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We promote the open-closed string map, originally formulated by Seiberg & Witten, to a solution
generating prescription in generalized supergravity. The approach hinges on a knowledge of an
antisymmetric bivector Θ, built from antisymmetric products of Killing vectors, which is specified by
the equations of motion. In the cases we study, the equations of motion reproduce the classical Yang-Baxter
equation (CYBE) and Θ is the most general r-matrix solution. Our work generalizes Yang-Baxter
deformations to non-coset spaces and unlocks gravity as a means to classify r-matrix solutions to the CYBE.
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I. INTRODUCTION

Generating exact solutions to gravity theories is a fine,
but well-practiced art [1,2]. In this regard, supergravity
theories, being consistent backgrounds of string theory, are
especially rich. These theories often inherit symmetries of
the parent theory, including T-duality [3,4], which is well
known [5,6] to masquerade as classic solution generating
techniques [1,2]. In the presence of anomalies [7–9], this
aspect of T-duality, including its generalizations [10–13], is
obscured. In recent years, driven by developments in
integrable deformations of σ-models [14–17], especially
[18,19], we have started to understand these anomalies
through a modification of supergravity, called “generalized
supergravity" [20] (also [21]). The modification is encoded
in an extra Killing vector I, with usual supergravity
recovered when I ¼ 0. Exotic though it may seem, from
the perspective of lower dimensions, this theory is no more
than matter-coupled Einstein gravity.
In this paper, we promote the closed string to open string

map of Seiberg and Witten [22],1 or more accurately, the
inverse map, to a simple, effective solution generating
technique. This map was initially introduced in [22], where
it was argued that open strings attached to D-branes in a
constantB-field probe a noncommutative (NC) space, whose

metric is the open string metric. It is in fact fairly ubiquitous,
applicable even for nonconstant B-field. Its connection to
T-duality has been exploited in actions that make non-
geometric fluxes manifest [23,24] and string theory explan-
ations [25,26] of the Ω-deformation [27,28]. More recently,
it was noted [29,30] that the closed-open string map undoes
integrable deformations of σ-models [14–17].
Building on the open-closed string map, we provide a

solution generating prescription that is accessible to the
gravity community. Starting from a supergravity solution
with metric G and zero NSNS two-form, or B-field, one
turns on an antisymmetric bivector Θ. This then defines
“open string data,” which upon inverting a single matrix,
generates “closed string data,” namely a new metric g and
B-field. The transformed dilaton (up to a constant shift) is
determined from awell-knownT-duality invariant, while the
Killing vector I is simply the divergence ofΘ [31]. Together,
(g,B,Φ, I) present a consistent Neveu-Schwarz (NS) sector
of generalized supergravity. For the Ramond-Ramond (RR)
sector, field strengths are determined from the nonzero Page
forms [32,33], which are the open string counterparts of the
RR fields. In turn, the lower-dimensional forms are specified
by a descent procedure through contractingΘ, and hence the
new solution is completely determined by the bivector.
Concretely, we propose that Θ is a linear combination of

antisymmetric products of Killing vectors of the original
geometry with constant coefficients, where the relation
between constants is in turn fixed by the equations of
motion (EOMs) of generalized supergravity. To show the
workings, we consider AdS2 × S2 and Schwarzschild
spacetimes, respectively a coset and non-coset space.
Remarkably, the algebraic conditions on the constants
are none other than the Classical Yang-Baxter equation
(CYBE) associated with the isometry group of the original
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1Here “closed-open” or its inverse “open-closed string map”
refers simply to the matrix inversion (1), which for want of a
better name we attribute to its origin in noncommutativity in
string theory.
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solution and Θ is the most general r-matrix solution to the
CYBE. In short, the generalized supergravity EOMs yield
the CYBE. In support of this claim, in companion papers
[34,35], a perturbative proof of the statement for the NS
sector, new examples and generalizations to the RR sector
and modified CYBE can be found. This paper serves to
summarize this direction.
We recall that the CYBE arises in the classical limit of the

Yang-Baxter equation, which is a hallmark of integrability,
or exact solvability, in statistical mechanics, quantum field
theory, differential equations, knot theory, quantum groups,
etc., [36,37]. Of special interest, r-matrix solutions to the
CYBE are related to Drinfel’d twists [38] in NC field theory
[39]. Through this work, we provide the first example of a
gravitational set-up with an innate knowledge of the CYBE.

II. PRESCRIPTION

Here we give a prescription for generating new (gener-
alized) supergravity solutions from existing solutions with
zero B-field. Our methodology will ultimately be justified
by the end result. We start by describing the NS sector
transformation, before addressing the complementary RR
sector. We focus on IIB supergravity.

A. NS sector

We recall the open-closed string map of Seiberg and
Witten [22], which we recast in the following form:

ðgþ BÞμν ¼ ðGμν þ ΘμνÞ−1; ð1Þ
where ðg; BÞ, ðG;ΘÞ are respectively closed string and open
string fields. The metrics g, G are of course symmetric,
B, Θ are their antisymmetric counterparts and B ¼ 0
implies Θ ¼ 0, and vice versa. Our approach is to interpret
the metric of the original solution as the open string metric
G, add a deformation parameter Θ, then generate a new
metric g and B-field. This map works for generic super-
gravity solutions, not necessarily coset spaces, for example
the Schwarzschild solution. For spacetimes with Uð1Þ2
isometry our method reduces to T-duality shift T-duality
(TsT) transformations [40], but it is more generally
applicable.
The NS sector of supergravity comprises, in addition to g

and B, a scalar dilatonΦ. Moreover, when further extended
to generalized supergravity, one encapsulates the modifi-
cation of usual supergravity in a single one-form X [20]:

X ≡ dΦþ iIBþ I; ð2Þ
where I is the one-form related to the Killing vector; setting
I ¼ 0, we recover usual supergravity. The NS sector of
generalized supergravity is hence characterized by
ðg; B;Φ; IÞ. We note that the B-field is specified up to
the Λ-gauge transformation, B → Bþ dΛ and (1) and (2)
are written in a particular Λ-gauge, while X, which appears

in the EOMs of generalized supergravity, is Λ-gauge
invariant [20,30]. However, this leaves the residual sym-
metry of shifting Φ by a constant, Φ → ΦþΦ0, without
changing B.
Having specified how g, B are generated, we turn our

attention to Φ and I. The dilaton transformation follows
from the observation that there is a well-known T-duality
invariant [3,4],

e−2δΦ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
det gμν

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detGμν

q
; ð3Þ

where δΦ is the dilaton shift, modulo the constant Φ0. This
ensures our prescription is not at odds with TsT. Lastly, the
status of the final solution, being either supergravity or
generalized supergravity, may be read off from the diver-
gence of Θ with respect to the original metric [31],

Iμ ¼ ∇νΘνμ: ð4Þ
The origin of this equation can be explained in terms of a
consistency condition arising from the Λ-gauge invariance
of D-brane actions [31]. For TsT transformations, Θ is a
constant [30], so that I ¼ 0 and the final solution is a bona
fide supergravity solution. This completes our description
of the NS sector transformation.

B. RR sector

We turn attention to the RR sector. The standard treat-
ment in T-duality, or any frame change, is that there is a
Lorentz transformation acting on a bispinor constructed
from the RR field strengths Fn [41–43]. Here we adopt a
novel approach, which makes the role of Θ manifest.
We recall the Page forms [32,33],2

Q1 ¼ F1; Q3 ¼ F3 þ BF1;

Q5 ¼ F5 þ BF3 þ
1

2
B2F1;

Q7 ¼ − � F3 þ BF5 þ
1

2
B2F3 þ

1

3!
B3F1;

Q9 ¼ �F1 − B � F3 þ
1

2
B2F5 þ

1

3!
B3F3 þ

1

4!
B4F1; ð5Þ

which may be viewed as the completion of the open-closed
string map (1) to the RR sector. It was first noted in [31] that
the EOMs of generalized supergravity simplify when
expressed as Page forms:

dQ2n−1 ¼ iIQ2nþ1; n ¼ 1; 2; 3; 4: ð6Þ
It is well known that the Page charges, integrals of Page

forms over compact cycles, can be quantized [33]. In
particular, in AdS=CFT the quantized charges correspond
to ranks of the gauge groups in the dual gauge theory. Now,

2We employ the notation B2 ¼ B ∧ B, etc., and later A ⌟ B ¼
1
p!A

μ1…μpBμ1…μpνpþ1…νq for p-form A and q-form B with q ≥ p.
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recall that Θ is a deformation parameter, which we can
continuously set to zero. Since the Page charges can only
change discretely, they can not depend on Θ, leading to the
conclusion that they are invariant. Since the cycles do not
change, this implies that the corresponding Page forms are
indeed invariant. This invariance of the non-zero Page
forms constitutes the basis of a consistent treatment of the
RR sector.
In our proposal, the initial open string data is completed

by specifying the Page forms. Since originally the B-field
was absent, this implies there exist given Page forms in the
new solution that satisfy

Q2nþ1 ¼ F2nþ1; ð7Þ
where n is determined by the original nonzero field
strengths F2nþ1. The remaining Page forms are generated
through descent by contracting Θ,

Q2ðn−pÞþ1 ¼
ð−1Þp
p!

Θp ⌟ Q2nþ1: ð8Þ

Given (4), for each p, (8) is a solution to (6). Unraveling the
Page forms using the generated B-field, one arrives at the
final expression for the RR field strengths. It is worth
emphasizing again that all information about the deforma-
tion is encoded in Θ.
Putting the NS and RR sectors together, one finds a

prescription for writing down the deformed geometry
solely on the basis of a knowledge of Θ. Let us recapitulate
the key steps:
(1) Invert matrix G−1 þ Θ to determine g, B.
(2) Calculate δΦ from a known T-duality invariant.
(3) Determine I from divergence of Θ.
(4) Nonzero Page forms are invariant.
(5) Determine the remaining Page forms via descent

equation (8).

III. PRESCRIPTION AT WORK

Let us turn our attention to some examples, where we
employ the above prescription and solve for Θ.

A. Example I: AdS2 × S2

Here we illustrate our prescription with the geometry
AdS2 × S2 × T6, which corresponds to the near-horizon of
intersecting D3-branes. The initial supergravity solution is,

ds2 ¼ ð−dt2 þ dz2Þ
z2

þ dζ2 þ sin2ζdχ2 þ ds2ðT6Þ;

F5 ¼ ð1þ �10Þ
1ffiffiffi
2

p
z2

dt ∧ dz ∧ ðωr − ωiÞ; ð9Þ

where we define the three-forms ωr − iωi ¼ Ω3, with Ω3

being the complex (3, 0)-form on the torus. Observe that
both the B-field and dilaton are zero.

We consider the following ansatz for the deformation

Θtz ¼ Θ1ðt; zÞ; Θζχ ¼ Θ2ðζ; χÞ: ð10Þ
This ansatz honors the direct-product structure of the
geometry, leaving us the task of solving for two functions.
Note, we have not assumed that Θ is an antisymmetric
product of Killing vectors from the outset, instead this is
forced upon us by the EOMs as we now show.
Following our recipe, we arrive at a new solution to

generalized supergravity, which is fully determined modulo
Θi; i ¼ 1, 2. To give a flavor of the output, suppressing the
torus, we record ðg; B;ΦÞ,

ds2 ¼ z2ð−dt2 þ dz2Þ
z4 − Θ2

1

þ dζ2 þ sin2ζdχ2

1þ Θ2
2sin

2ζ
;

B ¼ Θ1

z4 − Θ2
1

dt ∧ dz −
Θ2sin2ζ

1þ Θ2
2sin

2ζ
dζ ∧ dχ;

e2Φ ¼ e2Φ0z4

ðz4 − Θ2
1Þð1þ Θ2

2sin
2ζÞ : ð11Þ

We have presented the complete solution in Supplemental
Material [44]. Note, B-field is pure gauge, so we could set it
to zero, if desired.
When solving for Θi, it is most effective to initially recall

that I is Killing and solve the Killing equation,
∇μIν þ∇νIμ ¼ 0. This determines Θi up to eight integra-
tion constants:

Θ1 ¼ c1tzþ c2zðt2 − z2Þ þ c3zþ c4z2; ð12Þ
Θ2 ¼ c5 cos χ þ c6 sin χ þ c7 cot ζ þ

c8
sin ζ

: ð13Þ

As will be clear soon, modulo the c4, c8 terms that are
forced to vanish, Θ has already been determined as a linear
combination of antisymmetric products of Killing vectors.
We next study the Einstein equation, the EOM for the

B-field and the dilaton EOM, where the first two equations
lead to the same set of constraints:

κ2 ¼ −c21 þ 4c2c3; ð14Þ
κ2 ¼ c25 þ c26 þ c27; ð15Þ
c4 ¼ c8 ¼ 0: ð16Þ

Here we have redefined the constant shift in the dilaton
e2Φ0 ¼ 1þ κ2. Equation (14) recently appeared in [45].
Note that these EOMs split between the AdS2 and S2

spaces, but are connected via the constant dilaton shift. The
dilaton EOM is satisfied given (14) and (15).
One can also check the EOMs involving the RR field

strengths. Our descent procedure for the Page forms
ensures that the EOMs are satisfied by construction and
hence one finds no further constraints. Therefore, subject to
the constraints, we have the most general solution forΘ. We
now turn to the interpretation.
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Let us begin with κ ¼ 0. Evidently, there is no real
solution to (15), so this precludes a deformation of the two-
sphere. In contrast, there is an allowed deformation of the
AdS2 space with two free parameters. We can interpret both
of these results from the perspective of the associated
homogeneous CYBE, provided Θ is an r-matrix solution.
To do so, let us label the six Killing vectors of the
AdS2 × S2 geometry as

T1 ¼ −t∂t − z∂z; T2 ¼ −∂t;

T3 ¼ −ðt2 þ z2Þ∂t − 2tz∂z;

T4 ¼ ∂χ ; T5 ¼ − cos χ∂ζ þ cot ζ sin χ∂χ ;

T6 ¼ sin χ∂ζ þ cot ζ cos χ∂χ : ð17Þ
Constructing the most general r-matrix r ¼ 1

2
rijTi ∧ Tj,

and substituting the components of the r-matrix into the
homogeneous CYBE corresponding to the slð2Þ ⊕ suð2Þ
algebra, we arrive at the constraints:

r12r31 ¼ ðr23Þ2; ðr45Þ2 þ ðr56Þ2 þ ðr64Þ2 ¼ 0: ð18Þ
Relabeling the components of the r-matrix, r12 ¼ −c3,
2r23 ¼ c1, r31 ¼ −c2, r45 ¼ −c5, r56 ¼ −c7, r64 ¼ −c6, it
is easy to check that the (nonzero) r-matrix is

r ¼ Θ1∂t ∧ ∂z: ð19Þ
Thus, when κ ¼ 0, (14) and (15) are essentially the
homogeneous CYBE for the Lie algebras slð2Þ and
suð2Þ, respectively. It is well known that there is a
redundancy in the CYBE and r-matrix solutions are
equivalent up to automorphisms. In the geometry, these
correspond to coordinate changes and it is easy to check
that under a special conformal transformation, one can set
c1 ¼ c2 ¼ 0, while under a translation, one can set
c1 ¼ c3 ¼ 0, leaving one parameter.
When κ ≠ 0, namelywhen there is a constant dilaton shift,

we find an apparent five-parameter class of deformations of
AdS2 × S2, the redundancy of which can be removed again
by coordinate change leaving a single parameter κ. This
corresponds to a solution to the modified CYBE with
modification κ. Modulo a coordinate transformation,

ρ ¼ z2 − 1 − t2

2z
; cos t̃ ¼ z2 þ 1 − t2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4t2 þ ðz2 þ 1 − t2Þ2
p ;

r ¼ cos ζ; φ ¼ χ; ð20Þ
where we have added tildes to differentiate new coordinates,
we can recover the known solution in the literature [20]
through the choice c2 ¼ − κ

2
, c3 ¼ − κ

2
, c7 ¼ −κ.

The important take-home lesson from this simple
example is that the CYBE naturally emerges from the
open-closed string map and the EOMs of generalized
supergravity. Once the CYBE is imposed, we are guaran-
teed a new supergravity solution where Θ corresponds to
the r-matrix. The well-known redundancy of the r-matrix

under automorphisms corresponds to coordinate changes in
the geometry.

B. Example II: Schwarzschild

To confirm that the previous analysis was no fluke, we
repeat for another geometry, the Schwarzschild black hole,

ds2 ¼ −
�
1 −

2m
r

�
dt2 þ dr2

ð1 − 2m
r Þ

þ r2ðdζ2 þ sin2ζdχ2Þ:

In contrast to the previous example, Schwarzschild does
not admit a coset construction and is unlikely to be an
integrable σ-model background. Furthermore, for this
example it is difficult to solve for Θ directly, so we choose
Θ to an antisymmetric product of Killing vectors:

Θtζ ¼ −ϵ cos χ þ λ sin χ;

Θtχ ¼ δþ cot ζðϵ sin χ þ λ cos χÞ;
Θζχ ¼ α cos χ − β cot ζ þ γ sin χ: ð21Þ

Note, this corresponds to

Θ ¼ αT4 ∧ T5 þ βT5 ∧ T6 þ γT6 ∧ T4

þ δT2 ∧ T4 þ ϵT2 ∧ T5 þ λT2 ∧ T6; ð22Þ
where α, β, etc., are constants and we have employed (17).
While this is ostensibly the same form as the r-matrix, an
important distinction is that the coefficients are not fixed.
Before proceeding, we remark that the original geometry is
Ricci-flat with no RR sector.
As an initial consistency check on Θ, one confirms from

(4) that I ¼ βT4 þ γT5 þ αT6 is a valid Killing vector. We
now repeat the same matrix inversion from the open-closed
string map and substitute into the EOMs. Assuming non-
zero coefficients, the EOMs are satisfied provided,

0 ¼ βϵ − δγ ¼ αϵ − γλ ¼ αδ − λβ;

0 ¼ α2 þ β2 þ γ2: ð23Þ
The key observation now is that these equations are the
same as the homogenous CYBE for the Lie algebra
uð1Þ ⊕ suð2Þ, in line with our expectations. It is worth
stressing that our statement supergravity recovers the
CYBE holds beyond strict coset geometries.
Indeed, theCYBE for this algebra involves selecting three

generators from four, so we get precisely four equations,
only three of which are independent. Here, without an RR
sector, the constant shift in the dilaton makes no difference,
so we cannot consider the modified CYBE. It is easy to see
that α ¼ β ¼ γ ¼ 0, so the only permitted deformation
involves δ, ϵ, λ with no constraint. However, here again
we encounter a redundancy and two of these parameters can
be removed using two-sphere rotations. The remaining
single parameter deformation is equivalent to a TsT trans-
formation of the original background in the ðt; χÞ-directions.
This example has been chosen in order to illustrate the
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applicability of our method to noncoset geometries. Note,
however, that nontrivial new solutions to generalized super-
gravity can be obtained aswell, as has been shown in [34,35]
for deformations of flat space and Bianchi cosmologies,
neither ofwhich are quite as striking as Schwarzschild, sowe
opted to present the latter.

IV. DISCUSSION

Let us review what has been achieved. Our main result is
providing a prescription through which the CYBE emerges
from the EOMs of a gravity theory, thus reducing the task of
identifying r-matrix solutions to the CYBE to solving
generalized supergravity EOMs. More precisely, starting
from a given supergravity solution, with zero B-field, we
have promoted the open-closed string map to a solution
generating prescription. The solution is completely specified
by a bivectorΘ, determinedby theEOMs, anda knowledge of
it is enough to simply write down the resulting solution. Our
prescription for the RR sector employs a simple descent
procedure, where lower-dimensional Page forms are induced.
Our proposal follows from attempts to decipher the Yang-

Baxter σ-model [14–17], simplify it and make it accessible.
However, it goes beyond Yang-Baxter σ-models. As adver-
tised, having adopted gravity as our medium, we are no
longer shackled to cosets. One can now experiment with new
geometries, in the process generating large classes of exotic
solutions. Secondly, we do not assume integrability via an
r-matrix solution to the CYBE, but taking a step back to see
thewood from the trees, we observe that the CYBE emerges.
Thirdly, we note that one can easily derive rich solutions to
the modified, versus homogeneous CYBE, through a con-
stant dilaton shift. This itself is a residual symmetry left over
in the field X after the Λ-gauge is fixed.3

Without assuming Θ to be an antisymmetric product of
Killing vectors, we have solved the EOMs directly for
deformations of AdS2 × S2 to confirm that this must be the
case.We strongly suspect that given any initial solution with

isometries, then Θ is always an antisymmetric product of
Killing vectors related to an r-matrix solution to the CYBE
of the associated Lie algebra.While it would be intriguing to
identify counterexamples, the fact that the algebraic CYBE
can emerge from the dynamical EOMs of a gravity theory is
striking. Bearing in mind that the classification of r-matrix
solutions to the CYBE becomes arduous as the algebra
becomes larger [46–48], gravity offers a seemingly simple
alternative. Furthermore, it would be interesting to under-
stand the relation between integrability and the CYBE, since
as we have seen with the Schwarzschild solution, the CYBE
emerges, whether integrability is present or not.
Finally, based on intuition gained from several examples,

we conjecture that Θ½αρ∇ρΘβγ� ¼ 0 is a consistency con-
dition arising from the generalized supergravity EOMs. This
conditionmay beviewed as the Jacobi identity for an algebra
of coordinates on a noncommutative, but associative space,
½Xμ; Xν� ¼ iΘμνðXÞ. If this conjecture holds, then the open
string frame is more than just a name and the system indeed
describes open strings with noncommuting endpoints. This
has far-reaching implications for AdS=CFT. The same
Jacobi identity also appears in the vanishing of R-flux in
the context of double field theory [49–51], where it ensures a
geometric description [23,24,52,53]. These connections
between integrable models, supergravity, and noncommu-
tativity warrant further study.
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