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We prove that all connected n-point Green functions of four-dimensional topological Yang-Mills
theories quantized in the (anti-)self-dual Landau gauges are tree-level exact, i.e., there are no radiative
corrections in this gauge choice.
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I. INTRODUCTION

Topological Yang-Mills theories are, essentially, back-
ground independent gauge theories which only depend on
global degrees of freedom [1–4]. The first ideas about
topological solutions from self-dual Yang-Mills equations
go back to [5], where topological solutions known as
instantons were used to explain the Uð1Þ problem in non-
Abelian theories [6]. Another interesting four-dimensional
theory is the so-called Donaldson-Witten topological quan-
tum field theory, which can be taken as a tool to compute the
Donaldson topological invariants [1,7,8]. Related to the
latter, it was discussed in [2] that Donaldson-Witten’s theory
can be recovered from a particular gauge fixing of an action
which is a pure topological invariant. The gauge fixing of
four-dimensional topological gauge theories was also inves-
tigated in [9]. The particular choice of (anti-)self-dual
Landau gauges [(A)SDLG] was first studied in [10]. The
renormalizability of the theory quantized in this gauge was
investigated in [10,11], where the algebraic renormalization
technique [12,13] was employed. It was verified that, due to
the rich set ofWard identities in this gauge, there is only one
independent renormalization parameter. Moreover, all

propagators were shown to be tree-level exact (as well as
all 1PI two-point Green functions). In particular, it was
proven that the gauge propagator and the vacuum polariza-
tion vanish to all orders of perturbation theory, see [11].
The aim of the present paper is to improve the under-

standing of quantum four-dimensional topological Yang-
Mills theory in the (A)SDLG. Specifically, we show that all
connected n-point Green functions are tree-level exact, i.e.,
that all connected n-point Green functions of the theory do
not receive any radiative corrections. For what follows, the
fact that the gauge field propagator vanishes to all orders in
perturbation theory and concepts of Becchi-Rouet-Stora-
Tyutin (BRST) cohomology are pivotal.
This work is organized as follows: In Sec. II we provide an

overview of four-dimensional topological Yang-Mills theories
quantized in the (A)SDLG. Section III is devoted to the proof
of the tree-level exactness of all connected n-point Green
functions and, finally, Sec. IVcontains our final considerations.

II. TOPOLOGICAL GAUGE THEORIES AT THE
(ANTI-)SELF-DUAL LANDAU GAUGES

Topological Yang-Mills theories1 in four-dimensional
Euclidean spacetime2 can be defined by a topological
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1It is worth mentioning that the action S0ðAÞ encompasses a
wide range of topological gauge theories. The Pontryagin action is
the most common case because it can be defined for all semi-
simple Lie groups. Nevertheless, other cases can also be consid-
ered. For instance, Gauss-Bonnet and Nieh-Yang topological
gravities can be formulated for orthogonal groups [14].

2In this work, we consider flat Euclidean spacetime. Although
the topological action is background independent, the gauge-
fixing term entails the introduction of a background. Ultimately,
background independence is recovered at the level of correlation
function due to BRST symmetry [2–4].
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invariant action, S0½A�, where Aa
μ is the gauge field algebra-

valued in a semisimple Lie group G. As discussed in [10], a
topological Yang-Mills theory carries three independent
gauge symmetries, namely,

δAa
μ ¼ Dab

μ αb þ αaμ; ð2:1Þ

δFa
μν ¼ −gfabcαbFc

μν þDab
μ αbν −Dab

ν αbμ; ð2:2Þ

δαaμ ¼ Dab
μ λb; ð2:3Þ

where Dab
μ ¼ δab∂μ − fabcAb

μ is the covariant derivative in
the adjoint representation of G, Fa

μν ¼ ∂μAa
ν − ∂νAa

μ þ
gfabcAb

μAc
ν is the field strength and g is the coupling

parameter. The parameters αaμ, αa and λa areG-valued gauge
parameters. Thus, in order to quantize the theory, three gauge
constraints are needed. The BRST quantization will be
employed for this purpose.
The BRST procedure [2,12,13] starts by promoting the

gauge parameters to ghost fields: αaμ → ψa
μ, αa → ca, and

λa → ϕa, and in the definition of a nilpotent BRST
symmetry,

sAa
μ ¼ −Dab

μ cb þ ψa
μ;

sca ¼ g
2
fabccbcc þ ϕa;

sψa
μ ¼ gfabccbψc

μ þDab
μ ϕb;

sϕa ¼ gfabccbϕc: ð2:4Þ

In (2.4), ca, ψa
μ and ϕa are, respectively, the Faddeev-Popov

ghost field, the topological ghost field and the bosonic
ghost field, while s is the nilpotent BRST operator.
The gauge choice we employ in this work is the (anti-)

self-dual Landau gauges [10,11], defined by

∂μAa
μ ¼ 0;

Fa
μν � F̃a

μν ¼ 0;

∂μψ
a
μ ¼ 0; ð2:5Þ

where F̃a
μν ≡ 1

2
ϵμναβFa

αβ is the dual field strength. To
enforce such constraints, three BRST doublets are needed:

sc̄a ¼ ba; sba ¼ 0;

sχ̄aμν ¼ Ba
μν; sBa

μν ¼ 0;

sϕ̄a ¼ η̄a; sη̄a ¼ 0; ð2:6Þ

where χ̄aμν and Ba
μν are (anti-)self-dual fields, according to

the positive (negative) sign in the second condition in (2.5).
In (2.6), the fields ba, Ba

μν and η̄a are the Lautrup-Nakanishi
fields which implement the gauge conditions (2.5) while
c̄a, χ̄aμν and ϕ̄a are the Faddeev-Popov, topological and
bosonic anti-ghost fields, respectively. For completeness,
the quantum numbers of all fields are displayed in Table I.
The complete gauge fixing action in the gauge (2.5) takes

the form

Sgf ¼ s
Z

d4z

�
c̄a∂μAa

μ þ
1

2
χ̄aμνðFa

μν � F̃a
μνÞ þ ϕ̄a∂μψ

a
μ

�

¼
Z

d4z
�
ba∂μAa

μ þ
1

2
Ba
μνðFa

μν � F̃a
μνÞ þ ðη̄a − c̄aÞ∂μψ

a
μ þ c̄a∂μDab

μ cb

� 1

2
gfabcχ̄aμνcbðFc

μν � F̃c
μνÞ − χ̄aμν

�
δμαδνβ �

1

2
ϵμναβ

�
Dab

α ψb
β þ ϕ̄a∂μDab

μ ϕb þ gfabcϕ̄a∂μðcbψc
μÞ
�
: ð2:7Þ

The full action S½Φi�, for all fields Φi ≡ fA;ψ ; χ̄; c; c̄;
ϕ; ϕ̄; η; η̄; B; bg, is then composed by a sum of a topological
invariant term and a BRST-exact one,

S ¼ S0 þ Sgf: ð2:8Þ
The action (2.8) has a few interesting quantum proper-

ties [11]:

(i) It is renormalizable to all orders in perturbation
theory. Moreover, due to the rich set of Ward
identities displayed by the action (2.8), the most
general counterterm carries only one independent
renormalization parameter, denoted by a:

Σc¼a
Z
d4xðBa

μνFa
μν−2χ̄aμνDab

μ ψb
ν −gfabcχ̄aμνcbFc

μνÞ:

ð2:9Þ
(ii) All propagators are tree-level exact, which means

that, in the (A)SDLG, they do not receive radiative
corrections.

(iii) In particular, the gauge field propagator vanishes
exactly in the (A)SDLG:

TABLE I. Canonical dimension and ghost number of the fields.

Field A ψ c ϕ c̄ b ϕ̄ η̄ χ̄ B

Dim 1 1 0 0 2 2 2 2 2 2
Ghost no 0 1 1 2 −1 0 −2 −1 −1 0
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hAa
μAb

νiðpÞ ¼ 0: ð2:10Þ

In the following, we collect the Feynman rules derived from (2.8). The relevant propagators are represented by3:

ð2:11Þ

The relevant vertexes are represented by:

ð2:12Þ

In principle we do not have to include the gauge
propagator in (2.11)—which is null—but this will be
necessary to visualize the tree-level exactness of the theory,
since such a propagator, as discussed later on, is required to
close loops, leading to vanishing diagrams at the quan-
tum level.

III. ABSENCE OF RADIATIVE CORRECTIONS

To show that the action (2.8) defines a theory free of
radiative corrections, it is convenient to split the argumen-
tation into propositions.
Proposition 1: Any connected loop diagram contain-

ing an internal A-leg vanishes unless the branch generated
by the A-leg ends up in external B- or b-legs.
Proof.—To prove this proposition, we must consider a

combination of two facts: (1) hAAi ¼ 0 to all orders and
(2) the gauge field only propagates through the nonvanish-
ing mixed propagators hBAi and hbAi. Hence, from an
internal A-leg arising from an arbitrary vertex, denoted by a
black dot, , we only have two possibilities:
and In the same way, the fields B and b only
propagate through A. Graphically, we now have
and . Nonetheless, the former is not at our
disposal since there is no vertex containing b, vide
(2.12). The latter, on the other hand, must be a BAA vertex
since it is the only one containing B. Thus, an internal A-leg
in any loop diagram will propagate to B and the latter will
end up in a BAA vertex,

ð3:1Þ

Applying the above reasoning for the two newly created
A-legs, we end up with two more BAA vertexes and four
A-legs. Since the number of A-legs only increases, we can
continue this process ad infinitum leading to a cascade
effect of exponential proliferation of A-legs:

ð3:2Þ

There are three possibilities here: (1) trying to close a loop in
the diagram (3.2) requires an hAAi internal propagator, which
would result in a vanishing diagram; (2) to consider external
A-legs, which also requires a hAAi propagator, resulting in a
vanishing diagram and; (3) one could consider that all
remaining A-legs end up in external B- or b-legs. □

We should note that all vertexes, except one, present in
(2.8) contain at least one A-leg, therefore the cascade effect

3From (2.7), a c̄ψ mixed propagator also seems to be relevant.
However, this term can easily be eliminated by a trivial-Jacobian
redefinition of the η̄ field given by η̄ → η̄þ c̄.
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always occur for these cases. The only exception is the
vertex ϕ̄cψ .
Corollary 1.1: In a connected loop diagram, any

branch arising from the vertex ϕ̄cψ results in a vanishing
diagram unless this branch ends up in external B- or b-legs.
Proof.—Let us start with the vertex of interest, i.e., ϕ̄cψ .

To construct a loop diagram from this three-vertex we have

to propagate it to another vertex. The ϕ̄-leg could only
propagate to the vertex ϕ̄Aϕ through hϕ̄ϕi; the c-leg only
to c̄Ac through hc̄ci and; the ψ-leg to the vertexes
χ̄Aψ , χ̄cA or χ̄cAA through hψχ̄i (hη̄ψi is not considered
because there is no vertex containing η̄). Graphically,
the possibilities of completing the legs arising from this
vertex are

ð3:3Þ

But all possible branches contain at least one remainingA-leg.
By evoking Proposition 1, the proof is completed. □

Corollary 1.2: Any connected loop diagram contain-
ing a (Φi ≠ fB; bg)-external leg vanishes.
Proof.—There are two steps toward this proof: (1) consider

the external leg joined to a vertex containing anA field. In this
case, A is an internal leg. Thus, Proposition 1 takes place and
the graph either vanishes or generates a branch with external
B- or b-legs and no loop can be constructed; (2) now, consider
the external leg joined to a vertex not containing A, i.e., the
vertex ϕ̄cψ . The field ϕ̄ only propagates through hϕ̄ϕi, c
through hc̄ci, and ψ only through h χ̄ψi or hη̄ψi. For this
reason, it is impossible to propagate the vertex ϕ̄cψ to another
vertex ϕ̄cψ . In other words, from the vertex ϕ̄cψ , we should
necessarily propagate it to the vertexes containing an A field.
Now, Corollary 1.1 takes place and the graph, again, either
vanishes or generates a branch with external B- or b-legs and
no loop can be constructed.
Proposition 2: Any connected n-point function of the

form hBðx1ÞBðx2Þ…bðxn−1ÞbðxnÞi vanishes.
Proof.—Due to (2.6), and the fact that expectation values

of any BRST-exact terms vanish. One can write these
n-functions as BRST-exact correlators, namely

hBBB…bbi ¼ hsχ̄BB…bbi ¼ hsðχ̄BB…bbÞi ¼ 0; ð3:4Þ

and

hBBB…bbi ¼ hBB…sc̄bi ¼ hsðBBB…c̄bbÞi ¼ 0; ð3:5Þ

which vanish due to BRST-invariance.
Proposition 3: All connected n-point Green functions

are tree-level exact.
Proof.—Let us take a connected loop diagram with n

external legs with arbitrary fields Φi. From Corollary 1.2, if
there is at least one field different fromB or b, the graph either

vanishes or is a tree-level graph. Then, there remains the
possibility of a graph with n external legs formed by B or b
fields. In this case Proposition 2 takes over and the Green
function hBB…bbi vanishes, meaning that this Green func-
tion is zero and receive no radiative corrections. Hence, all
connected n-point Green functions are tree-level exact. □

IV. CONCLUSIONS

In this work we have considered four-dimensional topo-
logical Yang-Mills theories quantized in the (anti-)self-dual
Landau gauges [1,2,7,8,10,11], which is renormalizable to all
orders in perturbation theory [10,11]. This particular gauge
choice displays a rich set of symmetries, which implies on a
counterterm containing only one independent renormaliza-
tion parameter, see [11]. Moreover, the gauge propagator
vanishes to all orders.
The fact that the gauge propagator vanishes exactly

was employed to show the main result of this paper: All
connected n-point Green functions of four-dimensional
topological gauge theories quantized in the (anti-)self-dual
Landau gauges are tree-level exact. This means that, in this
gauge, the theory remains “classical” because there are no
radiative corrections to be considered. This is a very
interesting, yet subtle, result. The subtlety lives on the fact
that the theory is not finite (there is a nontrivial counterterm
to be included in order to absorb the divergences of the
theory [11]) but the divergences are canceled out due to the
vanishing of the gauge propagator which is always needed
in order to close a loop diagram or due to the BRST
symmetry.
It is worth mentioning that the topological gauge theory

considered here is essentially of the Donaldson-Witten
type [1] formulated in a different gauge choice [2].
Since Donaldson-Witten theory is related to N ¼ 2
Wess-Zumino supersymmetric theory via a twist [15],
it could be interesting to understand the corresponding
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supersymmetric theory in different gauge choices such as
the (A)SDLG. Specifically, the consequences of the
absence of radiative corrections in the (A)SDLG could
imply in some interesting features of its supersymmetric
counterpart. Moreover, supersymmetric formulations of the
BRST transformations (2.4) and (2.6), as in for instance
[16,17], could also enlighten such investigation.
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