
 

Strings on NS-NS backgrounds as integrable deformations
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We consider the world-sheet S matrix of superstrings on an AdS3 × S3 × T4 NS-NS background in
uniform light-cone gauge. We argue that scattering is given by a CDD factor that is nontrivial only between
opposite-chirality particles, yielding a spin-chain-like Bethe ansatz. Our proposal reproduces the spectrum
of nonprotected states computed from the Wess-Zumino-Witten description and the perturbative tree-level
S matrix. This suggests that the model is an integrable deformation of a free theory similar to those arising
from the TT̄ composite operator.
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I. INTRODUCTION

The study of the AdS=CFT correspondence [1–3] gave
new energy to the search for exactly solvable string
backgrounds. For a general string background only, few
observables may be computed exactly, usually owing to
supersymmetry. Notable exceptions are plane-wave back-
grounds [4–6] where the light-cone Hamiltonian is free,
Wess-Zumino-Witten (WZW) models [7–10] where current
algebras can be used to solve the theory, and integrable
backgrounds [11–13] where the world-sheet scattering in
light-cone gauge factorizes along the lines of Ref. [14]. The
best-understood integrable AdS background is AdS5 × S5

supported by Ramond-Ramond (R-R) five-form fluxes.
The string equations of motion are integrable [15] and the
factorized S matrix can be computed from symmetry
considerations [16–18]. The spectrum follows from impos-
ing periodic boundary conditions and accounting for
finite-size “wrapping” effects [19], leading eventually to
a quantum spectral curve [20]. Remarkably, the integra-
bility approach to AdS5 × S5 superstrings can be extended
to three- [21] and higher-point [22,23] correlation func-
tions, and even to nonplanar corrections [24,25], though the
treatment of wrapping corrections is less thoroughly under-
stood in that context. Another important class of integrable
backgrounds is given by AdS3 × S3 × T4 and AdS3 × S3 ×
S3 × S1 geometries supported by R-R and Neveu-Schwarz-
Neveu-Schwarz (NS-NS) three-form fluxes. They are also
classically integrable [26,27] and their S matrix can be

fixed by symmetries [28–30], even for mixed background
fluxes [31,32]. The purely R-R backgrounds resemble
AdS5 × S5: the S matrix has a complicated scalar factor
[33,34] and the dispersion relation is periodic [28] sug-
gesting a dual spin-chain interpretation similar to Ref. [35].
Instead the NS-NS flux yields a linear contribution to the
dispersion [31,36]. The pure-NS-NS model corresponds to
a supersymmetric WZW model and the S matrix should
simplify drastically there. The analysis of light-cone gauge
symmetries of Ref. [31], valid for generic mixtures of R-R
and NS-NS fluxes, is insufficient to determine the S matrix
at the WZW point. In this article, we analyze the AdS3 ×
S3 × T4 WZWmodel in uniform light-cone gauge [37–39],
considering its classical bosonic Hamiltonian, its spectrum
and its S matrix. We observe that shifting the gauge
parameter has a similar effect to a TT̄ deformation
[40–42] and that the T4 sector of the theory is free in a
suitable gauge. This motivates us to further investigate the
spectrum to determine if it can be related to that of a free
theory. We find that in the “spectrally unflowed” sector [10]
the energies of nonprotected states can be reproduced from
the Bethe-Yang equations by adding a CDD factor [43] to a
free theory. The resulting S matrix coincides at tree level
with the known perturbative result [44] in a suitable gauge.
Moreover, we argue that, due to supersymmetry, wrapping
corrections cancel out similarly to what happened for
protected states in Ref. [45], so that the Bethe-Yang
equations are exact. The CDD factor appearing in our
construction is exactly that of a TT̄ deformation when we
restrict to T4 [46]; in general however it differs from it due
to the presence of an additional u(1) current. The simple
form of the S matrix makes the study of this NS-NS
background almost as straightforward as that of a plane-
wave one, paving the way to a wealth of explicit compu-
tations. We conclude this article by detailing additional
checks of our proposal, which we intend to present in an
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upcoming publication [47], as well as by commenting on
several possible future directions.

II. WZW MODEL IN LIGHT-CONE GAUGE

The Green-Schwarz action for AdS3 × S3 × T4 with
mixed NS-NS and R-R three-form fluxes has been analyzed
in some detail in Ref. [31]. We restrict to the pure NS-NS
case corresponding to the WZW model, and find the
bosonic action

S¼−
k
4π

Z þ∞

−∞
dτ

Z
R

0

dσðγαβGμνþ ϵαβBμνÞ∂αXμ∂βXν; ð1Þ

where k is the WZW level, γαβ is the world-sheet metric
with jγj ¼ −1, Gμν is the AdS3 × S3 × T4 metric and Bμν is
the Kalb-Ramond field. We write the line element as

ds2 ¼ −ð1þ jzj2Þdt2 þ ð1− jyj2Þdϕ2 þ dxjdxj

þ
�
δij −

zizj
1þ jzj2

�
dzidzj þ

�
δij þ

yiyj
1− jyj2

�
dyidyj;

ð2Þ

where t, z1, z2 are in AdS3, ϕ, y3, y4 describe S3 and
x5;…x8 give T4. The Kalb-Ramond field is given by
B ¼ ϵijzidzj ∧ dt − ϵijyidyj ∧ dϕ. Fermions couple to
H ¼ dB, see Refs. [31,48,49] for explicit formulas. To
fix uniform light-cone gauge [37–39], we introduce, for
0 ≤ a ≤ 1,

xþ ¼ ð1 − aÞtþ aϕ; x− ¼ ϕ − t; ð3Þ

and following, e.g., Ref. [11], we introduce conjugate
momenta pμ ¼ δS=δð∂0XμÞ and fix

xþ ¼ τ; p− ¼ ð1 − aÞpϕ − apt ¼ 1: ð4Þ

This breaks conformal invariance and, in particular, fixes
the world-sheet size R

R¼ð1−aÞ
Z

R

0

dσpϕ−a
Z

R

0

dσpt ¼ JþaðE−JÞ; ð5Þ

where E is the string energy and J its angular momentum.
The light-cone Hamiltonian is

H ¼ −
Z

R

0

dσpþ ¼ E − J; ð6Þ

and the AdS3 × S3 BPS bound guarantees H ≥ 0. Notice
that −pþ is a-dependent, and gauge invariance dictates

d
da

Z
RðaÞ

0

dσpþðaÞ ¼ 0: ð7Þ

The density pþðaÞ can be easily found as in Ref. [31] by
solving the Virasoro constraints. Truncating it to T4 modes
and setting s ¼ ða − 1=2Þ, we find

HjT4 ¼
Z

RðsÞ

0

dσ
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4sHfree þ 4s2ð k

2π pjx́jÞ2
q

2s
;

ð8Þ

with Hfree ¼ 1
2
pjpj þ 1

2
ð k
2πÞ2x́jx́j. Equation (8) reduces

to a free Hamiltonian at s ¼ 0, i.e., at a ¼ 1=2. In view
of Eqs. (5)–(8), we conclude that the T4 modes can
be equivalently represented as a free system with state-
dependent world-sheet length R ¼ J þH=2 (for a ¼ 1=2)
or as an interacting one with fixed length R ¼ J
(for a ¼ 0).

III. RELATION TO TT̄ DEFORMATIONS

The form of Eq. (8) is that of a TT̄ deformation of free
bosons [40–42]. To understand why, let us review and in
fact slightly generalize the construction of such deforma-
tions. Given two conserved local currents jαI , I ¼ 1, 2 the
limit

j1j2ðxÞ ¼ lim
y→x

jα1ðxÞjβ2ðyÞϵαβ; ð9Þ

is well defined owing to the arguments of Ref. [40], and

hj1j2i ¼ hjα1ihjβ2iϵαβ: ð10Þ

Notice that we do not require any of the currents jαI to be
chiral. A TT̄ deformation corresponds to the case jαI ¼ TαI .
Coupling TαI to a u(1) current yields deformations of the
type considered in Ref. [50]; “JJ̄” deformations fall in this
class too, by taking a current and its (conserved) Hodge
dual. For such special choices of jαI the deformation has a
simple effect on the spectrum [40,50], and, in particular, for
a TT̄ deformation of parameter α, we have

∂αHn ¼ −Hn∂RHn; ð11Þ

for a state jni of energyHn and zero momentum [40]. From
this it follows that HnðR; αÞ ¼ HnðR − αHn; 0Þ: the defor-
mation amounts to a state-dependent shift of the length,
which can be described as a CDD factor [41,42]. This is
also the effect induced on pþ by a-gauge transformations,
cf. Eq. (7), which explains the form of Eq. (8). Gauge
transformations and TT̄ deformations should not be con-
fused however: the former leave the spectrum invariant,
while the latter correspond to changing pþ while leaving R
fixed or vice versa. Indeed the differential equation for
a-gauge transformations is Eq. (7) rather than Eq. (11).
Hence, our observation that the “flat” subsector of classical
AdS3 × S3 × T4 strings is simply related to a free theory is
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unsurprising in view of Refs. [41,42]. It is remarkable,
as we will see, that this extends to the full quantum level,
not only for T4 modes but for the whole superstring
background.

IV. WZW SPECTRUM

The spectrum of the light-cone Hamiltonian can be
constructed from the left and right Kač-Moody currents
[10,51–55], as we very briefly review here. In the left
sector, we have slð2Þkþ2 currents L0;�

−n , suð2Þk−2 currents
J3;∓−n , torus modes αr−n as well as their fermionic super-
partners. They act on a vacuum jl0; j0i given by a lowest
(highest) weight state of sl(2), respectively, su(2). A generic
state is obtained by acting with positive energy modes of
the currents (n ≥ 0) on the vacuum, e.g.,

Ylþ
i¼1

Lþ
−ni

Yl−
i¼1

L−
−ni

Yjþ
i¼1

Jþ−ni
Yj−
i¼1

J−−ni
YMT

i¼1

αri−ni jl0; j0i: ð12Þ

Such a state has (left) energy l ¼ l0 þ δl and (left)
angular momentum j ¼ j0 − δj with δl ¼ lþ − l− and
δj ¼ j− − jþ. Fermions can be added in a similar way and
the usual subtleties arise depending on their boundary
conditions; see e.g., Refs. [55,56] for details. Physical
states are subject to restrictions, the most important being
the mass-shell condition

−
l0ðl0 − 1Þ

k
þ j0ðj0 þ 1Þ

k
þ Neff ¼ 0; ð13Þ

where Neff ¼
P

jnj is the total mode number (which in the
NS sector is shifted by −1=2). More general sectors of the
spectrum can be described by spectral flow [10], though we
will not consider them in this article. Similar expressions
hold in the right sector, which we label with tildes.
Imposing level-matching Neff ¼ Ñeff and j0 ¼ |̃0, we
finally get

E − J ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2j0 þ 1Þ2 þ 4kNeff

q
− ð2j0 þ 1Þ þ δ; ð14Þ

where δ ¼ δlþ δl̃þ δjþ δ|̃þ 2 and we solved Eq. (13).
Notice that for BPS states E ¼ J and Neff ¼ δ ¼ 0 [57].

V. FREE-THEORY INTERPRETATION

The spectrum of excitations over the BPS “vacuum” is
simply related to a TT̄-like deformation of a free theory.
Consider a theory of eight free bosons with dispersion

HðpÞ ¼
���� k
2π

pþ μ

����; μ ∈ f0; 0;þ1;−1g⊕2: ð15Þ

This coincides [58] with the plane-wave dispersion of our
string background [6,56,59] which for the NS-NS

background is exact [31,36]. Supersymmetry can be
realized by adding eight fermions with the same masses
μ. Imposing boundary conditions on a circle of size Reff , we
have

H ¼
X
i

H

�
2πni
Reff

�
¼ kðN þ ÑÞ

Reff
þ
X
i

μisgnðniÞ; ð16Þ

where we split left- and right-movers. Notice that to remove
the absolute value we have assumed that Reff ≤ k; we will
see shortly why this is the case. If we now postulate the
state-dependent length

Reff ¼ R0 þ
H −m

2
; m ¼

X
i

μi sgnðniÞ; ð17Þ

and solve Eq. (16), we precisely reproduce the WZW light-
cone energy (14) with the following identifications. First,
H ¼ E − J as in Eq. (6). Next R0 ¼ 2j0 þ 1 is the J-charge
of the BPS state in the R-R sector corresponding to the
middle of the T4 Hodge diamond. Notice that taking R0 to
be the charge of a reference vacuum rather than the
J-charge of the state itself mimics the dual spin-chain
construction for AdS5 × S5 [35,60]. Finally m ¼ δ. Let us
justify this. Notice that when no excitations on AdS3 × S3

are present, μ ¼ 0 and Eq. (17) precisely describes a TT̄
deformation [40–42]. Consider now a state with some T4

excitations over the BPS vacuum and a single S3 mode, say
J�−n. For the charges to match, this should correspond to a
boson with p ¼ 2πn=Reff ≥ 0 and μ ¼∓ 1; conversely, J̃�−ñ
gives a boson with p ¼ −2πñ=Reff ≤ 0 and μ ¼ �1 [61].
This matches the identification of μ with the su(2)-spin of
S3 excitations in the plane-wave limit [31]. The other
bosons as well as the fermions can be similarly described
and will be presented elsewhere [47]. Finally, notice that
Reff ¼ l0 þ j0 with our identifications. The condition
Reff ≤ k which we used to remove the absolute values in
Eq. (16) follows from the unitarity bounds of the WZW
model [10]. Sectors with larger values of Reff should arise
from spectral flow, see also Ref. [56] for a discussion of this
fact in the plane-wave limit.

VI. S MATRIX AND BETHE-YANG EQUATIONS

An energy-dependent shift of the length can be described
as a CDD factor [43] to the S matrix, see Ref. [41]. This is
also the case for the shift of Eq. (17) which corresponds to a
CDD factor whose phase is

Φjk ¼ pjEk − pkEj − pjmk þ pkmj; ð18Þ

where mj ¼ μjsgnðkpj þ 2πμjÞ. Starting from a free
theory, we get a diagonal S matrix with elements
Sjk ¼ expði

2
ΦjkÞ. The Bethe-Yang equations follow

immediately,
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1 ¼ expðipkR0Þ
Y
j≠k

Skj ¼ expðipkReffÞ; ð19Þ

where in the last equation we used the level-matching
condition

P
pj ¼ 0. Given that H and m distinguish

between left- and right-movers, it is convenient to treat
such modes separately. We introduce labels “�” for
particles having ∂H=∂p ¼ �k=2π, yielding four cases
for the S matrix. We get

Sþþ
jk ¼ S−−jk ¼ 1; S−þjk ¼ exp

�
i
k
2π

pjpk

�
¼ 1

Sþ−
kj

: ð20Þ

This illustrates the role ofm: it makes the left-left and right-
right scattering trivial, as we would expect in a theory
where particles move at the speed of light. Notice that such
scattering is much simpler than the one arising in
Refs. [62,63], where nondiagonal and nonperturbative
left-left and right-right S matrices appear. These expres-
sions match the perturbative tree-level result for S�∓

ij of
Ref. [44]. To compare our expressions, we should firstly
take the results of Ref. [44] in the a ¼ 0 gauge; in that case,
the length in the Bethe-Yang equations is the J-charge of
the state—in contrast to our conventions, in which it is the
J-charge of the BPS vacuum. Accounting for these differ-
ent conventions is akin to going from the string-frame to the
spin-chain frame [18,28,29]. With these identifications, the
left-right and right-left S matrices match with Refs. [44,64].
Based on the integrability treatment of strings in flat space
[65] it may appear surprising that our analysis relies solely
on the Bethe-Yang equations (19) and does not require the
mirror thermodynamic Bethe ansatz to account for finite-
size effect, cf. Refs. [19,66]; this is all the more concerning
given that this background features gapless excitations that
usually lead to severe wrapping effects [67]. This simpli-
fication is due to supersymmetry: as the scattering is
diagonal, wrapping corrections [68–70] to a state with
momenta p1;…pM take a simple form

Z
dρe−εðρÞL

X
X

ð−1ÞFX

YM
j¼1

SXjðρ; pjÞ; ð21Þ

where X is any virtual particle. Regardless of the details,
here bosons and fermions come in pairs with identical
dispersion and scattering, so that the integrand vanishes;
this is the same argument that guarantees that BPS states
are immune from wrapping corrections in Ref. [45].

VII. TOWARDS A DEFORMATION
OF THE FULL ACTION

A formula for the action of TT̄ deformations of scalar
field theories is known [42,71,72]. We briefly discuss two
subtleties arising when applying such an approach here:
firstly, our transformation involves the currentm; secondly,

our free action has the μ-dependent dispersion (15).
Naïvely we would use Eq. (9) with one of the currents
given by jα such that

R
dσj0 ¼ m; unfortunately, while

such a conserved current exists in a free theory, it is
nonlocal and Zamolodchikov’s arguments [40] do not
apply [73]. Alternatively we can ask whether the gauge-
fixed WZW action is the TT̄ deformation of some simpler
theory; this is also quite subtle. In the presence of several
so(2) symmetries such as the ones rotating z1;2 and y3;4 the
stress-energy tensor is not uniquely defined. To be con-
crete, we truncate our theory to the S3 modes and introduce
complex coordinates y, ȳ. The dispersion (15) can be
reproduced by coupling y, ȳ to a constant u(1) background
gauge field Aα. The Noether stress-energy tensor Tαβ

N is not
gauge-invariant; adding improvement terms yields the
Hilbert stress-energy tensor Tαβ

H . The difference of the
two TT̄ operators is also of the form (9),

THT̄H − TNT̄N ¼ ϵαβϵIJjα;ITβJ; ð22Þ

where the two currents jα;I are related to the components of
the constant gauge field

jα;I ¼ iAIðpαȳ − p̄αyÞ: ð23Þ

Hence, we have at least two inequivalent TT̄ deformations.
A priori it is unclear which one is more natural; interest-
ingly, a Hilbert-TT̄ deformation relates the gauge-fixed
GS action to a simple sigma model action for the sphere
fields[74],

SjS3 ¼
k
2π

Z þ∞

−∞
dτ

Z
R

0

dσηαβ
DαyDβȳ

1 − yȳ
; ð24Þ

with background gauge field Aα ¼ g−1∂αg, g ¼ exp½iσ�.
The integrability of the classical AdS3 × S3 × T4 action
suggests that (24) is classically integrable too.

VIII. CONCLUSIONS AND OUTLOOK

We have found evidence that superstrings on AdS3 ×
S3 × T4 with NS-NS three-form flux are described by a
simple integrable theory of eight relativistic bosons and
fermions with dispersion (15) and S matrix (20) given by a
CDD factor. For such a theory wrapping corrections cancel
and the Bethe-Yang equations are exact, rather than
asymptotic. While this description is strongly reminiscent
of a TT̄ deformation, constructing the appropriate per-
turbing operator is quite subtle. A number of questions
immediately arise. Our construction here was limited to
“unflowed” sector of the WZW model, corresponding
to Reff ≤ k in Eq. (16). It would be interesting to extend
this to the w-th spectrally flowed sector corresponding to
wk < Reff ≤ ðwþ 1Þk, see also Ref. [56] for a discussion
of this in the plane-wave limit; notice that when the
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inequality is saturated the mass-gap in Eq. (16) vanishes
and new gapless modes appear. We also restricted to states
with vanishing total momentum (i.e.,N ¼ Ñ). In light-cone
gauge, winding sectors should also be included [11,37],
which would modify our analysis and in particular Eq. (19).
Finally, it is intriguing that the gauge-fixed WZW action is
related to Eq. (24) and it would be worth exploring more
such a sigma model. We will return to these questions in an
upcoming publication [47]. It would also be worth extend-
ing this analysis to AdS3 × S3 × S3 × S1 backgrounds,
whose integrability [27,32,45] and WZW [10,75] descrip-
tions are well-established, as well as more general super-
symmetric theories with diagonal scattering, where
wrapping corrections are also expected to cancel. It looks
less likely that this scenario might hold for mixed R-R and
NS-NS backgrounds, as the S matrix is nontrivial in that
case [31,44], though one might hope that the first correction
in the R-R flux is captured by Eqs. (16) and (17) with the
exact mixed-flux dispersion [31,36] instead of Eq. (15).
Such mixed-flux dynamics is particularly interesting as it
captures a large part of the moduli space [76]. Describing
strings on NS-NS backgrounds as simple integrable the-
ories would have a number of interesting applications. As
our description depends parametrically on the WZW level k
we could apply it to, e.g., the semiclassical limit k ≫ 1 as
well as to special cases such as the k ¼ 1 theory which was
recently related to a symmetric-product orbifold CFT
[77,78]. Interestingly, our dispersion (15) at k ¼ 1 precisely
describes the single-excitation spectrum of the symmetric-
product orbifold CFTof T4 [79]. This might help us find an
integrability description for symmetric-product orbifold

CFTs, cf. also Ref. [80]. It would also be interesting to
extend this map beyond the spectrum: recently integrability
techniques have been developed to compute three- [21] and
higher-point [22,23] functions, and even nonplanar correc-
tions [24,25]. In AdS5 × S5 Lüscher-like wrapping effects
make such computations very hard, while we have seen in
Eq. (21) that those cancel here, at least for two-point
functions. This, together with the wealth of data available
might make NS-NS background an ideal playground for the
hexagon bootstrap program [21–25].
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