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Gravitational waves have only two polarization modes in general relativity. However, there are six
possible modes of polarization in a generic metric theory of gravity. Thus, tests of gravitational-wave
polarization can be tools for pursuing the nature of space-time structure. The observations of gravitational
waves with a worldwide network of interferometric detectors such as Advanced LIGO, Advanced Virgo,
and KAGRA will make it possible to obtain the information of gravitational-wave polarization from
detector signals. We study the separability of the polarization modes for the inspiral gravitational waves
from the compact binary coalescences systematically. Unlike some other waveforms such as burst, the
binary parameters need to be properly considered. We show that three polarization modes of gravitational
waves would be separable with the global network of three detectors to some extent, depending on the
signal-to-noise ratio and the duration of the signal. We also show that with four detectors the three
polarization modes would be more easily distinguished by breaking a degeneracy of the polarization modes
and even the four polarization modes would be separable.
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I. INTRODUCTION

The first detection of gravitational waves (GWs) from
binary black holes (BBH) by Advanced LIGO (aLIGO) [1]
marked the dawn of the new field of gravitational-wave
astronomy [2]. Soon after, the observations of GWs by
aLIGO and Advanced Virgo (AdV) [3] enabled some
experimental studies to probe into the nature of gravity [4,5].
The accurate information on GW modes is expected to

improve our understanding of gravity. Polarizations of
null GWs can be treated by the Newman-Penrose for-
malism strictly and transparently [6,7]. In general rela-
tivity (GR), a GW has two polarization modes (plus and
cross modes, which are tensor modes). However, a general
metric theory allows GWs to have at most six polar-
izations: two tensor modes (plus, cross), two vector modes
(vector x, vector y), and two scalar modes(breathing,
longitudinal) [8,9]. In modified gravity theories such as
scalar-tensor theory [10] and fðRÞ gravity [11], scalar
polarizations are allowed in addition to tensor modes. In
contrast, up to six polarizations are allowed in bimetric
gravity theory [12], while up to five polarizations are
allowed in massive gravity theory [13]. If nontensorial

polarization modes are found by the observations of
GWs, it indicates that an alternative to GR should exist
as a fundamental theory and the theory of gravity should
be extended beyond GR. Therefore, the test of gravita-
tional-wave polarizations can be a powerful tools for
pursuing the nature of space-time structure.
In principle, the number of the detectors needs to be

equal to the number of the polarization modes of the GW
to separate the modes. In the near future, KAGRA [14–17],
a laser interferometric detector being developed at the
Kamioka mine in Japan, and LIGO India will participate in
the global network as the fourth and fifth detectors.
Therefore, more polarization modes can soon be probed
with the larger number of detectors.
Some analytical attempts to separate the polarization

modes were made for GW bursts [18], stochastic GWs [19],
and continuous GWs [20]. However, it is more difficult to
analyze in the case of compact binary coalescences (CBCs)
because the waveforms of the gravitational waves from
CBCs have the source model parameters, which determine
the frequency evolution in time and are correlated with each
other. We focus especially on the polarization modes of the
inspiral GW from CBCs. A simple data analysis method
using the simple sine-Gaussian wave packet waveform as a
toy model to probe gravitational-wave polarization from*takeda@granite.phys.s.u-tokyo.ac.jp
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CBCs was reported [21,22]. Also, a polarization mode
search of GW170814 had already been conducted [23].
However, only a simplistic analysis involving the substi-
tution of the antenna pattern functions was done. Since the
observational limitation on the polarization modes may
change depending on the inclination-angle dependence and
the existence of other polarization modes besides the
antenna patterns for each polarization modes, these depend-
ences need to be properly considered.
It is necessary to gain a better understanding of the

correlations and degeneracies among the parameters in a
realistic waveform of CBCs to separate and reconstruct the
polarization modes in the presence of nontensorial polari-
zation modes. We study parameter estimation errors and
the correlations between parameters in the presence of
nontensorial polarizations in addition to tensor modes with
global detector networks systematically.
This paper is organized as follows. In Sec. II, we describe

polarization modes of gravitational waves, antenna pattern
functions, and detector signal. In Sec. III, we explain the
angular dependence of a gravitational waveform in modi-
fied gravity and introduce the polarization models adopted
in our analysis. In Sec. IV, we go through the basics of
Fisher analysis and introduce the our numerical setup. In
Sec. V, we show the results of our parameter estimation in
the presence of nontensorial polarization modes. We devote
the last section, Sec. VII, to the conclusion of this paper.

II. ANTENNA PATTERN FUNCTIONS

A. Polarization mode of gravitational waves

In general, there are six possible modes of polarization in
a metric gravity theory [8,9]. At any given space-time point,
GW metric perturbations can be expressed as

habðt; Ω̂Þ ¼ hAðtÞeAabðΩ̂Þ; ð1Þ

where Ω̂ is the sky direction of a GW source and A ¼
þ;×; x; y; b; l are the polarization indices and are referred
to as plus, cross, vector x, vector y, breathing, and
longitudinal, respectively. eAabðΩ̂Þ are polarization tensors
defined by

eþab ¼ êx ⊗ êx − êy ⊗ êy; ð2Þ

e×ab ¼ êx ⊗ êy þ êy ⊗ êx; ð3Þ

exab ¼ êx ⊗ êz þ êz ⊗ êx; ð4Þ

eyab ¼ êy ⊗ êz þ êz ⊗ êy; ð5Þ

ebab ¼ êx ⊗ êx þ êy ⊗ êy; ð6Þ

elab ¼
ffiffiffi
2

p
êz ⊗ êz; ð7Þ

where the set of unit vectors fêx; êy; êzg forms the wave
orthonormal coordinate such that êz ¼ −Ω̂ is a unit vector
in the direction of propagation of the GWand êz ¼ êx × êy.
We have a degree of freedom (d.o.f.) of choice for êx; êy
around the êz axis. This d.o.f. is referred to as the
polarization angle ψp.

B. Antenna pattern functions and detector signal

The detector signal of the Ith detector is given by
[18,19,24]

hIðt; Ω̂Þ ¼ dabI habðtÞ ¼ FA
I ðΩ̂ÞhAðtÞ: ð8Þ

Here, dI is the detector tensor defined by

dI ≔
1

2
ðûI ⊗ ûI − v̂I ⊗ v̂IÞ; ð9Þ

where ûI and v̂I are unit vectors along with arms of the Ith
interferometric detector. FA

I is the antenna pattern functions
of the Ith detector for polarization A defined by

FA
I ðΩ̂Þ ≔ dabI eAabðΩ̂Þ: ð10Þ

The specific formulas of the antenna pattern are provided in
Ref. [19]. We note that the above expressions are correct
when the length of the interferometer arm is much smaller
than the wavelength of the observed GW. This condition is
satisfied for ground-based detectors such as aLIGO, AdV,
and KAGRA.

III. POLARIZATIONS

A. Angular dependence of a GW waveform
in modified gravity

The waveform of GW [hAðtÞ in Eq. (8)] depends on the
inclination angle ι of a compact binary orbit as we will
show below. In GR where only tensor modes are admitted,
the signal including the angular parameters (inclination
angle, source position angles, and detector position angles)
and antenna pattern functions of the Ith detector is

hI ¼
2

5
GT;IhGR; ð11Þ

where hGR corresponds to the GW waveform predicted by
GR. Specifically, hGR is the Fourier component of the
amplitude hþ in Eq. (1) in the direction perpendicular to the
binary orbital plane. Here, GT;I is the geometrical factor for
the tensor mode for the Ith detector, defined by

GT;I ≔
5

2
fð1þ cos2ιÞFþ;Iðθs; θeÞ þ 2i cos ιF×;Iðθs; θeÞg

× eiϕD;Iðθs;ϕs;θe;ϕeÞ; ð12Þ
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where θs ≔ ðθs;ϕs;ψpÞ is the source direction angle
parameters ðθs;ϕsÞ and polarization angle ψp, θe ≔
ðθe;ϕe;ψÞ is the detector location and orientation angle
parameters, and ϕD;I is the Doppler phase for the Ith
detector [25,26]. The factor of 2=5 in Eq. (11) appears so
that the angular average of Eq. (12) gives unity.
The antenna pattern functions for nontensorial modes are

defined in Eq. (10). However, when we discuss the problem
of the separation of polarization modes, we need to
consider the inclination-angle dependence for scalar modes
and vector modes, which is fixed by the geometry of the
binary stellar system. Metric perturbations of GWs are
given by the quadrupole formula

habðt; xÞ ¼
1

r
2G
c4

M̈abðt − r=cÞ; ð13Þ

where Mab is the moment of a mass distribution. a and b
run over 1, 2, and 3, which correspond to the source
coordinate fx1; x2; x3g such that the binary circular motion
is included in the x1–x2 plane. In GR, transverse-traceless
projection for Mab can fix the gauge freedom [27]. As a
result, plus and cross tensor modes are only admitted. In
modified gravity, the gauge symmetry is not held, leading
to additional d.o.f. for GW. Therefore, nontensorial modes
are obtained by keeping non–transverse traceless modes.
According to Eq. (1), the nontensorial polarization modes
of GW propagating in the direction (along coordinate 3)
perpendicular to the orbital plane are

hxðtÞ ¼
1

r
2G
c4

M̈13ðt − r=cÞ; ð14Þ

hyðtÞ ¼
1

r
2G
c4

M̈23ðt − r=cÞ; ð15Þ

hbðtÞ ¼
1

r
G
c4

ðM̈11ðt − r=cÞ þ M̈22ðt − r=cÞÞ; ð16Þ

hlðtÞ ¼
1

r

ffiffiffi
2

p
G

c4
M̈33ðt − r=cÞ: ð17Þ

For a GW propagating in the direction of n̂ ¼ ðsin ι cosϕ;
sin ι sinϕ; cos ιÞ, the expression of the amplitude can be
obtained by rotating Mab in the above expressions.
For a circular binary star system moving with

x1ðtÞ ¼ R cos ðωstþ π=2Þ;
x2ðtÞ ¼ R sin ðωstþ π=2Þ;
x3ðtÞ ¼ 0; ð18Þ

the second time derivatives of the mass moments are

M̈11 ¼ −M̈22 ¼ 2μR2ω2
s cos 2ωst; ð19Þ

M̈12 ¼ 2μR2ω2
s sin 2ωst; ð20Þ

where ωs, μ, and R are the angular frequency of the binary
stars, the reduced mass, and the orbital radius, respectively.
Finally, we can get the simple expressions about the

amplitudes for nontensorial polarization modes

hx ¼ −
4Gμω2

sR2

rc4
sin 2ι
2

cos ð2ωstret þ 2ϕÞ; ð21Þ

hy ¼ −
4Gμω2

sR2

rc4
sin ι sin ð2ωstret þ 2ϕÞ; ð22Þ

hb ¼ −
4Gμω2

sR2

rc4
sin2ι
2

cos ð2ωstret þ 2ϕÞ; ð23Þ

hl ¼
4Gμω2

sR2

rc4
sin2ιffiffiffi

2
p cos ð2ωstret þ 2ϕÞ; ð24Þ

where tret is the retarded time defined by tret ¼ t − r=c.
From these expressions, we define the geometrical

factors for vector modes (Vx, Vy) and scalar modes(S2),
including the inclination-angle dependence, as follows:

GVx;I ≔
ffiffiffiffiffiffiffiffi
525

56

r
sin 2ιFVx;Iðθs; θeÞeiϕD;Iðθs;ϕs;θe;ϕeÞ; ð25Þ

GVy;I ≔
ffiffiffiffiffi
15

2

r
sin ιFVy;Iðθs; θeÞeiϕD;Iðθs;ϕs;θe;ϕeÞ; ð26Þ

GS2;I ≔
ffiffiffiffiffiffiffiffi
225

8

r
sin2ιFb;Iðθs; θeÞeiϕD;Iðθs;ϕs;θe;ϕeÞ: ð27Þ

In addition to the above geometrical factors, the scalar
dipole radiation may exist in modified gravity theories
with a scalar d.o.f. For a circular binary motion, the
monopole radiation of the scalar mode vanishes, and the
dominant radiation of the scalar mode in the early inspiral
phase can be dipole radiation. The dependence on the
inclination angle is proportional to sin ι, which is the result
in the case of Brans-Dicke theory obtained by Ref. [28].
Thereby, we define the geometrical factor for the scalar
dipole radiation as

GS1;I ≔
ffiffiffiffiffi
45

2

r
sin ιFb;Iðθs; θeÞeiϕD;Iðθs;ϕs;θe;ϕeÞ: ð28Þ

These geometrical factors are normalized by the angular
average over the whole sky and the inclination angle as well
as Eq. (12).

B. Polarization models

Here, we summarize the polarization models used in
our analysis. We assume the waveforms of nontensorial
polarization modes are the same as those of tensor modes
hGR in Eq. (11), although these waveforms actually
depend on the specific theory of gravity. In other words,
we consider pessimistic cases in terms of separating
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polarization modes because it is more difficult to separate
modes having the same waveforms.
Model T: General relativity model The model T general

relativity model is a pure GR model. Thereby, no additional
polarization parameters are taken into account,

hI ¼ GT;IhGR: ð29Þ
Model TS1: Tensor-scalar dipole model In the tensor-

scalar dipole model, we add a scalar mode having the
inclination-angle dependence of dipole radiation. Thus, the
additional model parameter is the scalar mode amplitude
AS1 . We use the frequency evolution of the tensor modes for
the dipole radiation because our purpose is to check the
effect of the inclination-angle dependence of the geomet-
rical factor here. Since a specific waveform of dipole
radiation depends on the theory used, further investigation
is needed,

hI ¼ fGT;I þ AS1GS1;IghGR: ð30Þ
Model TS2: Tensor-scalar quadrupole model In the

tensor-scalar quadrupole model, we add a scalar mode
having the inclination-angle dependence of quadrupole
radiation. Thus, the additional model parameter is the
scalar mode amplitude AS2 ,

hI ¼ fGT;I þ AS2GS2;IghGR: ð31Þ
Model TVxS2: Tensor-scalar quadrupole and vector x

model In the tensor-scalar quadrupole and vector x model,
we add the combination of the scalar mode having the
inclination-angle dependence of quadrupole radiation and
the vector x mode. The additional model parameters are
thus the amplitudes ðAS2 ; AVx

Þ,

hI ¼ fGT;I þ AS2GS2;I þ AVx
GVx;IghGR: ð32Þ

Model TVyS1: Tensor-scalar dipole and vector y model
In the tensor-scalar dipole and vector y model, we add the
combination of the scalar mode having the inclination-
angle dependence of dipole radiation and the vector y
mode. The additional model parameters are the amplitudes
ðAS1 ; AVy

Þ. It is assumed that it is more difficult to separate
modes S2 and AVx

than other combinations because these
modes have the same inclination dependence of the
geometrical factors. Thus, we choose this combination
as a pessimistic case,

hI ¼ fGT;I þ AS1GS1;I þ AVy
GVy;IghGR: ð33Þ

Model TV: Tensor vector model In the tensor vector
model, we add the combination of the vector x and vector
y modes. The additional model parameters are the ampli-
tudes ðAVx

; AVy
Þ,

hI ¼ fGT;I þ AVx
GVx;I þ AVy

GVy;IghGR: ð34Þ

IV. SETUP

A. Fisher analysis

The model parameter estimation can be evaluated by a
Fisher information matrix [25,29,30]. The Fisher informa-
tion matrix Γ is given by

Γij ≔ 4Re
Z

fmax

fmin

df
X
I

1

Sn;IðfÞ
∂h�I ðfÞ
∂λi

∂hIðfÞ
∂λj ; ð35Þ

where Sn;IðfÞ is the Ith detector noise power spectrum and
λi is the ith parameter. The root mean square of a parameter
and the correlation coefficient between two parameters can
be calculated using the inverse of the Fisher information
matrix. The root mean square of Δλi is defined by

ðΔλiÞrms ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΔλiΔλii

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΓ−1Þii

q
; ð36Þ

and the correlation coefficient between λi, λj is calculated by

Cðλi; λjÞ ≔
hΔλiΔλji

hðΔλiÞ2ihðΔλjÞ2i
¼ ðΓ−1Þijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jðΓ−1ÞiiðΓ−1Þjjj
p ; ð37Þ

whereΔλi is themeasurement error of λi and h·i stands for the
ensemble average. The sky localization error, the error in the
solid angle (measured in steradians), is defined by

ΔΩs ≔ 2πjsinθsj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðΔθsÞ2ihðΔϕsÞ2i− hΔθsΔϕsi2

q
: ð38Þ

Hereafter, we simply refer to ðΔλiÞrms as Δλi and call it
the estimation error of λi.

B. Analytical and numerical setup

We use the following inspiral waveform up to 3 post-
Newtonian order (PN order) in amplitude and 3.5 PN order
in phase,

hGR ¼ Ainse−iϕins ; ð39Þ
with

Ains ¼
1ffiffiffi

6
p

π2=3dL
M5=6f−7=6

X6
i¼0

ðπMfÞi=3; ð40Þ

ϕins ¼ 2πftc − ϕc −
π

4
þ 3

128
ðπMfÞ−5=3

X7
i¼0

ϕiðπMfÞi=3;

ð41Þ

as a waveform of inspiral GW, compiled in Ref. [31]. Here,
M is the chirp mass, dL is the luminosity distance, tc is the
coalescence time, and ϕc is the phase at the coalescence
time. We set the lower-frequency end of various integration
to be fmin ¼ 30 Hz and the upper-frequency end fmax to be
the frequency fISCO that is twice the innermost stable
circular orbit frequency for a point mass in Schwarzschild
space-time
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fISCO ¼ ð63=2πMtotÞ−1 ≃ 0.0217M−1
tot ; ð42Þ

where Mtot ¼ m1 þm2 is the binary total mass.
We consider 11 model parameters in GR,

ðlogM; log η; tc;ϕc; logdL; χs; χa; θs;ϕs; cos ι;ψpÞ; ð43Þ
and additional polarization amplitude parameters, for
example, AS1 in the case of model TS1. We assume that

the fiducial values of the additional amplitude parameters
are 1 in all models. Here, log η, χs, and χa are the logarithm
of the mass ratio, the symmetric spin parameter, and the
antisymmetric parameter, respectively. We assume that the
fiducial values of tc, ϕc, χs, and χa are 0 in all models. We
impose the priors for parameters defined over the specific
range: log η, ϕc, angular parameters (θs, ϕs, cos ι, and ψp),
and spin parameters of binary compact stars (χs and χa).

TABLE I. Medians of parameter estimation errors and their correlation coefficients. Masses of BBHs and BNSs are 10 M⊙ − 10 M⊙
and 1.4 M⊙ − 1.4 M⊙, respectively. Only correlation coefficients larger than 10% are shown. The improvement factor is defined by the
ratio of the error with HLV to the error with HLVK. We say that the polarization modes would be separable when the errors of the
amplitudes parameter are less than unity. The two conditions for the separation of polarization modes are breaking the degeneracy
among polarization modes by enough detectors and reducing the errors of the amplitude parameters from another practical point of view,
for example, the SNR and the duration of the signal.

Parameter
BBH
(HLV)

BBH
(HLVK)

Improvement
factor

BNS
(HLV)

BNS
(HLVK) Improvement factor

ModelT SNR 33.3 40.2 36.4 44.3
Δ ln dL 0.269 0.137 1.96 0.183 0.107 1.71

ΔΩs (deg2) 5.91 1.77 3.34 1.39 0.517 2.69

ModelTS1 Δ ln dL 0.678 0.179 3.79 0.359 0.134 2.68
ΔΩs (deg2) 4.74 0.912 5.20 0.919 0.250 3.68

ΔAS1 1.16 0.284 4.08 0.606 0.197 3.08
CðAS1; log dLÞ 0.998 0.989 0.996 0.984
CðAS1; cos ιÞ −0.553 −0.500 −0.231 −0.159

ModelTS2 Δ ln dL 0.676 0.182 3.71 0.358 0.134 2.67
ΔΩs (deg2) 4.74 0.913 5.09 0.862 0.246 3.50

ΔAS2 1.51 0.385 3.92 0.765 0.256 2.99
CðAS2; log dLÞ 0.997 0.989 0.996 0.984
CðAS2; cos ιÞ −0.609 −0.564 −0.246 −0.189

ModelTVxS2 Δ ln dL 1.58 0.258 6.12 1.05 0.190 5.53
ΔΩs (deg2) 6.13 0.885 6.92 0.783 0.179 4.37

ΔAS2 4.15 0.486 8.54 2.48 0.340 7.29
ΔAVx

2.23 0.399 5.59 1.24 0.228 5.44
CðAVx

; log dLÞ 0.945 0.690 0.901 0.633
CðAVx

; cos ιÞ 0.412 0.360 −0.189 −0.072
CðAVx

; AS2Þ 0.919 0.576 0.828 0.557

ModelTVyS1 Δ ln dL 1.69 0.253 6.68 1.05 0.183 5.74
ΔΩs (deg2) 6.76 0.879 7.69 0.831 0.187 4.44

ΔAS1 3.72 0.383 9.71 1.81 0.273 6.63
ΔAVy

3.12 0.389 8.02 1.75 0.270 6.48
CðAVy

; log dLÞ 0.996 0.990 0.997 0.986
CðAVy

; cos ιÞ −0.660 −0.322 −0.446 −0.010
CðAVy

; AS1Þ 0.996 0.983 0.996 0.982

ModelTV Δ ln dL 1.98 0.310 6.39 1.22 0.193 6.32
ΔΩs (deg2) 5.68 0.795 7.14 0.813 0.187 4.35

ΔAVx
2.55 0.420 6.07 1.37 0.241 5.68

ΔAVy
3.91 0.513 7.62 2.12 0.298 7.11

CðAVy
; log dLÞ 0.999 0.993 0.998 0.991

CðAVy
; cos ιÞ −0.846 −0.335 −0.307 −0.207

CðAVx
; AVy

Þ 0.987 0.814 0.948 0.624
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We estimate model parameters for BBHs with equal
10 M⊙ masses at z ¼ 0.05 and for binary neutron stars
(BNSs) with equal 1.4 M⊙ masses at z ¼ 0.01 in each
polarization model. A network total signal-to-noise ratio
(SNR) > 8 is required for all sources, and angular param-
eters (cos θs, ϕs, cos ι, and ψp) are uniformly random. The
number of sources calculated by Fisher analysis for one
model is 500.
We consider two kinds of global networks, the first

being composed of the two aLIGOs at Hanford and
Livingston and AdV(HLV) and the second being HLV
with KAGRA(HLVK). aLIGOs and KAGRA are assumed
to have their design sensitivity [32]. AdV is assumed to
have its binary neutron star optimized sensitivity [32].
We estimate model parameters in the case of BBHs

or BNSs, with a detector network such as aLIGO-AdV
(HLV) or aLIGO-AdV-KAGRA(HLVK) for each polariza-
tion model.

V. RESULTS

Our Fisher analysis results are shown in Table I. We
show the medians of parameter estimation errors of the
luminosity distance, the sky localization, and the additional
polarization amplitude for each model. We also show the
medians of correlation coefficients larger than 10%
between the additional polarization amplitude and other
parameters. In all models, the amplitude parameters of
nontensorial polarization modes highly correlate with other
amplitude parameters, ln dL and cos ι.
The histograms of the parameter estimation errors

in the model T for the luminosity distance, the sky
localization, the inclination angle, and the polarization
angle are shown in Fig. 1. In model T, the errors are
reduced by adding a fourth detector, KAGRA. The error
of the luminosity distance ln dL is reduced by about a
factor of 2, and the sky localization error Ωs is also
reduced by about a factor of 3. The other errors of the
amplitude parameters, cos ι and ψp, are also reduced by
the fourth detector.
The histograms of the parameter estimation errors in the

model TS1 for the luminosity distance, the sky localization,
the inclination angle, the polarization angle, and the addi-
tional polarization amplitude are shown in Fig. 2. It is
shown that the observation by the global network with four
detectors can break a degeneracy among amplitude param-
eters. In the case of the model TS1, the errors of the
amplitude parameters are reduced further by adding the
fourth detector, KAGRA, than in the case of model T. For
BNSs, As is determined even by three detectors, HLV.
However, for BBHs, it is difficult to separate the additional
polarization mode. The error is much reduced by adding the
fourth detector, KAGRA. This suggests that in the case of
BBHs a four-detector global network is necessary to
determine the mode, though, in principle, three detectors
can distinguish an additional scalar mode. The reason for

the difference from the BNS case is because the signal of
BBHs is shorter than the signal of BNSs. This results in the
worse estimation error of the chirpmass,which is determined
mainly from the phase of the signal. Indeed, Δ lnM ¼
0.0019 (median) in the case of BBHs, but Δ lnM ¼
0.00015 (median) in the case of BNSs with HLV. Since
the chirpmass is also included in theGWamplitude, it results
in the worse parameter estimation of the amplitude in the
case of BBHs. As for HLVK,Δ lnM ¼ 0.0017 (median) in

FIG. 1. Parameter estimation errors in the waveform model T.
The colors are 10 M⊙ − 10 M⊙ with HLV (magenta), 10 M⊙ −
10 M⊙ with HLVK (red), 1.4 M⊙ − 1.4 M⊙ with HLV (cyan),
and 1.4 M⊙ − 1.4 M⊙ with HLVK (blue). The reason for the
rapid change of Δψp at around 3 is because we impose the priors
for parameters having the range, angular parameters, and spin
parameters of binary compact stars.

FIG. 2. Parameter estimation errors in the waveform model
TS1. The colors are 10 M⊙ − 10 M⊙ with HLV (magenta),
10 M⊙ − 10 M⊙ with HLVK (red), 1.4 M⊙ − 1.4 M⊙ with
HLV (cyan), and 1.4 M⊙ − 1.4 M⊙ with HLVK (blue).
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the case of BBHs, but Δ lnM ¼ 0.00014 (median) in the
case of BNSs.Δ lnM for BBHs is improved by 11%, while
Δ lnM for BNSs is improved by 7%.
In the case of model TS2, the errors and correlations

behave the same way as in the case of model TS1.
Our results of parameter estimation for the additional

polarization amplitudes in other polarization models are
shown in Fig. 3. In models TVxS2, TVyS1, and TV, the
errors of the amplitude parameters are larger than 1 with
HLV for both BBHs and BNSs as shown in Table I, so four
detectors are always necessary to determine two additional
polarizations. In these cases, the errors of the additional
polarization modes are reduced further by adding the fourth
detector, KAGRA, than in the case of model TS1 and
model TS2. In all of these models, the error is more than
five times reduced for both BBHs and BNSs.

VI. DISCUSSION

In our analysis, the coalescence time and the phase at the
coalescence time for the nontensorial mode are assumed to
be those of the tensor mode. If these parameters of the
nontensorial modes are introduced to the polarization
models, it may affect the estimation errors. We have
checked how the modification of the coalescence time
and the phase at coalescence affect the results by 1)
changing the fiducial values of those parameters and 2)
introducing another set of those parameters for a non-
tensorial mode. However, both 1 and 2 did not affect the
final result of parameter estimation much. We also changed

all the detector sensitivity by a factor of 10. The errors of
the amplitude parameters in models TS1 and TS2 with
HLV were reduced, but the errors in models TVsS2,
TVyS1, and TV were not reduced with HLV because of
the degeneracy among polarization modes. These indicate
the polarization d.o.f. are characterized by overall ampli-
tude parameters and require the same number of detectors
to separate the modes and extract the polarization infor-
mation from the detector signal of GWs in principle.
Figure 4 shows the maximum-frequency dependence of

the errors in model TS1. We change the fmax to fISCO=2,
fISCO=4, and fISCO=6 and plot the errors multiplied by the
SNR and correlation coefficients. For most cases, a change
of fmax does not affect the amplitude estimation corrected
by the SNR because the errors of the scalar-mode ampli-
tude multiplied by the SNR are almost flat. This indicates
that the change of fmax simply scales the amplitude error as
well as the SNR. The exceptions, especially correlations in
the case of fISCO=6 ≃ 35 Hz and fISCO=4 ≃ 52 Hz for
BBHs, would appear due to the short integration range
compared to fmin ¼ 30 Hz.
The additional polarization amplitudes correlate with the

inclination angle strongly as shown in Table I. Figure 5 is
the scatter plots of the errors of the nontensorial mode
amplitudes vs the error of the inclination angle for BNSs in
model TVxS2. It is shown that the different polarization
modes depend on the inclination angle differently. Figure 6
is a scatter plot of AVx

vs the inclination angle for BNSs in
model TV. The plots of AVx

in Figs. 5 and 6 show that the
same polarization mode depends on the inclination angle
the same way even in different models. We have checked
that AVy

in both models TVyS1 and TV behaves the same
way and the scalar modes AS1 and AS2 also behave the same
way in the different models. Figure 7 is the scatter plots of
the errors of the nontensorial polarization amplitude AS2 vs
the estimation error of the inclination angle in model TS2
for BBHs and BNSs. In both cases of BBHs and BNSs, the
distributions of the plots have the same appearance.

FIG. 3. Parameter estimation errors of the additional polariza-
tion amplitudes assumed as 1 for all models. The colors are
10 M⊙ − 10 M⊙ with HLV (magenta), 10 M⊙ − 10 M⊙ with
HLVK (red), 1.4 M⊙ − 1.4 M⊙ with HLV (cyan), and 1.4 M⊙ −
1.4 M⊙ with HLVK (blue).

FIG. 4. The vertical axes are the estimation errors multiplied by
the SNR and the correlation coefficients in the case of model TS1,
and the horizontal one is the upper-frequency end used in
evaluating the parameter estimation by Fisher analysis. The
colors are 10 M⊙ − 10 M⊙ with HLV (magenta), 10 M⊙ −
10 M⊙ with HLVK (red), 1.4 M⊙ − 1.4 M⊙ with HLV (cyan),
and 1.4 M⊙ − 1.4 M⊙ with HLVK (blue).
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We assume that the fiducial values of all the additional
amplitude parameters for nontensorial modes are unity in
our analysis above because we first need to understand
the correlations between model parameters to reconstruct
the polarization modes from the detector signal. We
changed the fiducial values to 1=1000, 1=100, and
1=10 to show how the choice of the fiducial values
affect the estimation errors. Figure 8 is the fiducial value
dependence of the errors and correlation coefficients in
model TS1. Since the error of the luminosity distance and
the sky localization error are hardly changed, it indicates
that the errors are mainly determined by the tensor
modes. Also, the AS1 error is hardly changed at the
lower fiducial values than 1=10. It implies that the
detection limit of the AS1 is given roughly by 1=SNR.
The correlation coefficients CðAS1 ; ln dLÞ and CðAS1 ; cos ιÞ
are smaller for the smaller fiducial values. This also implies

that it is difficult to detect the AS1 under the detection
limit.
We also checked how the fiducial values affect the

estimation errors in the other models TS2, TVxS2,
TVyS1, and TV. The behavior of the estimation errors
and the correlation coefficients are the same as in model
TS1. Under the detection limit, which is given roughly by
1=SNR, the errors of the additional amplitude parameters are
hardly changed, and it is difficult to detect those parameters.

FIG. 5. Scatter plots of the error of the nontensorial polarization
amplitudes vs the estimation error of the inclination angle for
BNSs in model TVxS2. The colors are 1.4 M⊙ − 1.4 M⊙ with
HLV (cyan) and 1.4 M⊙ − 1.4 M⊙ with HLVK (blue).

FIG. 6. Scatter plots of the error of the nontensorial polarization
amplitude AVx

vs the estimation error of the inclination angle for
BNSs in model TV. The colors are 1.4 M⊙ − 1.4 M⊙ with HLV
(cyan) and 1.4 M⊙ − 1.4 M⊙ with HLVK (blue).

FIG. 7. A scatter plot of the error of the nontensorial polari-
zation amplitudes vs the estimation error of the inclination
angle in model TS2. The colors are 10 M⊙ − 10 M⊙ with
HLV (magenta), 10 M⊙ − 10 M⊙ with HLVK (red), 1.4 M⊙ −
1.4 M⊙ with HLV (cyan), and 1.4 M⊙ − 1.4 M⊙ with HLVK
(blue).

FIG. 8. The vertical axes are the estimation errors and the
correlation coefficients in the case of model TS1, and the
horizontal one is the fiducial values of the amplitude parameter
AS1 used in evaluating the parameter estimation by Fisher
analysis. The colors are 10 M⊙ − 10 M⊙ with HLV (magenta),
10 M⊙ − 10 M⊙ with HLVK (red), 1.4 M⊙ − 1.4 M⊙ with HLV
(cyan), and 1.4 M⊙ − 1.4 M⊙ with HLVK (blue).
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VII. CONCLUSION

We estimated model parameters of the gravitational
waves from compact binary coalescences with detector
networks such as aLIGO-AdV(HLV) or aLIGO-AdV-
KAGRA(HLVK) for various polarization models in which
the polarization d.o.f. are characterized by overall ampli-
tude parameters. We found that in principle at least the
same number of detectors is required to separate the modes
and extract the polarization information from the detector
signal of gravitational waves. However, even if the number
of detectors is equal to the number of the polarization
modes, it is difficult to separate the modes in some cases,
depending on the correlation among the amplitude param-
eters. Thereby, there are two conditions for the separation
of polarization modes: (i) the same number of detectors as
or more than the number of polarization modes and (ii) a
significant SNR and the long duration of the signal. In
general, there is a strong correlation between the additional
polarization amplitude and the inclination angle of the
binary orbit. For the same polarization modes, the appear-
ance and strength of the correlation between the additional
polarization amplitude and the inclination angle are the
same even in different models as long as a degeneracy
among the amplitude parameters is broken.
The participation of the fourth detector in the network of

the gravitational-wave detectors will make it possible to
extract the polarization information from the detector signal
of the gravitational waves generated by the compact binary
coalescences even in the case of the presence of two
nontensorial polarizations in addition to tensor modes.

In some cases with only one nontensorial polarization in
addition to tensor modes, the separation of polarization
modes is made possible with a fourth detector by breaking a
parameter degeneracy.
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