

including the electroweak sector, we now discuss a detailed
analysis of this effect by numerical integration of
Eqs. (25)–(26), improving previous analysis [2,3].
It is more useful to write Eq. (25) for the transfer function

as a function of the temperature, that is (see Appendix B for
details)

d2T k

dT2
þ fðTÞ dT k

dT
þ κ2ðT; kÞT k ¼ 0: ð38Þ

In order to integrate numerically Eq. (38), we set boundary
conditions at high temperature, such as 104 MeV, where
the modes hk are given by the radiation era solutions
[Eq. (30)].
In Fig. 11 the numerical results for different values of k

are reported.
Waves with higher frequencies cross the horizon earlier

and waves that reentered at T ∼ 150 MeV have frequencies
of about 10−7 Hz, the typical frequency f� of waves from
the QCD transition. The effects of the transition are
expected to be impressed in the fractional energy density
Ω and, in particular, one computes [2] the quantity
ΩðfÞ=Ωðf̄ ≪ f�Þ, that is the fractional energy density of
the gravitational waves with respect to the same quantity
evaluated for waves that do not encounter the transition
( f̄ being a fixed frequency much lower than f�).
From Eq. (37), this quantity evaluated today is

Ω0ðfÞ
Ω0ðf̄ ≪ f�Þ

¼ ΩðfÞ
Ωðf̄ ≪ f�Þ

a4ðfÞH2ðfÞ
a4ðf̄ÞH2ðf̄Þ : ð39Þ

The redshift factor gives the shape of the step and the final
result is showed in Fig. 12. The size of the step is about
38%, larger than previous results [2,3]. In particular, in [2]
the step size was ≃30%, obtained by a numerical compu-
tation of a first order transition between the quark-gluon
plasma phase and the hadronic phase. Only the strong and
electroweak sectors were considered and we used recent
lattice data [11] for the quark gluon plasma phase and the
HRG model for the hadronic phase. Figure 13 shows a
direct comparison between the latter result and our evalu-
ation (see also Ref. [10]).
In order to verify these results we need to detect

primordial gravitational waves with frequencies around
10−7 Hz. They could be detected indirectly by seeking
effects on physical observables, such as the cosmic micro-
wave background (CMB) polarization, or by direct detec-
tion with interferometers [18]. However, we can only put
upper limits on the energy density of gravitational waves

FIG. 11. Transfer function T k against cosmic time at different
values of the wave number k. It describes the evolution of a
gravitational wave. Green is for k ¼ 2.17 × 10−14 μs−1, yellow
k ¼ 6.02 × 10−14 μs−1, orange k ¼ 1.20 × 10−13 μs−1. Vertical
line indicates the QCD transition.

FIG. 12. Fraction of energy density of gravitational waves with
respect to waves that do not encounter the QCD transition in
continuous lines, only the redshift factor to today’s values in
dashed lines. Both against frequency f. Vertical line represents
the transition. The size of the step is about 38%.
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from current data. In the future, other detectors as the
Kamioka Gravitational Wave Detector (KAGRA) [19], the
Einstein Telescope [20] and LIGO-India [21] will improve
our knowledge on the gravitational waves.

VII. COMMENTS AND CONCLUSIONS

The fluctuations of conserved charges at the deconfine-
ment transition are a clear signature of the different
behavior between a quark-gluon plasma and a hadron
resonance gas model, but their detection in relativistic
heavy ion collisions is difficult.
The fluctuations of the cosmological parameters at the

QCD transition have, in principle, the same physical basis,
i.e., they originate from the combined effect of the equation
of state and of the calculation of higher order derivatives of
the relevant physical parameters, that is, in early Universe,
the scale factor.
We have shown, by a complete treatment of the thermo-

dynamics of the whole system (strong and electroweak
contributions), that after about 100 μs the cosmological
parameters return to the typical values of a radiation
dominated era, i.e., to their values before the transition,
and that this result remains valid also for cosmological
scalars involving higher order derivatives of the scale factor
(see Figs. 6–10).
Moreover the effects of the QCD transition on the

density fluctuations are small [8] and, therefore, the
possible signature of the deconfinement transition in early
Universe is restricted to the modification of the primordial
gravitational wave spectrum.
By using the recent lattice QCD simulation data and the

HRG below Tc to describe the transition, one evaluates the
fraction of energy density of gravitational waves with
respect to waves that do not encounter the QCD transition.
A difference of about 10% is observed with respect to
previous analyses [2].

However, direct and indirect detection of gravitational
waves from inflation is required to verify these results [22].
While it seems unlikely in the present, promising experi-
ments are planned for the future [23].
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APPENDIX A: COSMOLOGICAL PARAMETERS

In the framework of Friedmann cosmology the evolution
can be described by the Hubble parameter H, the decel-
eration q, the jerk j ¼ A3, the snap s ¼ A4 and others
cosmological parameters, since they specify the various
terms of the Taylor expansion of the scale factor:

aðtÞ ¼ aðt�Þ
�
1þHðt�Þðt − t�Þ − ðqH2Þðt�Þ

2!
ðt − t�Þ2

þ ðjH3Þðt�Þ
3!

ðt − t�Þ3 þ � � �
�
: ðA1Þ

Since

dna
dtn

¼ dn−1

dtn−1

�
da
dt

�
¼ dn−1ðaHÞ

dtn−1
; ðA2Þ

it is easy to show that these quantities are related to the
derivatives of the Hubble parameter as follows:

q ¼ −1 −
_H
H2

; ðA3Þ

j ¼ A3 ¼ 1þ 3
_H
H2

þ Ḧ
H3

; ðA4Þ

s ¼ A4 ¼ 1þ 6
_H
H2

þ 3

�
_H
H2

�2

þ 4
Ḧ
H3

þ H
…

H4
; ðA5Þ

A5 ¼ 1þ 10
_H
H2

þ 15

�
_H
H2

�2

þ 10
Ḧ
H3

þ 5
H
…

H4
þ 10

_H
H2

Ḧ
H3

þHð4Þ

H5
; ðA6Þ

A6 ¼ 1þ 15
_H
H2

þ 45

�
_H
H2

�2

þ 20
Ḧ
H3

þ 15
H
…

H4
þ 60

_H
H2

Ḧ
H3

þ 6
Hð4Þ

H5

þ 15

�
_H
H2

�3

þ 15
_H
H2

H
…

H4

þ 10

�
Ḧ
H3

�
2

þHð5Þ

H6
: ðA7Þ

By defining the speed of sound c2s ≡ ∂p=∂ε, where p is the
pressure and ε the energy density, and by recalling that

FIG. 13. Comparison of the fraction of energy density of
gravitational waves with respect to waves that do not encounter
the QCD transition between the evaluation made in [2], in black,
and our evaluation, in red. Vertical line represents the transition.
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1

Hnþ1

dnH
dtn

¼ −
4πG
Hnþ1

dn−1ðεþ pÞ
dtn−1

; ðA8Þ

each of the previous derivatives can be express as

_H
H2

¼ −
3

2

�
1þ p

ε

�
; ðA9Þ

Ḧ
H3

¼ 9

2
ð1þ c2sÞ

�
1þ p

ε

�
; ðA10Þ

H
…

H4
¼ 9

2

�
1þ p

ε

��
dc2s=dt
H

− 3ð1þ c2sÞ2

−
3

2
ð1þ c2sÞ

�
1þ p

ε

��
; ðA11Þ

Hð4Þ

H5
¼ 9

2

�
1þ p

ε

�
½9ð1þ c2sÞ3 þ 18ð1þ c2sÞ2

�
1þ p

ε

�

− 3

�
4þ p

ε
þ 3c2s

�
dc2s=dt
H

þ d2c2s=dt2

H2

�
; ðA12Þ

Hð5Þ

H6
¼ 9

2

�
1þ p

ε

��
d3c2s=dt3

H3
− 9

�
dc2s=dt
H

�
2

−
�
33

2
þ 9

2

p
ε
þ 12c2s

�
d2c2s=dt2

H2

þ ð1þ c2sÞ
�
135þ 81

p
ε
þ 54c2s

�
dc2s=dt
H

− 27ð1þ c2sÞ4 −
297

2
ð1þ c2sÞ3

�
1þ p

ε

�

− 27ð1þ c2sÞ2
�
1þ p

ε

�
2
�
: ðA13Þ

Furthermore, by defining wðεÞ≡ p=ε one can show that

c2s ¼ wþ ε
dw
dε

ðA14Þ

and thus all the cosmological parameters can be express in
terms of w, c2s and its derivatives. For the first three
parameters one gets

q ¼ 1

2
ð1þ 3wðεÞÞ; ðA15Þ

j ¼ 1þ 3c2sð1þ qÞ ¼ qð1þ 2qÞ þ 3ð1þ qÞε dw
dε

;

ðA16Þ

s ¼ 1 − 3ð1þ qÞ − 9c4sð1þ qÞ

− 3c2sð1þ qÞð3þ qÞ þ 3ð1þ qÞ dc
2
s=dt
H

¼ −qð1þ 2qÞð2þ 3qÞ

− 3ð1þ qÞð1þ 5qÞε dw
dε

− 9ð1þ qÞ
�
ε
dw
dε

�
2

þ 3ð1þ qÞ dc
2
s=dt
H

; ðA17Þ

Finally, to simplify the calculations it is better to consider
temperature derivatives rather than time derivatives. In
general, one needs a function T ¼ TðtÞ and, by defining
the function

hðTÞ ¼ 1

aðTÞ
da
dT

; ðA18Þ

it is easy to show that

dT
dt

¼ H
h
; ðA19Þ

and, by the FLRW equations and by the isentropic
expansion condition, one obtains

h ¼ −
1

3c2sT
¼ −

CV

3ðεþ pÞ ; ðA20Þ

where CV is the specific heat.

APPENDIX B: CALCULATION OF THE
TEMPERATURE DEPENDENCE

Let us consider the equation of motion for the transfer
function, Tk, with respect to cosmic time, t,

d2T k

dt2
þ 3

1

a
da
dt

T k

dt
þ k2

a2
T k ¼ 0 ðB1Þ

and let us write

dT
dt

¼ dT
dη

dη
dt

¼ −3c2sTH: ðB2Þ

where T is the temperature, η is the conformal time,H is the
Hubble parameter and c2s is the speed of sound.
Then Eq. (B1) becomes

d2T k

dT2
þ fðTÞ dT k

dT
þ κ2ðT; kÞT k ¼ 0; ðB3Þ

where

fðTÞ ¼ 1

T
w − 1þ 2c2s

2c2s
þ 1

c2s

dc2s
dT

; ðB4Þ
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κðT; kÞ ¼ −
k
a

1

3c2sTH
; ðB5Þ

w ¼ p
ε
; ðB6Þ

c2s ¼
dp
dε

: ðB7Þ

In radiation era, the solution of Eq. (B1) reads

T k ¼ Aj0

�
α
k
T

�
; ðB8Þ

where j0 is a spherical Bessel function of the first kind and
A and α are appropriate constants.
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