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The absolute accuracy of the estimated parameters of gravitational wave sources will be fundamentally
limited by the calibration uncertainties of the detectors in upcoming observation runs with the increased
number of source statistics. Photon calibrators have so far been the primary tools for the absolute
calibration of a test-mass displacement, relying on the measurement of the photon pressure. The current
technological limit of the absolute calibration uncertainty for gravitational-wave amplitudes is limited to a
few percent, due to the uncertainty in the laser power standard maintained by the metrology institutes. To
reduce this uncertainty, this article proposes a novel calibration method that combines a photon calibrator
and a gravity field calibrator. The gravity field calibrator achieves modulation of the displacement of the
test mass by generating a gravity gradient. In previous studies, uncertainty in the distance between the test
mass and the gravity field calibrator has proven a serious source of systematic error. To suppress this
uncertainty, we propose a novel method that uses a combination of quadrupole and hexapole mass
distributions in the gravity field calibrator. We estimate the absolute uncertainty associated with the method
to be as low as 0.17%, which is 10 times less than that of previous methods.
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I. INTRODUCTION

The discovery of gravitational waves (GW) has given us
the new probe for observing the Universe [1]. The typical
strain sensitivity, h, of second generation interferometric
detectors, such as Advanced LIGO [2], Advanced Virgo
[3], and KAGRA [4,5], is around 10−23=

ffiffiffiffiffiffi
Hz

p
at 100 Hz.

In GW150914 event data analysis, it has been shown that
the calibration errors give a significant impact on the sky
localization accuracy. The 90% sky confidence region
gets larger from 150 deg2 to 610 deg2 by introducing the
calibration uncertainties of 10% in the amplitude and the
10 degrees phase [6], and eventually gets smaller to
230 deg2 with the improved calibration uncertainties
[7,8]. Using GW signals from compact binary coalescences
events, researchers can derive several parameters of the
source objects such as masses, spins, luminosity distance,
orbital inclination, and the sky location. The precision of
these derived parameters is potentially limited by the
calibration accuracy. As the number of detected sources

increases and events with a higher signal-to-noise ratio
(SNR) are detected, calibration uncertainty will become the
dominant source of error when extracting physical informa-
tion from the signals. Testing general relativity has been
demonstrated with the GW events from binary black hole
mergers [9]. In most of the analysis, the effect of calibration
uncertainties on the detection and parameter estimation of
GW events has focused on placing constrains on the
calibration accuracy by modeling the calibration errors as
smooth and random frequency-dependent fluctuations. By a
semianalytical approach to explicitly relate systematic errors
in calibration parameters to the GW signal parameters, it has
been shown that for events with SNR ∼ 20, a calibration
accuracy of a few percent is required for certain parameters
such as the optical gain and actuation strength in order to
achieve noise-limited systematics [10]. Upper limits and
observations of continuous GW waves such as rapidly
rotating neutron stars and stochastic background of unre-
solvable sources depend on calibration uncertainties. The
associated uncertainties on the upper limits of continuous
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waves amount to ∼20% by including a 10% amplitude
calibration uncertainty [11,12]. The suppression of the
calibration error also improves the burst GW reconstruction.
Especially, the precise correction of the frequency depend-
ence will remove the biases on the arrival time and
polarization components. These parameters affect the esti-
mations for a source direction and rotational axis of super-
novae core, respectively. In the idea to estimate a mass of an
isolated neutron star using gravitational waves [13,14], it
must determine the phase difference precisely between once
and twice spin frequency modes. For many known pulsar
cases, these frequencies are around the unity gain frequency
where the transfer function phase changes steeply. Also,
since the continuous wave measurement would use a long-
duration data set on the order of years, the robustness and
stableness of calibrations is essentially important. In par-
ticular, the uncertainty in the absolute amplitude of the GW
signal propagates directly into the estimation of the distance
to the sources. The rate that the compact binary system
coalescences in the Universe is drawn from detected events.
The SNR by the searches are quadratically sensitive to the
calibration errors since they are maximized over the arrival
time, waveform phase, and the template banks. The ampli-
tude calibration uncertainty of 10% and the derived uncer-
tainty of the luminosity distances of the sources correspond
to an approximately 30% uncertainty in the volume and will
dominate over the statistical uncertainty [15]. The detection
of a GW signal from the GW170817 binary neutron star
(BNS) system, along with a concurrent electromagnetic
(EM) signal, began a new era of multimessenger astronomy
[16]. These observations allow us to use GW170817 as a
standard siren [17–20] with which we can determine the
absolute luminosity distance to the source directly from the
GW signals. Assuming an event rate of 3000 Gpc−3 yr−1,
which is consistent with the 90% confidence interval for
GW170817 [16], we expect thatGWsignalswill be detected
from about 50 BNS standard sirens during the next few
observing runs. These observations can constrain the
Hubble constant (H0) to a 2% error or less [21], and
eventually resolve the 3-σ tension in H0 measurements
between Cephied-SN distance ladder [22] and CMB data
when assuming theΛCDMmodel [23]. Systematic errors in
the calibration of the absolute GW signal amplitude must be
suppressed less than 1% to achieve higher-precision H0

measurements using GW standard sirens.
Laser interferometersmeasure the change in distance along

the two interferometer arms. Fluctuations in the degrees of
freedom of the differential arm length (DARM) are sup-
pressed by a DARM control loop. The reconstruction of the
DARMfluctuation at the observation frequency is affected by
the GWs. The gravitational waveform can be reconstructed
from the calibrated error and control signals of this DARM
loop. To calibrate these signals, accurate physical models of
the actuator and sensing function are essential. These models
requiremeasurements of the transfer function andmonitoring
of the time dependency of the transfer function using

continuous sine waves (calibration lines). The residual of
the time-dependent model corresponds to the uncertainty of
the observation.
To reduce the systematic uncertainty in the calibration,

we need to inject well-parametrized calibration lines
for the photon calibrator (Pcal) or other calibration sources
for monitoring the time variation of the interferometer
response. The Pcal was developed by the Glasgow and
GEO600 research groups [24,25], followed by Advanced
LIGO which particularly improved Pcals for calibrating the
time-dependent response of interferometers [3,3,26–28].
However, the Pcal still faces a challenges in finding the
absolute amplitude calibration because of the uncertainty in
the laser power standards published by different national
metrology institutes [29]. The absolute power between
these institutes vary by a few percent [30].
The gravity field calibrator (Gcal) is one of the most

promising candidates to be able to solve the uncertainty
problem of the absolute laser amplitude calibrations. The
technology has been developed and tested by Forward and
Miller [31], Weber [32,33], University of Tokyo [34–38],
and the Rome university group [39,40]. Related techniques
using Gcal are discussed in Matone et al. and Raffai et al.
[41,42]. The device can modulate a test mass using a gravity
gradient generated by a rotor that depends on the masses,
distance, frequency, radius, and the gravity constant.
This paper proposes a new method for achieving sub-

percent uncertainty in the absolute amplitude calibration of
the GW detectors. The method combines Pcal and Gcal.
Section II explains the methods used for Pcal. In Sec. III,
we discuss the principle of a multipole moment of gravity
and how it is modulated to derive a calibration signal. We
demonstrate how to calibrate absolute displacement using
two calibrators in concert in Sec. IV, and in Sec. V, we
discuss the contributions of the systematic error and
estimate the current technological limits on the gravita-
tional wave observation from typical physical assumptions.

II. PHOTON CALIBRATOR

Pcals exploit how the photon radiation pressure from
power-modulated laser beams reflects from a test mass. The
periodic photon recoil applies a periodic force to a test mass
[26]. Advanced LIGO, Advanced Virgo, and KAGRA
employ Pcals for the calibration of the interferometer
response [3,43,44]. All of them use a laser of the same
wavelength, 1047 nm, to actuate the test mass. The test
mass displacement is described as

x ¼ 2P cos θ
c

sðωÞ
�
1þM

I
a⃗ · b⃗

�
; ð1Þ

where P is the absolute laser power, θ is the incident angle
of the Pcal laser, M is the mass of the test mass, ω is the
angular frequency of the laser power modulation, and a⃗
and b⃗ are the position vectors of the Pcal laser beams.
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A schematic view of the device is shown in Fig. 1. I ¼
Mh2=12þMr2=4 is the moment of inertia, where h and r
are the thickness and radius of the test mass, respectively.
sðωÞ is the transfer function between the force and dis-
placement. We can regard the value of sðωÞ as 1=ðMω2Þ at
the frequency above 20Hz, as the test mass behaves as a free
mass in this regime.
The amplitude of the laser power noise is stabilized to be

less than the design sensitivity.As shown in Fig. 1, the power
stabilized laser is mounted on the transmitter module. The
power of the photodetector responses at the transmitter
module, VTxPD, and receiver module, VRxPD, are monitored
for differences. The largest relative uncertainty of photon
calibrator is that of the laser power. Advanced LIGO and
KAGRA use a working standard to cross calibrate the
relative interferometer responses. The relative uncertainty
of each calibrator is 0.51% [26]. The second largest relative
uncertainty is the optical efficiency of the optical path in the
calibrator. We calibrate the injected power from the exterior
of the vacuum chamber. Therefore, we need to consider the
difference in the optical efficiency due to the transmittance
of the vacuum window and the reflectance of the mirrors.
The measured uncertainty of the optical efficiency in the
Advanced LIGO is 0.37%. For absolute calibration, the
photodetector, following the so-called gold standard, is
calibrated using the laser power standard maintained by
the National Institute of Standards and Technology (NIST)
in Boulder, CO [45] in the U.S. The working standard
responses for Hanford, Livingston, and KAGRA GW
detectors are calibrated to this gold standard. However, a
comparison of the accuracies of the absolute laser power
standards maintained by each national standard institute
shows a few percent uncertainty [29]. This uncertainty leads
to the serious systematic error in the distance calibrations
propagated from the uncertainty of the absolute calibration.

III. GRAVITY FIELD CALIBRATOR

To address this problem of uncertainty in the absolute
calibration, we propose a new calibration method that
combines Pcal and Gcal. The Gcal generates a dynamic
gravity field by rotating the multipole masses with a rotor
placed in a vacuum chamber that isolates acoustic noise. To
monitor the frequency of this rotation, an encoder with a
16-bit analog to digital converter is included. Next, we
calculate the displacement of the test mass in the dynamic
gravity field generated by a multipole moment with N
masses. The calculation assumes a free mass of a test mass
and a set of masses mounted on a disk as shown in Fig 2.
The rotating the masses m are arranged around the rotor at
radius, r. The distance between the center of this rotor and
the test mass mirror is assumed d. We rotate the disk
rotations at the angular frequency ωrot ¼ 2πfrot.
We estimate the equation of motion of the test mass as it

is moved by the dynamic gravity field. First, we calculate
the distance between the test mass and the N pieces of
masses arranged around the rotor. The distance between ith
mass and the center of test mass is written as

Li ¼ d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
r
d

�
2

− 2

�
r
d

�
cosϕi

s
; ð2Þ

where the angle of the ith mass is assumed to be
ϕi ¼ ωrottþ 2πi=N. The gravitational potential at the
center of test mass can be described as

V ¼ ΣN
i¼0Vi; ð3Þ

¼ −GMmΣN
i¼0L

−1
i ; ð4Þ

¼−
GMm
d

ΣN
i¼0Σ∞

n¼0

�
r
d

�
n
Pn

�
cos

�
ωrottþ

2πi
N

��
; ð5Þ

where Pn is the Legendre polynomial, and Vi is the
potential of a mass. The equation of motion of the test
mass is

FIG. 1. Schematic view of a photon calibrator. The stabilized
laser is placed on the transmitter module. The signal injected to
the test mass is monitored through the difference in the photo
detector response power between the transmitter module and
receiver module, VTxPD and VRxPD. The geometrical factor is
characterized in terms of the position vectors of the photon
calibrator beams, a⃗ ¼ a⃗1 þ a⃗2, and the main beam, b⃗.

FIG. 2. Schematic of Gcal. The rotor is placed at the same
height as the test mass and at a distance of d. Multipole masses
spinning around the rotor generate a varying gravitational
potential at the position of test mass.
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Ma ¼
���� ∂V∂d

���� ¼ GMm
d2

ΣN
i¼0Σ∞

n¼0ðnþ 1Þ
�
r
d

�
n

× Pn

�
cos

�
ωrottþ

2πi
N

��
; ð6Þ

where a is the acceleration of the test mass.
We arrange the masses around the rotor in a superposition

of quadrupole and hexapole arrangements, as shown in
Fig. 3. A hole is placed between each mass. These holes
effectively double the magnitude of the gravity gradient.
Therefore, the equation of motion of the test mass is

Ma ¼
���� ∂V∂d

���� ¼ 2GMm
d2

ΣN
i¼0Σ∞

n¼0ðnþ 1Þ
�
r
d

�
n

× Pn

�
cos

�
ωrottþ

2πi
N

��
: ð7Þ

Next, we will calculate the displacements of the quadrupole
and hexapole rotor masses in Secs. III A and III B.

A. Displacement of test mass driven by
quadrupole mass distribution

We calculate the displacement of the quadrupole mass
distribution with two pieces and two holes so N ¼ 2. The
masses and radii of the quadrupole arrangement are mq and
rq. The equation of motion for the test mass is

Ma ¼ 2GMmq

d2
Σ∞
n¼0ðnþ 1Þ

�
rq
d

�
n

× Σ1
i¼0Pnðcos ðωrottþ πiÞÞ: ð8Þ

If we assume r ≪ d, the displacement of the time-
dependent lower harmonics can be written as

x¼Σ∞
k¼1xkf cosðkωrottÞ∼x2f cosð2ωrottÞ¼ x2f cosωt; ð9Þ

where k is the number of the harmonics. The amplitude of
the 2-f rotation is then

x2f ¼ 9
GMmqr2q

d4
sðωÞ: ð10Þ

B. Displacement of test mass driven by
hexapole mass distribution

We also calculate the displacement of the hexapole mass
distribution with three holes as N ¼ 3. The masses and
radii of the hexapole distribution are mh and rh. The
equation of motion of test mass driven by this arrangement
alone is

Ma ¼ 2GMmh

d2
Σ∞
n¼0ðnþ 1Þ

�
rh
d

�
n

× Σ2
i¼0Pn

�
cos

�
ωrottþ

2πi
3

��
: ð11Þ

If we assume r ≪ d, the displacement of the time-
dependent lower harmonics can be written as

x ¼ Σ∞
k¼1xkf cosðkωrottÞ ∼ x3f cosð3ωrottÞ

¼ x3f cosωt; ð12Þ

where the amplitude of 3-f is described as

x3f ¼ 15
GMmhr3h

d5
sðωÞ: ð13Þ

IV. ABSOLUTE POWER CALIBRATION
WITH BOTH PHOTON AND GRAVITY

FIELD CALIBRATOR

This section discusses how to combine the calibration
signals from Pcal and Gcal to allow absolute laser power
calibration using an interferometer. Figure 4 diagrams the
combined calibration system. First, the test mass is driven
by the Gcal. The x2f and x3f signals are measured from
the response of the interferometer. Second, this interfer-
ometer signal is sent to the excitation port of the Pcal.
This signal acts as a reference signal for feedback control,
as shown in Fig. 4. The Pcal then cancels out the
displacement modulated by the Gcal. Third, the voltage
responses of the transmitter and the receiver module
photodetectors are measured. The output signal of the
transmitter module, VTxPD, and the receiver module,
VRxPD, should correspond to the displacement caused
by the Gcal. By using Eqs. (1), (10), and (13), the
modulated signal powers are

P2f ¼
9

2

GcmqMr2q
d4 cos θ

1

1þ M
I a⃗ · b⃗

; ð14Þ

FIG. 3. Configuration of the rotor with quadrupole and hexa-
pole mass distributions. mq and mh are the masses of quadrupole
and hexapole masses. rq and rh are the radii of the quadrupole and
arrangements hexapole.
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P3f ¼
15

2

GcmhMr3h
d5 cos θ

1

1þ M
I a⃗ · b⃗

: ð15Þ

Fourth, we demodulate the signal of the transmitter and
receiver modules using the measured encoder signal from
the Gcal. The demodulated signals are

VT
2f ¼ ρTP2f ; ð16Þ

VR
2f ¼ ρRP2f ; ð17Þ

VT
3f ¼ ρTP3f ; ð18Þ

VR
3f ¼ ρRP3f ; ð19Þ

where ρT and ρR are the transfer functions from the power
to the photodetector output voltages at the transmitter and
receiver modules. Therefore, we can measure the distance
from the ratio of responses of the 2-f and 3-f components,

d ¼ 5

3

VT
2f

VT
3f

mh

mq

r3h
r2q

¼ 5

3

VR
2f

VR
3f

mh

mq

r3h
r2q
: ð20Þ

Finally, we calculate the displacement formula for the
Pcal calibrated by Gcal. We substitute the Eqs. (10) to (1) to
obtain the following equation for displacement:

x ¼ 2P cos θ
c

sðωÞ
�
1þM

I
a⃗ · b⃗

�
; ð21Þ

¼ 9
GmqMr2q

d4
P
P2f

sðωÞ; ð22Þ

¼ 729

625

GMm5
qr10q

m4
hr

12
h

VR
3f
4

VR
2f
5
V insðωÞ; ð23Þ

where we assumed that PðωÞ ¼ ρRV in, and V in is the
amplitude of the input voltage. The factor ðGMm5

qr10q Þ=
ðm4

hr
12
h Þ can be measured before the calibration. VR

3f=V
R
2f is

measured during the calibration of the Gcal and Pcal. The
interval of the calibration signals between the Pcal and Gcal
depends on the stability of the photon calibrator laser power.
The Advanced LIGO experiment calibrates the absolute
laser power using the working standard monthly. Therefore,
the Gcal should be run monthly or more frequently. The
present method reconstructs the Pcal signal from Gcal
signals. Therefore, the Gcal does not need to be operated
during observation runs. During the operation, the Gcal
would contaminate the noise floor by adding acoustic and/or
vibration noise. However, we can minimize this noise effect
by controlling the rotation frequency. The above analysis has
not considered to the noise added by the Gcal during the
observation runs, as we only propose that theGcal be used to
calibrate the absolute displacement before the observations.
The demodulation technique allows us to reduce the
systematic error introduced by rotation. When the modula-
tion of Gcal is canceled using Pcal, the transfer functions of
theGcal and Pcal are also canceled. Therefore, the estimated
displacement of the test mass does not depend on the
frequency of the rotation.

V. ESTIMATION OF UNCERTAINTY

In this section, we evaluate the accuracy of the estimated
displacement and discuss the effects on systematic error by
changing the operating frequency and distance. After that,
we discuss the uncertainty in the displacement of the
mirror. The following discussion assumes the basic param-
eters of the KAGRA experiment listed in Table I, and the
parameters of the Gcal as listed in Table II.

FIG. 4. Test apparatus for the absolute calibration. The Gcal is
placed behind the test mass. The frequency of the Gcal is
monitored with the encoder output. The error signal for the
differential arm length of the interferometer is sent to the
reference port of the photon calibrator for canceling the modu-
lation of the dynamic gravity field with feedback with the transfer
function G. Output signals from the photon calibrator are
synchronized with the forces driven by the Gcal. The output
signals are demodulated with 2-f and 3-f signals monitored by the
encoder.

TABLE I. Specification summary of Advanced LIGO, Ad-
vanced Virgo, and KAGRA photon calibrator.

KAGRA
Advanced
LIGO

Advanced
Virgo

Mirror material sapphire silica silica
Mirror mass 23 kg 40 kg 40 kg
Mirror diameter 220 mm 340 mm 350 mm
Mirror thickness 150 mm 200 mm 200 mm
Distance from Pcal 36 m 8 m 1.5 m
to test mass
Pcal laser power 20 W 2 W 3 W
Pcal laser frequency 1047 nm 1047 nm 1047 nm
Incident angle 0.72 deg 8.75 deg 30 deg
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A. Systematic error of higher order terms

To achieve a precision less than 1%, we need to consider
the effect of higher-order Legendre polynomials at the
position of the test mass. This is because higher-order
polynomials also affect the 2-f and 3-f components. The nth
order Legendre polynomial is calculated with Eq. (7). The
effect of higher-order factors is mitigated by the factor
ðr=dÞn. Tables III and IV show the calculated displace-
ments of the higher order terms. To investigate the higher
order effects, we compare the estimated test mass displace-
ment between the Legendre polynomial approximation and
the numerical calculations of ∂V

∂d and Eq. (4). The ratio of
two calculations of the test mass displacement is shown in
Figs. 5 and 6 for the quadrupole (N ¼ 2) and hexapole
(N ¼ 3) components, respectively, as a function of the

distance, d. The results show that the effect of higher-order
of polynomials is less than that of systematic error. The
mirror therefore needs to be placed at least 2 m away from
the rotating mass. Then the sum of the first and second
order equations can be used to suppress the systematic error
well below 1% as shown in Figs. 5 and 6. If we place the
Gcal near the KAGRA end test mass, the distance of 2 m is
reasonable. The rotor could be mounted outside of the
vacuum chamber. In the following calculations, we assume
d ¼ 2 m for the simplification of the discussion. The
analytical calculation of the displacement of the test mass
in Eq. (7) assumes that the rotor masses and the test mass

TABLE II. Assumed parameters.G is gravity constant [46]. θ is

incident angle of the Pcal beams. M is mass of test mass. 1þ
I
M a⃗ · b⃗ is a geometrical factor.

Value Relative uncertainty

G 6.67408×10−11m3kg−1sec−2 0.0047%
cos θ 1.000 0.07%
M 22.89 kg 0.02%
mq 4.485 kg 0.004%
mh 4.485 kg 0.004%
rq 0.200 m 0.010%
rh 0.125 m 0.016%
1þ I

M a⃗ · b⃗ 1 0.3%

TABLE III. Calculated quadrupole (N ¼ 2) displacement. n is
the order of the Legendre polynomial, where ω ¼ nωrot.

n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 4 n ¼ 5 n ¼ 6 n ¼ 7

1-f 0 0 0 0 0 0 0
2-f 0 9 Gmr2

d4ω2
0 25

4
Gmr4

d6ω2
0 735

128
Gmr6

d8ω2
0

3-f 0 0 0 0 0 0 0
4-f 0 0 0 175

16
Gmr4

d6ω2
0 273

32
Gmr6

d8ω2
0

5-f 0 0 0 0 0 0 0
6-f 0 0 0 0 0 1617

128
Gmr6

d8ω2
0

TABLE IV. Calculated hexapole (N ¼ 3) displacement. n is the
order of the Legendre polynomial, where ω ¼ nωrot.

n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 4 n ¼ 5 n ¼ 6 n ¼ 7

1-f 0 0 0 0 0 0 0
2-f 0 0 0 0 0 0 0
3-f 0 0 15 Gmr3

d5ω2
0 315

32
Gmr5

d7ω2
0 567

64
Gmr7

d9ω2

4-f 0 0 0 0 0 0 0
5-f 0 0 0 0 0 0 0
6-f 0 0 0 0 0 4851

256
Gmr6

d8ω2
0
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FIG. 5. Ratio of Legendre polynomial approximations with the
numerical calculations of ∂V

∂d and Eq. (5) on the test mass
displacement for the quadrupole (N ¼ 2) component as a
function of the distance. Dotted, dashed, and solid lines corre-
spond to first-order only, second-orders, and third-order approx-
imations, respectively. The analytical results are listed in
Table III. To achieve a precision less than 1%, the higher-order
terms need to be included.

Distance [m]
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FIG. 6. Ratio of the Legendre polynomial approximation to the
numerical calculations of ∂V

∂d and Eq. (5) on the test mass
displacement for the hexapole distribution (N ¼ 3) component
as a function of distance. The dotted, dashed, and solid lines
correspond to the first-order only, second-orders, and third-
orders, respectively. The analytical result is listed in Table IV.
To achieve a precision less than 1%, the higher-order terms need
to be included.
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can be approximated as point masses. We compared the
results of this analytical calculation with the numerical
integral of the displacements generated by the actual
dimensions of the rotor with the parameters shown in
Table II, and confirmed that the analytical formula is
sufficiently at d ¼ 2 m.

B. Systematic error of the transfer function

The Gcal modulates the test mass mirror with a gravi-
tational potential gradient. However, this gradient also
actuates the masses of suspension system as shown in
Fig. 7. We simulated the transfer function with the
assumption of the cryogenic suspension system installed
in KAGRA [47]. The transfer function was calculated
using the rigid-body suspension simulation code, called
SUMCON [48]. We estimated the total displacement by
superimposing the displacements driven by both mass

distributions. Figure 8 shows the displacement ratio
between the motion signal and the free-mass motion as
a function of frequency. The simulation result is in good
agreement with the free-mass motion at these frequencies
larger than 20 Hz. The low frequency structures correspond
to the resonant peak of the suspension system. Therefore,
we can neglect this intermediate-mass effect and regard as
motion at a frequency over 20 Hz as free-mass motion.
Therefore, we need to operate the rotor at speeds larger than
20 Hz to achieve an error less than 0.1%. We assumed the
rotation frequency to be 16 Hz, which corresponds to 32 Hz
and 48 Hz for the effective frequency of the 2-f and 3-f
components. This assumption applies to the discussion in
the next section.

C. Uncertainty of displacement and laser power

In this section, we estimate the typical displacement
based on the result in Table. II. We neglect Legendre
polynomials of degree higher than 2 in the following
discussion to simplify the discussion, though they are
relevant in the calculations. The estimated 2-f and 3-f
displacements are described as

xrms
2f ¼ 1.18×10−16 ½m�

�
G

6.67408×10−11 ½m3kg−1 sec−2�
�

×

�
mq

4.485 ½kg�
�
×

�
rq

0.200 ½m�
�

2

×

�
2 ½m�
d

�
4

×

�
2π×32 ½Hz�

ω

�
2

; ð24Þ

xrms
3f ¼ 2.13×10−18 ½m�

�
G

6.6742×10−11 ½m3kg−1 sec−2�
�

×

�
mh

4.485 ½kg�
�
×

�
rh

0.125 ½m�
�

3

×

�
2 ½m�
d

�
5

×

�
2π×48 ½Hz�

ω

�
2

: ð25Þ

We define the SNR in terms of the ratio of the RMS
displacement of the design noise spectrum density for the
interferometer of KAGRA at 32 Hz for 2-f and 48 Hz for
3-f. Using this result, we estimate the SNR of the peaks.

SNR2f ¼ 392 ×

�
3.0 × 10−19 ½m=

ffiffiffiffiffiffi
Hz

p

n32 Hz

�
×

�
T

1 ½sec�
�1

2

×

�
xrms
2f

1.178 × 10−16 ½m�
�
; ð26Þ

SNR3f ¼ 73 ×

�
2.9 × 10−20 ½m=

ffiffiffiffiffiffi
Hz

p

n48 Hz

�
×

�
T

1 ½sec�
�1

2

×

�
xrms
2f

2.130 × 10−18 ½m�
�
; ð27Þ

FIG. 7. Schematic of the suspension system. The parameters of
the heights and masses are marked with their assumed values.
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where T is the integration time. If we integrate a signal
larger than 3 min, we can measure VR

2f and VR
3f with a

sufficiently high SNR so that systematic error can be
reduced to less than 0.1%.
This method was used to measure the absolute laser

power as well. The estimated powers are

P2f ¼ 0.023 ½W� ×
�

G
6.6742 × 10−11 ½m3 kg−1 sec−2�

�

×
�

mq

4.485 ½kg�
�
×
�

rq
0.200 ½m�

�
2

×
�
2 ½m�
d

�
4

×

�
1

cos θ

�
×

�
1

1þ M
I a⃗ · b⃗

�
2

; ð28Þ

P3f ¼ 0.00095 ½W� ×
�

G
6.6742 × 10−11 ½m3 kg−1 sec−2�

�

×

�
mh

4.485 ½kg�
�
×

�
rh

0.125 ½m�
�

3

×

�
2 ½m�
d

�
5

×

�
1

cos θ

�
×

�
1

1þ M
I a⃗ · b⃗

�
2

: ð29Þ

We estimate the laser power with following equations:

�
δP2f

P2f

�
2

∼16

�
δVR

2f

VR
2f

�
2

þ16

�
δVR

3f

VR
3f

�
2

þ
�
δPsys

Psys

�
2

; ð30Þ

�
δP3f

P3f

�
2

∼16

�
δVR

2f

VR
2f

�
2

þ16

�
δVR

3f

VR
3f

�
2

þ
�
δPsys

Psys

�
2

; ð31Þ

where δPsys=Psys is the relative systematic error of the
power due to the machining tolerance of the rotor masses
and radii, which are calculated by

δPsys

Psys
∼
δG
G

þ δM
M

þ δ cos θ
cos θ

þ δð1þ M
I a⃗ · b⃗Þ

ð1þ M
I a⃗ · b⃗Þ

þ 12ffiffiffi
6

p δrh
rh

þ 10

2

δrq
rq

þ 5

2

δmq

mq
þ 4ffiffiffi

6
p δmh

mh
: ð32Þ

We next consider the mitigating effect of the systematic
error of the masses and radii due to the tolerance and
uncertainty of the measurement instruments. The values of
the masses and radii vary slightly with the tolerance of the
fabrication process. The errors in mq, rq, mh, and rh are

mitigated by the factors of 1=
ffiffiffi
6

p
and 1=

ffiffiffi
4

p
. The uncertainty

in the quadrupole and hexapole masses are limited by
the accuracy of the electronic balance. In this case, we
modeled masses made of tungsten. The density of tungsten
is 19.25 g=cm3. The diameter and thickness of the mass are
0.06 m and 0.08 m, respectively. Therefore, the mass of the
rotor mass is 4.485 kg. We assumed that the CG-6000
electronic balance is used to weigh these means, with

tolerance of 0.2 g [49]. Therefore, the relative uncertainty in
the mass of the rotor mass is 0.004%.
The rotor disk can be machined by numerical control

milling. Dimensional accuracy of less than 0.02 mm can
typically be achieved with this process. For measuring the
shape, we assume that a three-dimension coordinate meas-
uring machine (CMM) will be employed [50]. The pre-
cision of CMM is 2 μm. This indicates that we can measure
the shape of the rotor and masses with sufficiently low
uncertainty using the CMM.
The estimated relative uncertainties of the laser powers

are 0.52%. One of the largest uncertainties is the geomet-
rical factor of the Pcal laser. The geometrical factor
uncertainty is assumed to be 0.3%, which is the same
number as the instrument used in Advanced LIGO.
Finally, assuming that the statistical fluctuations of V in,

sðωÞ, VR
2f , and VR

3f are independent for each measurement
and therefore can be added in quadrature, the estimated
relative uncertainty in the displacement measurements is
written as

�
δx
x

�
2

∼
�
δV in

V in

�
2

þ
�
δsðωÞ
sðωÞ

�
2

þ 25

�
δVR

2f

VR
2f

�
2

þ 16

�
δVR

3f

VR
3f

�
2

þ
�
δxsys
xsys

�
2

; ð33Þ

where δxsys=xsys is the relative systematic error of the
displacement which cannot be added in quadrature. This
factor is written as

δxsys
xsys

¼ δG
G

þ δM
M

þ 12ffiffiffi
6

p δrh
rh

þ 10

2

δrq
rq

þ 5

2

δmq

mq
þ 4ffiffiffi

6
p δmh

mh
:

ð34Þ

We assumed the mitigation factors of radii and masses
discussed above in this calculation. To reduce the noise of
the displacement measurement, we need to reduce the
uncertainty in the shape of the rotor and masses. The
uncertainties in VR

2f ,V
R
3f , V

R
0 are much less than that of other

contributions. We can reduce the uncertainty of these values
using long integration times with statistical measures. Each
of the uncertainties is listed in Table II. The estimated total
uncertainty of the displacement measurement is 0.17%.

VI. CONCLUSION

Pcals are used in Advanced LIGO, Advanced Virgo, and
KAGRA. These devices are used to calibrate the interfer-
ometer response, and the uncertainty in the calibration
affects the estimation of the parameters of the GW source.
In particular, the distance to the source strongly depends on
the absolute laser power of the photon calibrator. In
previous studies, the gold standard, in which the interfer-
ometer response is calibrated to the NIST laser power
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standard, was used for the absolute laser power calibration
of the photon calibrator. However, the current standard for
absolute laser power varies by a few percent between
different countries’ metrology institutes. This uncertainty
propagates directly to the calculation of the GW detector’s
absolute displacement. To address this problem, we pro-
posed a combined calibration method that uses both a Pcal
and a Gcal. The Gcal modulated the test mass using a
dynamic gravity field. When canceling the displacement of
the test mass using the Pcal, the Gcal was used to calibrate
the interferometer response.
This method had the advantage of offering a direct

comparison between the amplitudes of the injected power
and gravity field modulation at the test mass. Without
the proposed gravity-field calibrator, the uncertainties of
the optical efficiency through the window and mirrors and
the geometrical factor of the laser position need to consid-
ered, because the working standard calibration is measured
outside of the chamber. However, themethod of gravity field
can compare the displacement directly. Using this method,
the uncertainty of the optical efficiency is avoided when
calibrating the absolute laser power. The estimated laser
power uncertainty with this method is 0.52%. This result
suggests that a new power calibration standard can be
proposed that gains threefold improvement over the current
standards.
Finally, we estimated the uncertainty of absolute calibra-

tion with the proposed method. The estimated absolute
uncertainty in the displacement measurement is 0.17%,
which is a tenfold improvement on previous studies. This

uncertainty affects the estimation of the distance to the
gravitational wave source. This estimated uncertainty brings
the precision of the Hubble constant to less than 1%. This
may address the tension between the Cephied-SN distance
ladder [22] and CMB data assuming a ΛCDM model [23].
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