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We investigate the radiative decay of the cosmic neutrino background and its impact on the spectrum of
the cosmic microwave background (CMB) that is known to be a nearly perfect black body. We derive exact
formulas for the decay of a heavier neutrino into a lighter neutrino and a photon, νj → νi þ γ, and of
absorption as its inverse, νi þ γ → νj, by accounting for the precise form of the neutrino momentum
distribution. Our calculations show that if the neutrinos are heavier thanOð0.1Þ eV the exact formulas give
results that differ by ∼50%, compared with approximate ones where neutrinos are assumed to be at rest. We
also find that spectral distortion due to absorption is more important for heavy neutrino masses (by a factor
of ∼10 going from a neutrino mass of 0.01–0.1 eV). By analyzing the CMB spectral data measured with
COBE-FIRAS, we obtain lower limits on the neutrino lifetime of τ12 ≳ 4 × 1021 s (95% C.L.) for the
smaller mass splitting and τ13 ∼ τ23 ≳ 1019 s for the larger mass splitting. These represent up to 1 order of
magnitude improvement over previous CMB constraints. With future CMB experiments such as PIXIE,
these limits will improve by roughly 4 orders of magnitude. This translates to a projected upper limit on the
neutrino magnetic moment (for certain neutrino masses and decay modes) of μν < 3 × 10−11 μB, where μB
is the Bohr magneton. Such constraints would make future precision CMB measurements competitive with
lab-based constraints on neutrino magnetic moments.
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I. INTRODUCTION

In the last few decades, many experiments have dem-
onstrated that neutrinos show properties beyond the
Standard Model of particle physics. They have nonzero
masses and show flavor mixings as revealed by measure-
ments of neutrino oscillations using solar, atmospheric,
reactor, and accelerator neutrinos (see Refs. [1,2] for a
review). There are, however, a number of important issues
remaining. What is the neutrino mass hierarchy [3]?
What is the CP-violating phase in the lepton sector [4]?
How weakly do neutrinos interact with photons [5,6]? Do
neutrinos decay, either radiatively or nonradiatively [7]?
Even the weak interaction predicts interactions between

the neutrino and photon through a nonzero magnetic
moment induced via loop corrections of the gauge boson,
although its value is expected to be small [6]. We denote by
μij the magnetic moment between neutrino mass eigen-
states i and j, with off-diagonal elements (i ≠ j) represent-
ing the transition magnetic moments in radiative decay.
For massive Dirac neutrinos, the value of the diagonal
magnetic moment induced by loops of gauge bosons is
given by [8]

μDii ¼
3eGFmi

8
ffiffiffi
2

p
π2

≈ 3.2 × 10−19
�
mi

eV

�
μB; ð1Þ

where μB is the Bohr magneton, while for the Dirac off-
diagonal elements, one finds a value roughly 10−4 times
smaller [9]. For Majorana neutrinos, one finds the magnetic
moment suppressed by the ratio of the lepton and gauge
boson masses:

μMij ¼ 3eGFmi

16
ffiffiffi
2

p
π2

�
1þmj

mi

� X
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Im½UlkU�
lj�
�
ml

mW

�
2

: ð2Þ

The current upper bound on the neutrino magnetic
moment from electron-neutrino scattering experiments is
μν < 2.8 × 10−11 μB [10,11]. The strongest astrophysical
constraints place the bound at μν < 2.2 × 10−12 μB
[12–14], well above the value expected from weak inter-
actions alone (see Refs. [15,16] for a thorough review).
However, new physics contributions could enhance the
predicted magnetic moment [17–24]. In particular,
Ref. [25] proposed a model with SU(2) horizontal sym-
metry, allowing Majorana transition neutrino magnetic
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moments of order 10−12 μB while protecting the small mass
of the neutrinos.
Since the neutrinos have masses that are proven to differ

for different mass eigenstates, nonzero magnetic moments
will induce radiative neutrino decay,

νj → νi þ γ; ð3Þ

where mj > mi. With enhanced magnetic moments, radi-
ative neutrino decays induced by this interaction may be
relevant for astrophysical systems, providing a probe of
new physics in the neutrino sector. Since the mass-squared
differences have been precisely measured with oscillation
experiments and the absolute neutrino masses have been
constrained to be belowOð1Þ eV [26,27], Ref. [28] pointed
out that photons emitted via neutrino decay will disturb
the nearly perfect blackbody spectrum of the cosmic
microwave background (CMB). By comparing with the
CMB spectral data obtained with the Far Infrared
Absolute Spectrophotometer (FIRAS) onboard the
Cosmic Background Explorer (COBE) [29,30], Ref. [28]
obtained constraints on the decay rate of Γ < 2×
10−19–5 × 10−20 s−1. This corresponds to μν ≲ 10−8 μB,
still much weaker than other astrophysical or lab-based
constraints.
In this paper, we improve the work of Ref. [28] in several

aspects. First, we argue that, if the neutrino can decay
radiatively (νj → νi þ γ), then it is also possible that a
CMB photon is absorbed by a lighter mass eigenstate of the
cosmic neutrino background νi,

νi þ γCMB → νj; ð4Þ

to create a heavier state νj. The cross section of this
resonance process is given by

σðEÞ ¼ π2

k2
ΓδðE −mjÞ; ð5Þ

where E is the center-of-mass energy of the initial state and
k is the momentum of the center-of-mass frame [1].
Second, in contrast to approximate formulas that were

derived and adopted in the literature [28,31], in which
neutrinos were assumed to be at rest, we derive exact
formulas by taking the neutrinos’ thermal momentum
distribution into account. We also include the effects of
stimulated emissions for decay and Pauli blocking for both
the decay and absorption. We show that all these effects can
be of considerable importance in calculating the CMB
spectral distortion. Therefore, neglecting these will cause a
theoretical bias in the estimated lower limits on the decay
lifetime.
Third, we will make projections for planned future CMB

experiments. We will primarily focus on the Primordial
Inflation Explorer (PIXIE) [32], which is a proposed

mission to measure the CMB intensity with a higher
sensitivity and wider frequency range than COBE-
FIRAS. PIXIE is expected to have a sensitivity of
5 Jy=sr [33], as opposed to the COBE-FIRAS sensitivity,
which is of the order of 104 Jy=sr [29]. We show how this
improved sensitivity affects constraints on the neutrino
lifetime and magnetic moment. We thus motivate future
CMB experiments such as PIXIE (and the further-future
PRISM experiment [34]), as probes of new physics in
the neutrino sector. Finally, we note that, when obtaining
the current FIRAS bounds and PIXIE sensitivities, we take
into account correlations between different components of
the spectral distortion such as the chemical potential as well
as the residual Galactic emission.
The paper is organized as follows. In Sec. II, we present

formulas for computing the intensities of microwave
photons from both decay and absorption by cosmic
neutrinos. The theoretical results are then compared with
the CMB spectral data measured with COBE-FIRAS, and
we calculate the lower limits on the decay lifetime and
the upper limits on the neutrino magnetic moments for
various modes and the different mass hierarchy scenarios in
Sec. III. We then discuss the potential sensitivity of future
CMB experiments to the neutrino radiative decay in Sec. IV
and conclude the paper in Sec. V.

II. DECAY AND ABSORPTION INTENSITIES

In Sec. II A, we first derive formulas for photon
intensities from both the decay of heavier neutrinos and
absorption of the CMB photons by the lighter neutrinos, by
assuming that the neutrinos are at rest—a reasonable
approximation when the neutrino mass is much larger than
the temperature of the CMB and neutrino background, on
the order of 10−3 eV. In Sec. II B, we show exact formulas
for the decay and absorption intensities, although much
of the derivation is later summarized in the Appendix.
In Sec. II C, we show numerical results for decay and
absorption intensities, illustrating their dependence on the
lightest neutrino mass, decay mode, and mass hierarchy.

A. Approximate formulation

If the neutrino can be considered at rest, according to
kinematics, the energy of the absorbed CMB photon ϵγ (in
the observer frame) is related to the neutrino masses via

ð1þ zaÞϵγ ¼
Δm2

ij

2mi
; ð6Þ

where we have defined mi < mj, Δm2
ij ≡m2

j −m2
i , and za

is the redshift when absorption occurs. In contrast, radiative
decay follows slightly different kinematics,

ð1þ zdÞϵγ ¼
Δm2

ij

2mj
; ð7Þ

JELLE L. AALBERTS et al. PHYS. REV. D 98, 023001 (2018)

023001-2



with redshift zd when the decay occurs. Setting za;d ¼ 0

gives the maximum photon energy at which the effects of
absorption or decay can be observed for given mi, mj.
Equation (5) shows the absorption cross section in terms

of quantities in the center-of-mass frame. It is, however,
more useful to use quantities in the observer frame in which
the lighter neutrino νi is at rest and ϵγ is in the microwave
frequency range. Then, Eq. (5) can be rewritten as

σð½1þ z�ϵγÞ ¼
π2

k2
Γ
mj

mi
δ

�
ð1þ zÞϵγ −

Δm2
ij

2mi

�
: ð8Þ

The center-of-mass momentum k for the absorption,
νi þ γ → νj, satisfies

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

i

q
þ k ¼ mj; ð9Þ

according to energy conservation. From this, we have

k ¼ Δm2
ij

2mj
; ð10Þ

and thus

σð½1þ z�ϵγÞ ¼
4π2m3

jΓ
ðΔm2

ijÞ2miϵγ
δðz − zaÞ: ð11Þ

We then consider the effective CMB intensity due to
decay and absorption, Idec and Iabs as a function of CMB
energy ϵγ. For a given energy ϵγ, there is a corresponding
redshift through Eqs. (6) and (7), in which absorption and
decay are allowed, respectively. These intensities can be
written as a cosmological line-of-sight integral of the
emissivity [35],

IdecðϵγÞ ¼
1

4π

Z
dz

Pdecð½1þ z�ϵγ; zÞ
HðzÞð1þ zÞ4 ; ð12Þ

IabsðϵγÞ ¼
1

4π

Z
dz

Pabsð½1þ z�ϵγ; zÞ
HðzÞð1þ zÞ4 ; ð13Þ

where Pdec or Pabs is the volume emissivity (energy of
photons emitted per unit volume, per unit time, and
per unit energy range), HðzÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þΩΛ

p
,

H0 ¼ 67.8 km s−1 Mpc−1 is the Hubble constant,
Ωm ¼ 0.308, and ΩΛ ¼ 0.692 [26].

These emissivity functions can therefore be written as

Pdecð½1þ z�ϵγ; zÞ ¼ ð1þ zÞϵγnνjðzÞΓe−ΓtðzÞ
× ½1þ fCMBðϵγÞ�

× δ

�
ð1þ zÞϵγ −

Δm2
ij

2mj

�

¼ ð1þ zÞnνjðzÞΓe−ΓtðzÞ
× ½1þ fCMBðϵγÞ�δðz − zdÞ; ð14Þ

Pabsð½1þ z�ϵγ; zÞ ¼ −ð1þ zÞϵγnνiðzÞ
× nCMBð½1þ z�ϵγ; zÞσð½1þ z�ϵγÞ

¼ −
2π2m3

jΓ
Δm2

ijm
2
i ϵγ

δðz − zaÞ

× nνiðzÞnCMBð½1þ z�ϵγ; zÞ; ð15Þ

where we note that the sign of Pabs is negative as it gives
the suppression of the total CMB intensity. The term
½1þ fCMBðϵγÞ� represents the stimulated emission, with
fCMBðϵγÞ ¼ ðeϵγ=TCMB − 1Þ−1 the occupation number of
the CMB photons and TCMB ¼ 2.725 K the present
CMB temperature [29,30], and nCMBðϵγ; zÞ is the CMB
number density per unit energy range at ϵγ and z; i.e.,
nCMBð½1þ z�ϵγ; zÞ ¼ ð1þ zÞ2ϵ2γfCMBðϵγÞ=π2. The occupa-
tion number has no dependence on redshift, as it cancels
between the energy at z, ð1þ zÞϵγ , and the CMB temper-
ature at z, ð1þ zÞTCMB. We note that the effect of
stimulated emission has not been taken into account in
the literature [28,31], although it was acknowledged in
Ref. [31]. We also assume ΓtðzÞ ≪ 1 in the following
discussions, which is well justified when the lifetime
τ ¼ Γ−1 is much larger than the age of the Universe as
is the case here. By using Eqs. (14) and (15) in Eqs. (12)
and (13), respectively, one can predict the effect of decay
and absorption on the CMB intensity spectrum. After the δ
functions collapse the redshift integral, we obtain the
analytic expressions

IdecðϵγÞ ¼
1

4π

nνjΓ
HðzdÞ

½1þ fCMBðϵγÞ�; ð16Þ

IabsðϵγÞ ¼ −
1

4π

nνiΓ
HðzaÞ

�
mj

mi

�
3

fCMBðϵγÞ; ð17Þ

where nνi ¼ nνj ≈ 110 cm−3 are the neutrino number
densities of mass eigenstates νi and νj at z ¼ 0. Up to
the factor for stimulated emission, Eq. (16) agrees with the
formulas adopted in Ref. [28].
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B. Exact formulation

Thus far, we made the approximation that both νi and νj
in the initial states are at rest. This is a very good
approximation when the neutrino can be regarded as
nonrelativistic, which is valid in the case of mi;j ≫ Tν ¼
ð4=11Þ1=3TCMB ¼ 1.95 K. Otherwise, one has to take into
account the momentum distribution of the neutrinos [36],

fνðpν; zÞ ¼
1

exp½pν=TνðzÞ� þ 1
; ð18Þ

where TνðzÞ ¼ ð1þ zÞTν is the neutrino temperature at z.
A detailed derivation of the emissivity is summarized in

the Appendix, and here we show only the results,

Pdecð½1þ z�ϵγ; zÞ ¼
ΓTνmjΔm2

ij

4π2
1þ fCMBðϵγÞ

ϵγ

×U

�
mj

ð1þ zÞTν
;
ϵγ
Tν

;
2ð1þ zÞϵγmj

Δm2
ij

�
;

ð19Þ

Pabsð½1þ z�ϵγ; zÞ ¼ −
2ð1þ zÞ4

π2
ΓT2

νm3
j

ðΔm2
ijÞ2

ϵ2γfCMBðϵγÞ

× V

�
mi

ð1þ zÞTν
;
ϵγ
Tν

;
2ð1þ zÞϵγmi

Δm2
ij

�
;

ð20Þ

for decay (νj → νi þ γ) and absorption (νi þ γ → νj),
respectively, where

Uðy; s; tÞ ¼
Z

∞

y
2
jt−1

tj

dxx

ðex þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
×

�
1 −

1

eW−ðs;t;x;yÞ þ 1

�
; ð21Þ

Vðy; s; tÞ ¼
Z

∞

y
2
jt−1

tj

dxx
ex þ 1

�
1 −

1

eWþðs;t;x;yÞ þ 1

�
; ð22Þ

W�ðs; t; x; yÞ ¼
�
s2 þ x2 � 2s

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q
−
y
t

��
1=2

:

ð23Þ

These equations are inevitably more complicated than those
shown in the previous subsection but are the most accurate.

C. Results

We present numerical results for the intensity due to
absorption and decay, as well as compare the approximate
and exact calculations. Because it is not yet known whether
the neutrino mass eigenstates are arranged in a normal

hierarchy (NH) (m1 < m2 ≪ m3) or an inverted hierarchy
(IH) (m3 ≪ m1 < m2), we include both possibilities in the
calculations presented later in the paper. Throughout the
paper, we adopt Δm2

12 ¼ 7.53 × 10−5 eV2 and Δm2
23 ¼

2.5 × 10−3 eV2 for NH and Δm2
12 ¼ 7.53 × 10−5 eV2 and

Δm2
31 ¼ 2.5 × 10−3 eV2 for IH [1]. We show only results

for the NH in this section, noting that the results for IH are
similar. The mass of the lightest neutrino mass eigenstate is
m1, and we assume a reference value of τ ¼ 1018 s for the
neutrino radiative decay lifetime.
Figure 1 shows the effect of decay and absorption on the

CMB spectrum, in the case of transitions between m1 and
m2, computed with the approximate formulas. We note first
that the distortions to the CMB spectrum extend up to
higher frequencies for lighter neutrinos, which is simply a
consequence of kinematics [cf. Eqs. (7) and (6)]. We also
note that the magnitude of the absorption depends on the
masses of the neutrinos, with heavier neutrinos leading to a
larger absorption effect. For a given photon energy today,
ϵγ, as we decrease the mass mi of the absorbing neutrino,
the absorption must occur at earlier times (larger redshift,
za). As we increase za, the period over which absorption
can take place ∼HðzaÞ−1 becomes shorter, suppressing the
total amount of absorptions. Decreasing mi from 0.1 to
0.03 eV, this factor dominates over the ðmj=miÞ3 scaling in
the absorption intensity [Eq. (17)], and the absorption effect
becomes smaller (left panel of Fig. 1).
Decreasing the lightest neutrino mass mi further, one

would expect eventually that the ðmj=miÞ3 scaling would
dominate over the scaling with ∼HðzaÞ−1 ∼ ðmi=Δm2

ijÞ3=2,
for high z. However, at high z, the neutrino temperature is
large, and the neutrino momenta, described in Eq. (18),
become relevant. The nonzero neutrino momenta act to
suppress the absorption cross section [Eq. (5)] which scales
as k2, where k is the center of mass from momentum. As we
will see in Sec. III, the overall effect is that the absorption
intensity flattens to a constant at small values of mi. This
emphasizes the importance of the exact formulation—
accounting for the thermal neutrino distribution—for the
correct calculation of the absorption effect.
Figures 2 and 3 compare the results of using the exact

(green) and approximate (red) calculations for different
neutrino masses. In each case, the left panels correspond to
the decay/absorption of m1 and m2, while the right panels
show the same for m1 and m3. Because Δm2

13 is 2 orders of
magnitude larger than Δm2

12, the spectral distortions for the
3 → 1 mode extend up to much larger photon energies.
From Fig. 2, we see the effect of the neutrino momentum
distribution, which leads to a smoother cutoff in the
intensity when exact formulas are used, compared to the
sharp cutoff in the approximate approach. Furthermore, at
low frequencies, corresponding to high-absorption redshift,
the approximate absorption intensity is much larger than
the exact absorption intensity. This suppression of the
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absorption intensity is a manifestation of the nonzero
neutrino temperature, as described in the previous para-
graph. Though these appear to be minor corrections, the
high precision of the CMB spectral measurements means
that these should be taken into account to obtain accurate
limits on the neutrino lifetime.
Another effect which is observed in Figs. 2 and 3 is the

impact of Pauli blocking. In the exact formalism [Eqs. (19)
and (20)], the term 1 − 1=½eW�ðs;t;x;yÞ þ 1� leads to a

suppression of the decay and absorption rates when the
final neutrino state is already occupied. This Pauli-blocking
effect lowers the overall intensity; we see from the lower
panels of Figs. 2 and 3 that the approximate intensity is
always larger than the exact one, by around 50%. The
stimulated emission, on the other hand, enhances the decay
intensity, but the effect quickly decreases from ∼50% at
2 cm−1 (the lowest frequency of the FIRAS measurement)
to ≲3% at > 6 cm−1. Therefore, the absorption and Pauli

FIG. 2. Comparison between the exact and approximate neutrino decay and absorption intensities. The exact results are shown in
green, and the approximate results are in red, as functions of frequency ν. Both the left- and right-hand panels use a mass of 0.01 eV for
the lightest neutrino, but they consider different modes: m2 ↔ m1 (left) and m3 ↔ m1 (right). The lower panels show the ratio of the
approximate and exact intensities for both absorption and decay.

FIG. 1. Effect of neutrino decay and photon absorption on the CMB spectrum. Both panels consider NH and Γ ¼ 10−18 s−1 with
decay/absorption between the lowest two mass eigenstates, where the lowest mass is taken to be 0.03 (left) and 0.1 eV (right). The black
lines correspond to the unperturbed CMB spectrum, the red lines include the effect of photons from decaying neutrinos, and the blue
lines include both decay and absorption. Here, the intensities as a function of frequency ν are calculated using the approximate formulas
given in Sec. II A. In the lower panel, the CMB spectrum is not included, and only the bare intensities from decay (yellow) and
absorption (green) are shown.
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blocking combined should give lower intensities than were
found with the formulas used in Ref. [28].

III. ANALYSIS OF THE COBE-FIRAS DATA OF
CMB SPECTRUM AND LOWER LIMITS ON

DECAY LIFETIME

A. Maximum likelihood analysis

COBE-FIRAS has precisely measured the CMB spec-
trum, in order to constrain cosmological parameters [29].
The model for the CMB intensity discussed in Ref. [29]
included the effects of temperature deviations, Galactic
contamination, chemical potential μ, and y distortion. Since
we also include the decay and absorption, we consider an
intensity I of the form

I ¼ I0 þ ΔT
∂Iν
∂T þ μ

∂Iν
∂μ þ G0Igal þ yIy

þ ΓijðIdecij þ Iabsij Þ; ð24Þ

where the derivatives are to be evaluated at T ¼ T0 ¼
2.725 K and μ ¼ 0 and where ΔT ≡ T − T0. The index ij
denotes the decay/absorption mode between the different
mass eigenstates of the neutrino: ij ∈ f12; 13; 23g.
Furthermore, G0 is the amplitude of the Galactic contami-
nation, y is the Kompaneets y parameter, and Γij is the
decay rate for mode ij. I0 is a regular blackbody spectrum,

I0 ¼ IνðT; μÞjT¼T0;μ¼0 ¼
2hν3

ehν=Tþμ − 1

����
T¼T0;μ¼0

; ð25Þ

Igal is the residual Galactic contamination measured by
FIRAS; Iy is given by [29,37]

Iy ¼ T0

�
hν
T0

coth

�
1

2

hν
T0

�
− 4

� ∂Iν
∂T

����
T¼T0;μ¼0

; ð26Þ

and Idecij and Iabsij are intensities corresponding to decay and
absorption, respectively, of mode ij per unit Γ.1 Note that in
reality all three modes occur simultaneously, but we find
that including them all at once in the analysis would yield
unnecessarily weak constraints on Γij. This is because the
masses of ν1 and ν2 are relatively close, resulting in
degeneracy in the spectra of the modes 13 and 23. We
solve this issue by focusing on one mode at a time, forcing
the other two decay rates to be zero.
The parameters we are interested in are Γ12, Γ13, and Γ23.

We will constrain these by fitting the model in Eq. (24) to
the FIRAS data and minimizing χ2 as a function of the
parameters ΔT, μ, G0, y, and Γij. The χ2 of this model is
given by

χ2 ¼
X43
i;j¼1

ðIdatai − Imodel
i ÞðC−1ÞijðIdataj − Imodel

j Þ; ð27Þ

where Imodel is given by Eq. (24), Idata is the FIRAS
measurement, and C is the covariance matrix taken from
Ref. [29]. The sum runs over the 43 frequency bins
of FIRAS.
Our model for the intensity is defined by the parameters

θa ∈ fΔT; μ; G0; y;Γijg, the best-fit values θ̂a of which are
determined by solving the system of five simultaneous
equations:

FIG. 3. The same as Fig. 2 but for a heavier neutrino mass, m1 ¼ 0.1 eV.

1Note that the intensities here are defined as quantities per unit
frequency range, instead of per unit energy range as we defined in
the previous section. We therefore have to multiply the equations
in Sec. II by the Planck constant h ¼ 2π to compute the
intensities directly compared with the FIRAS data.
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∂χ2
∂θa

����
θ̂
¼ 0: ð28Þ

To estimate errors for each parameter θa, taking degeneracy
among the parameters into account, we calculate the
observed Fisher information matrix:

Fab ¼
1

2

∂2χ2

∂θa∂θb : ð29Þ

The parameters θa, θb∈fΔT;μ;G0;y;Γijg, so dimðFÞ ¼ 5,
since we are only looking at one decay mode at a time. The
derivatives in Eq. (29) are to be evaluated at the best-fit
point θ̂a. However, we note that, assuming the linearized
intensity in Eq. (24), the Fisher information is independent
of the parameters θa and θb.
The covariance between parameters θa and θb is the

inverse of this matrix:

Covðθa; θbÞ ¼ ðF−1Þab: ð30Þ

The 1σ uncertainty of a specific parameter θa is equivalent
to the diagonal components of the covariance matrix as
follows:

σa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF−1Þaa

q
: ð31Þ

The upper limit at 95% C.L. on the parameter θa (corre-
sponding to Δχ2 ≈ 2.71) is then estimated as

θ95%a ≈ θ̂a þ
ffiffiffiffiffiffiffiffiffi
2.71

p
σa: ð32Þ

In some cases, we find that the best-fit value, Γ̂, is negative,
which is clearly unphysical. In this case, we assume
that Eq. (29) remains a good approximation to the χ2.

The physical best fit is then at Γ ¼ 0, and we calculate the
upper limit as

Γ95% ≈ Γ̂þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ̂2 þ 2.71σ2Γ

q
: ð33Þ

We have checked our analysis procedure by fixing
Γ ¼ 0 and determining limits on the μ and y parameters
separately. Our results are consistent with those reported
in Ref. [29] (jμj < 9 × 10−5 and jyj < 1.5 × 10−5 at
95% C.L.).

B. Constraints on neutrino decay lifetime
and transition magnetic moments

Using the approach given in the previous subsection and
the FIRAS data [29], we numerically compute values for
the 95% C.L. lower limit on the neutrino lifetime τ ¼ 1=Γ
as a function of the lowest neutrino mass. These constraints
are presented in Fig. 4 for NH (left panel) and IH
(right panel).
Constraints on the 13 and 23 modes are weaker than for

the 12 mode by around an order of magnitude. This is as
expected comparing, e.g., the left and right panels of
Fig. 2, in which the distortion due to the 12 mode is
clearly larger for a fixed value of τ. As outlined in Sec. II C,
this is because the larger mass-squared difference in the 13
case means that the majority of the distortion appears at
frequencies above the FIRAS range. For the 12 mode, the
strongest constraints appear in the mass range 0.01–
0.12 eV, below which the sharp spectral feature from
neutrino decay lies above the FIRAS frequency range.
Above∼0.12 eV, the CMB distortions from neutrino decay
and absorption occur at frequencies too low to be detected
by FIRAS. As pointed out in Ref. [28], the jagged shape of
the limits is due to the fact that the χ2 changes abruptly
when the end point of the neutrino decay spectrum crosses
into a new frequency bin.

FIG. 4. 95% C.L. lower limits on radiative decay lifetime of neutrinos as a function of the lightest neutrino mass. Values of the neutrino
lifetime below the solid curves are excluded by our analysis at the 95% C.L. Left panel: Results for NH, where m1 is the lowest mass.
Right panel: Results for IH where m3 is the lowest mass.
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We now translate our constraints on the radiative
neutrino decay rate Γ into constraints on the effective
neutrino magnetic moment. For neutrinos with transition
magnetic and electric moments, μij and ϵij, respectively,
we can define the effective magnetic moment κ2ij ≡
jμijj2 þ jϵijj2. For a transition νj → νi þ γ, the decay rate
induced by this magnetic moment is given by [38]

Γij ¼
κ2ij
8π

�Δm2
ij

mj

�3

: ð34Þ

The resulting constraints on κij are shown in Fig. 5. In the
case of NH (left panel), our constraints extend down to
≲10−8 μB for the 13 and 23 modes and ≲4 × 10−8 μB for
the 12 mode. In the case of IH (right panel), the constraints
on the 12 mode are weaker by roughly a factor of 2. This is
because m1 and m2 are larger than the case in NH, leading
to a smaller decay rate for a given magnetic moment
[Eq. (34)]. This dependence of the decay rate on the
neutrino mass also explains why the 23 and 13 modes
give stronger constraints on κij than the 12 mode (the
opposite was seen in Fig. 4).

C. Comparison to earlier work and degeneracy
among parameters

We now compare our results to those previously obtained
by Ref. [28]. The analysis of Ref. [28] did not take into
account stimulated emission, Pauli blocking, or absorption
and assumed the neutrinos to be at rest at the moment of
decay. In addition, only Γwas varied in the χ2 analysis. The
difference between these results should tell us the impact of
the exact calculation on the CMB spectrum as well as the
importance of including additional nuisance parameters in
the analysis.

When we compare our exact results to the findings in
Ref. [28], we find that our results are in broad agreement
with the results of Fig. 2 presented in that reference. For
NH, we obtain a stronger limit for the 12 mode in the range
of 10−2 eV≲mν ≲ 10−1 eV by about 1 order of magni-
tude. For IH, our bounds on the 13 and 23 modes are
slightly weaker (by a factor of around 2) than the bounds
found in Ref. [28] in the region 10−3 eV≲mν ≲ 10−1 eV.
We again obtain a stronger bound on the 12 mode in the
region 10−2 eV≲mν ≲ 10−1 eV. We emphasize that we
expect our constraints to be more accurate, as we include
more accurate calculations of the spectral distortions and
more parameters in the analysis.
To further investigate how our results differ from the

previous constraints, we have repeated our analysis,
following (where possible) the analysis procedure of
Ref. [28]. To do this, we used the model for the intensity,

I ¼ I0 þ ΓijIdecij ; ð35Þ

instead of the full model given in Eq. (24), fixing all the
other parameters to be zero. Note that we did not include
the contribution of absorption or stimulated emission and
calculated the decay intensity using the approximate
approach presented in Sec. II A. The uncertainty on the
decay rate was then given by σ2Γ ¼ 2ð∂2χ2=∂Γ2Þ−1 (not
taking into account the full Fisher matrix). We also adopted
the mass differences and cosmological parameters stated
in Ref. [28].
The resulting lower limits on τ are shown in Fig. 6, in

which dashed lines are the bounds reported in Ref. [28] and
solid lines show our bounds using the same analysis
approach. The shape of the bounds is in close agreement.
However, we notice that our bounds are around 1 order of
magnitude stronger, although we have attempted to repro-
duce the analysis of Ref. [28] as closely as possible.

FIG. 5. 95% C.L. upper limits on the magnetic moment of neutrinos, as a function of the lightest neutrino mass. Values of the effective
transition magnetic moment κij [defined in Eq. (34)] above the solid lines are excluded by our analysis. Results shown are for NH (left
panel) and IH (right panel).
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Unfortunately, we have not been able to find the source of
this discrepancy.2

Lastly, when comparing our approximate bounds in
Fig. 6 with the full analysis from Fig. 4, we notice that
the full bounds are typically weaker by a factor of ∼30.
This implies that we cannot ignore the correlation among
different parameters (which are included in the full analy-
sis). To see the effect more quantitatively, we introduce the
correlation coefficients,

ρðθa; θbÞ≡ Covðθa; θbÞ
σaσb

; ð36Þ

and show them between Γij and the other parameters in
Fig. 7 for the modes 12 and 13 and for both the NH and IH
(those for mode 23 are almost identical to those for 13). In
fact, we find very strong anticorrelation between Γ13 (or
Γ23) and the Galactic component G0 as well as the y
distortion for nearly all the masses investigated here. This is
because the modification of the CMB spectrum increases as
a function of the frequency without any feature and is thus
indistinguishable from the Galactic residual component
found in Ref. [29] up to the FIRAS errors. On the other
hand, if a sharp spectral feature appears in the FIRAS
frequency range (as is the case for m1 ∈ ½10−2; 10−1� eV in
the 12 mode), it breaks the degeneracy, and hence the
anticorrelation disappears (upper left panel of Fig. 7).
Indeed, we see that, comparing the full (Fig. 4) and
approximate analysis (Fig. 6), the bounds in this mass
range are largely unchanged between the two.
These results show that in the full analysis, including

θa ∈ fΔT; μ; G0; y;Γijg, degeneracies between the param-
eters can substantially weaken constraints on the neutrino

decay rates Γij. While accounting for these degeneracies
represents the most conservative approach, we could
alternatively have chosen to fix μ ¼ 0 and y ¼ 0 in the
analysis. In the standard ΛCDM cosmology, we expect
y ∈ ½10−7; 10−6�, caused by heating during reionization and
other heating mechanisms [39–41] and μ ∼Oð10−8Þ, from
the damping of primordial fluctuations [42]. These values
lie below the FIRAS sensitivity, and so, if we assume no
other sources of μ and y distortions, we could keep these
parameters fixed (effectively to zero) in the analysis. The
solid lines in Fig. 6 give an estimate of the limits on Γij in
this case. As we discuss in the next section, future
experiments will be more sensitive to μ and y, in which
case their inclusion in the analysis is unavoidable.

IV. SENSITIVITY OF FUTURE CMB
EXPERIMENTS

Highly sensitive future CMB measurements will be able
to measure spectral distortions to a high degree of precision.
Of particular interest are μ and y distortions, briefly dis-
cussed in the previous section. These provide information
about energy release at certain redshifts and therefore allow
us to constrain the thermal history of the Universe [43].
A measurement of y distortions may provide information
about structure formation and the epoch of reionization at
z < 10–20, as well as allow us to probe the primordial power
spectrum on small scales [44]. The decay and annihilation of
particles in the prerecombination epoch (5 × 104 < z <
2 × 106) may give rise to μ distortions [45], providing
sensitivity to particle lifetimes in the range τ ≃ 108–1011 s.
As we have explored so far in this work, particles with longer
lifetimes may also distort the CMB spectrum and provide a
detectable signal in future CMB experiments.
Here, we focus on the PIXIE mission, which is expected

to cover a frequency range of 30 GHz (1 cm−1) to 6 THz
(200 cm−1), using 400 channels. For this analysis, however,

FIG. 6. 95% C.L. lower limits on the radiative decay lifetime of neutrinos, following the analysis method of Ref. [28]. These
constraints were derived using approximate expressions for neutrino decay only and fixing all nuisance parameters except for Γ. Dashed
lines are the limits reported by Ref. [28]. Results shown are for NH (left panel) and IH (right panel).

2Reference [28] defines a reduced chi-squared test statistic but
does not specify how it calculates upper limits from this, so it is
difficult to reproduce its bounds exactly.
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we will only look at a range 30–750 GHz (1 − 25 cm−1,
divided into 48 frequency bins), as most of the CMB
spectrum lies within this range. Furthermore, at frequencies
higher than 3 THz, the spectrum is dominated by dust-
emitting foregrounds that do not affect the final analysis [46].
Following closely the analysis of Sec. III, we obtain

projected lower limits on the neutrino lifetime τ from the
PIXIE experiment. We assume that the error on the
intensity in each frequency bin is 5 Jy=sr [47] and that
there are no correlations between the different frequency
bins. We include the parameters θa ∈ fΔT; μ; G0; y;Γijg in
the modeled intensity, with the projected Galactic contami-
nation taken from Ref. [46]. We also consider the ideal case
in which G0 is fixed to zero; i.e., the Galactic contamina-
tion, presumably calibrated with other wavebands, is well
constrained and perfectly subtracted.
Unlike in Sec. III, the intensity spectrum has not yet been

measured by PIXIE. We therefore assume that the best-fit
decay rate will be Γ̂ ¼ 0. Using the Fisher-matrix approach
of Sec. III, we then estimate the 95% C.L. projected limit3

on Γ as Γ95% ≈ 1.64σΓ, where σΓ is defined in Eq. (31).

As noted in Sec. III A, in our linearized intensity model, the
numerical value of the Fisher matrix does not depend on the
model parameters θa. This means that the projection we
obtain for Γ95% does not depend on the assumed values of
the nuisance parameters (although it would depend on the
assumed best fit of the decay rate Γ̂).
The PIXIE projected limits are shown in Fig. 8. Solid

lines show the projections including parameters θa ∈
fΔT; μ; G0; y;Γijg, while dotted lines show the projection
when G0 is fixed to zero. The qualitative behavior of the
bounds matches those from FIRAS, although for the 12
mode, the bounds extend to higher values of m1 as PIXIE
will probe down to lower frequencies than FIRAS. The
projected limits lie in the range τ ≳ 1023–1025 s, repre-
senting a factor of 104 improvement over the FIRAS
limits. This improvement arises from both a reduction of
the uncertainties on the CMB intensity and from an
increase in the number of frequency channels from
FIRAS to PIXIE. Fixing the Galactic component to zero
improves the constraints by roughly another order of
magnitude (unless the spectral feature lies within the
PIXIE frequency range, as is the case for masses above
10−2 eV in the 12 mode).

FIG. 7. Correlation coefficients ρðΓ; XÞ between the decay rate Γ and other parameters X ∈ fΔT;G0; μ; yg. The correlation
coefficients [Eq. (36)] are shown as a function of the lightest neutrino mass, for NH (top row) and IH (bottom row) and for the modes 12
(left column) and 13 (right column).

3We might also call this the projected sensitivity of PIXIE.
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We convert the projected upper limits on the neutrino
lifetime into limits on the neutrino transition magnetic and
electric moments κij. The result is shown in Fig. 9, in which
again dotted lines show the case in which the Galactic
component is kept fixed. The factor of 104 improvement in
neutrino lifetime constraints translates to a factor of 102

improvement in the magnetic moment constraints. For the
lightest neutrino masses below 0.1 eV, the limit on κ ranges
from 10−8 μB down to 3 × 10−11 μB, depending on the
hierarchy and assumptions about Galactic contamination.
In particular, we note that for the 23 mode, lightest
neutrino mass lower than 10−2 eV, and minimal Galactic
contamination, constraints from a PIXIE-like experiment
may be competitive with the best lab-based ν–e scattering
experiments (cf. constraints from BOREXINO giving μν <
2.8 × 10−11 μB [48] at 90% C.L.).

V. CONCLUSIONS

In this work, we have presented updated constraints on the
neutrino radiative decay lifetime τ from FIRAS measure-
ments of the CMB intensity spectrum, introducing a number
of refinements compared to previous work [28]. We included
spectral distortions from photon absorption by neutrinos (not
only from neutrino decays) as well as calculated decay and
absorption rates, taking into account the momentum dis-
tribution of the cosmic neutrino background. In our analysis,
we simultaneously fit the neutrino decay rate Γ ¼ 1=τ along
with other nuisance parameters, including the temperature
deviation ΔT, μ and y distortions, and the residual Galactic
contamination G0. These led to more accurate and robust
limits than previously presented.
We found that the effects of absorption and decay are

comparable for neutrino masses Oð0.1Þ eV and larger. We

FIG. 8. Projected 95% C.L. lower limits on the radiative decay lifetime of neutrinos as a function of the lightest neutrino mass for a
PIXIE-like experiment. Dotted lines correspond to the lower limits assuming that the residual Galactic contaminationG0 is fixed to zero.
Left panel: Results for NH, where m1 is the lowest mass. Right panel: Results for IH where m3 is the lowest mass.

FIG. 9. Projected 95% C.L. upper limits on the magnetic moment of neutrinos, as a function of the lightest neutrino mass for a PIXIE-
like experiment. The effective transition magnetic moment κij is related to the decay rate Γij by Eq. (34). Dotted lines correspond to the
upper limits assuming that the residual Galactic contamination G0 is fixed to zero. Results shown are for NH (left panel) and
IH (right panel).
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also found that the approximate formalism (assuming that
the cosmic neutrinos are at rest) may overestimate the
spectral distortions by around 50%. Finally, we found
strong anticorrelation between the decay rate Γ and the
other nuisance parameters in the analysis, weakening the
constraints on the neutrino lifetime unless a clear spectral
feature was produced in the FIRAS frequency range (as was
that case in which the lightest mass lay in ½10−2; 10−1� eV
for the 12 mode). While these effects should tend to weaken
our constraints, we in fact found stronger constraints than
previous analyses [28], in some cases by around an order of
magnitude, although the source of this discrepancy was not
clear. In particular, we found τ12 ≳ 4 × 1021 s for the 12
decay mode in the normal hierarchy and τ12 ≳ 1022 s in the
inverted hierarchy. For the 13 and 23 modes, there were no
sharp spectral features in the FIRAS frequency range,
leading to weaker limits, τ13 ∼ τ23 ≳ 1019 s. The corre-
sponding constraints on the neutrino magnetic moment lay
in the range 10−8 − 10−7 μB.
We have also explored projected constraints from future

precision CMB spectral measurements, focusing on the
proposed PIXIE experiment [32]. With an improvement in
measurement sensitivity of around 3 orders of magnitude
compared to FIRAS, PIXIE should be able to constrain the
radiative decay lifetime of the neutrino at the level of τ ≳
1023–1025 s depending on the neutrino mass and hierarchy.
If residual Galactic contamination in the CMB spectrum is
well constrained, a PIXIE-like experiment may probe
magnetic moments down to κ ≲ 3 × 10−11 μB for the 13
and 23 modes. While still 1 order of magnitude weaker than
constraints from stellar physics [12–14], such a constraint
would be competitive with current lab-based constraints
from ν–e scattering measurements [10,11]. Further impro-
vements in sensitivity, as proposed by the PRISM experi-
ment [34], would lead to still stronger bounds on the
neutrino lifetime and magnetic moment, making precision
CMB spectral measurements a competitive and comple-
mentary tool for probing new physics in the neutrino sector.
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APPENDIX: EMISSIVITY OF PHOTONS

In this section, we derive exact formulas for decay and
absorption intensities without making any assumptions.

1. Decay

From kinematics of the decay νj → νi þ γ, one obtains

pγ ¼ pd
γ ðpν; μÞ≡ Δm2

ij

2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
ν þm2

j

q
− pνμ

	 ; ðA1Þ

where pν ¼ jpνj; pγ ¼ jpγj; pν and pγ are the momentum of
νj and γ, respectively; and μ ¼ pν · pγ=ðpνpγÞ. Alter-
natively, rewriting Eq. (A1) for μ gives

μ ¼ μdðpγ; pνÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

j

p2
ν

s
−

Δm2
ij

2pνpγ
: ðA2Þ

For the decay to happen, the variables and parameters
ðpν; pγ; mj;Δm2

ijÞ have to satisfy μ2d < 1. The momentum
of the final-state neutrino νi is then obtained as

pd
νiðpγ; pνÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
γ þ p2

ν − 2pγpνμdðpγ; pνÞ
q

: ðA3Þ

The photon emissivity at energy pγ is obtained as an
equation similar to Eq. (14) but by replacing the neutrino
number density with the neutrino phase space density
integrated over momentum space,

PdecðpγÞ ¼
gν

ð2πÞ2
Z

d3pν

epν=Tν þ 1

mjΓffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
ν þm2

j

q
× pγδðpγ − pd

γ ðpν; μÞÞð1þ fCMBðpγÞÞ

×

�
1 −

1

ep
d
νi
ðpγ ;pνÞ=Tν þ 1

�
;

¼ ΓmjΔm2
ij

4π2
1þ fCMBðpγÞ

pγ

×
Z

∞

0

dpνpν

ðepν=Tν þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
ν þm2

j

q
×

�
1 −

1

ep
d
νi
ðpγ ;pνÞ=Tν þ 1

�

×
Z

1

−1
dμδðμ − μdðpγ; pνÞÞ; ðA4Þ
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where gν ¼ 2 is the number of helicities of the neutrino, the
lifetime of νj is longer than its proper lifetime τ by a
Lorentz factor of ðp2

ν þm2
jÞ1=2=mj, the stimulated emission

is taken into account with the term 1þ fCMBðpγÞ, and the
term in the square brackets represents the Pauli blocking for
the final neutrino state with momentum pd

νi . In the second
equality, we changed the δ function of pγ to that of μ, by
using δðpγ − pd

γ Þ ¼ j∂pd
γ=∂μj−1δðμ − μdÞ and j∂pd

γ=∂μj ¼
2p2

γpν=Δm2
ij.

The μ integral over its δ function gives a nonzero value
(i.e., 1) only if μ2d < 1. By rearranging Eq. (A2), we find
the condition to be equivalent to x > jt − t−1jy=2, where
x ¼ pν=Tν, y ¼ mj=Tν and t ¼ 2pγmj=Δm2

ij. We also
note μd ¼ ½ðx2 þ y2Þ1=2 − y=t�=x.
Finally, we evaluate the emissivity at redshift z and

the observed energy of ϵγ. We can use all the equations
derived thus far with replacements pγ → ð1þ zÞϵγ, pν →
ð1þ zÞpν, and Tν → ð1þ zÞTν. The emissivity of the
neutrino decay is then obtained as Eq. (19).

2. Absorption

For the absorption νi þ γ → νj, the kinematics relations
are

pγ ¼ pa
γ ðpν; μÞ≡ Δm2

ij

2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
ν þm2

i

p
− pνμÞ

; ðA5Þ

μ ¼ μaðpγ; pνÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

i

p2
ν

s
−

Δm2
ij

2pνpγ
; ðA6Þ

where pν is (the norm of) the momentum of νi; definitions
of the other quantities are the same as the case of decay. The
momentum of the final-state neutrino νj is then

pa
νjðpγ; pνÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
γ þ p2

ν þ 2pγpνμaðpγ; pνÞ
q

: ðA7Þ

The center-of-mass energy of the initial state E is given
by E2 ¼ m2

i þ 2pγ½ðp2
ν þm2

i Þ1=2 − pνμ�, and the δ function

of E can be replaced with that of μ through δðE −mjÞ ¼
j∂E=∂μj−1δðμ − μaÞ with j∂E=∂μj ¼ pγpν=mj. The
absorption cross section [Eq. (5)] then becomes

σðpγ; pν; μÞ ¼
4π2m3

jΓ
ðΔm2

ijÞ2pγpν
δðμ − μaÞ: ðA8Þ

The absorption emissivity is given as a product of the
phase space densities of both γ and νi, multiplied by the
absorption cross section as

PabsðpγÞdpγ ¼ −pγ
gγ

ð2πÞ3 fCMBðpγÞd3pγ

×
gν

ð2πÞ3
Z

d3pν

epν=Tν þ 1
σðpγ; pν; μÞ

×

�
1 −

1

ep
a
νj
ðpγ ;pνÞ=Tν þ 1

�
; ðA9Þ

where gγ ¼ 2 is the number of polarization states of the
photon. Using Eq. (A8) and performing the μ integral over
the δ function that yields a nonzero value only when
μ2a < 1, one obtains

PabsðpγÞ ¼ −
2

π2
m3

jΓ
ðΔm2

ijÞ2
p2
γfCMBðpγÞ

×
Z

∞

0

dpνpν

epν=Tν þ 1
Θð1 − μ2aðpγ; pνÞÞ

×

�
1 −

1

ep
a
νj
ðpγ ;pνÞ=Tν þ 1

�
; ðA10Þ

where Θ is the Heaviside step function. As in the case of
decay, this constraint, μ2a < 1, is equivalent to x > jt−
t−1jy=2, with x ¼ pν=Tν, y ¼ mi=Tν and t ¼ 2pγmi=Δm2

ij.
Lastly, with replacements pγ → ð1þ zÞϵγ, pν →

ð1þ zÞpν, TCMB → ð1þ zÞTCMB, and Tν → ð1þ zÞTν,
we arrive at Eq. (20).
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