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In theories of gravity that include a scalar field, a compact object’s scalar charge is a crucial quantity
since it controls dipole radiation, which can be strongly constrained by pulsar timing and gravitational wave
observations. However, in most such theories, computing the scalar charge requires simultaneously solving
the coupled, nonlinear metric and scalar field equations of motion. In this article, we prove that in linearly
coupled Einstein-dilaton-Gauss-Bonnet gravity, a black hole’s scalar charge is completely determined by
the horizon surface gravity times the Euler characteristic of the bifurcation surface, without solving any
equations of motion. Within this theory, black holes announce their horizon topology and surface gravity to
the rest of the Universe through the dilaton field. In our proof, a four-dimensional topological density
descends to a two-dimensional topological density on the bifurcation surface of a Killing horizon. We also
comment on how our proof can be generalized to other topological densities on general G-bundles, and to
theories where the dilaton is nonlinearly coupled to the Euler density.
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I. INTRODUCTION

Despite the theoretical beauty and continued consistency
with observations [1] of general relativity (GR), there are
strong motivations for studying theories of gravity beyond
GR. These range from attempts at quantum theories of
gravity [2,3], to trying to explain some phenomenon or fix
some problem (inflation [4,5], dark matter [6,7], dark
energy [7,8], black hole information [9,10]) by changing
the gravity theory, or exploring the theory space to better
understand gravity theories.
Almost all beyond-GR theories include additional

degrees of freedom and a large number of proposed
beyond-GR theories include one or more massless or very
light scalar fields [11]. With a long-ranged scalar field in
the theory, compact objects (e.g., black holes or neutron
stars) may acquire a scalar charge: the spherically-
symmetric, 1=r component of the scalar field sourced by
a body. Scalar charges are crucial in the dynamics of a
compact-object binary system, as they control the presence
or absence of scalar dipole radiation. The presence of
dipole radiation would dominate over the otherwise-
leading quadrupolar emission of gravitational waves, a
so-called “pre-Newtonian” correction. Such an effect can
be strongly constrained by both pulsar timing and the direct
detection of gravitational waves [12].

In most theories with scalar fields, computing a black
hole’s scalar charge requires solving the coupled set of
metric and scalar field equations in the nonlinear gravity
regime. On occasion, this can be accomplished analytically
with symmetry reduction [13,14], and/or simplifying
assumptions such as a perturbative treatment away from
GR [15]. However, the general case requires numerics for
fully nonlinear partial differential equations [16].
A dramatic simplification occurs in linearly-coupled

Einstein-dilaton-Gauss-Bonnet gravity (EdGB). Already
in [17,18], the authors had found through explicit calcu-
lations, perturbative in α, a coupling parameter, that the
dilaton charge q on the Kerr background is (in our
conventions)

q ¼ α
a2 −M2 þM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p

2Ma2
þOðα2Þ: ð1:1Þ

However, it was not noticed that this particular combination
of mass and spin is equal to the Kerr surface gravity
(Eq. (12.5.4) of [19]), so that in fact q ¼ ακKerr þOðα2Þ.
We prove (Theorem 1) that in this theory the dilaton

scalar charge is given by the rather simple expression

q ¼ 1

2
ακEulerðBÞ; ð1:2Þ

where κ is the surface gravity of a Killing horizon, and
EulerðBÞ is the Euler characteristic of the bifurcation
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surface. Our proof is valid to all orders in α, and moreover
does not require explicitly solving any field equations. In
fact the metric does not need to satisfy any equations of
motion; the proof is valid on any asymptotically flat,
stationary-axisymmetric black hole spacetime. Thus, in
linearly coupled EdGB, the horizon topology and surface
gravity of black holes are known at spatial infinity by
looking at the asymptotic falloff of the dilaton.
We present the proof of our main result in Sec. II, which

relies on a certain divergence identity [Eq. (2.8)] for a
massless scalar field linearly coupled to a topological form
and the Killing symmetry of the black hole spacetime.
Combining these ingredients allows the four-dimensional
Euler (or Gauss-Bonnet) topological density to descend to
the two-dimensional Euler characteristic on the bifurcation
surface. In Sec. III, we discuss the implications of this
proof, and how it can be generalized to theories where the
dilaton is nonlinearly coupled to the Euler density. We also
show how to extend our proof to higher dimensions and
other invariants, such as Chern characters of complex
G-bundles. We demonstrate this with an example of an
axion coupled to electromagnetism, wherein the axion
charge measures the electromagnetic potential of the hori-
zon times the magnetic monopole charge of the black hole.

Notation and conventions

We follow the factor and sign conventions in [19]. Tensor
fields on spacetime will be denoted by abstract indices
μ; ν; λ;… from the lowercase Greek alphabet, and we use
lowercase letters from the beginning of the Latin alphabet
a; b; c;… to denote tensors on the orthonormal frame
bundle, summarized in the Appendix. When using an
index-free notation for differential forms and vector fields
we denote differential forms by a bold-face symbol. When
translating differential forms to and from an index notation,
we use the symbol ≡ to denote such a translation, for
example, for a p-form A, we have ðAÞμ1…μp

≡ Aμ1…μp . Our
conventions for the volume form ε4, the Hodge dual �, and
the interior product are as follows,

ε4 ≡ εμ1…μ4 ð1:3aÞ

εμ1…μkμkþ1…μ4εμ1…μkνkþ1…ν4 ¼ −ð4 − kÞ!k!δ½μkþ1
νkþ1

� � � δμ4�ν4

ð1:3bÞ

ð�AÞμ1…μ4−p
≡ 1

p!
εν1…νp

μ1…μ4−pAν1…νp ð1:3cÞ

ðX · AÞμ1…μp−1
≡ XνAνμ1…μp−1 ; ð1:3dÞ

where A is a p-form and Xμ is some vector field.

II. LAGRANGIAN AND THE DILATON CHARGE

We consider a theory with gravity on a four-dimensional
spacetime M with a Lorentzian metric gμν and a scalar
dilaton field ϑ. The dynamics of the theory is given by the
Lagrangian 4-form,

L ¼ Lgravity þ Lϑ; ð2:1Þ

where Lgravity is some gravitational Lagrangian which is
independent of the dilaton ϑ.
There are several theories in the literature which are

referred to as Einstein-dilaton-Gauss-Bonnet, commonly
with an exponential coupling [20,21] between a dilaton and
the Euler density (defined below). For our main result, we
will consider a linear coupling (which admits a shift
symmetry ϑ → ϑþ const), and comment on the extension
to more general couplings in § III. We take the dilaton-
Gauss-Bonnet Lagrangian Lϑ to be

Lϑ ¼ 1

2
ð�dϑÞ ∧ dϑþ α

8
ϑE

¼ ε4

�
−
1

2
∇μϑ∇μϑþ α

8
ϑE

�
ð2:2Þ

where the 4-form E corresponds to the four-dimensional
Euler density as

E ¼ ε4E

with E ¼ −ð�R�ÞμνλρRμνλρ

¼ RμνλρRμνλρ − 4RμνRμν þ R2; ð2:3Þ

and the double dual of the Riemann tensor is defined as

ð�R�Þμνλρ ≔ 1

4
εμνστRστγδε

γδλρ: ð2:4Þ

While our final result can be presented in terms of tensor
fields on spacetime, it will be, instead, convenient to use
orthonormal tetrads ea and a connection ωa

b. It is more
natural in the following analysis to treat ea and ωa

b as
globally well-defined fields on a principal bundle, follow-
ing the treatment in [22] (see also [23])—we summarize the
essential points in Appendix. Readers unfamiliar with the
bundle formalism can skip to Eq. (2.12), where we present
the tensorial form of the charge used in our main result,
Theorem 1.
In terms of the connection ωa

b, we can write E as an
exact form [22,24,25]

E ¼ ϵabcdRab ∧ Rcd ¼ dϒ

with ϒ ¼ ϵabcdωab ∧
�
Rcd −

1

3
ωc

e ∧ ωed

�
; ð2:5Þ
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where Ra
b is the curvature 2-form of the connection [see

Eq. (A6)]. We emphasize that the 3-form ϒ cannot be
represented as a covariant tensor on spacetime—even if one
writes ϒ in some local coordinate system it necessarily
involves undifferentiated Christoffel symbols which are not
covariant tensors. In the language of principal bundles,
while ϒ is globally well-defined, it is not a horizontal form
on the bundle.
Varying the Lagrangian with the dilaton ϑ gives the

dilaton equation of motion

0 ¼ Eϑ ¼ d � dϑþ α

8
E ¼ ε4

�
□ϑþ α

8
E
�

ð2:6Þ

where□ ≔ ∇μ∇μ is the wave operator. Note that we do not
impose the gravitational equations of motion obtained by
varying the metric gμν, that is the metric can be considered
as a “background field.”
Using Eq. (2.5), the dilaton equation of motion can be

written as an exact form, and one could attempt to integrate
this over some region of spacetime bounded by two Cauchy
surfaces to get the scalar charge. However, since ϒ is not
covariant (as explained above), the result would depend on
the choice of coordinate system, or equivalently on the
choice of orthonormal tetrads.
To avoid using noncovariant quantities, we proceed

instead as follows. Using Eq. (A9b), we have, for any
vector field Xμ,

ϵabcdRab ∧ £Xωcd ¼ ϵabcdRab ∧DðX ·ωcdÞ þ 1

2
X ·E

¼ d½ϵabcdRabðX ·ωcdÞ� þ 1

2
X ·E: ð2:7Þ

Using this in Eq. (2.6), we get the divergence identity

J X ¼ dQX þ X · Eϑ

¼ £Xð�dϑÞ þ
α

4
ϵabcdRab ∧ £Xωcd ð2:8aÞ

where QX ¼ X · ð�dϑÞ þ α

4
ϵabcdRabðX · ωcdÞ ð2:8bÞ

The current J X is conserved for any vector field Xμ,
i.e., dJ X ¼ 0, on solutions to the dilaton equation of
motion. Further, J X ¼ 0 whenever Xμ is a symmetry i.e.,
£Xgμν ¼ £Xϑ ¼ 0. J X vanishes on symmetries because it
is related to the Lie derivative of the Noether current for the
shift symmetry ϑ → ϑþ const. In this case, the expression
for the charge can be simplified using Eq. (A10) to get

QX ¼ X · ð�dϑÞ − α

4
ϵabcdRabðecμedν∇μXνÞ: ð2:9Þ

We also provide a tensorial expression as follows. Define
Qμν

X from QX by

ðQXÞμν ≡Qλρ
X ελρμν ð2:10Þ

so that the current vector J μ
X is given by

ðJ XÞμνλ ≡ J ρ
Xερμνλ

with J μ
X ¼ ∇νQ

μν
X þ Xμ

�
□ϑþ α

8
E
�
: ð2:11Þ

For a symmetry Xμ we can compute [using Eq. (2.9)]

Qμν
X ¼ −2X½μ∇ν�ϑþ α

2
ð�R�Þμνλρ∇λXρ: ð2:12Þ

It can be checked that J μ
X ¼ 0, using the identities

∇μð�R�Þμνλρ ¼ 0 (which follows from the Bianchi identity
Eq. (A8), ∇μ∇νXλ ¼ Rλνμ

ρXρ for a Killing field Xμ (see
Eq. (C. 3. 6) [19]), and CμλρσCνλρσ ¼ 1

4
δμνCτλρσCτλρσ for the

Weyl tensor Cμνλρ in four dimensions [26]. The result of
Theorem 1 can be obtained by evaluating the integral
0 ¼ R

Σ uμJ
μ
K where, Kμ is the horizon Killing field and uμ

is the future-pointing unit time-like normal to a Cauchy
surface Σ, as described below.
We now consider an asymptotically flat, stationary-

axisymmetric black hole spacetime ðM; gμνÞ shown in
Figure 1, with a stationary-axisymmetric dilaton field ϑ
satisfying the equation of motion Eq. (2.6) (we take all
fields to be smooth (C∞) throughout M). We assume the
spacetime has a bifurcate Killing horizon H ≔ Hþ ∪ H−,
with a bifurcation surface B ≔ Hþ ∩ H−. We assume that
B is compact but do not assume other restrictions on its
topology.1 Let the Killing field generating H be Kμ ¼
tμ þΩHϕ

μ where tμ denotes the time translation Killing
field and ϕμ denotes the axial Killing field associated with
the horizon rotation parameter ΩH. Let Σ denote a Cauchy
surface for the black hole exterior. We assume that Σ has
one asymptotically flat end [with asymptotic conditions
given by Eq. (2.14) below], and a boundary at B.
The asymptotic flatness conditions on our spacetime are

as follows. There exist asymptotically Minkowskian coor-
dinates xμ ¼ ðt; x; y; zÞ such that the global Killing fields
asymptote to the Minkowski ones at the rates

tμ¼ð∂tÞμþOð1=rÞ; ϕμ¼ð∂ϕÞμð1þOð1=rÞÞ; ð2:13Þ

the metric and dilaton asymptote at the rates

gμν¼g
∘
μνþOð1=rÞ; ϑ¼ϑ∞ðθÞþ

qðθÞ
r

þOð1=r2Þ ð2:14Þ

where g
∘
μνdxμdxν ≡ −dt2 þ dx2 þ dy2 þ dz2 is the

Minkowskian flat metric in these coordinates, and

1We need not assume that B is connected but, for notational
convenience, we will assume that this is the case.
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ðr; θ;ϕÞ are defined in terms of ðx; y; zÞ in the standard way.
In addition, all nth derivatives of the above quantities (with
respect to these coordinates) are required to fall off faster by
an additional factor of 1=rn.2

For such spacetimes, we define the scalar charge to be
the spherically-symmetric part of the asymptotic 1=r falloff
(see also [13,27])

q ≔ −
1

4π

Z
∞
ε2∂rϑ ¼ 1

4π

Z
∞
ε2

qðθÞ
r2

: ð2:15Þ

Here, and henceforth,
R
∞ means that the integral is

evaluated over an asymptotic 2-sphere Sr of radius r and
then one takes the limit r → ∞, and ε2 is the induced area
element on Sr.

3

Now, we use Eq. (2.8) to prove our main result.
Theorem 1. On any asymptotically flat, stationary-

axisymmetric black hole spacetime (as defined above) the
scalar charge Eq. (2.15) is given by

q ¼ 1

2
ακEulerðBÞ; ð2:16Þ

where κ is the surface gravity of the black hole and
EulerðBÞ is the Euler characteristic of the bifurcation
surface B.
Proof.—For Xμ ¼ Kμ, the horizon Killing field, inte-

grate 0 ¼ J K ¼ dQK on the Cauchy surface Σ to get

Z
∞
QK ¼

Z
B
QK ð2:17Þ

where we have assumed that the induced orientations in
both integrals are outward-pointing i.e., the space-like
normals in Σ point towards ∞. We now evaluate each side
of the above expression using Eq. (2.9).
To compute the contribution to the charge at infinity, let

e
∘a ¼ ðdt; dx; dy; dzÞ be an asymptotic tetrad adapted to the
asymptotically Minkowskian coordinates. From Eq. (2.14),
we have near infinity

ea ¼ e
∘a þOð1=rÞ; ωab ¼ Oð1=r2Þ;

Rab ¼ Oð1=r3Þ: ð2:18Þ

Then, using Eq. (2.15), we find

Z
∞
QK ¼

Z
∞
K · ð�dϑÞ ¼ −

Z
∞
ε2∂rϑ ¼ 4πq; ð2:19Þ

where the curvature terms do not contribute due to the
falloffs in Eq. (2.18), and the contribution from the ϕμ-part
of Kμ vanishes since ϕμ is tangent to the spheres at infinity.
On B, we have KμjB ¼ 0 and ∇μKνjB ¼ κε̃μν where ε̃μν

is the binormal to the bifurcation surface (see § 12.5 [19]).
It can be shown that κ is a constant over any bifurcate
Killing horizon H [28]. Using this in Eq. (2.9), and noting
that ðε2Þμν ¼ − 1

2
ελρμνε̃λρ is the intrinsic area element to B,

we get
Z
B
QK ¼ α

2
κ

Z
B
ϵabRab ¼ α

2
κ

Z
B
ε2R2 ¼ 2πακEulerðBÞ;

ð2:20Þ

where ϵab is the tetrad component of ε2, R2 is the intrinsic
Ricci scalar of B, and the last line uses the two-dimensional
Gauss-Bonnet theorem [29].
Combining Eqs. (2.17), (2.19), and (2.20), we have our

result, Eq. (2.16). □

We note here that the contribution to the scalar charge
from B [Eq. (2.20)] can be written as

Z
B
QK ¼ −

α

8
κ

Z
B
ε2

δE
δRμνλρ

ε̃μνε̃λρ ð2:21Þ

in analogy with the Wald entropy formula [30,31]. This
relation arises due to the second term in Eq. (2.8b).

III. DISCUSSION AND EXTENSION

A concise interpretation of this result is that black holes
communicate their horizon topology and surface gravity to
spatial infinity, by encoding this information in the asymp-
totic falloff of the dilaton.

FIG. 1. Schematic diagram for black hole spacetime. Note this
should not be considered as a Carter-Penrose diagram, in
particular we make no assumptions about the existence of null
infinity.

2Since we do not impose the gravitational equations of motion
we do not need to ensure that such asymptotically flat spacetimes
exist as solutions.

3The induced area element ε2 grows as r2 and Eq. (2.15)
converges in the limit as r → ∞.
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When the bifurcation surface B is a topological two-
sphere, as is the case for a Kerr spacetime (or any
continuous deformation of Kerr), we have q ¼ ακ, con-
sistent with Eq. (1.1). However, our result is valid to all
orders in α, not just the decoupling limit, and at no point
have we imposed the metric equations of motion. Our proof
also generalizes to stationary stars as long as the matter
fields do not couple to ϑ (the matter Lagrangian is
independent of ϑ). In this case there is no interior boundary
and we get q ¼ 0 (see [27] for an earlier approach based on
the generalized Gauss-Bonnet-Chern theorem; the main
advantage of our proof is that it is based on local and
covariant quantities).
Our proof can also be adapted to any theory (in any

number of spacetime dimensions) where the dilaton field is
linearly coupled to a topological density T which depends
on the curvature with suitable modifications of Eq. (1.1)
with terms of the form δT =δRμνλρ. We can also consider
theories where a scalar field is linearly-coupled to a
topological density of any G-bundle where G is some,
possibly non-Abelian, group. In this case, the charge
contribution takes a form similar to Eq. (2.21) with the
Riemann tensor replaced by the curvature in the G-bundle
(see [22]). As an example, we consider briefly a massless
axion field φ coupled with strength g to electromagnetism
through the second Chern character [29], via the
Lagrangian

Lφ ¼ 1

2
ð�dφÞ ∧ dφþ g

2
φF ∧ F

¼ 1

2
ð�dφÞ ∧ dφþ g

2
φdðF ∧ AÞ; ð3:1Þ

where A is the electromagnetic vector potential, i.e., a
Uð1Þ-connection, and F ≔ dA is the field strength. For the
analogue of Eq. (2.8), we then have

J ðφÞ
X ¼ £Xð�dφÞ þ gF ∧ £XA ð3:2aÞ

QðφÞ
X ¼ X · ð�dφÞ þ gFðX · AÞ: ð3:2bÞ

Following through the proof of Theorem 1 under the
assumption that A ¼ Oð1=rÞ at spatial infinity, the axion
scalar charge for a black hole is given by

qðφÞ ¼ gVHQm where Qm ≔
1

4π

Z
B
F; ð3:3Þ

and VH ≔ K · AjB is the horizon potential, which is
constant on H (see [32] and Theorem 1 [22]). Here Qm
is the black hole’s magnetic charge, proportional to the first
Chern number of the Uð1Þ-bundle over B [29].
A number of recent investigations [33–35] focused on a

nonlinear coupling between the dilaton and Euler density,
replacing ϑE → fðϑÞE in the Lagrangian Eq. (2.2) (with a

nonlinear function fðϑÞ, the theory no longer has the shift
symmetry ϑ → ϑþ const). These authors pointed out that
when f0ðϑÞ vanishes at some value ϑ0, such a theory admits
standard (“no hair”) GR solutions with a constant dilaton
field ϑ ¼ ϑ0. However, if f00ðϑ0Þ > 0, these solutions can
be unstable, and revert to a stable branch of black hole
solutions with dilaton hair.
Analyzing this coupling, we again have Eq. (2.8a) with

Eϑ ¼ d � dϑþ α

8
f0ðϑÞE

QX ¼ X · dϑþ α

4
f0ðϑÞϵabcdRabðX · ωcdÞ

J X ¼ £Xð�dϑÞ þ
α

4
f0ðϑÞϵabcdRab ∧ £Xωcd

þ α

4
f00ðϑÞϵabcdRab ∧ dϑðX · ωcdÞ: ð3:4Þ

Note that in the nonlinear case, J X is still conserved, but
J X ≠ 0 even for a symmetry Xμ of the solution, because
there is no more symmetry under the shift ϑ → ϑþ const.
Therefore, a bulk integral term will remain in the compu-
tation of the charge. A repetition of our proof gives the
dilaton charge

q ¼ α

8π
κ

Z
B
ε2f0ðϑÞR2

−
α

8π

Z
Σ
ε3f00ðϑÞuμð�R�Þμνλρ∇νϑ∇λKρ; ð3:5Þ

where ε3 is the induced volume element and uμ is the unit
timelike normal to the Cauchy surface Σ.
In Eq. (3.5), we can easily see the difference between the

linearly coupled case and the nonlinear case. Because of the
lack of shift symmetry in the nonlinear case, the bulk term
remains (i.e., f00ðϑÞ ≠ 0), and thus the dilaton charge
depends on the metric and dilaton solutions throughout
the entire spacetime. We no longer get a relation between
quantities evaluated purely on the boundaries. However, if
the dilaton field has a small variation throughout spacetime,
it may be possible to expand the theory [27] around some
typical value ϑ1 ≠ ϑ0, where f0ðϑ1Þ ≠ 0. Then if we expand
the coupling function to linear order around ϑ1, we recover
the shift-symmetric, linearly-coupled theory.
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APPENDIX: SHORT PRIMER ON TETRADS
AND SPIN CONNECTION

In this Appendix, we give a short introduction to tetrads
and connections. We will use the language of principal
bundles, for the details of which we refer the reader to the
classic treatment4 of [39–41] (see also the Appendix
of [22]).
On spacetime, the oriented orthonormal tetrads ðeaÞμ ≡

eaμ are defined by

gμν ¼ ηabeaμebν ; εμνλρ ¼ ϵabcdeaμebνecλe
d
ρ; ðA1Þ

where ηab ¼ diagð−1; 1; 1; 1Þ and ϵabcd are the metric and
orientation in R4 with ϵ0123 ¼ 1. The “inverse” tetrads eμa
satisfy

eμaeaν ¼ δμν ; eμbe
a
μ ¼ δab: ðA2Þ

The torsion-free spin connection ωa
b is given by

ðωa
bÞμ ¼ eaν∇μeνb: ðA3Þ

Given a metric gμν, the tetrads and the spin connection
are only determined up to a local Lorentz transformation
Λa

bðxÞ which depends on the point x in spacetime:

ea ↦ Λa
beb; ωa

b ↦ Λa
cωc

dðΛ−1Þdb þ Λa
cdðΛ−1Þcb:

ðA4Þ

We note that the connection transforms noncovariantly.
Due to this “internal gauge freedom,” it is more natural to
treat these as fields on a principal bundle with structure
group given by the Lorentz group.

Differential forms on spacetime which are covariant
under Lorentz transformations are represented by horizon-
tal differential forms on the bundle. The connection is
represented by a Lie algebra-valued 1-form (which by
definition is not horizontal). The connection is then
determined uniquely by the torsion-free condition

0 ¼ Dea ¼ dea þωa
b ∧ eb; ðA5Þ

whereD is the covariant exterior derivative defined by ωa
b.

The curvature 2-form is defined by the horizontal form

Ra
b ≔ Dωa

b ¼ dωa
b þ ωa

c ∧ ωc
b; ðA6Þ

Since the curvature is horizontal it represents a covariant
form on spacetime related to the Riemann tensor as

ðRa
bÞμν ≡ Rλ

ρμνeaλe
ρ
b; ðA7Þ

and the Bianchi identity reads

DRab ¼ 0 ⇒ ∇½σRλρ
μν� ¼ 0: ðA8Þ

The Lie derivative of the tetrads and connection with
respect to vector fields on the bundle is

£Xea ¼ DðX · eaÞ − ðX · ωa
bÞeb ðA9aÞ

£Xωa
b ¼ X · Ra

b þDðX · ωa
bÞ ðA9bÞ

From the spacetime point of view, this encodes the fact that
Lie derivatives of the tetrads and connection are only
defined up to a local Lorentz transformation (encoded in
the vertical part of the bundle vector field).
It can be shown (see Lemma A.2 [22]) that a bundle

vector field which preserves the tetrads, £Xea ¼ 0, projects
to a Killing field Xμ of the metric on spacetime, and further
satisfies

X · ωab ¼ −eaμebν∇μXν; ðA10Þ
where the left-hand side is computed as a function on the
bundle.
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