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In this paper, we construct the complete set of minimal 3-point vertices for the massive Standard Model
(SM) based purely on symmetry principles, mass dimension and high-energy behavior and without any
recourse to field theory, gauge symmetries or Feynman rules. Because the gravitational vertices are no more
challenging than any other vertices in this constructive method, we include them as well. We also calculate
the high-energy behavior of these vertices and compare with the well-known massless vertices, both as a
check and as a way to pin down the normalization constants. We include all these vertices in tables as a
reference for future investigations.
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I. INTRODUCTION

Perturbative calculations of the S-matrix have been
experiencing an awesome transformation during the last
few decades. Many of us were trained as high-energy
physicists to view the field as the fundamental object in
nature with the “local” or “gauge” symmetry playing the
central role of uniting and constraining the field inter-
actions. From this perspective, the particle was thought to
be no more than a quantum fluctuation of the field.
However, this view of fundamental physics is in the process
of being overturned. The field, rather than being viewed as
a fundamental object, is now being considered more of a
convenient packaging of the particle operators allowing for
a manifestly local, Poincare invariant theory [1]. Moreover,
for some particles, this field packaging requires the addition
of extra, unphysical degrees of freedom (d.o.f.). As a
simple example, the photon has only two physical d.o.f.
(which correspond to the positive and negative helicity
states), yet the photon must be packaged in a four-
component Lorentz vector field. Unfortunately, this pack-
aging does not transform as a Lorentz four-vector. Instead,
under a Lorentz transformation, it transforms into a new
Lorentz four vector (as expected) plus a derivative term. In
order to prevent this nonvector piece from spoiling the
Lorentz invariance of our theory, we are forced to “gauge”
our symmetry such that it is insensitive to this change.

Over the past couple of decades, it has become increasingly
clear that the field formulation may be the source of much,
if not all, of the inefficiency in calculations involving
Feynman diagrams [2]. Nevertheless, simply being aware
of this fact is not useful in decreasing the complexity of
intermediate expressions unless the field construction can
be replaced with a better system, both in terms of its
elegance, its simplicity, and its computational power. Such
a new understanding has been slowly emerging over the last
few decades and is presently reaching a major tipping point.
In order to give context to the present situation, we very

briefly consider some of the relevant history. Before the
introduction of fields and gauge theories, there were several
competing approaches that attempted to understand the
properties of, and make predictions about, particle inter-
actions solely in terms of groups, symmetries, and most
importantly at the time, analyticity [3–6]. These methods
focused on the S-matrix and its analytic properties as a
function of complex variables. Unfortunately, the original
analytic S-matrix approach lacked real predictive power in
the modern sense as these methods mostly relied on Regge
theory and dispersion relations. Although some of these
techniques, when applied to fundamental particles, are still
widely taught in field theory courses, for instance, when
dealing with partial-wave decompositions, these methods
mostly evolved to become the early versions of string
theory [7], and particle theory would go on to adopt
quantum field theory as its main focus, built on its
incredible predictive power. This would remain the sit-
uation until a new understanding of the interactions of
particles emerged.
This charge towards a new understanding of particle

physics has been led by the development of “on-shell”
methods and “twistor” techniques. A few milestones
include the early, systematic use of helicity methods
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developed to calculate massless QED and QCD scattering
amplitudes [8]. These early forays into these techniques
were the first serious, systematic attempts to reduce what is
often referred to as the “analytical bottleneck” encountered
in the then-standardized reduction techniques which
showed concrete examples of expressions where the size
and complexity of the intermediate expression were under
better control. The concept of introducing “color-ordered”
helicity amplitudes, written in the language of spinors
alone, also led to great simplifications in the massless QCD
sector of the Standard Model (SM) [9]. The maximally
helicity-violating tree-level amplitudes had been found to
simplify to only one term no matter how many thousands of
Feynman diagrams were involved [10]. However, it would
be fair to say that although these methods were exciting,
they were not deeply employed in large scale calculations,
but were rather used to study the structure of specific pieces
of non-Abelian theories. The Britto-Cachazo-Feng-Witten
(BCFW) recursion relations were developed [11] allowing
any tree-level helicity amplitude of gluons to be calculated
using a simple on-shell recursion relation. With all these
advancements in scattering amplitudes, bypassing fields
and Feynman diagrams entirely ever more frequently, a
nascent hope has been reemerging that we might come full
circle and “construct” realistic particle theories completely
in terms of the properties of the particles and the unitary
S-matrix [12–15]. Central to this construction have been
unitarity, locality and the transformation properties under
Wigner’s “little” group, a subgroup of the Lorentz group
[16]. However, the introduction of massive particles had,
until recently, caused major problems in realizing many of
the advantages given by the massless methods.
This situation advanced in a fundamental way when the

authors of [17] showed how to extend the helicity-spinor
formalism to particle theories of any mass and any spin,
making it possible, in principle, to apply these methods to
any fundamental theory of particles. This new formalism
extends and simplifies previous attempts at creating a
helicity spinor for massive particles, some of which can
be found in Refs. [18–25]. It is “constructive” in the sense
that fields and gauge symmetries are never introduced.

Rather, the fundamental building blocks, the minimal
3-point vertices, are determined purely from their trans-
formation properties under the little group. These 3-point
vertices are constructed not only from the massless helicity
spinors [objects transforming under both the helicity little
group and the SLð2;CÞ Lorentz group] but also from spin
spinors [objects transforming under both the SU(2) “spin”
little group and the SLð2;CÞ Lorentz group]. The 3-point
vertices are connected to form 4-point amplitudes by use of
unitarity with the assumption that the propagator is always
on shell, albeit in complex momentum space. Furthermore,
the allowed vertices are restricted by properties such as
locality and the requirement that the high-energy limit
of these vertices and amplitudes agrees with massless
calculations. Notwithstanding this progress, this construc-
tive approach for all masses and spins is not a complete
theory yet. It has only been clearly defined up to 4-point
amplitudes and up to one loop, whereas Feynman dia-
grams, although often unwieldy, are capable of calculating
any multiplicity scattering amplitude at any loop order, at
least in principle. Furthermore, very few actual calculations
have been carried out in this new formalism in the full SM
or beyond. In fact, an explicit set of massive 3-point
vertices for the SM within this formalism is not yet present
in the literature, nor have all the 4-point “contact” terms for
the SM been determined.
In this paper, it is our goal to begin to fill this gap. We

construct the complete set of minimal 3-point couplings for
the SM particles. Our structure is as follows. In Sec. II, we
construct the SM vertices with one massless particle and two
massive particles of the same mass. This set already covers
an impressive fraction of the SM as it includes the inter-
actions of photons with charged particles, gluons with
quarks and gravitons with massive particles. In Sec. III,
we describe the 3-point vertices with two massless particles
and one massive particle which is used to describe the
interaction of the Z boson with the neutrinos (which we take
to be massless for simplicity, but this can easily be extended
for massive neutrinos). In Sec. IV, we consider vertices with
one massless particle and two massive particles of differing
masses, applicable to the interactions of theW boson and the

TABLE I. QED vertices within the Standard Model and their high-energy limit. Here, f stands for a fermion while f̄ stands for an
antifermion. The superscript in the first column gives the helicity of the massless particles. The position of the particle determines the
number in the last two columns. Definitions for x and x̃ are in Eqs. (2) and (3). See Sec. II for further details. In the high-energy limit, we
show all the terms (including Goldstone-boson terms) that do not vanish at order ðm=EÞ0. The helicity signature is for the massive
particles in the high-energy limit.

Particles Coupling Vertex High-energy limit (helicity signature)

ff̄γþ −ieQf xh12i ½23�2
½12� ð−þÞ, − ½31�2

½12� ðþ−Þ
ff̄γ− −ieQf x̃½12� h31i2

h12i ð−þÞ, − h23i2
h12i ðþ−Þ

WW̄γþ −ie x
MW

h12i2 ½23�3
½12�½31� ð−þÞ, 2 h12i3

h23ih31i ð−−Þ, ½31�3
½12�½23� ðþ−Þ, − 1

2

½31�½23�
½12� ð00Þ

WW̄γ− −ie x̃
MW

½12�2 h31i3
h12ih23i ð−þÞ, 2 ½12�3

½23�½31� ðþþÞ, h23i3
h12ih31i ðþ−Þ, − 1

2
h31ih23i
h12i ð00Þ
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leptons. In Sec. V, we find the vertex with all three particles
massive. This structure describes the interaction of the Z
boson with massive fermions, the W boson with quarks, the
interaction between the Z boson and W bosons and the
Higgs 3-point vertices. We leave all the 4-point “contact”
vertices to a follow-up paper, as they are significantly more
involved. This includes the Higgs 4-point vertices as well as
4-point vertices involving Goldstone bosons. In Sec. VI, we
conclude and describe open questions. In order to make our
results more useful, we organize all our vertices into tables
and include the high-energy limit for each vertex. Our tables
are organized as follows. In Table I, we present the quantum
electrodynamics (QED) vertices, in Table II, we display the
quantum chromodynamics (QCD) vertices, in Table III, we
give the gravitational vertices, in Table IV, we give the
electroweak vertices, and in Table V, we give the Higgs

vertices. Finally, we include two appendices for the con-
venience of the reader. In Appendix A, we give the full
details of our conventions, including the full structure of our
helicity spinors and spin spinors as well as their high-energy
limit. In Appendix B, we review the massless 3-point
vertices that must match with the high-energy limit of our
massive vertices.

II. ONE MASSLESS AND TWO MASSIVE
PARTICLES OF THE SAME MASS

In this section, we construct all the vertices of the SM
that contain one massless particle (such as a photon, gluon,
or graviton) and two massive particles of the same mass.
There are many QED, QCD and gravitational vertices that
fall into this category. Here, we will not concern ourselves

TABLE II. QCD vertices within the Standard Model along with their high-energy limit. Here, q stands for a quark
while q̄ stands for an antiquark. The superscript in the first column gives the helicity of the massless particles. The
position of the particle determines the number in the last two columns. Definitions for x and x̃ are in Eqs. (2) and (3).
See Sec. II for further details. In the high-energy limit, we show all the terms that do not vanish at order ðm=EÞ0. The
helicity signature is for the massive particles in the high-energy limit.

Particles Coupling Vertex High-energy limit (helicity signature)

qq̄gþ igsðTa3Þi2i1 xh12i ½23�2
½12� ð−þÞ, − ½31�2

½12� ðþ−Þ
qq̄g− igsðTa3Þi2i1 x̃½12� h31i2

h12i ð−þÞ, − h23i2
h12i ðþ−Þ

g−g−gþ igsfa1a2a3 h12i3
h23ih31i

Already massless

gþgþg− igsfa1a2a3 ½12�3
½23�½31�

Already massless

TABLE III. Gravitational vertices along with their high-energy limit. Here, f stands for a fermion while f̄ stands
for an antifermion, and V and V̄ stand for a 1-spin boson and its antiparticle, respectively. Also, h stands for the
Higgs boson. The superscript in the first column gives the helicity of the massless particles. The position of the
particle determines the number in the last two columns. Definitions for x and x̃ are in Eqs. (2) and (3). See Sec. II for
further details. The helicity signature is for the massive particles in the high-energy limit.

Particles Coupling Vertex High-energy limit (helicity signature)

hhGþ i
MP

x2m2
h ð½23�½31�½12� Þ2

hhG− i
MP

x̃2m2
h ðh23ih31ih12i Þ2

ff̄Gþ i
MP

x2mfh12i ½23�3½31�
½12�2 ð−þÞ, − ½31�3½23�

½12�2 ðþ−Þ
ff̄G− i

MP
x̃2mf½12� h31i3h23i

h12i2 ð−þÞ, − h23i3h31i
h12i2 ðþ−Þ

VV̄Gþ i
MP

x2h12i2 ½23�4
½12�2 ð−þÞ, − 1

2

½31�2½23�2
½12�2 ð00Þ, ½31�4

½12�2 ðþ−Þ
VV̄G− i

MP
x̃2½12�2 h31i4

h12i2 ð−þÞ, − 1
2
h31i2h23i2

h12i2 ð00Þ, h23i4
h12i2 ðþ−Þ

γþγ−Gþ
i

MP

½31�4
½12�2 Already massless

gþg−Gþ

γþγ−G−
i

MP

h31i4
h12i2 Already massless

gþg−G−

G−G−Gþ i
MP

h12i6
h23i2h31i2

Already massless

GþGþG− i
MP

½12�6
½23�2½31�2

Already massless
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with the internal symmetry structures (such as the color
coefficients Ta

ij and fabc within QCD) as they are already
well known. Instead, we will focus on describing the
SLð2;CÞ spinor part of these vertices and their high-energy
limit. For the reader’s convenience, we have included our
complete conventions, including our massless helicity
spinors and massive spin spinors in Appendix A.
Before we analyze the vertices individually, we briefly

comment on the so-called “x”-factor introduced by [17]. In
general, in order to build each vertex, we need two linearly
independent helicity spinors. However, in the current case
we are considering (two equal mass particles and one

massless particle), there is only one linearly independent
helicity spinor among the considered particles—that of the
massless particle. To overcome this challenge, [17] con-
structs the minimal vertex as

xh
h12i2S
m2S−1 ; ð1Þ

where both of the massive particles (here labeled 1 and 2)
have the same mass m and spin S (where the spin indices
for each are completely symmetrized). They note that x is
not uniquely defined, but can be written conveniently as

TABLE IV. Standard Model Weak Boson Sector Vertices along with their high-energy limit. The superscript in the first column gives
the helicity of the massless particles. The CKM matrix is represented by Vij. The Z boson couples differently to left- and right-handed
fermions as made explicit in the gL and gR couplings, which we write as gL ¼ T3 −Qf sin2 θw and gR ¼ −Qf sin2 θw which leaves the
Goldstone boson modes for the ff̄Z interactions nonzero in the limit of identical fermion masses, as expected, where T3 is the isospin
and Qf is the electric charge of the fermion. The terms in the high-energy limit with a ratio of masses are Goldstone boson interactions.
In some cases, the masses in the ratio canceled. See Secs. III–V for further details. The helicity signature is for the massive particles in
the high-energy limit.

Particles Coupling Vertex High-energy limit

ν−ν̄þZ ie
sin 2θw

h31i½23�
MZ

− h31i2
h12i ð−Þ, − ½23�2

½12� ðþÞ
ff̄Z ie

sin 2θw
gLh31i½23�þgR½31�h23i

MZ
þ

N Zffðg̃Lh31ih23i þ g̃R½31�½23�Þ
gR

h23i2
h12i ðþ − −Þ, −gL h31i2

h12i ð−þ −Þ, gR ½31�2
½12� ðþ–þÞ,

−gL
½23�2
½12� ð–þþÞ, m1gL−m2gR

2MZ
½12�ðþ þ 0Þ,

m2gL−m1gR
2MZ

h12ið− − 0Þ
lν̄þl W

ie
2
ffiffi
2

p
cos θw

h31i½23�
MW

þNWlν½31�½23� − h31i2
h12i ð––Þ, − ½23�2

½12� ð–þÞ, ml
2MW

½12�ðþ0Þ
l̄ν−l W̄

−ie
2
ffiffi
2

p
cos θw

½31�h23i
MW

þN �
Wlνh31ih23i h23i2

h12i ðþ–Þ, ½31�2
½12� ðþþÞ, − ml

2MW
h12ið–0Þ

fif̄jW
ie

2
ffiffi
2

p
cos θw

Vij
h31i½23�
MW

þNWffh31ih23i − h31i2
h12i ð−þ −Þ, − ½23�2

½12� ð−þþÞ,
mi

2MW
½12�ðþ þ 0Þ, mj

2MW
h12ið− − 0Þ

fif̄jW̄
−ie

2
ffiffi
2

p
cos θw

V�
ij

½31�h23i
MW

þN �
Wff½31�½23� h23i2

h12i ðþ − −Þ, ½31�2
½12� ðþ −þÞ,

−mj

2MW
½12�ðþ þ 0Þ, −mi

2MW
h12ið− − 0Þ

WW̄Z ie cot θw − h12ih23i½31�þ½12�½23�h31i
MWMZ

− h12i½23�h31iþ½12�h23i½31�
MWMZ

−
½12�h23ih31iþh12i½23�½31�

M2
W

þ h12ih23ih31iþ½12�½23�½31�
NWWZ

h23i3
h12ih31i ðþ––Þ, h31i3

h12ih23i ð–þ –Þ, h12i3
h23ih31i ð––þÞ, ½23�3

½12�½31� ð–þþÞ,
½31�3

½12�½23� ðþ–þÞ, ½12�3
½23�½31� ðþ––Þ, − MZ

4MW

h12ih31i
h23i ð–00Þ,

− MZ
4MW

h12ih23i
h31i ð0–0Þ, 1

4
ðM2

Z
M2

W
− 2Þ h23ih31ih12i ð00−Þ,

− MZ
4MW

½12�½31�
½23� ðþ00Þ, − MZ

4MW

½12�½23�
½31� ð0þ 0Þ,

1
4
ðM2

Z
M2

W
− 2Þ ½23�½31�½12� ð00þÞ

TABLE V. Standard Model Higgs sector vertices along with their high-energy limit. See Sec. V for further details. The helicity
signatures of the particles is given in parentheses for all but the Higgs boson in the high-energy limit.

Particles Coupling Vertex High-energy limit

ff̄h −imf=v h12i þ ½12� h12ið––Þ, ½12�ðþþÞ
WW̄h −i h12i½12�

v þNWWhðh12ih12i þ ½12�½12�Þ MW
2v

h12ih31i
h23i ð–0Þ, −MW

2v
h12ih23i
h31i ð0–Þ, −MW

2v
½12�½31�
½23� ðþ0Þ, MW

2v
½12�½23�
½31� ð0þÞ,

ZZh −i h12i½12�
v þN ZZhðh12ih12i þ ½12�½12�Þ MZ

2v
h12ih31i
h23i ð–0Þ, −MZ

2v
h12ih23i
h31i ð0–Þ, −MZ

2v
½12�½31�
½23� ðþ0Þ, MZ

2v
½12�½23�
½31� ð0þÞ,

hhh −3iM2
h=v

2 v 0
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x ¼ hξjp2j3�
mhξ3i ; ð2Þ

where particle 3 will be our massless particle, although
either massive particle momenta, p1 or p2, could be used,
and hξj is a helicity spinor that must be linearly independent
from j3i. Since there are not any linearly independent
helicity spinors among the properties of the particles
currently under consideration, jξi must be chosen inde-
pendently of the current particle configuration. For this
reason, it is a spurious d.o.f. and the final scattering
amplitude cannot depend on it, but should be chosen
judiciously for ease of computation. The authors of
Ref. [17] point out that it is often convenient to choose
it as a helicity spinor from an external leg that is not directly
connected to this vertex but is part of a larger scattering
calculation, such as on the other side of a 4-point
amplitude, because then it leads to convenient factorization
properties. We note that “x” transforms under the little
group the same as if particle 3 is helcity þ1. Therefore, we
find that the vertex given in Eq. (1) was constructed to have
the right transformation properties since x is raised to the h
power and h12i is raised to the 2S power.
Although we see that Eq. (1) has the right transformation

properties whether the helicity of the massless particle is
positive or negative, we find it convenient to only use it for
positive helicity particles. For negative helicity particles,
we find it more convenient to introduce

x̃ ¼ ½ξjp2j3i
m½ξ3� ; ð3Þ

and define the minimal vertex as

x̃−h
½12�2S
m2S−1 : ð4Þ

As we see, x̃ transforms like particle 3 with a helicity of −1;
therefore this vertex transforms properly as well. When
these vertices are used to construct larger scattering
amplitudes, it is important to remember that ξ can be
chosen independently for each vertex. It does not need to be
the same for any two vertices in the same amplitude. But,
again, their dependence must cancel at the end of the
calculation.
In the vertices below, in order to find the high-energy

limit, we will need to expand x and x̃ to linear order in the
mass; this will also allow us to identify useful ξ spinors to
simplify our results. In other situations, it will become
necessary to expand beyond linear order in the mass. We
will do our linear expansion by first inserting p2 ¼ j2iJ½2jJ
[where J is the SU(2) spin index] to obtain

x ¼ hξ2iJ½23�J
mhξ3i :

Using Eqs. (A41) and (A42) gives

hξ2iJ½23�J ¼
��

1 −
m2

4E2
2

�
hξ2iζ−J þ mffiffiffiffiffiffiffiffi

2E2

p hξζ−2 iζþJ

�
×

��
1 −

m2

4E2
2

�
½23�ζþJ þ mffiffiffiffiffiffiffiffi

2E2

p ½ζ̃þ2 3�ζ−J
�
þOðm3Þ

¼
�
1 −

m2

2E2
2

�
hξ2i½23� − m2

2E2

hξζ−2 i½ζ̃þ2 3� þOðm3Þ; ð5Þ

where ζ�J ¼ ζ�JðkÞ (see Appendix A for the appropriate
definitions). Therefore,

x ¼
�
1 −

m2

2E2
2

� hξ2i½23�
mhξ3i −

m
2E2

hξζ−2 i½ζ̃þ2 3�
hξ3i þOðm2Þ;

ð6Þ

and a similar calculation gives

x̃ ¼
�
1 −

m2

2E2
2

� ½ξ2�h23i
m½ξ3� −

m
2E2

½ξζ−2 �hζ̃þ2 3i
½ξ3� þOðm2Þ:

ð7Þ

If it is not already obvious, we can start to see a typical
identity where replacing x ↔ x̃ means replacing hi ↔ ½�
within each expression leads to a valid expression. We will
also need to apply momentum conservation in the follow-
ing calculations. It is straightforward in terms of the

momenta, which we take to be all incoming. For example,
since all our momenta sum to zero, when we remember that
p3 is our massless momentum we find

j2iJ½2jJ ¼ −j1iJ½1jJ − j3i½3j: ð8Þ

However, what we will actually need is the high-energy
expansion of this expression to quadratic order inm. Rather
than doing this in complete generality, we will expand
h12i½23�, which will appear in the calculations below.
We note that if we only kept terms up to zeroth order in
m, the result would be identically zero (since h12i½23� ¼
−h11i½13� − h13i½33� but h11i ¼ ½33� ¼ 0). However, the
quadratic term gives us the desired results. Thus, the
momentum conservation expression can be simplified,

h12iJ½23�J ¼ −h11iJ½13�J − h13i½33�
¼ −h11iJ½13�J; ð9Þ
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where we have used ½33� ¼ 0. Next, we expand both sides
using Eq. (5) where we identify ξ with 1. We obtain,

h12i½23� ¼ m2
1

2E1

h1ζ−1 i½ζ̃þ1 3� þ
m2

2

2E2

h1ζ−2 i½ζ̃þ2 3� þOðm3Þ;

ð10Þ

which clearly shows that the expansion starts with terms
quadratic in mass as expected.

A. Massless spin-1 boson with massive
spin-1=2 fermions

We now move on to constructing a specific case. We
begin with a massless �1-helicity boson interacting with
two 1=2-spin fermions which will give us the vertex
structure for a photon interacting with two charged fer-
mions and also for a gluon interacting with two quarks. We
first consider the case of particle 3 being þ1 helicity;
therefore, the vertex is simply given by

xh12i: ð11Þ

We will check this result by comparing with the vertex
when all three particles are massless by taking the
high-energy limit and then keeping terms up to zeroth
order in the mass (the massless limit). For convenience, we
have included a review of the massless vertices in
Appendix B. The expression h12i has two SU(2) indices
and can be written as a matrix. We have already described
and expanded this matrix in the high-energy limit in
Appendix A. Therefore using Eqs. (A43), (6) and (10),
we obtain

xh12i ¼

0
B@ 0 1ffiffiffiffiffiffi

2E2

p h1ζ−
2
ihξ2i½23�
hξ3i

1ffiffiffiffiffiffi
2E1

p hζ−
1
2ihξ2i½23�
hξ3i 0

1
CAþOðmfÞ:

ð12Þ

We can further simplify these terms by applying momen-
tum conservation. In the top right entry, we can set
hξ2i½23� ¼ −hξ1i½13� þOðm2

fÞ. We then follow this with
hζ−2 1i½13� ¼ −hζ−2 2i½23� þOðm2

fÞ, again on the top-right
term, along with hζ−1 2i½23� ¼ −hζ−1 1i½13� þOðm2

fÞ on the
bottom-left term to obtain

xh12i ¼

0
B@ 0 1ffiffiffiffiffiffi

2E2

p h2ζ−
2
ihξ1i½23�
hξ3i

1ffiffiffiffiffiffi
2E1

p hζ−
1
1ihξ2i½31�
hξ3i 0

1
CAþOðmfÞ:

ð13Þ

Now, using the fact that h2ζ−2 i ¼
ffiffiffiffiffiffiffiffi
2E2

p
and similarly for

particle 1, we have

xh12i ¼

0
B@ 0

hξ1i½23�
hξ3i

hξ2i½31�
hξ3i 0

1
CAþOðmfÞ: ð14Þ

Next, multiplying by ½32�=½32� on the top right and
½31�=½31� on the bottom left, and using momentum
conservation in the denominator, hξ3i½32� ¼ −hξ1i½12� þ
Oðm2

fÞ and hξ3i½31� ¼ −hξ2i½21� þOðm2
fÞ, we finally

cancel the dependence on ξ to obtain

xh12i ¼

0
B@ 0

½23�2
½12�

− ½31�2
½12� 0

1
CAþOðmfÞ: ð15Þ

We remind the reader that ji� transforms as a þ1=2-helicity
particle while 1=ji� transforms as a −1=2-helicity particle
(since the transformation is a simple phase). The angle
brackets have the opposite transformation properties. From
this, we can see that the upper right of this matrix
corresponds with the quark having −1=2 helicity and the
antiquark having þ1=2 helicity. The bottom left of this
matrix corresponds with the opposite helicities for the
fermions (but, of course, the same þ1 helicity for the
massless photon or gluon). Both of these high-energy-limit
results agree with the massless vertices given on the left of
Eq. (B18). We note that although the signs of the massless
vertices are not fixed by the transformation properties
alone, here the relative signs of these two vertices is fixed
by the transformation properties of the massive vertex.
Furthermore, we note that the top-left entry corresponds
with both fermions having −1=2 helicity while the photon
or gluon has þ1 helicity. We find zero in the high-energy
limit which is exactly what we expect from the massless
vertices as reviewed in Appendix B. Altogether, we obtain

xh12i ¼
"

Að− 1
2
;− 1

2
;þ1Þ Að− 1

2
;þ 1

2
;þ1Þ

−Aðþ 1
2
;− 1

2
;þ1Þ Aðþ 1

2
;þ 1

2
;þ1Þ

#
þOðmfÞ;

ð16Þ
where the massless vertices Aðh1; h2; h3Þ are given explic-
itly in Appendix B.
On the other hand, when the massless particle has −1

helicity, we have the vertex,

x̃½12� ð17Þ
and the high-energy limit is obtained by an analogous set of
steps, exchanging angle and square brackets and raising the
spin indices leading to the final result,

x̃½12� ¼

0
B@ 0

h31i2
h12i

− h23i2
h12i 0

1
CAþOðmfÞ: ð18Þ
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The upper-right term corresponds with a −1=2-helicity
fermion and a þ1=2-helicity antifermion, the bottom-left
term is the opposite case, and both have a −1-helicity
photon or gluon. These high-energy-limit expressions agree
with the massless vertices given on the right of Eq. (B18).
Again, the relative sign is fixed by the massive vertex
structure whereas it is not fixed by the massless vertices
themselves. Making the helicity structure explicit as we did
for the þ1-helicity case, we have here,

x̃½12� ¼
"

Að− 1
2
;− 1

2
;−1Þ Að− 1

2
;þ 1

2
;−1Þ

−Aðþ 1
2
;− 1

2
;−1Þ Aðþ 1

2
;þ 1

2
;−1Þ

#
þOðmfÞ;

ð19Þ

where the massless vertices are zero when the sum of the
helicities is not �1 as expected. We see that the helicity
combinations of the fermions are in the same spin locations
as the −1-helicity photon as they should be.
We have included these vertices, along with their

high-energy limit, in Table I for QED and Table II
for QCD.

B. Massless spin-1 boson with massive
spin-1 bosons

We next work out the 3-point vertex for one massless
�1-helicity particle with two massive 1-spin particles. This
vertex is appropriate for the WW̄-photon vertex. We begin
with the WW̄γþ vertex connecting a þ-helicity photon and
two 1-spin particles of the same mass. We have

x
h12i2
MW

: ð20Þ

There are two independent indices on this vertex. They are
the spin index of particle 1 and particle 2. Each is a
symmetric combination of two 1=2-spin indices on each
spin spinor. There are three symmetric combinations. For
example, for the first W boson, the indices could take the
values h1j1h1j1, ðh1j1h1j2 þ h1j2h1j1Þ=2, or h1j2h1j2. As a
result, we can write this vertex as a 3 × 3 matrix. We have
already worked out this matrix in Appendix A as well as its
high-energy limit. Using Eqs. (A47), (6) and (10), we have
to leading order in MW ,

x
h12i2
MW

¼

0
BBBBB@

hξ2ih12ih1ζ−
1
i½ζ̃þ

1
3�

2E1hξ3i þ hξ2ih12ih1ζ−
2
i½ζ̃þ

2
3�

2E2hξ3i 0
h1ζ−

2
i2hξ2i½23�
E2hξ3i

0
h1ζ−

2
ihζ−

1
2ihξ2i½23�

2
ffiffiffiffiffiffiffiffiffi
4E1E2

p hξ3i 0

hζ−
1
2i2hξ2i½23�
E1hξ3i 0 0

1
CCCCCAþOðMWÞ:

Now, focusing on the top-right term, we use that hξ2i½23�¼
−hξ1i½13�þOðM2

WÞ followed by −h1ζ−2 i½13�¼hζ−2 1i½13�¼
−hζ−2 2i½23�þOðM2

WÞ¼
ffiffiffiffiffiffiffiffi
2E2

p ½23�þOðM2
WÞ. Next, we

multiply by ½13�=½13� and use h1ζ−2 i½13� ¼ −
ffiffiffiffiffiffiffiffi
2E2

p ½23� þ
OðM2

WÞ. Finally, we multiply by ½23�=½23� and use
hξ3i½23� ¼ −hξ1i½21� þOðM2

WÞ in the denominator so that
the hξ1i cancels between the numerator and denominator.
With this, we have ½23�3=ð½12�½31�Þ for the top-right entry.
The other entries are simplified by a similar set of steps. We
will go through one more in detail for the convenience of
the reader. Let us consider the center term. We use
hζ−1 2i½23� ¼−hζ−1 1i½13� þOðM2

WÞ ¼
ffiffiffiffiffiffiffiffi
2E1

p ½13� þOðM2
WÞ,

followed by h1ζ−2 i½13� ¼ −h2ζ−2 i½23� þOðM2
WÞ ¼

−
ffiffiffiffiffiffiffiffi
2E2

p ½23� þOðM2
WÞ. We are now left with −hξ2i½23�=

ð2hξ3iÞ þOðM2
WÞ. We multiply this by ½31�=½31� and use

hξ3i½31� ¼ −hξ2i½21� þOðM2
WÞ at which point the hξ2i

cancels between the numerator and denominator and we are
left with −½23�½31�=ð2½12�Þ þOðM2

WÞ. The top left and
bottom left are obtained through a similar set of manip-
ulations that include conservation of momentum and
multiplication by appropriate forms of 1. Finally, we obtain

x
h12i2
MW

¼

0
BBB@

2
h12i3

h23ih31i 0
½23�3

½12�½31�

0 − 1
2

½23�½31�
½12� 0

½31�3
½12�½23� 0 0

1
CCCAþOðMWÞ:

ð21Þ

We see that the top-right term contributes when the
helicity of W1 is −1 and that of W2 is þ1 (where the
subscript obviously refers to the multiplicity of the W
bosons), while the bottom-left term is for exactly the
opposite helicity combination for the W bosons. The top-
left term is for both W’s having helicity −1. Interestingly,
the middle term corresponds with both W’s having
helicity 0, namely, scattering of the Goldstone bosons,
as it must. Explicitly seeing the contributions from the
Goldstone bosons speaks to the power and simplicity of
this method.
All of these vertices agree perfectly with the massless

vertices of Appendix B up to an overall factor. As for the
fermion interactions of the previous subsection, we see that
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although the massless vertices do not fix the relative signs
and factors of 2 purely based on transformation properties,
they are fixed by their inclusion in the massive vertices. The
top-right and bottom-left entries are given by the left side of

Eq. (B19), the top-left entry is given by the right side
of Eq. (B19) and the center entry is given by the left side of
Eq. (B16). Writing this in terms of the massless vertices
of Appendix B gives

x
h12i2
MW

¼

2
64
2Að−1;−1;þ1Þ Að−1; 0;þ1Þ Að−1;þ1;þ1Þ
Að0;−1;þ1Þ − 1

2
Að0; 0;þ1Þ Að0;þ1;þ1Þ

Aðþ1;−1;þ1Þ Aðþ1; 0;þ1Þ 2Aðþ1;þ1;þ1Þ

3
75þOðMWÞ: ð22Þ

As expected, all the helicity combinations that do not sum to �1 are zero in this limit.
On the other hand, the WWγ− vertex is

x̃
½12�2
MW

: ð23Þ

Following a similar set of steps and after raising the spin indices, we find that at leading order in the high-energy limit, this
reduces to

x̃
½12�2
MW

¼

0
BBB@

0 0
h31i3

h12ih23i

0 − 1
2

h23ih31i
h12i 0

h23i3
h12ih31i 0 2

½12�3
½23�½31�

1
CCCAþOðMWÞ ð24Þ

¼

2
64
2Að−1;−1;−1Þ Að−1; 0;−1Þ Að−1;þ1;−1Þ
Að0;−1;−1Þ − 1

2
Að0; 0;−1Þ Að0;þ1;−1Þ

Aðþ1;−1;−1Þ Aðþ1; 0;−1Þ 2Aðþ1;þ1;−1Þ

3
75þOðMWÞ: ð25Þ

Once again, all the vertices agree with the massless vertices
in the massless limit. Once again, the relative factors are
fixed by the massive vertex that they come from. Once
again, the helicity structure of the high-energy limit is the
same as for the þ1-helicity-photon case. In fact, we see a
general trend that after the spin indices have been raised,
the helicities begin at their lowest value at the top left and
increase to their highest values at the bottom right. In fact,
we see that in the convention we are following, the spin
component is the component along the direction of motion.
It is the helicity of the particle.
We have included these vertices and their high-energy

limit in Table I.

C. Gravitational vertices

One of the truly great things about the constructive
formalism is that gravitational interactions are no more
complicated than any other interactions (at least before
renormalization is considered). In this subsection, we work
the gravitational vertices of the SM out. There is now an
extra factor of m=MP in each vertex, where MP is the
Planck mass. Therefore, the coupling of two fermions to a
graviton is given by

1

MP
x2mfh12i and

1

MP
x̃2mf½12� ð26Þ

for helicity þ2 and −2, respectively. We must now
determine the high-energy behavior of this vertex. We
already know the behavior of xh12i [see Eq. (15)]. We must
now calculate the high-energy behavior of mfx,

mfx ¼ hξ2i½23�
hξ3i : ð27Þ

Multiplying by ½21�=½21� and using momentum conserva-
tion, hξ2i½21� ¼ −hξ3i½31� þOðm2

fÞ, we have

mfx ¼ ½23�½31�
½12� þOðm2

fÞ; ð28Þ

resulting in,

x2mfh12i ¼

0
B@ 0

½23�3½31�
½12�2

− ½31�3½23�
½12�2 0

1
CAþOðmfÞ; ð29Þ
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which has the right little-group transformation properties.
Both of these transform like a þ2-helicity particle 3 (the
graviton) while the top right has a −1=2-helicity particle 1
and þ1=2-helicity particle 2. The bottom left has the
opposite helicities for particles 1 and 2. They both agree
with the massless vertices found on the left side of
Eq. (B21). As expected, when the helicities do not add
up to �2 (for a graviton), the massless vertex is zero,

x2mf

MP
h12i ¼

"
Að− 1

2
;− 1

2
;þ2Þ Að− 1

2
;þ 1

2
;þ2Þ

−Aðþ 1
2
;− 1

2
;þ2Þ Aðþ 1

2
;þ 1

2
;þ2Þ

#

þOðmfÞ: ð30Þ

Similarly, for a −2-helicity graviton, after raising the
spin indices we find,

x̃2mf

MP
½12� ¼ 1

MP

0
B@ 0

h31i3h23i
h12i2

− h23i3h31i
h12i2 0

1
CAþOðmfÞ ð31Þ

¼
"

Að− 1
2
;− 1

2
;−2Þ Að− 1

2
;þ 1

2
;−2Þ

−Aðþ 1
2
;− 1

2
;−2Þ Aðþ 1

2
;þ 1

2
;−2Þ

#
þOðmfÞ;

ð32Þ

in agreement with the massless vertex on the right side
of Eq. (B21).
For 1-spin bosons (with massMV), the vertices are given

by

1

MP
x2h12i2 and

1

MP
x̃2½12�2; ð33Þ

for a graviton with helicity þ2 and −2, respectively. We
have already determined the high-energy behavior of
xh12i. All we need to do is square it and symmetrize
the indices on particles 1 and 2 to obtain

x2

MP
h12i2 ¼ 1

MP

0
BBBBB@

0 0
½23�4
½12�2

0 − 1
2

½31�2½23�2
½12�2 0

½31�4
½12�2 0 0

1
CCCCCAþOðMVÞ

ð34Þ

¼

2
64
Að−1;−1;þ2Þ Að−1; 0;þ2Þ Að−1;þ1;þ2Þ
Að0;−1;þ2Þ − 1

2
Að0; 0;þ2Þ Að0;þ1;þ2Þ

Aðþ1;−1;þ2Þ Aðþ1; 0;þ2Þ Aðþ1;þ1;þ2Þ

3
75

þOðMVÞ; ð35Þ

where we have included the reference to the massless
vertices of Appendix B. We see that the top-right term

corresponds with a −1-helicity particle 1 and a þ1-helicity
particle 2 while the bottom-left term has the opposite
helicities for particles 1 and 2. Both agree with the massless
vertices on the left side of Eq. (B22). The center term
corresponds with the helicity-0 components of the 1-spin
particles, the Goldstone bosons. It also agrees with the
massless vertices as seen on the left side of Eq. (B20). If the
sum of the helicities is not �2, we find zero as we must.
Once again, we see that the relative factor, including both a
sign and a factor of 2, are fixed by the inclusion of the
massless vertices in the complete massive vertex.
Similarly, for a −2-helicity graviton, after raising the

spin indices we have

x̃2

MP
½12�2 ¼ 1

MP

0
BBBBB@

0 0
h31i4
h12i2

0 − h31i2h23i2
2h12i2 0

h23i4
h12i2 0 0

1
CCCCCAþOðMVÞ

ð36Þ

¼

2
64
Að−1;−1;−2Þ Að−1; 0;−2Þ Að−1;þ1;−2Þ
Að0;−1;−2Þ − 1

2
Að0; 0;−2Þ Að0;þ1;−2Þ

Aðþ1;−1;−2Þ Aðþ1; 0;−2Þ Aðþ1;þ1;−2Þ

3
75

þOðMVÞ: ð37Þ

As before, the high-energy limit of this vertex agrees with
the massless vertices expected on symmetry grounds. In
particular, the upper-right and lower-left terms correspond
with the right side of Eq. (B22) while the center term
(for the Goldstone bosons) agrees with the right side
of Eq. (B20).
We end this section with the gravitational coupling to the

Higgs boson which, for helicity þ2, has the form

1

MP
x2M2

h: ð38Þ

Inserting the definition of x, we obtain

1

MP
ðxMhÞ2 ¼

1

MP

�hξ2i½23�
hξ3i

�
2

: ð39Þ

We next multiply xMh by ½31�=½31� and use conservation of
momentum, hξ3i½31� ¼ −hξ2i½21� þOðM2

hÞ, to obtain

1

MP
ðxMhÞ2 ¼

1

MP

�½23�½31�
½12�

�
2

þOðM2
hÞ: ð40Þ

The leading term is exactlyAð0; 0;þ2Þ from the left side of
Eq. (B20) as seen above for the Goldstone bosons.
The form for a −2-helicity graviton has x replaced with x̃

and the square and angle brackets interchanged,
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1

MP
ðx̃MhÞ2 ¼

1

MP

�h23ih31i
h12i

�
2

þOðM2
hÞ; ð41Þ

and agrees with Að0; 0;−2Þ from the right side
of Eq. (B20).
All of the gravitational vertices, along with their high-

energy limit can be seen in Table III.

III. TWO MASSLESS AND ONE MASSIVE

In this section, we consider 3-point amplitudes with one
massive particle and two massless particles. This is
appropriate for the Z-boson vertex with two neutrinos.
(Since we do not know the full structure of the massive
neutrino sector, we are limiting ourselves to the massless
neutrinos of the SM.) In [17], the authors write this vertex
purely in terms of products of h31i, h23i and ½12�, which is
convenient for their objectives. However, we find it more
convenient to write these vertices in a more minimal way,
with only a single power ofm3 in the denominator for every
term. In particular, we find that for a −1=2-helicity neutrino
(particle 1) and þ1=2-helicity antineutrino (particle 2), the
vertex is given by

1

MZ
h31i½23�: ð42Þ

This amplitude has one index, symmetrized over the two
3’s. We can write this in vector notation and expand in the
high-energy limit as

1

MZ
h31i½23� ¼ 1

MZ

0
BBBBB@

− MZffiffiffiffiffiffi
2E3

p h31i½2ζ̃þ3 �
1
2
h31i½23�

MZffiffiffiffiffiffi
2E3

p hζ−3 1i½23�

1
CCCCCAþOðMZÞ:

ð43Þ
The middle term is 0 (at this order) by momentum
conservation, h31i½23�¼−h11i½21�−h21i½22�þOðM2

ZÞ¼
OðM2

ZÞ since h11i ¼ 0 and ½22� ¼ 0. For the first term,
we can multiply by h12i=h12i and use momentum con-
servation in the numerator, h12i½2ζ̃þ3 � ¼ −h13i½3ζ̃þ3 � þ
OðM2

ZÞ ¼
ffiffiffiffiffiffiffiffi
2E3

p h31i þOðM2
ZÞ. For the third term, we

can multiply by ½12�=½12� and use momentum conservation
in the numerator, hζ−3 1i½12� ¼ −hζ−3 3i½32� þOðM2

ZÞ ¼
−
ffiffiffiffiffiffiffiffi
2E3

p ½23� þOðM2
ZÞ, to obtain

1

MZ
h31i½23� ¼

0
BB@

− h31i2
h12i
0

− ½23�2
½12�

1
CCAþOðMZÞ: ð44Þ

The first term has a −1-helicity Z boson, while the third
term has a þ1-helicity Z boson. The middle term, on the

other hand, is for the helicity-0 component of the Z boson,
the Goldstone boson. In fact, we find

1

MZ
h31i½23� ¼

2
664
−Að− 1

2
;þ 1

2
;−1Þ

Að− 1
2
;þ 1

2
; 0Þ

−Að− 1
2
;þ 1

2
;þ1Þ

3
775þOðMZÞ; ð45Þ

where the helicity of the Z boson increases down the
column vector as expected. The middle term agrees with the
massless vertex being zero since the helicities do not add to
�1. The top and bottom expressions agree with the
massless vertices found in Eq. (B18), giving the relative
sign of these contributions. This vertex can be seen in
Table IV.
Although this is all we need for the SM, it will be useful

to fill in the rest of the vertex structures for a 1-spin particle
interacting with two massless �1=2-helicity fermions so
that when we consider vertices with three massive particles,
we can check this as one of the special limits. We first give
the vertex with all angle and square brackets interchanged,

1

m3

½31�h23i ¼

0
BB@

h23i2
h12i
0

½31�2
½12�

1
CCAþOðm3Þ ¼

2
664
Aðþ 1

2
;− 1

2
;−1Þ

Aðþ 1
2
;− 1

2
; 0Þ

Aðþ 1
2
;− 1

2
;þ1Þ

3
775

þOðMZÞ; ð46Þ
for aþ1=2-helicity fermion and −1=2-helicity antifermion.
If both the fermion and antifermion have −1=2 helicity,

we obtain

1

m3

h31ih23i ¼ 1

m3

0
BB@

h31ih23i
m3

2
ffiffiffiffiffiffi
2E3

p ðhζ−3 1ih23i þ h31ih2ζ−3 iÞ
0

1
CCA

þOðm3Þ: ð47Þ
Multiplying this expression by ½12�=½12� sets the top term to
zero at this order, by conservation of momentum in two
ways, h31i½12� ¼ Oðm3Þ or ½12�h23i ¼ Oðm3Þ. The middle
term simplifies by use of hζ−3 1i½12�¼−hζ−3 3i½32�þ
Oðm2

3Þ¼
ffiffiffiffiffiffiffiffi
2E3

p ½32�þOðm2
3Þ and ½12�h2ζ−3 i¼−½13�h3ζ−3 iþ

Oðm2
3Þ¼−

ffiffiffiffiffiffiffiffi
2E3

p ½13�þOðm2
3Þ, giving us

1

m3

h31ih23i ¼

0
B@

0

1
2

½32�h23i
½12� − 1

2

h31i½13�
½12�

0

1
CAþOðm3Þ: ð48Þ

The numerator of the nonzero term is actually the differ-
ence between momenta, ½32�h23i ¼ 2p2 · p3 þOðm2

3Þ and
h31i½13� ¼ 2p1 · p3 þOðm2

3Þ so that the numerator is
2ðp2 − p1Þ · p3. However, remembering that conservation
of momentum tells us that p3 ¼ −ðp1 þ p2Þ, we obtain
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½32�h23i
½12� −

h31i½13�
½12� ¼ 2

p2
1 − p2

2

½12� þOðm2
3Þ ¼ 0þOðm2

3Þ;

ð49Þ

since particles 1 and 2 are assumed massless in this section.
Therefore, we have

1

m3

h31ih23i ¼ Oðm3Þ ð50Þ

and similarly,

1

m3

½31�½23� ¼ Oðm3Þ: ð51Þ

IV. ONE MASSLESS PARTICLE, TWO MASSIVE
PARTICLES WITH DIFFERENT MASSES

In this section, we consider vertices with one massless
particle and two massive particles of differing mass. This
vertex is appropriate to the interaction of the W boson and
leptons in the SM. We begin with a lepton, a þ1=2-helicity
antineutrino and a W boson. The simplest vertex for this

contains one spin spinor for particle 1 of either type, one
square helicity spinor for particle 2 and two spin spinors for
particle 3 of either type. The vertex is a linear combination
of all possibilities satisfying these requirements, namely,

N 1h31i½23� þN 2½31�½23�: ð52Þ

for some N 1 and N 2, where we have not included h33i or
½33� since they would be antisymmetric in the SU(2) indices
that we are symmetrizing. The form given in [17] is
equivalent to this choice, though we write a more minimal
form for this SM vertex. On the other hand, the vertex with
an antilepton, neutrino (of −1=2 helicity), and anti-W
boson is given by

N �
1½31�h23i þN �

2h31ih23i: ð53Þ

N 1 and N 2 have inverse mass dimension of 1; therefore,
we need to expand the products of spinors to linear order in
the masses.
These vertices have two independent indices, so we can

write them as a rectangular matrix, with the index on
particle 1 giving the row. We begin our high-energy
expansion with

½31�½23� ¼

0
B@ 0 0 − m1ffiffiffiffiffiffi

2E1

p ½3ζ̃þ1 �½23�
0 − m3

2
ffiffiffiffiffiffi
2E3

p ð½31�½2ζ̃þ3 � þ ½ζ̃þ3 1�½23�Þ ½31�½23�

1
CAþOðm2Þ: ð54Þ

Wemultiply the bottom row by h12i=h12i. The bottom-right term vanishes at this order by momentum conservation. On the
middle term, we use h12i½2ζ̃þ3 � ¼ −h13i½3ζ̃þ3 � þOðm2Þ ¼ ffiffiffiffiffiffiffiffi

2E3

p h31i þOðm2Þ and ½ζ̃þ3 1�h12i ¼ −½ζ̃þ3 3�h32i þOðm2Þ ¼
−
ffiffiffiffiffiffiffiffi
2E3

p h23i þOðm2Þ. On the first row, we multiply by h23i=h23i and use h23i½3ζ̃þ1 � ¼ −h21i½1ζ̃þ1 � þOðm2Þ ¼ffiffiffiffiffiffiffiffi
2E1

p h12i þOðm2Þ. However, we see that with this, we obtain h12i½23� for the numerator of the top-right term, which
is zero at this order by conservation of momentum. Therefore, we have

½31�½23� ¼
 
0 0 0

0 − m3

2
ð½31�h31ih12i − ½23�h23i

h12i Þ 0

!
þOðm2Þ:

ð55Þ

However, we now see that the numerator contains ½31�h31i ¼ −2p1 · p3 and ½23�h23i ¼ −2p2 · p3 and, therefore, is
proportional to 2ðp1 − p2Þ · p3 þOðm2Þ, which by conservation of momentum is 2ðp2

2 − p2
1Þ þOðm2Þ ¼ Oðm2Þ.

Therefore, our final result is

½31�½23� ¼ Oðm2Þ and h31ih23i ¼ Oðm2Þ; ð56Þ

and N 2 does not appear to be restricted by this high-energy limit.
We now move on to the other term. We find

h31i½23� ¼

0
B@− m3ffiffiffiffiffiffi

2E3

p h31i½2ζ̃þ3 � 1
2
h31i½23� m3ffiffiffiffiffiffi

2E3

p hζ−3 1i½23�
0 m1

2
ffiffiffiffiffiffi
2E1

p h3ζ−1 i½23� 0

1
CAþOðm2Þ: ð57Þ
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The top-middle term is zero at this order due to momentum
conservation. For the top-left term, we multiply by
h12i=h12i and use h12i½2ζ̃þ3 � ¼ −h13i½3ζ̃þ3 � þOðm2Þ ¼ffiffiffiffiffiffiffiffi
2E3

p h31i þOðm2Þ. For the top-right term, we multiply
by ½12�=½12�. We then use hζ−3 1i½12� ¼ −hζ−3 3i½32� þ
Oðm2Þ ¼ −

ffiffiffiffiffiffiffiffi
2E3

p ½23� þOðm2Þ. For the bottom-middle
term, we use that ½23�h3ζ−1 i ¼ −½21�h1ζ−1 i þOðm2Þ ¼ffiffiffiffiffiffiffiffi
2E1

p ½12� þOðm2Þ. Finally, we obtain

h31i½23� ¼
 
−m3

h31i2
h12i 0 −m3

½23�2
½12�

0 m1

2
½12� 0

!
þOðm2Þ:

ð58Þ

The top-left term gives the interaction of the −1-helicityW
boson while the top-right term gives the interaction of the
þ1-helicity W boson. Both have a −1=2-helicity charged
lepton and a þ1=2-helicity antineutrino. The bottom-
middle term contains the interaction of the 0-helicity

Goldstone boson with the þ1=2-helicity charged lepton
and antineutrino. Similarly, we find for the neutrino

½31�h23i ¼
 

0 − m1

2
h12i 0

m3
h23i2
h12i 0 m3

½31�2
½12�

!
þOðm2Þ:

ð59Þ

We must now decide what the normalization factor N 1

should be. We know that it is an inverse mass, but we do
not yet know whether it is 1=m1, 1=m3, 1=ðm1 þm3Þ,
1=

ffiffiffiffiffiffiffiffiffiffiffiffi
m1m3

p
or something else, entirely. However, it is not

difficult to determine. The top-middle term corresponds
with the �1-helicity part of the 1-spin object, theW boson.
It should be present whether the masses are nonzero or not.
On the other hand, the bottom-left term corresponds with
the “eaten” Goldstone boson and should contain the
discontinuity. Therefore, we find that N 1 ¼ 1=m3 giving
us the vertices,

1

m3

h31i½23� ¼
"
−Að− 1

2
;þ 1

2
;−1Þ Að− 1

2
;þ 1

2
; 0Þ −Að− 1

2
;þ 1

2
;þ1Þ

Aðþ 1
2
;þ 1

2
;−1Þ m1

2m3
Aðþ 1

2
;þ 1

2
; 0Þ Aðþ 1

2
;þ 1

2
;þ1Þ

#
þOðmÞ; ð60Þ

and

1

m3

½31�h23i ¼
"
Að− 1

2
;− 1

2
;−1Þ − m1

2m3
Að− 1

2
;− 1

2
; 0Þ Að− 1

2
;− 1

2
;þ1Þ

Aðþ 1
2
;− 1

2
;−1Þ Aðþ 1

2
;− 1

2
; 0Þ Aðþ 1

2
;− 1

2
;þ1Þ

#
þOðmÞ; ð61Þ

which agrees with the massless vertices given in Eq. (B18)
for the �1-helicity W boson and Eq. (B17) for the Gold-
stone boson interactions. It also agrees with a zero massless
amplitude when the helicities do not add to�1. Once again,
the relative signs and sizes of the amplitude are determined
by their incorporation in the larger massive vertex. In
particular, the m1=m3 ratio between the �1-helicity vertex
and the Goldstone vertex is determined. Furthermore, in the
limit m1 → 0, the Goldstone interactions vanish and we are
left with the 3-point amplitudes,

1

m3

h31i½23� and
1

m3

½31�h23i; ð62Þ

(where we have unbolded the 1) agreeing with Eqs. (46)
and (60) of the previous section. We see that we can simply
unbold the 1 for the 1=2-spin fermions. However, it is not
so simple for the 1-spin boson because of the Goldstone
boson living in it. We must carefully expand the W-boson
spin spinors in the high-energy limit.
Coming briefly back to the normalization constant N 2,

we see that not only is it not determined by the high-energy
limit, its term is not necessary to achieve any of the
massless vertices for the W-lepton interactions. At this

point, we do not know what it should be based purely on
symmetry principles, including both the symmetry princi-
ples at low and high energy. We consider the determination
of N 2 in the absence of field theory an open question.
We include this vertex along with its high-energy limit in

Table IV.

V. THREE MASSIVE PARTICLES

As pointed out in [17], there are no massless spinors to
span the SLð2;CÞ space for these vertices so we have to
employ tensors. We can use the antisymmetric tensor ϵαβ
and the symmetric tensor Oαβ¼ ϵ _α _βðp1α _αp2β _βþp1β _αp2α _βÞ.
The authors of Ref. [17] points out that products of ϵ
tensors can be replaced with momentum tensors O, which
suits their purpose. However, we find that the simplest form
of the minimal SM coupling only uses the epsilon tensors.
Therefore, we will construct our vertices out of terms such
as hiji and ½ij� for particles i and j.

A. Two spin-1=2 fermions and one spin-1 boson

We begin with a vertex for two 1=2-spin fermions and
one 1-spin boson. This vertex will apply to the massive ff̄Z
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and ff̄0W vertices. There will be a single spin spinor for
each fermion of either type and two spin spinors for the W
or Z of either type. There are six possible combinations;
however, two of them are proportional to either h33i or ½33�,
where the W or Z boson is the third particle. As we see in
Eq. (A28), this is antisymmetric in the SU(2) indices.
However, we remember that all the vertices are totally
symmetrized over the SU(2) indices for each particle.
Therefore, this combination does not contribute. As a
result, there are four terms that potentially contribute to
this vertex. They are

h31ih23i; h31i½23�; ½31�h23i and ½31�½23�: ð63Þ

Since all three particles are massive, if our theory were
parity symmetric, we would expect our vertex to be
symmetric between angle and square brackets. However,
the interaction of the Z boson and fermions is not parity
symmetric; therefore, we expect each term to have its own
unique coupling. With some foresight, we will call these gR
and gL, giving us

N 1ðgL½23�h31i þ gRh23i½31�Þ
þN 2ðg̃Lh31ih23i þ g̃R½31�½23�Þ ð64Þ

for some N 1 and N 2, both of which have inverse mass
dimension of 1. From the previous two sections, we expect
N 1 ¼ 1=m3 and N 2 to be unconstrained by the high-
energy limit. Furthermore, we expect to be able to simply
unbold the 1 and 2 in the high-energy limit for the fermions
as long as we take m1 → 0 and m2 → 0 before m3. The 3
for the W boson, on the other hand, cannot be simply
unbolded in the high-energy limit, due to its associated
Goldstone boson. Nonetheless, we will go through the
high-energy limit in detail.
We need to expand these vertex structures to linear order

in the masses. We note that since these structures have three
independent SU(2) indices, we cannot write them as
matrices. We must explicitly label their indices as we
enumerate them. In principle, we need to consider each
index value of these spin-spinor products. However, most
of them begin at higher than linear order. So, there are
actually only a few that we need to explicitly calculate. We
begin with h23i½31� since, as we will see, it contains all the
leading high-energy terms. We use Eqs. (A43) and (A45),
throughout this section. We begin with gRh23i11½31�11þ
gL½23�11h31i11 ¼ Oðm2Þ ¼ Að−1=2;−1=2;−1Þ þOðm2Þ.
We next consider

h23i11½31�12 ¼ −
m3ffiffiffiffiffiffiffiffi
2E3

p h23i½ζ̃þ3 1� þOðm3Þ: ð65Þ

We multiply this by h12i=h12i and use momentum con-
servation ½ζ̃þ3 1�h12i¼−½ζ̃þ3 3�h32iþOðm2Þ¼−

ffiffiffiffiffiffiffiffi
2E3

p h23iþ
Oðm2Þ to obtain

h23i11½31�12 ¼ m3

h23i2
h12i þOðm2Þ: ð66Þ

On the other hand, ½23�11h31i12 ¼ Oðm2Þ; therefore, we
have

1

m3

ðgRh23i11½31�12 þ gL½23�11h31i12Þ

¼ gR
h23i2
h12i þOðm2Þ ¼ gRAðþ 1

2
;−

1

2
;−1

�
þOðm2Þ;

ð67Þ

where we have inserted the expected N 1 ¼ 1=m3. As we
see, this gives us the vertex for a þ1=2-helicity fermion, a
−1=2-helicity antifermion and a −1-helicity boson as
expected. This agrees with the massless vertices of
Eq. (B18). We next increment the index on particle 2 to
obtain h23i21½31�11 ¼ Oðm3Þ and

½23�21h31i11 ¼ −
m3ffiffiffiffiffiffiffiffi
2E3

p h31i½2ζ̃þ3 � þOðm3Þ: ð68Þ

We multiply this by h12i=h12i and using momentum con-
servation h12i½2ζ̃þ3 �¼−h13i½3ζ̃þ3 �þOðm2Þ¼ ffiffiffiffiffiffiffiffi

2E3

p h31iþ
Oðm2Þ, we obtain

½23�21h31i11 ¼ −m3

h31i2
h12i þOðm3Þ: ð69Þ

Therefore,

1

m3

ðgRh23i21½31�11 þ gL½23�21h31i11Þ

¼ −gL
h31i2
h12i þOðm2Þ ¼ −gLAð− 1

2
;þ 1

2
;−1

�
þOðm2Þ;

ð70Þ

where we have again inserted the expectedN 1 ¼ 1=m3 and
will throughout the remainder of this section. Once again,
the vertex for the expected helicities appears and agrees
with the massless vertices of Eq. (B18). We next increment
both particles 1 and 2 to obtain gRh23i21½31�12 þ
gL½23�21h31i12¼Oðm2Þ¼Aðþ1=2;þ1=2;−1ÞþOðm2Þ.
Moving on to incrementing the spin of the 1-spin boson,

we begin with

h23i11½31�21 ¼ −
m1ffiffiffiffiffiffiffiffi
2E1

p h23i½3ζ̃þ1 � þOðm3Þ

¼ −m1h12i þOðm3Þ; ð71Þ

where we used momentum conservation h23i½3ζ̃þ1 � ¼
−h21i½1ζ̃þ1 � þOðm2Þ ¼ ffiffiffiffiffiffiffiffi

2E1

p h12i þOðm2Þ. We also
need h23i12½31�11 ¼ Oðm2Þ, ½23�11h31i21 ¼ Oðm2Þ and
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½23�12h31i11 ¼ −
m2ffiffiffiffiffiffiffiffi
2E2

p ½ζ̃þ2 3�h31i þOðm3Þ

¼ m2h12i þOðm3Þ; ð72Þ

where we have used momentum conservation ½ζ̃þ2 3�h31i ¼
−½ζ̃þ2 2�h21i þOðm2Þ ¼ −

ffiffiffiffiffiffiffiffi
2E2

p h12i þOðm2Þ. Putting
this together we have

1

2m3

ðgRh23i11½31�21 þ gRh23i12½31�11 ð73Þ

þ gL½23�11h31i21 þ gL½23�12h31i11Þ

¼
�
m2gL −m1gR

2m3

�
h12i þOðm2Þ

¼
�
m2gL −m1gR

2m3

�
A
�
−
1

2
;−

1

2
; 0

�
þOðm2Þ; ð74Þ

where the factor of 1=2 is due to the symmetrization of
the spin indices on particle 3. This gives the high-energy
vertex for a −1=2-helicity fermion and antifermion and a
helicity-0 boson, the Goldstone boson of the 1-spin
particle. This high-energy result agrees with the massless
vertices given in Eq. (B14). We now hold the spin index
on particle 3 fixed and increment the indices on particles 1
and 2. We begin by incrementing them separately and
expect to find zero at this order since the helicities will
not add to þ1 until we increment them both. This is
what we find. First, h23i11½31�22¼h23i½31�þOðm2Þ¼
Oðm2Þ due to momentum conservation, h23i12½31�12 ¼
Oðm2Þ, ½23�11h31i22 ¼ Oðm2Þ and ½23�12h31i12 ¼ Oðm2Þ.
Putting these together, we find 1

2m3
ðgRh23i11½31�22 þ

gRh23i12½31�12þgL½23�11h31i22þgL½23�12h31i12Þ¼Oðm2Þ¼
Aðþ1=2;−1=2; 0Þ þOðm2Þ, as expected. Similarly, we
find 1

2m3
ðgRh23i21½31�21þgRh23i22½31�11þgL½23�21h31i21þ

gL½23�22h31i11Þ¼Oðm2Þ¼Að−1=2;þ1=2;0ÞþOðm2Þ.
Our next nonzero result occurs when both fermions have

positive helicity,

h23i21½31�22 ¼ m2ffiffiffiffiffiffiffiffi
2E2

p hζ−2 3i½31� þOðm3Þ

¼ −m2½12� þOðm2Þ; ð75Þ

where we have used hζ−2 3i½31�¼−hζ−2 2i½21�þOðm2Þ¼
−
ffiffiffiffiffiffiffiffi
2E2

p ½12�þOðm2Þ, h23i22½31�12¼Oðm3Þ, ½23�21h31i22¼
Oðm3Þ and

½23�22h31i12 ¼ m1ffiffiffiffiffiffiffiffi
2E1

p ½23�h3ζ−1 i þOðm3Þ

¼ m1½12� þOðm3Þ; ð76Þ

where we have used ½23�h3ζ−1 i ¼ −½21�h1ζ−1 i þOðm2Þ ¼ffiffiffiffiffiffiffiffi
2E1

p ½12� þOðm2Þ. Putting all of this together, we have

1

2m3

ðgRh23i21½31�22 þ gRh23i22½31�12 ð77Þ

þ gL½23�21h31i22 þ gL½23�22h31i12Þ

¼
�
m1gL −m2gR

2m3

�
½12� þOðm2Þ

¼
�
m1gL −m2gR

2m3

�
A
�
þ 1

2
;þ 1

2
; 0

�
þOðm2Þ: ð78Þ

Once again, this gives the Goldstone boson interaction, this
time with þ1=2-helicity fermion and antifermion agreeing
with the massless vertices given in Eq. (B17).
We now move on to the highest helicity for the 1-spin

boson by incrementing the spin index on particle 3 one more
time. We begin with gRh23i12½31�21þgL½23�12h31i21¼
Oðm2Þ¼Að−1=2;−1=2;þ1ÞþOðm2Þ. Next we consider

h23i12½31�22 ¼ m3ffiffiffiffiffiffiffiffi
2E3

p h2ζ−3 i½31� þOðm3Þ: ð79Þ

We multiply this by ½12�=½12� and use momentum con-
servation ½12�h2ζ−3 i ¼ −½13�h3ζ−3 i þOðm2Þ ¼ ffiffiffiffiffiffiffiffi

2E3

p ½31�þ
Oðm2Þ. We also note that ½23�12h31i22 ¼ Oðm3Þ. From this
we obtain

1

m3

ðgRh23i12½31�22 þ gL½23�12h31i22Þ

¼ gR
½31�2
½12� þOðm2Þ ¼ gRA

�
þ 1

2
;−

1

2
;þ1

�
þOðm2Þ:

ð80Þ

Similarly, h23i22½31�21 ¼ Oðm3Þ and

½23�22h31i21 ¼ m3ffiffiffiffiffiffiffiffi
2E3

p ½23�hζ−3 1i þOðm3Þ: ð81Þ

We multiply this by ½12�=½12� and use momentum conser-
vation hζ−3 1i½12� ¼ −hζ−3 3i½32� þOðm2Þ ¼ −

ffiffiffiffiffiffiffiffi
2E3

p ½23� þ
Oðm2Þ. Therefore, we have

1

m3

ðgRh23i22½31�21 þ gL½23�22h31i21Þ

¼ −gL
½23�2
½12� þOðm2Þ ¼ −gLA

�
−
1

2
;þ 1

2
;þ1

�
þOðm2Þ:

ð82Þ

Finally, we have ðgRh23i22½31�22 þ gL½23�22h31i22Þ ¼
Oðm2Þ ¼ Aðþ1=2;þ1=2;þ1Þ þOðm2Þ. As before, all
these high-energy limits agree with the massless vertices
given in Eq. (B18). Furthermore, as in the previous sections,
we learn thatN 1 ¼ 1=m3 and that, in the high-energy limit,
we must take m1 → 0 and m2 → 0 before taking m3 → 0.
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This removes the Goldstone interactions before taking the
finalm3 → 0 limit and agrees with the results of the previous
sections.
For theW-boson vertices, we find the usual chiral results,

gL ¼ 1 while gR ¼ 0 since theW boson only interacts with
the left-handed fermions. For the Z-boson vertices, gL and
gR are different for each flavor of fermion. We use gL ¼
T3 −Qf sin2 θw and gR ¼ −Qf sin2 θw where Qf is the
electric charge of the fermion and T3 is its isospin.
We must now consider the other vertex structure,

h31ih23i and its partner interchanged in angle and square
brackets. We begin with all indices equal to 1, and keep up
to linear order,

h31i11h23i11 ¼ h31ih23i þOðm2Þ: ð83Þ

However, by multiplying by ½12�=½12� and using momen-
tum conservation in the numerator, we immediately see
that the first term vanishes to quadratic order and we are
left with

h31i11h23i11 ¼ Oðm2Þ: ð84Þ

So, this term does not contribute to the high-energy limit.
We next look at

h31i12h23i11 ¼ m1ffiffiffiffiffiffiffiffi
2E1

p h3ζ−1 ih23i þOðm3Þ: ð85Þ

In order to simplify this, we need to multiply by ½23�=½23�
and use conservation of momentum. After we do this, we
are left with

h31i12h23i11 ¼ m1

½12�h23i
½23� þOðm3Þ: ð86Þ

However, ½12�h23i ¼ Oðm2Þ by conservation of momen-
tum. Therefore,

h31i12h23i11 ¼ Oðm3Þ: ð87Þ

And, similarly, if we take the particle-2 index to be 2, we
obtain

h31i11h23i21 ¼ Oðm3Þ: ð88Þ

We have one more to check. It is

1

2
ðh31i11h23i12 þ h31i21h23i11Þ

¼ m3

2
ffiffiffiffiffiffiffiffi
2E3

p ðh31ih2ζ−3 i þ hζ−3 1ih23iÞ þOðm3Þ: ð89Þ

Multiplying by ½12�=½12� and using momentum conserva-
tion, we obtain

1

2
ðh31i11h23i12 þ h31i21h23i11Þ

¼ m3

2

�h31i½31�
½12� −

½23�h23i
½12�

�
þOðm3Þ: ð90Þ

As in the previous section, we see that the numerator is
h31i½31�−h23i½23�¼2ðp2−p1Þ ·p3þOðm2Þ¼2ðp1−p2Þ·
ðp2þp1ÞþOðm2Þ¼2p2

1−2p2
2þOðm2Þ¼Oðm2Þ, leaving

us with

1

2
ðh31i11h23i12 þ h31i21h23i11Þ ¼ Oðm3Þ; ð91Þ

and similarly,

1

2
ð½31�11½23�12 þ ½31�21½23�11Þ ¼ Oðm3Þ: ð92Þ

So, once again, we find that N 2 is unconstrained by the
high-energy limit. We do not yet know what it should be.
From this, we can determine the vertices for the Z boson
and the fermions as well as theW boson and the quarks. We
have included these in Table IV.

B. Three spin-1 bosons

We now consider the case where all three particles are
1-spin bosons. This is appropriate to the WWZ vertex.
Now, each vertex has two spin spinors of either type for
each particle. We must combine them in all possible ways,
but we remember that we do not have any terms with hiii or
½ii� for particle i because its SU(2) index is symmetrized
taking this term to zero. Therefore, we construct our
vertices out of h12i; h23i; h31i and their partners with
square brackets. We expect our vertex to be symmetric
between angle and square brackets; therefore, we expect
our vertex to take the form

N 1ðh12ih23ih31i þ ½12�½23�½31�Þ þN 2ðh12ih23i½31� þ ½12�½23�h31iÞ
þN 3ðh12i½23�h31i þ ½12�h23i½31�Þ þN 4ð½12�h23ih31i þ h12i½23�½31�Þ; ð93Þ

where N 1, N 2, N 3 and N 4 are distinct from the normalization constants in previous sections and have inverse mass
dimension of 2. This means we have to expand these structures to quadratic order in the masses. All of these have three
indices; therefore, we will not be able to write them in matrix form. The last three are related by interchange of the particles.
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Computing one gives the others. But, the coefficients may be different combinations of masses, so we separate them.We use
Eqs. (A41) and (A42) to expand in high energy, keeping up to quadratic order in the masses.
We begin with

h12i11h23i11h31i11 ¼
�
1 −

m2
1

4E2
1

−
m2

2

4E2
2

−
m2

3

4E2
3

�
h12ih23ih31i þOðm4Þ: ð94Þ

However, we can multiply this by ½12�2=½12�2 and use conservation of momentum twice in the numerator, ½12�h23i ¼
Oðm2Þ and h31i½12� ¼ Oðm2Þ, to obtain

h12i11h23i11h31i11 ¼ Oðm4Þ: ð95Þ
We will see this sort of simplification in many of the terms.
We next consider the index on 1 incremented,

h12i11h23i11h31i12 þ h12i21h23i11h31i11 ¼ m1ffiffiffiffiffiffiffiffi
2E1

p ðh12ih23ih3ζ−1 i þ hζ−1 2ih23ih31iÞ þOðm3Þ: ð96Þ

Once again, we multiply by ½23�=½23� and use conservation of momentum. We begin by simplifying the ζ terms. For
example, on the first term, we use ½23�h3ζ−1 i ¼ −½21�h1ζ−1 i þOðm2Þ ¼ ffiffiffiffiffiffiffiffi

2E1

p ½12� þOðm2Þ. We then follow this with
½12�h23i ¼ Oðm2Þ, showing that this term begins at Oðm3Þ. The second term is the same order by a similar set of steps,

h12i11h23i11h31i12 þ h12i21h23i11h31i11 ¼ Oðm3Þ: ð97Þ
Incrementing, instead, the index on particle 2 or 3 would obtain the same result.
We next try incrementing two of the indices, e.g., on particles 1 and 2, to obtain

h12i11h23i21h31i12 þ h12i21h23i21h31i11 þ h12i12h23i11h31i12 þ h12i22h23i11h31i11

¼ m1m2ffiffiffiffiffiffiffiffiffiffiffiffiffi
4E1E2

p ðh12ihζ−2 3ih3ζ−1 i þ hζ−1 2ihζ−2 3ih31i þ h1ζ−2 ih23ih3ζ−1 i þ hζ−1 ζ−2 ih23ih31iÞ þOðm4Þ ð98Þ

To check whether this expression is zero at this order, we must first simplify the ζ terms. We multiply the first, second
and third by ½31�½23�=½31�½23�. On the first, we use hζ−2 3i½31� ¼ −

ffiffiffiffiffiffiffiffi
2E2

p ½12� þOðm2Þ along with ½23�h3ζ−1 i ¼ffiffiffiffiffiffiffiffi
2E1

p ½12� þOðm2Þ. For the second, we use hζ−2 3i½31� ¼ −
ffiffiffiffiffiffiffiffi
2E2

p ½12� þOðm2Þ and hζ−1 2i½23� ¼ −
ffiffiffiffiffiffiffiffi
2E1

p ½31� þOðm2Þ.
For the third, we use ½31�h1ζ−2 i ¼

ffiffiffiffiffiffiffiffi
2E2

p ½23� þOðm2Þ and ½23�h3ζ−1 i ¼
ffiffiffiffiffiffiffiffi
2E1

p ½12� þOðm2Þ. We do not know of a way to
simplify the hζ−1 ζ−2 i, but, since we still have h23ih31i in the last term, we can multiply it by ½23�=½23� and use ½23�h31i ¼
Oðm2Þ to show that this term is higher order. Putting all of this together, we have

h12i11h23i21h31i12 þ h12i21h23i21h31i11 þ h12i12h23i11h31i12 þ h12i22h23i11h31i11

¼ m1m2

�
−h12i½12�2 þ h31i½31�½12� þ h23i½23�½12�

½31�½23�
�
þOðm4Þ: ð99Þ

However, each of these terms is zero at this order. There are
several ways to see this, but we note that h12i½12� ¼
−2p1 · p2 ¼ −ðp1 þ p2Þ2 þ Oðm2Þ ¼ −p2

3 þ Oðm2Þ ¼
Oðm2Þ, and similarly for the other terms. Therefore, this
term does not contribute at quadratic order.
Incrementing all three indices oncewill begin at cubic order

and does not need to be considered. The only case left to
consider is incrementing one of the indices to 22. Let us try

h12i21h23i11h31i12 ¼ m2
1

2E1

hζ−1 2ih23ih3ζ−1 i þOðm4Þ:

ð100Þ

We simplify the ζ terms by multiplying by ½23�2=½23�2
and using conservation of momentum, hζ−1 2i½23� ¼
−
ffiffiffiffiffiffiffiffi
2E1

p ½31� þOðm2Þ and ½23�h3ζ−1 i¼
ffiffiffiffiffiffiffiffi
2E1

p ½12�þOðm2Þ,
to obtain

h12i21h23i11h31i12 ¼ −m2
1

h23i½12�½31�
½23�2 þOðm4Þ: ð101Þ

The numerator is zero at this order by conservation of
momentum, h23i½31� ¼ Oðm2Þ, so this term also does not
contribute at this order. Putting this all together, we find that
the vertex structurewith coefficientN 1 does not contribute at
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this order in the high-energy limit and thus we can not
constrain N 1 from the high-energy limit.
We now turn our attention to the vertex structure with

coefficientN 2. Since we have not found any of our expected
high-energy limit interactions yet, we expect to find them all
in this and the related terms. There will be a great number of

cases to keep track of. In order to make where each term
comes from clear, we will add them to Table VI as we
compute them. We first find h12i11h23i11½31�11 þ
½12�11½23�11h31i11¼Oðm2Þ¼Að−1;−1;−1ÞþOðm2Þ. We
next begin incrementing the index on each particle, starting
with particle 1. We find

1

2
ðh12i11h23i11½31�12 þ h12i21h23i11½31�11 þ ½12�11½23�11h31i12 þ ½12�21½23�11h31i11Þ

¼ −
m3

2
ffiffiffiffiffiffiffiffi
2E3

p h12ih23i½ζ̃þ3 1� þOðm3Þ: ð102Þ

We use momentum conservation ½ζ̃þ3 1�h12i ¼ −½ζ̃þ3 3�h32i þOðm2Þ ¼ −
ffiffiffiffiffiffiffiffi
2E3

p h23i þOðm2Þ. We then multiply by
½31�=½31� and use momentum conservation h23i½31� ¼ Oðm2Þ to see that this term vanishes at this order. We find a
similar result if we increment the index on particles 1 or 2 giving us

1

2
ðh12i11h23i11½31�12 þ h12i21h23i11½31�11 þ ½12�11½23�11h31i12 þ ½12�21½23�11h31i11Þ ¼ Oðm3Þ; ð103Þ

1

2
ðh12i11h23i21½31�11 þ h12i12h23i11½31�11 þ ½12�11½23�21h31i11 þ ½12�12½23�11h31i11Þ ¼ Oðm3Þ; ð104Þ

1

2
ðh12i11h23i11½31�21 þ h12i11h23i12½31�11 þ ½12�11½23�11h31i21 þ ½12�11½23�12h31i11Þ ¼ Oðm3Þ; ð105Þ

agreeing with Að0;−1;−1Þ ¼ Að−1; 0;−1Þ ¼ Að−1;−1; 0Þ ¼ 0. To find a nonzero result, we have to increment two
indices, either the same one or different ones. Let us begin by incrementing two different indices, starting with particles 1
and 2.

1

4
ðh12i11h23i21½31�12 þ h12i21h23i21½31�11 þ h12i12h23i11½31�12 þ h12i22h23i11½31�11

þ ½12�11½23�21h31i12 þ ½12�21½23�21h31i11 þ ½12�12½23�11h31i12 þ ½12�22½23�11h31i11Þ
¼ −

m2m3

4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4E2E3

p h12ihζ−2 3i½ζ̃þ3 1� −
m2m3

4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4E2E3

p h1ζ−2 ih23i½ζ̃þ3 1� þ
m2m3

4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4E2E3

p ½1ζ̃þ2 �½2ζ̃þ3 �h31i þOðm3Þ

¼ m2m3

4
ffiffiffiffiffiffiffiffi
2E2

p h23ihζ−2 3i þ
m2m3

4
ffiffiffiffiffiffiffiffi
2E3

p h23i½23�
½31� þ m2m3

4
ffiffiffiffiffiffiffiffi
2E3

p h23i½2ζ̃þ3 � þOðm3Þ

¼ −
m2m3

4

½12�h23i
½31� þm2m3

4

h23ih31i
h12i þOðm3Þ

¼ m2m3

4

h23ih31i
h12i þOðm3Þ ¼ m2m3

4
Að0; 0;−1Þ þOðm3Þ; ð106Þ

where, for the first round of simplification, we used ½ζ̃þ3 1�h12i ¼ −½ζ̃þ3 3�h32i þOðm2Þ ¼ −
ffiffiffiffiffiffiffiffi
2E3

p h23i þOðm2Þ, we
multiplied the middle term by ½31�=½31� and used ½31�h1ζ−2 i ¼ −½32�h2ζ−2 i þOðm2Þ ¼ ffiffiffiffiffiffiffiffi

2E2

p ½23� þOðm2Þ, and
h31i½1ζ̃þ2 � ¼ −h32i½2ζ̃þ2 � þOðm2Þ ¼ ffiffiffiffiffiffiffiffi

2E2

p h23i þOðm2Þ. For the second round of simplification, we multiplied the first
term by ½31�=½31� and used hζ−2 3i½31� ¼ −hζ−2 2i½21� þOðm2Þ ¼ −

ffiffiffiffiffiffiffiffi
2E2

p ½12� þOðm2Þ. The second term contains
h23i½23� ¼ −2p2 · p3 þOðm2Þ ¼ −ðp2 þ p3Þ2 þOðm2Þ ¼ −p2

1 þOðm2Þ ¼ Oðm2Þ placing it at higher order. We multi-
ply the third term by h12i=h12i and use h12i½2ζ̃þ3 � ¼ −h13i½3ζ̃þ3 � þOðm2Þ ¼ ffiffiffiffiffiffiffiffi

2E3

p h31i þOðm2Þ. For the final round of
simplification, we note that ½12�h23i ¼ Oðm2Þ. We see that this gives us the helicity amplitude for a helicity-0 particle 1 and
2 and a −1-helicity particle 3, as expected and agrees with Eq. (B16). This, of course, is an interaction with two Goldstone
bosons. The factorN 2 will be determined by an interaction without Goldstones in it, so we wait to determine the coefficient.
We can find the case where we increment indices on particles 2 and 3 by interchanging 1 and 3 and introducing a minus sign
on both sides.
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1

4
ðh12i11h23i21½31�21 þ h12i11h23i22½31�11 þ h12i12h23i11½31�21 þ h12i12h23i12½31�11

þ ½12�11½23�21h31i21 þ ½12�11½23�22h31i11 þ ½12�12½23�11h31i21 þ ½12�12½23�12h31i11Þ

¼ m1m2

4

h12ih31i
h23i þOðm3Þ ¼ m1m2

4
Að−1; 0; 0Þ þOðm3Þ; ð107Þ

again agreeing with Eq. (B16). The case where we increment indices on particles 1 and 3 will require more work,

1

4
ðh12i11h23i11½31�22 þ h12i21h23i11½31�21 þ h12i11h23i12½31�12 þ h12i21h23i12½31�11

þ ½12�11½23�11h31i22 þ ½12�21½23�11h31i21 þ ½12�11½23�12h31i12 þ ½12�21½23�12h31i11Þ

¼ 1

4

�
1 −

m2
1

4E2
1

−
m2

2

4E2
2

−
m2

3

4E2
3

�
h12ih23i½31� − m2

1

8E1

hζ−1 2ih23i½3ζ̃þ1 �

−
m2

3

8E3

h12ih2ζ−3 i½ζ̃þ3 1� þ
m2

2

8E2

½1ζ̃þ2 �½ζ̃þ2 3�h31i þOðm3Þ

¼ −
m2

1

4
ffiffiffiffiffiffiffiffi
2E1

p hζ−1 2ih12i þ
m2

3

4
ffiffiffiffiffiffiffiffi
2E3

p h2ζ−3 ih23i −
m2

2

4
ffiffiffiffiffiffiffiffi
2E2

p ½1ζ̃þ2 �h12i þOðm3Þ

¼ m2
1

4

h12i½31�
½23� þm2

3

4

h23i½31�
½12� −

m2
2

4

h12ih23i
h31i þOðm3Þ

¼ −
m2

2

4

h12ih23i
h31i þOðm3Þ ¼ −

m2
2

4
Að0;−1; 0Þ þOðm3Þ: ð108Þ

In the first round of simplification, we multiply the first term by ½31�=½31� and note that both ½31�h12i ¼ Oðm2Þ and
h23i½31� ¼ Oðm2Þ putting this term at Oðm4Þ and not contributing at this order. For the second term, we used
h23i½3ζ̃þ1 � ¼ −h21i½1ζ̃þ1 � þOðm2Þ ¼ ffiffiffiffiffiffiffiffi

2E1

p h12i þOðm2Þ. For the third term, we use ½ζ̃þ3 1�h12i¼−½ζ̃þ3 3�h32iþOðm2Þ¼
−
ffiffiffiffiffiffiffiffi
2E3

p h23iþOðm2Þ. For the fourth term, we use ½ζ̃þ2 3�h31i ¼ −½ζ̃þ2 2�h21i þOðm2Þ ¼ −
ffiffiffiffiffiffiffiffi
2E2

p h12i þOðm2Þ. For the
second round of simplification, we multiply the first term by ½23�=½23� and use hζ−1 2i½23�¼−hζ−1 1i½13�þOðm2Þ¼
−
ffiffiffiffiffiffiffiffi
2E1

p ½31�þOðm2Þ. For the second term, we multiply by ½12�=½12� and use ½12�h2ζ−3 i¼−½13�h3ζ−3 iþOðm2Þ¼ ffiffiffiffiffiffiffiffi
2E3

p ½31�þ
Oðm2Þ. For the third term, we multiply by h31i=h31i and use h31i½1ζ̃þ2 � ¼ −h32i½2ζ̃þ2 � þOðm2Þ ¼ ffiffiffiffiffiffiffiffi

2E2

p h23iþ
Oðm2Þ. Finally, in the last simplification, we use that h12i½31� ¼ Oðm2Þ and h23i½31� ¼ Oðm2Þ to see that the first
two terms are higher order. As usual, we find that our results agrees with the massless vertices given in Eq. (B16).
We next increment the same particle’s index twice. We begin by incrementing particle 1. We obtain

h12i21h23i11½31�12 þ ½12�21½23�11h31i12 ¼ −
m1m3ffiffiffiffiffiffiffiffiffiffiffiffiffi
4E1E3

p hζ−1 2ih23i½ζ̃þ3 1� þOðm3Þ

¼ −
m1m3ffiffiffiffiffiffiffiffi
2E3

p ½31�h23i½ζ̃þ3 1�
½23� þOðm3Þ ¼ Oðm3Þ: ð109Þ

We simplified by multiplying by ½23�=½23� and using hζ−1 2i½23� ¼ −hζ−1 1i½13� þOðm2Þ ¼ −
ffiffiffiffiffiffiffiffi
2E1

p ½31� þOðm2Þ. Finally,
we note that h23i½31� ¼ Oðm2Þ showing us that this is higher order. We must find the contribution for helicities
ðþ1;−1;−1Þ from a different term. Likewise, we find that if we increment the index on particle 3 twice, we find

h12i11h23i12½31�21 þ ½12�11½23�12h31i21 ¼ Oðm3Þ: ð110Þ

On the other hand, if we increment particle 2 twice, we obtain

h12i12h23i21½31�11 þ ½12�12½23�21h31i11 ¼ m1m3ffiffiffiffiffiffiffiffiffiffiffiffiffi
4E1E3

p ½ζ̃þ1 2�½2ζ̃þ3 �h31i þOðm3Þ

¼ −m1m3

h31i3
h23ih12i þOðm3Þ: ð111Þ
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Simplifying the first time involves multiplying by h23i=h23i and h12i=h12i and using ½ζ̃þ1 2�h23i ¼ −½ζ̃þ1 1�h13i þOðm2Þ ¼
−
ffiffiffiffiffiffiffiffi
2E1

p h31i þOðm2Þ and h12i½2ζ̃þ3 � ¼ −h13i½3ζ̃þ3 � þOðm2Þ ¼ ffiffiffiffiffiffiffiffi
2E3

p h31i þOðm2Þ. As we can see this result agrees with
the massless vertex Að−1;þ1;−1Þ from Eq. (B19).
We next consider incrementing indices three times. We expect to find zero at this order for all these cases since the spins

will not add up to �1. We begin by incrementing the index on all three particles once. We obtain

1

8
ðh12i11h23i21½31�22 þ h12i11h23i22½31�12 þ h12i12h23i11½31�22 þ h12i12h23i12½31�12

þ h12i21h23i21½31�21 þ h12i21h23i22½31�11 þ h12i22h23i11½31�21 þ h12i22h23i12½31�11 þ hi ↔ ½�Þ
¼ m2

8
ffiffiffiffiffiffiffiffi
2E2

p h12ihζ−2 3i½31� þ
m2

8
ffiffiffiffiffiffiffiffi
2E2

p h1ζ−2 ih23i½31�

−
m2

8
ffiffiffiffiffiffiffiffi
2E2

p ½1ζ̃þ2 �½23�h31i −
m2

8
ffiffiffiffiffiffiffiffi
2E2

p ½12�½ζ̃þ2 3�h31i þOðm3Þ ¼ Oðm3Þ; ð112Þ

where the 1=8 is due to symmetrizing three indices. However, all of these are zero at this order due to momentum
conservation such as ½31�h12i ¼ Oðm2Þ. We next try incrementing the index on particle 1 twice and another once. For
example,

1

2
ðh12i21h23i21½31�12 þ h12i22h23i11½31�12 þ ½12�21½23�21h31i12 þ ½12�22½23�11h31i12Þ ¼ Oðm3Þ; ð113Þ

and

1

2
ðh12i21h23i11½31�22 þ h12i21h23i12½31�12 þ ½12�21½23�11h31i22 þ ½12�21½23�12h31i12Þ

¼ m1

2
ffiffiffiffiffiffiffiffi
2E1

p hζ−1 2ih23i½31� þOðm3Þ ¼ Oðm3Þ; ð114Þ

where we have used h23i½31� ¼ Oðm2Þ. If we increment particle 3 twice, we find the same results. If we increment particle 2
twice, we find

1

2
ðh12i12h23i21½31�12 þ h12i22h23i21½31�11 þ ½12�12½23�21h31i12 þ ½12�22½23�21h31i11Þ

¼ −
m3

2
ffiffiffiffiffiffiffiffi
2E3

p ½12�½2ζ̃þ3 �h31i þOðm3Þ ¼ Oðm3Þ; ð115Þ

1

2
ðh12i12h23i21½31�21 þ h12i12h23i22½31�11 þ ½12�12½23�21h31i21 þ ½12�12½23�22h31i11Þ

¼ −
m1

2
ffiffiffiffiffiffiffiffi
2E1

p ½ζ̃þ1 2�½23�h31i þOðm3Þ ¼ Oðm3Þ; ð116Þ

where we have used h31i½12� ¼ Oðm2Þ and ½23�h31i ¼ Oðm2Þ.
Next, we increment the indices four times. We begin by incrementing two indices twice. We expect to only find a nonzero

result when we increment index 1 and 3. For this case we find

h12i21h23i12½31�22 þ ½12�21½23�12h31i22 ¼ m1m3ffiffiffiffiffiffiffiffiffiffiffiffiffi
4E1E3

p hζ−1 2ih2ζ−3 i½31� þOðm3Þ

¼ −m1m3

½31�3
½12�½23� þOðm3Þ; ð117Þ

where we have multiplied by ½23�=½23� and ½12�=½12� and used hζ−1 2i½23� ¼ −hζ−1 1i½13� þOðm2Þ ¼ −
ffiffiffiffiffiffiffiffi
2E1

p ½31� þOðm2Þ
and ½12�h2ζ−3 i ¼ −½13�h3ζ−3 i þOðm2Þ ¼ ffiffiffiffiffiffiffiffi

2E3

p ½31� þOðm2Þ. This result agrees with Aðþ1;−1;þ1Þ given in Eq. (B19).
We next consider incrementing the indices on particles 1 and 2 twice. We find
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h12i22h23i21½31�12 þ ½12�22½23�21h31i12 ¼ −
m1m3ffiffiffiffiffiffiffiffiffiffiffiffiffi
4E1E3

p ½12�½2ζ̃þ3 �h3ζ−1 i þOðm3Þ ¼ Oðm3Þ: ð118Þ

We have simplified by multiplying by h12i=h12i and used h12i½2ζ̃þ3 � ¼ −h13i½3ζ̃þ3 � þOðm2Þ ¼ ffiffiffiffiffiffiffiffi
2E3

p h31i þOðm2Þ.
However, we then have h31i½12� ¼ Oðm2Þ putting this at higher order. The same is true for

h12i12h23i22½31�21 þ ½12�12½23�22h31i21 ¼ Oðm3Þ: ð119Þ

We have included these results in Table VI. We continue to increment four total times, but now we increment one index
twice and the other two once. We expect all of these to be nonzero and contribute to Goldstone interactions. We begin by
incrementing the index on particle 2 twice,

1

4
ðh12i12h23i21½31�22 þ h12i12h23i22½31�12 þ h12i22h23i21½31�21 þ h12i22h23i22½31�11 þ hi ↔ ½�Þ

¼ m2
2

8E2

h1ζ−2 ihζ−2 3i½31� −
m2

3

8E3

½12�½2ζ̃þ3 �hζ−3 1i þOðm3Þ ¼ m2
2

4
ffiffiffiffiffiffiffiffi
2E2

p ½23�hζ−2 3i þ
m2

3

4
ffiffiffiffiffiffiffiffi
2E3

p ½23�½2ζ̃þ3 � þOðm3Þ

¼ −
m2

2

4

½23�½12�
½31� þOðm3Þ: ð120Þ

In the first round of simplifications, we used ½31�h1ζ−2 i ¼ −½32�h2ζ−2 i þOðm2Þ ¼ ffiffiffiffiffiffiffiffi
2E2

p ½23� þOðm2Þ and hζ−3 1i½12� ¼
−hζ−3 3i½32� þOðm2Þ ¼ −

ffiffiffiffiffiffiffiffi
2E3

p ½23� þOðm2Þ. In the second round of simplifications, we multiply the first term by
½31�=½31� and use hζ−2 3i½31� ¼ −hζ−2 2i½21� þOðm2Þ ¼ −

ffiffiffiffiffiffiffiffi
2E2

p ½12� and we multiply the second term by h12i=h12i and use
h12i½2ζ̃þ3 � ¼ −h13i½3ζ̃þ3 � þOðm2Þ ¼ ffiffiffiffiffiffiffiffi

2E3

p h31i þOðm2Þ and note that ½23�h31i ¼ Oðm2Þ. We next increment the index
on particle 1 twice,

1

4
ðh12i21h23i21½31�22 þ h12i21h23i22½31�12 þ h12i22h23i11½31�22 þ h12i22h23i12½31�12 þ hi ↔ ½�Þ

¼ m1m2

4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4E1E2

p hζ−1 2ihζ−2 3i½31� þ
m1m2

16E1E2

½12�h23i½31� − m1m2

4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4E1E2

p ½1ζ̃þ2 �½23�h3ζ−1 i −
m1m2

4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4E1E2

p ½12�½ζ̃þ2 3�h3ζ−1 i þOðm3Þ

¼ −
m1m2

4
ffiffiffiffiffiffiffiffi
2E1

p ½12�hζ−1 2i −
m1m2

4
ffiffiffiffiffiffiffiffi
2E2

p ½12�½1ζ̃þ2 � þOðm3Þ ¼ m1m2

4

½12�½31�
½23� þOðm3Þ: ð121Þ

TABLE VI. Contributions of the spinor products in Eq. (93) in the high-energy limit. Their calculation is described in Sec. V B. The
left column gives the helicities of the three particles. We have only listed helicity combinations that have nonzero contributions.

Helicity h12ih23i½31� þ ½12�½23�h31i h12i½23�h31i þ ½12�h23i½31� ½12�h23ih31i þ h12i½23�½31�
0 0 −1 m2m3

4
h23ih31i
h12i

m1m3

4
h23ih31i
h12i − m2

3

4

h23ih31i
h12i

−1 0 0 m1m2

4
h12ih31i
h23i − m2

1

4
h12ih31i
h23i

m1m3

4
h12ih31i
h23i

0 −1 0 − m2
2

4
h12ih23i
h31i

m1m2

4
h12ih23i
h31i

m2m3

4
h12ih23i
h31i

þ1 −1 −1 0 −m2m3
h23i3

h12ih31i
0

−1 −1 þ1 0 0 −m1m2
h12i3

h23ih31i
−1 þ1 −1 −m1m3

h31i3
h12ih23i

0 0

0 þ1 −1 0 0 0
þ1 −1 þ1 −m1m3

½31�3
½12�½23�

0 0

−1 þ1 þ1 0 −m2m3
½23�3

½12�½31�
0

þ1 þ1 −1 0 0 −m1m2
½12�3

½23�½31�
0 þ1 0 − m2

2

4

½12�½23�
½31�

m1m2

4

½12�½23�
½31�

m2m3

4

½12�½23�
½31�

þ1 0 0 m1m2

4

½12�½31�
½23� − m2

1

4

½12�½31�
½23�

m1m3

4

½12�½31�
½23�

0 0 þ1 m2m3

4

½23�½31�
½12�

m1m3

4

½23�½31�
½12� − m2

3

4

½23�½31�
½12�
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In the first round of simplification, we use hζ−2 3i½31� ¼ −hζ−2 2i½21� þOðm2Þ ¼ −
ffiffiffiffiffiffiffiffi
2E2

p ½12� þOðm2Þ, ½12�h23i ¼ Oðm2Þ,
½23�h3ζ−1 i ¼ −½21�h1ζ−1 i þOðm2Þ ¼ ffiffiffiffiffiffiffiffi

2E1

p ½12� þOðm2Þ, and multiply the last term by h31i=h31i and use ½ζ̃þ2 3�h31i ¼
−½ζ̃þ2 2�h21i þOðm2Þ followed by ½12�h21i ¼ Oðm2Þ. In the second round of simplification, we multiply the first term by
½23�=½23� and use hζ−1 2i½23� ¼ −hζ−1 1i½13� þOðm2Þ ¼ −

ffiffiffiffiffiffiffiffi
2E1

p ½31� þOðm2Þ and multiply the second term by h31i=h31i
and use h31i½1ζ̃þ2 � ¼ −h32i½2ζ̃þ2 � þOðm2Þ ¼ ffiffiffiffiffiffiffiffi

2E2

p h23i þOðm2Þ followed by ½12�h23i ¼ Oðm2Þ. Similarly we find

1

4
ðh12i11h23i22½31�22 þ h12i12h23i12½31�22 þ h12i21h23i22½31�21 þ h12i22h23i12½31�21 þ hi ↔ ½�Þ

¼ m2m3

4

½23�½31�
½12� þOðm3Þ: ð122Þ

We have included all these results in Table VI.
We now increment the indices five times, leaving only one particle at 0 helicity. We expect all of these to be zero at this

order. We begin with particle 1 being 0 helicity and find

1

2
ðh12i12h23i22½31�22 þ h12i22h23i22½31�21 þ ½12�12½23�22h31i22 þ ½12�22½23�22h31i21Þ

¼ m3

2
ffiffiffiffiffiffiffiffi
2E3

p ½12�½23�hζ−3 1i þOðm3Þ: ð123Þ

We use hζ−3 1i½12� ¼ −hζ−3 3i½32� þOðm2Þ ¼ −
ffiffiffiffiffiffiffiffi
2E3

p ½23� þOðm2Þ. We then multiply by h31i=h31i and note that
½23�h31i ¼ Oðm2Þ to see that this term is higher order. The other cases are similar giving us

1

2
ðh12i12h23i22½31�22 þ h12i22h23i22½31�21 þ ½12�12½23�22h31i22 þ ½12�22½23�22h31i21Þ ¼ Oðm3Þ; ð124Þ

1

2
ðh12i22h23i12½31�22 þ h12i21h23i22½31�22 þ ½12�22½23�12h31i22 þ ½12�21½23�22h31i22Þ ¼ Oðm3Þ; ð125Þ

1

2
ðh12i22h23i22½31�12 þ h12i22h23i21½31�22 þ ½12�22½23�22h31i12 þ ½12�22½23�21h31i22Þ ¼ Oðm3Þ: ð126Þ

Finally, if we increment six times so that all particles are 1-spin, we find

h12i22h23i22½31�22 þ ½12�22½23�22h31i22 ¼ m1m3

4E1E3

½12�½23�½31� þOðm3Þ: ð127Þ

However, multiplying this by h23i=h23i and using
½12�h23i ¼ Oðm2Þ shows that this is higher order leaving
us with

h12i22h23i22½31�22 þ ½12�22½23�22h31i22 ¼ Oðm3Þ: ð128Þ

All of these results have been included in Table VI.
The other two columns of Table VI can be filled in using

simple symmetry arguments. We will just focus on the
nonzero terms, since the zeros in the other two columns are
straightforward to see. For the nonzero terms, we simply
rotate the particles once or twice. We begin by considering
1 → 2 → 3 → 1. In this case,

h12ih23i½31� → ½12�h23ih31�: ð129Þ

Next, if we look at the first nonzero entry in the first
column, we find

m2m3

4

h23ih31i
h12i →

m1m3

4

h12ih31i
h23i : ð130Þ

We also need to keep in mind that the helicities of the
particles also rotate, so we have spins ð0; 0;−1Þ goes to
ð−1; 0; 0Þ. This makes sense since this is the massless result
for Að−1; 0; 0Þ, so we add this to the table. The other
Goldstone interactions are similar andwe have entered them
all in Table VI. We will also do a non-Goldstone term. We
find

−m1m3

h31i3
h12ih23i → −m1m2

h12i3
h23ih31i ð131Þ

and the helicities ð−1;þ1;−1Þ goes to ð−1;−1;þ1Þ.
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Now that we have calculated the high-energy limit for all
the terms, we must determine the normalization coefficients
N 2, N 3 and N 4. As usual, we will do this using the non-
Goldstone terms so that the interactions with all helicities
being �1 should be continuous in the massless limit. We
see from Table VI that we should choose

N 1 ¼ −
1

m1m3

; N 2 ¼ −
1

m2m3

and N 3 ¼ −
1

m1m2

:

ð132Þ

For the high-energy limit of the Goldstone boson terms, we
must take the masses to zero at the same rate. Taking these
coefficients into account, we have added these vertices to
Table IV for the WWZ vertex. We find all the massless
interactions accounted for including both with �1-helicity
bosons by themselves and with Goldstone bosons and
agree with the vertices in Eqs. (B19) and (B16).
One may wonder where the Goldstone interactions are

that include two particles of �1 helicity or the interactions
with all helicity-0 particles. We expect that these are higher
order in the expansion. In both cases, there are not any
combinations of helicity spinors that give the right trans-
formation properties and the right mass dimension of 1.
But, both these become possible when the mass dimension
of the vertex is shared between the helicity spinors and the
masses of the particles. We leave these interactions, which
are outside the scope of the present paper, to a future work.

C. The Higgs couplings

In this section, we work out the final vertices, those of
the 0-spin Higgs boson. We begin with the interaction with
massive fermions. We will take the Higgs boson as the third
particle. This vertex will contain one spin spinor of either
type for particle 1 and the same for particle 2. We have only
one possibility for this vertex. It is

h12i þ ½12� ¼
� h12i 0

0 ½12�

�
þOðmfÞ: ð133Þ

The top-left term corresponds with both the fermion and
antifermion having −1=2 helicity while the bottom-right
term is for when they both have þ1=2 helicity. We have
included this vertex in Table V.
We next consider the vertex with two 1-spin bosons,

appropriate to the interactions withW and Z boson. Each of
particle 1 and 2 have two spin spinors of either type. They
cannot be contracted with each other, so we must contract
them with spin spinors for the other particle. Therefore, this
vertex is

N 1h12i½12� þN 2ðh12ih12i þ ½12�½12�Þ; ð134Þ

where N 1 and N 2 are unrelated to the normalization
constants of previous sections and have inverse mass
dimension of 1. Since these terms have two indices, they
can be written in matrix form.We use Eqs. (A47) and (A50)
and keep terms to linear order in the masses,

h12i½12� ¼

2
6664

0 − m1

2
ffiffiffiffiffiffi
2E1

p h12i½ζ̃þ1 2� 0

− m2

2
ffiffiffiffiffiffi
2E2

p h12i½1ζ̃þ2 � h12i½12� m2

2
ffiffiffiffiffiffi
2E2

p ½12�h1ζ−2 i
0 m1

2
ffiffiffiffiffiffi
2E1

p ½12�hζ−1 2i 0

3
7775þOðm2Þ: ð135Þ

The center term is −2p1 · p2 þOðm2Þ. We see that this is −2p1 · p2 ¼ −ðp1 þ p2Þ2 þOðm2Þ ¼ −p2
3 þOðm2Þ ¼ Oðm2Þ

and so does not contribute at this order. We next focus on the left entry. We multiply it by h31i=h31i and use
h31i½1ζ̃þ2 � ¼

ffiffiffiffiffiffiffiffi
2E2

p h23i þOðm2Þ. We multiply the right term by ½31�=½31� and use ½31�h1ζ−2 i ¼
ffiffiffiffiffiffiffiffi
2E2

p ½23� þOðm2Þ. Next,
we multiply the top term by h23i=h23i and use ½ζ̃þ1 2�h23i ¼ −

ffiffiffiffiffiffiffiffi
2E1

p h31i þOðm2Þ. We multiply the bottom term by
½23�=½23� and use hζ−1 2i½23� ¼ −

ffiffiffiffiffiffiffiffi
2E1

p ½31� þOðm2Þ. Altogether we have

h12i½12� ¼

2
6664

0 m1

2
h12ih31i
h23i 0

− m2

2

h12ih23i
h31i 0 m2

2

½12�½23�
½31�

0 − m1

2

½12�½31�
½23� 0

3
7775þOðm2Þ: ð136Þ

We see that in all these terms, particle 3 has helicity 0, as it must. In the center row, we see that particle 1 is also helicity 0. It
is a Goldstone boson. Particle 2 is a −1-helicity particle in the left column and aþ1-helicity particle in the right column. The
middle column is the opposite case. Particle 2 is a helicity-0 Goldstone boson while particle 1 has −1 helicity in the top row
and þ1 helicity in the bottom row. As before, these agree with the massless vertices, Að0;�1; 0Þ in the center row and
Að�1; 0; 0Þ in the middle column, as given in the Appendix B.
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It is not clear whatN 1 should be here. But, we suspect it
should be either the Higgs mass or the vacuum expectation
value v for the Higgs. We will take the latter, N 1 ¼ 1=v.
Since the masses are present only when v ≠ 0, we do not
expect these terms to be continuous unless we take both the
mass and v to zero simultaneously.
Next, we consider

h12ih12i ¼

2
664

h12i2 m2ffiffiffiffiffiffi
2E2

p h12ih1ζ−2 i 0

m1ffiffiffiffiffiffi
2E1

p h12ihζ−1 2i 0 0

0 0 0

3
775

þOðm2Þ: ð137Þ

We multiply the top-left term by ½23�=½23� and see that it is
zero at this order. We multiply the top-middle term by
½31�=½31� and use ½31�h1ζ−2 i ¼

ffiffiffiffiffiffiffiffi
2E2

p ½23� þOðm2Þ. We
follow this with h12i½23� ¼ Oðm2Þ to see that none of
these terms contribute at this order,

h12ih12i ¼ Oðm2Þ: ð138Þ

The same is true if we interchange angle and square
brackets,

½12�½12� ¼ Oðm2Þ: ð139Þ

So, N 2 appears to be unconstrained by the high-energy
limit, at least at this order. We have included this vertex in
Table V.
There are no fundamental constructive 3-point vertices

with two Higgs and one Z boson because it would involve
two spin spinors for the Z boson and nothing else. They
would have to be contracted with each other resulting in an
antisymmetry in their SU(2) index, which is symmetrized.
We are left with only a vertex with all Higgs bosons. Of

course, since there are no spinors to work with, this vertex
is simply a constant. We have included this vertex in
Table V.

VI. CONCLUSION

In this paper, we have constructed the full set of minimal
3-point vertices for the massive SM using only the
symmetry properties of the S-matrix, the mass dimension
and the high-energy behavior. We have done this in terms
of on-shell particles without any recourse to fields or their
gauge redundancies. A powerful feature of this constructive
approach is that the gravitational vertices are no more
complicated than the other SM vertices and, so, we have
included them as well. In this section, we will first
summarize some of our results. We will follow this with
a discussion of some of the open questions and possible
future directions for research.

In Sec. II, we considered 3-point vertices with one
massless particle and two massive particles, appropriate
to the QED, QCD and gravitational vertices. Since these
vertices only include one linearly independent helicity
spinor, we followed [17] by introducing the x factor in
Eq. (2), which we used to construct the vertices for positive
helicity. We found it convenient to also introduce a x̃ factor
in Eq. (3), which gave a more minimal and convenient form
for the negative helicity vertices. We then gave the vertex
for a þ1-helicity and −1-helicity particle interacting with
two massive 1=2-spin fermions in Eqs. (11) and (17),
respectively. These vertices were applicable to the inter-
actions of a photon with charged fermions as well as a
gluon with quarks. We worked out the high-energy behav-
ior of both of these, given in Eqs. (15) and (18), respec-
tively, and showed that they agreed with the massless
vertices given in Eq. (B18). After finishing with the 1=2-
spin fermions, we went on to consider the interactions of a
photon with two 1-spinW bosons. We gave the vertices for
þ1-helicity and −1-helicity photons in Eqs. (20) and (23),
respectively, and again worked out their high-energy
behavior in Eqs. (21) and (24), showing that they also
agreed with the massless vertices given in Eq. (B19). We
further collect all these QED and QCD vertices, along with
their high-energy behavior, in Tables I and II, respectively.
Finally, although the gravitational vertices are typically
considered outside the scope of the SM, we show that in
this constructive formalism, they are equally simple as all
the other SM vertices. We begin with the interactions with a
1=2-spin fermion. We give the vertices for a þ2-helicity
and −2-helicity graviton in Eq. (26), and work out their
high-energy behavior in Eqs. (29) and (31), respectively,
showing that they agreed with the massless vertices given
in Eq. (B21). For 1-spin bosons, we give the vertices forþ2
helicity and −2 helicity in Eq. (33), with their high-energy
limit in Eqs. (34) and (36), respectively, agreeing with the
massless vertices in Eq. (B22). We also consider the
gravitational interaction of the Higgs. In Eq. (38), we give
the Higgs interaction with a þ2-helicity graviton and its
high-energy behavior in Eq. (40). In Eq. (41), we give the
interaction with a −2-helicity graviton, together with its
high-energy behavior. In both cases, we note that the high-
energy behavior agrees with the massless vertices given in
Eq. (B20). We collect all the gravitational vertices, along
with their high-energy behavior, in Table III. Again, we
comment on how impressive it is that such a simple
structure spans such a large subset of the SM. It covers
all the QED, QCD and gravitational vertices.
Although the previous structure covered an impressive

fraction of the SM, it did not cover everything. The next
vertex structure we consider is that of two massless
particles and one massive particle, covering the weak
interaction of the Z boson and the neutrinos. We give
the vertex for a −1=2-helicity neutrino and a þ1=2-helicity
antineutrino in Eq. (42), followed by its high-energy
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behavior in Eq. (44), which agrees with the all-massless
vertex given in Eq. (B18). Notwithstanding the fact that we
know the neutrinos have a mass, we do not yet have a
complete, verified theory of neutrino masses. Therefore, we
do not consider massive neutrinos in this paper. However,
adding massive neutrinos when the right-chiral sector is
understood, should not be difficult. We have included these
neutrino interactions, along with their high-energy behav-
ior, in Table IV.
In Sec. IV, we turn our attention to vertices with one

massless and two massive particles, where the masses are
different, which will apply to the W-boson interaction with
leptons. Unlike the previous cases, this vertex structure is
not uniquely determined by the symmetry and mass
dimension alone. There are two structures that must be
considered as given in Eq. (52) for the þ1=2-helicity
antineutrino and in Eq. (53) for the −1=2-helicity neutrino.
In an attempt to uniquely resolve these structures, we look
at each of their high-energy behaviors. We find that one of
the two structures vanishes in the high-energy limit (its
leading-order behavior is m=E) in Eq. (53). As a result, the
coefficient of this term cannot be determined by a com-
parison with massless vertices. This poses a challenge for
this constructive method since this term cannot currently be
determined solely based on symmetry, dimension and high-
energy behavior, without considering field theory or
Feynman vertices. We consider the determination of this
coefficient an open problem. On the other hand, the other
structure does have a nonzero high-energy limit, which we
show in Eq. (58) for the antineutrino and (59) for the
neutrino. Both of these agree with the massless vertices
given in Eq. (B17) for the Goldstone boson and Eq. (B18)
for the �1-helicity boson. We include these vertices, along
with their high-energy behavior in Table IV.
There is one important case left, the vertex with three

massive particles, and we attack this in Sec. V. In Sec. VA,
we consider the case of two 1=2-spin fermions and one 1-
spin boson, appropriate to the interactions of the Z boson
and fermions as well as the W boson and quarks. As in the
previous section, we find that there are two independent
structures that must be considered, as seen in Eq. (64).
Also, as in the previous section, we find that one of the
structures vanishes in the high-energy limit, as seen in
Eqs. (84), (87), (88) and (91), and therefore, its coefficient
cannot be determined from the structure of the massless
vertices. On the other hand, the other structure does have a
nonzero high-energy limit, as we show in Eqs. (67), (70),
(73), (77), (80) and (82). All of these agree with the
massless vertices given in Eq. (B17) for the Goldstone
boson interaction and Eq. (B18) for the �1-helicity
interaction. We include these vertices along with their
high-energy limit in Table IV. We next move onto
Sec. V B, where we consider the interactions of three
1-spin bosons, applicable to the interaction of a Z boson
and two W bosons. This vertex has the greatest ambiguity

with four independent terms, as shown in Eq. (93). We find
that the first of these vanishes at high energy in Eq. (95) and
so its coefficient is not determined by the massless vertices.
However, the other three have nonzero terms at high
energy. We display these high-energy limits in Table VI.
We find that the high-energy limit of these corresponds
with the massless vertices given in Eq. (B16) for the
Goldstone boson interactions and Eq. (B19) for the pure
�1-helicity boson interactions, as we expect. We have also
included this vertex and its high-energy behavior in
Table IV.
In the last subsection, Sec. V C, we consider the inter-

actions of the Higgs boson, a 0-spin particle. We begin with
its interaction with 1=2-spin fermions. This vertex, along
with its high-energy limit, is given in Eq. (133) and agrees
with the massless vertex in Eq. (B17). We then consider the
Higgs interaction with 1-spin bosons, such as the W and Z
bosons. This 3-point vertex is given in Eq. (134) and has two
independent terms that should be determined. We find the
high-energy limit of the first term in Eq. (136) and find that it
agrees with the massless vertices in Eq. (B16). The other
term, on the other hand, vanishes in the high-energy limit, as
seen in Eqs. (138) and (139), and so is unconstrained by the
massless vertices. We have included all these Higgs vertices
in Table V.
Although we have been able to construct an incredible

fraction of the minimal SM by simply considering the
symmetry, mass dimensions and high-energy limit of the
S-matrix, several open questions remain. First of all,
although the majority of the minimal 3-point vertices were
uniquely determined by considering the high-energy limit
and comparing to the massless vertices, there were a few
terms that vanished in this limit, and are therefore, currently
left ambiguous. One could determine these by comparing
with Feynman vertices, but that goes against the spirit of the
constructive approach. We could also compare with experi-
ment, but we wonder if there is something more funda-
mental to guide us. At this point, we do not know.
In this paper, we have also only considered the 3-point

vertices, but it is well known that some theories, such as 0-
spin theories, also have 4-point “contact” vertices that must
be included when calculating 4-point amplitudes and
beyond. This is beyond the scope of the present paper,
but we intend to include it in a later work. It remains to be
seen whether they can all be determined based purely on
the properties of the S-matrix, including analyticity and
unitarity, or whether comparison with Feynman diagrams
must be done in order to successfully construct all of the
vertices of a given theory. However, our expectation is that
the perturbative unitarity of 2 → 2 scattering will either
require the presence of or require the absence of 4-point
contact terms for most particle combinations. For those
processes where the contact term is required, we expect that
the high-energy limit of the contact term along with its
required cancellation of the high-energy growth in that
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process will determine which form it should take, much as
the high-energy limit of the 3-point amplitudes fixed the
couplings of most of the vertices in this paper. For those
processes where the contact term is not required but,
nevertheless, is allowed, we expect the coupling to be a
free parameter. We expect the Higgs’s 4-point amplitude to
fall under this latter scenario.
Although [17] have shown how to combine these 3-point

vertices together with on-shell propagators to form 4-point
amplitudes, it is still unclear what the general BCFW-like
rule is for constructing higher-point amplitudes in complete
generality. We need a consistent set of rules that can be
followed to calculate any amplitude with any number of
particles. We do not yet know what that rule is. Presumably,
it has something in common with the BCFW rules.
Moreover, a consistent set of rules for constructing ampli-
tudes with any number of loops still needs to be worked
out. We envision that in the near future, the tools to
construct any particle theory and calculate any scattering
amplitude, in complete generality, without any direct
influence by fields or gauge symmetries and their inherent
redundancies will be a realistic option for high-energy
physicists.
Once an amplitude is worked out, it must be appropri-

ately squared and summed (or averaged) over the spins in
order to obtain a desired decay rate or scattering cross-
section. It appears to us that after multiplying by the
conjugate and summing over spins, we will find pieces like
jiiJα½ij _βJ which we will replace with the momentum matrix
pα _β. This will create chains of 2 × 2matrices that are traced
similar to gamma matrices in Feynman diagrams, but only
2 dimensional. This appears to be straight forward to us, but
needs to be worked out in detail. We intend to do this in an
upcoming work. Of course, the helicity amplitudes could
also be numerically calculated for each helicity, and only
afterwards squared and added together. Presumably, there
will be situations where each is advantageous.
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APPENDIX A: CONVENTIONS

In this Appendix, we state our full set of conventions and
work out some important results that are used throughout
this paper. Our conventions are the same as those in [17].
We use the mostly negative metric so that p2 ¼ m2. The
SLð2;CÞ indices are raised and lowered with

ϵαβ ¼ −ϵαβ ¼ ϵ _α _β ¼ −ϵ _α _β ¼
�
0 −1
1 0

�
: ðA1Þ

The momenta are written with SLð2;CÞ indices as

pα _β ¼
�

p0 þ p3 p1 − ip2

p1 þ ip2 p0 − p3

�
; ðA2Þ

p _αβ ¼
�

p0 − p3 −p1 þ ip2

−p1 − ip2 p0 þ p3

�
; ðA3Þ

where the determinant of both of these satisfies

detðpα_βÞ ¼ detðp _αβÞ ¼ p2 ¼ m2: ðA4Þ

Next, we state the properties of our spin spinors [repre-
sentations of SUð2Þ × SLð2;CÞ]. To simplify our discus-
sion, we will only use the angle- and square-bracket
notation rather than introducing them along with λ and
λ̃. We hope this will make it easier for the reader to keep
track of the calculations and not have to switch back and
forth between the two. Explicitly, we can write our
momentum fully in terms of our spin spinors as

piα _β ¼ ϵIJjiiIα½ijJ_β; ðA5Þ

for the momentum of particle i, where the greek letters
represent the SLð2;CÞ indices and the capital latin letters
represent the SU(2) little group indices. In the massless
limit, this definition holds if we unbold the i and drop the
SU(2) index. The momentum would become rank 1 and
these spin spinors become helicity spinors, as we will
shortly see.
We normally suppress these indices except when they are

needed for clarity. Instead, we rely on the type and direction
of the brackets to determine the type and position of the
SLð2;CÞ indices. So,

jii ≔ jiiIα; hij ≔ hijαI; ðA6Þ

ji� ≔ji� _αI; ½ij ≔ ½ijI_α; ðA7Þ

where we have used α and I as examples of the above
indices. They are, of course, unique to each product. In the
amplitudes we discuss, the SU(2) indices are never con-
tracted but are fully symmetrized. The SLð2;CÞ indices, on
the other hand, are always fully contracted in amplitudes
making SLð2;CÞ invariant objects that still transform under
the little group as our constructed amplitudes must. With
this notation, the indices can always be put back in
afterwards. To completely illustrate our sample calcula-
tions, it is helpful to have explicit examples for clarity. So,
we give a few here, for instance,

hiji ¼ hijαIjjiJα; ½ij� ¼ ½ijI_αjj� _αJ; ðA8Þ

where the I and J would be symmetrized if they corre-
sponded with the same particle (i ¼ j). Here, we also see
the usual convention that we can sum descending undotted
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indices and ascending dotted ones, which are then usually
suppressed. Another example with a momentum sand-
wiched in between is given by

hijpkjj� ¼ hijαIpkα _βjj� _βJ; ðA9Þ

½ijpkjji ¼½ijI_αp _αβ
k jjiJβ: ðA10Þ

One more example with two momenta should be sufficient
to illustrate all our needed properties (additional properties
of two-component spinors are cataloged in Ref. [26]),

hijpkpljji ¼ hijαIpkα _βp
_βω
l jjiJω; ðA11Þ

½ijpkpljj� ¼½ijI_αp _αβ
k plβ _ωjj� _ωJ: ðA12Þ

At times we will want to switch the order of the momenta.
This can be done using the Clifford algebra property of the
Pauli matrices but can also be worked out explicitly with
the matrices given in Eqs. (A2) and (A3) resulting in

p _αβ
k plβ _ω þ p _αβ

l pkβ _ω ¼ 2pk · plδ
_α
_ω; ðA13Þ

pkα _βp
_βω
l þ plα _βp

_βω
k ¼ 2pk · plδ

ω
α ; ðA14Þ

which are very convenient when we simplify amplitudes.
Now that we understand the implicit indices, we can

discuss a few more properties of these spinors. When they
represent massive particles, they satisfy the usual Dirac
property,

hijpi ¼ mi½ij; ðA15Þ

piji� ¼ −mijii: ðA16Þ

These can be solved for a standard momentum and then
boosted into other reference frames. The standard form
given in [17] is

jiiIα ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Eþ p

p
ζþα ðpÞζ−IðkÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffi
E − p

p
ζ−α ðpÞζþIðkÞ;

ðA17Þ

½ij _αI ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Eþ p

p
ζ̃−_α ðpÞζþI ðkÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffi
E − p

p
ζ̃þ_α ðpÞζ−I ðkÞ;

ðA18Þ

where E and p are the energy and momentum of the ith
particle and

ζþα ðpÞ ¼
�
c

s

�
; ζ̃−_α ðpÞ ¼

�
c

s�

�
; ðA19Þ

ζ−α ðpÞ ¼
�−s�

c

�
; ζ̃þ_α ðpÞ ¼

�−s
c

�
; ðA20Þ

with

c≡ cos

�
θ

2

�
; s≡ sin

�
θ

2

�
eiϕ; ðA21Þ

where θ is the polar angle and ϕ is the azimuthal angle.
Plugging these definitions in, we obtain

jiiIα ¼
� ffiffiffiffiffiffiffiffiffiffiffiffi

Eþ p
p

c −
ffiffiffiffiffiffiffiffiffiffiffiffi
E − p

p
s�ffiffiffiffiffiffiffiffiffiffiffiffi

Eþ p
p

s
ffiffiffiffiffiffiffiffiffiffiffiffi
E − p

p
c

�
; ðA22Þ

½ij _αI ¼
� ffiffiffiffiffiffiffiffiffiffiffiffi

Eþ p
p

c −
ffiffiffiffiffiffiffiffiffiffiffiffi
E − p

p
sffiffiffiffiffiffiffiffiffiffiffiffi

Eþ p
p

s�
ffiffiffiffiffiffiffiffiffiffiffiffi
E − p

p
c

�
; ðA23Þ

where the SU(2) index I gives the column and the SLð2;CÞ
indices α and _α give the row. We can check that the product
of these gives the momentum. Indeed,

jjiIα½jj _βI ¼
�
Ej þ pj cos θj pj sin θje−iϕj

pj sin θjeiϕj Ej − pj cos θj

�

¼
�

Ej þ pjz pjx − ipjy

pjx þ ipjy Ej − pjz

�

¼
�

p0 þ p3 p1 − ip2

p1 þ ip2 p0 − p3

�
≡ pα _β; ðA24Þ

of particle j.
Before we can explicitly calculate other expressions, we

must explicitly define our convention for raising and
lowering indices using the ϵ tensors. For example, there
is a sign difference whether we define raising the spin index
using ϵαβjjiIα or ϵβαjjiIα. In order to have a helpful
mnemonic to remember the convention, we will do it in
the order that we would expect from matrix operations.
That is, we will define

hijαI ¼ ϵαβjiiIβ; jiiαI ¼ jiiJαϵJI; ðA25Þ

ji� _αI ¼ ϵ _α _β½ij _βI; ½ijI_α ¼ ½ij _αJϵJI; ðA26Þ

and so on. This should remove any ambiguity from our
calculations.
With these definitions, we also find the following useful

identities:

ji� _αI hijαI ¼ p _αα; ðA27Þ

hjjiIK ¼ −mjϵ
IK; ðA28Þ

½jj�IK ¼ −mjϵIK; ðA29Þ

leading to
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hjjαKpjα _α ¼ hjjiKI½jj _αI ¼ mj½jjK_α ; ðA30Þ

pjα _αjj� _αK ¼ jjiIα½jj�IK ¼ −mjjjiαK; ðA31Þ

which agrees with Eqs. (A15) and (A16). Finally, we find

p _αα
j jjiKα ¼ jj� _αI hjjiIK ¼ −mjjj�αK; ðA32Þ

½jj _αKp _αα
j ¼ ½jj�KIhjjαI ¼ mjhjjαK; ðA33Þ

which can be written more minimally with our implicit
index structure as

pjjji ¼ −mjjj�; ðA34Þ

½jjpj ¼ þmjhjj; ðA35Þ

where it is understood that the SU(2) index is at the same
height on both sides of the equation. So, now we have a
mnemonic for remembering where the signs are. When a
momentum acts on an angle or square bracket from the left,
we find a minus sign. When a momentum acts on either
bracket from the right, we find a plus sign.
We take all particles as in-going, so momentum con-

servation is given by
P

pi ¼ 0.

1. High-energy limit

We would now like to consider the high-energy limit of
the conventions in this Appendix and how to find the
massless limit of the amplitudes calculated within this
scheme. We first note that the determinant of these matrices
are identically zero (in the massless limit). Because of this,
they are rank 1 and now their construction only requires one
independent spinor. Looking back at Eqs. (A22) and (A23),
we see that we can simply use the first column of these
matrices in this limit giving us the helicity spinors,

jiiα ¼
ffiffiffiffiffiffi
2E

p �
c

s

�
; ½ij _α ¼

ffiffiffiffiffiffi
2E

p �
c

s�

�
; ðA36Þ

where we have removed the bold from the i to signify that
these are helicity spinors rather than spin spinors, and
therefore, we do not require a spin index. The massless
momentum is now simply given by

piα _β ¼ jiiα½ij_β: ðA37Þ

When we use all of our above properties and some
trigonometry, we find

piα _β ¼ Ei

�
1þ cos θi sin θie−iϕi

sin θieiϕi 1 − cos θi

�
; ðA38Þ

as expected. We also find

hiji½ji� ¼ 2pi · pj: ðA39Þ

Therefore, we see that, by defining these helicity spinors
to be the massless limit of the massive spin spinors, we
sometimes only need unbold the spin spinors (dropping all
the spin indices) and drop all the masses to obtain the
massless limit when this process is smooth (when we do not
need to worry about encountering an ambiguous 0=0). In
fact, this was the design of [17]. In particular, we find the
well known property of helicity spinors,

hjji ¼ 0 and ½jj� ¼ 0; ðA40Þ

as it must since the same helicity spinor is contracted with
the antisymmetric ϵ tensor.
However, when an amplitude is not smooth (e.g., if there

is an m in the denominator), we must be a bit more careful
and expand to a higher-order in mass. To quadratic order in
m, we can write Eqs. (A17) and (A18) as

jiiIα ¼
ffiffiffiffiffiffiffi
2Ei

p �
1 −

m2
i

8E2
i

�
ζþα ðpÞζ−IðkÞ þ

miffiffiffiffiffiffiffi
2Ei

p ζ−α ðpÞζþIðkÞ

¼
ffiffiffiffiffiffiffi
2Ei

p � ð1 −m2
i =8E

2
i Þc −ðmi=2EiÞs�

ð1 −m2
i =8E

2
i Þs þðmi=2EiÞc

�
; ðA41Þ

½ij _αI ¼
ffiffiffiffiffiffiffi
2Ei

p �
1 −

m2
i

8E2
i

�
ζ̃−_α ðpÞζþI ðkÞ þ

miffiffiffiffiffiffiffi
2Ei

p ζ̃þ_α ðpÞζ−I ðkÞ

¼
ffiffiffiffiffiffiffi
2Ei

p � ð1 −m2
i =8E

2
i Þc −ðmi=2EiÞs

ð1 −m2
i =8E

2
i Þs� þðmi=2EiÞc

�
; ðA42Þ

where the expressions in square brackets are matrices in α
and I and _α and I, respectively. From this, we obtain

hiji ¼

2
64
�
1 − m2

i
8E2

i
−

m2
j

8E2
j

�
hiji mjffiffiffiffiffiffi

2Ej

p hiζ−j i
miffiffiffiffiffi
2Ei

p hζ−i ji mimj

4EiEj
½ij�

3
75; ðA43Þ

½ij�IJ ¼

2
64
�
1 − m2

i
8E2

i
−

m2
j

8E2
j

�
½ij� mjffiffiffiffiffiffi

2Ej

p ½iζ̃þj �
miffiffiffiffiffi
2Ei

p ½ζ̃þi j� mimj

4EiEj
hiji

3
75; ðA44Þ

also, to quadratic order, where the matrices have two SU(2)
indices. Of course, if the ith particle is massless, then we
just have the first row and if j is massless, we just have the
first column. Higher-order expansions may also prove
important when loop diagrams are considered. The spin
indices on the hiji are implicit and upper; however, we
have made the spin indices on the ½ij� explicit, because they
are still lower and we will need to raise them to satisfy our
convention of the implicit spin indices being upper and also
to find correct expressions when vertices include both angle
and square brackets. The spin indices can be raised with
epsilon tensors as usual, giving us ½ij�IJ ¼ ½ij�KLϵKIϵLJ or
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½ij� ¼

2
64

mimj

4EiEj
hiji − miffiffiffiffiffi

2Ei

p ½ζ̃þi j�

− mjffiffiffiffiffiffi
2Ej

p ½iζ̃þj �
�
1 − m2

i
8E2

i
− m2

j

8E2
j

�
½ij�

3
75: ðA45Þ

In some cases, we will have these brackets to a higher power (in the WþW−γ vertex, for example). So, we note that,

h12i2 ¼ 1

2
ðh12iI1J1h12iI2J2 þ h12iI1J2h12iI2J1Þ: ðA46Þ

The right side is what is implicitly meant by the left side, SU(2) indices are implicitly symmetrized. Since this has two
independent indices, we can write it as a matrix. Because each type of spin index is symmetrized, it takes 3 independent
values. Therefore, this can be written as a 3 × 3matrix. These rows and columns are for the three spins of each 1-spin boson.
We find

hiji2 ¼

2
666664

�
1 − m2

i
4E2

i
− m2

j

4E2
j

�
hiji2 mjffiffiffiffiffiffi

2Ej

p hijihiζ−j i
m2

j

2Ej
hiζ−j i2

miffiffiffiffiffi
2Ei

p hijihζ−i ji mimj

8EiEj
hiji½ij� þ mimj

2
ffiffiffiffiffiffiffiffiffi
4EiEj

p hiζ−j ihζ−i ji 0

m2
i

2Ei
hζ−i ji2 0 0

3
777775; ðA47Þ

again, to quadratic order. We find a similar result for ½ij�2, switching angle and square brackets and making the replacement
ζ− → ζ̃þ. We then need to rearrange to find the spin indices to be upstairs, giving

½ij�2 ¼

2
666664

0 0
m2

i
2Ei

½ζ̃þi j�2

0
mimj

8EiEj
hiji½ij� þ mimj

2
ffiffiffiffiffiffiffiffiffi
4EiEj

p ½iζ̃þj �½ζ̃þi j� − miffiffiffiffiffi
2Ei

p ½ij�½ζ̃þi j�
m2

j

2Ej
½iζ̃þj �2 − mjffiffiffiffiffiffi

2Ej

p ½ij�½iζ̃þj �
�
1 − m2

i
4E2

i
− m2

j

4E2
j

�
½ij�2

3
777775: ðA48Þ

On the other hand, if we multiply hiji by ½ij�, we have four separate terms in our symmetrization,

hiji½ij� ¼ 1

4
ðhijiI1J1 ½ij�I2J2 þ hijiI1J2 ½ij�I2J1 þ hijiI2J1 ½ij�I1J2 þ hijiI2J2 ½ij�I1J1Þ: ðA49Þ

With this, we obtain the 3 × 3 matrix,

hiji½ij� ¼

2
666666664

mimj

4EiEj
hiji2 − mi

2
ffiffiffiffiffi
2Ei

p hiji½ζ̃þi j� − mimjffiffiffiffiffiffiffiffiffi
4EiEj

p hiζ−j i½ζ̃þi j�

− mj

2
ffiffiffiffiffiffi
2Ej

p hiji½iζ̃þj �
− m2

i
8Ei

hζ−i ji½ζ̃þi j� −
m2

j

8Ej
hiζ−j i½iζ̃þj �

þ
�
1 − m2

i
4E2

i
−

m2
j

4E2
j

�
hiji½ij�

mj

2
ffiffiffiffiffiffi
2Ej

p ½ij�hiζ−j i

− mimjffiffiffiffiffiffiffiffiffi
4EiEj

p hζ−i ji½iζ̃þj � mi

2
ffiffiffiffiffi
2Ei

p ½ij�hζ−i ji mimj

4EiEj
½ij�2

3
777777775
; ðA50Þ

to quadratic order in the masses. It is, of course, imperative when implementing these spinor combinations within a
scattering amplitude, that these symmetry factors are not neglected.

APPENDIX B: MASSLESS 3-POINT VERTICES

In this Appendix, we briefly review what we expect to find for the various 3-point vertices in the high-energy limit. They
can be constructed purely based on their transformation properties and the dimensionality of the vertex.
Note that because all three particles are massless in the high-energy limit, we have

p2
1 ¼ p2

2 ¼ p2
3 ¼ 0: ðB1Þ
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But, because of momentum conservation p1þp2þp3¼0,
with all momenta ingoing (or all outgoing). Therefore,
pi ¼ −ðpj þ pkÞ, where i, j, k are any combination of
1,2,3. Then,

p2
i ¼ ðpj þ pkÞ2 ¼ p2

j þ p2
k þ 2pj · pk: ðB2Þ

But, since p2
i ¼ p2

j ¼ p2
k ¼ 0, we have

pj · pk ¼ 0; ðB3Þ

for all j and k. However, since −2pj · pk ¼ hjki½jk� at this
order, we have

hjki½jk� ¼ 0; ðB4Þ

for any massless 3-point amplitude. This means that either
hjki ¼ 0 or ½jk� ¼ 0. We have three momenta and we need
to make the choice for each combination, but it turns out
that there is only one choice,

h12i ¼ h23i ¼ h13i ¼ 0 or ½12� ¼ ½23� ¼ ½13� ¼ 0:

ðB5Þ

To see that there is only one choice, note that hiji ¼ 0
implies that jii ∝ jji and similarly for the square brackets.
So, suppose we had h12i ¼ h23i ¼ 0 and ½13� ¼ 0. Well,
h12i ¼ 0 implies that j1i ∝ j2i and h23i ¼ 0 implies j2i ∝
j3i so we actually have the first of Eq. (B5). All other cases
can be seen in a similar way.
So, each massless 3-point amplitude can only be con-

structed from either the angle brackets or the square
brackets, but not both.
So, there are only two choices for a given 3-point

amplitude. Either it is

Aðh1; h2; h3Þ ¼ h12ic12h23ic23h31ic31 ; ðB6Þ

or

Aðh1; h2; h3Þ ¼ ½12�c̃12 ½23�c̃23 ½31�c̃31 ; ðB7Þ

We know that the amplitude must transform as

Aðh1; h2; h3Þ → eþiðh1θ1þh2θ2þh3θ3ÞAðh1; h2; h3Þ: ðB8Þ

And, we know how the brackets transform

hiji → eið−θ1=2−θ2=2Þhiji;
½ij� → eiðþθ1=2þθ2=2Þ½ij�: ðB9Þ

So, we can solve this to obtain the values of c12, etc. We
find that either

Aðh1; h2; h3Þ ¼ h12ih3−h1−h2h23ih1−h2−h3h31ih2−h3−h1 ;
ðB10Þ

or

Aðh1; h2; h3Þ ¼ ½12�h1þh2−h3 ½23�h2þh3−h1 ½31�h3þh1−h2 ;

ðB11Þ

up to a constant (the coupling constant).
There is one more property that the amplitude must

satisfy, the dimension (i.e., units). If the amplitude has n
particles, it must be dimension 4 − n. This is required to
find the right dimensions for the scattering cross section
which is measured. So, for our 3-point amplitude, it must
have dimension 1. Each bracket, whether hi or ½� has
dimension 1. This means that the dimensions of these two
amplitudes are

d ¼ −ðh1 þ h2 þ h3Þ and d ¼ h1 þ h2 þ h3: ðB12Þ

Since this must be 1, for nongravitational vertices with no
dimensionful parameter, we finally have the amplitude for 3
particles,

Aðh1; h2; h3Þ

¼

8>>><
>>>:

h12i1þ2h3h23i1þ2h1h31i1þ2h2 if
P
i
hi ¼ −1

½12�1−2h3 ½23�1−2h1 ½31�1−2h2 if
P
i
hi ¼ 1

0 otherwise:

ðB13Þ

On the other hand, for gravitational vertices, we must
divide by the Planck mass; therefore, the dimension of the
brackets must be 2. This gives us

Agravðh1; h2; h3Þ

¼

8>>><
>>>:

h12i2þ2h3h23i2þ2h1h31i2þ2h2 if
P
i
hi ¼ −2

½12�2−2h3 ½23�2−2h1 ½31�2−2h2 if
P
i
hi ¼ 2

0 otherwise:

ðB14Þ

We will also need to consider some vertices involving
Goldstone bosons that are only nonzero at linear order in
the mass. Therefore, we also consider vertices that have one
dimensionful parameter and only allow it to the first power
in the vertex so that the vertex must have dimension 0. In
this case, we have
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Am1ðh1; h2; h3Þ ¼ m

( h12i2h3h23i2h1h31i2h2 � ½12�−2h3 ½23�−2h1 ½31�−2h2 if
P
i
hi ¼ 0

0 otherwise:
ðB15Þ

We now enumerate the high-energy limit vertices required for the SM. First, the nongravitational vertices that have
dimension 1. We find

Að0; 0;þ1Þ ¼ ½23�½31�
½12� ; Að0; 0;−1Þ ¼ h23ih31i

h12i ; ðB16Þ

A
�
0;þ 1

2
;þ 1

2

�
¼ ½23�; A

�
0;−

1

2
;−

1

2

�
¼ h23i; ðB17Þ

A
�
þ 1

2
;−

1

2
;þ1

�
¼ ½31�2

½12� ; A
�
−
1

2
;þ 1

2
;−1

�
¼ h31i2

h12i ; ðB18Þ

Aðþ1;þ1;−1Þ ¼ ½12�3
½23�½31� ; Að−1;−1;þ1Þ ¼ h12i3

h23ih31i : ðB19Þ

For the gravitational vertices,

Að0; 0;þ2Þ ¼ 1

MP

½23�2½31�2
½12�2 ; Að0; 0;−2Þ ¼ 1

MP

h23i2h31i2
h12i2 ; ðB20Þ

A
�
þ 1

2
;−

1

2
;þ2

�
¼ 1

MP

½23�½31�3
½12�2 ; A

�
−
1

2
;þ 1

2
;−2

�
¼ 1

MP

h23ih31i3
h12i2 ; ðB21Þ

Aðþ1;−1;þ2Þ ¼ 1

MP

½31�4
½12�2 ; Að−1;þ1;−2Þ ¼ 1

MP

h31i4
h12i2 ; ðB22Þ

Aðþ2;−2;þ2Þ ¼ 1

MP

½31�6
½12�2½23�2 ; Að−2;þ2;−2Þ ¼ 1

MP

h31i6
h12i2h23i2 : ðB23Þ

As expected, the gravitational vertices are the square of the
nongravitational vertices with half the helicities.
Finally, for the nongravitational vertices that are only

nonzero at first order in a dimensionful parameter. We use
m to represent the appropriate scale. We have

Að0; 0; 0Þ ¼ m; ðB24Þ

Aðþ 1

2
;−

1

2
; 0

�
¼ m

�½31�
½23� �

h23i
h31i

�
; ðB25Þ

Aðþ1;−1; 0Þ ¼ m

�½31�2
½23�2 �

h23i2
h31i2

�
: ðB26Þ

Interestingly, the terms are the square of the case with half
the helicities.
Before ending this Appendix, we review how the rules

discussed here allow the determination of the helicity of the
particles involved in a massless vertex. As described above,
each massless vertex will include either angle brackets or
square brackets, but not both. Furthermore, we know that
angle brackets transform like a −1=2-helicity particle while
square brackets transform like a þ1=2-helicity particle [see
Eq. (B9)]. Since this transformation is a phase, we see that
if a particle appears in both the numerator and denominator
of a vertex, the full transformation for that vertex involves
the difference of the two powers. For example,

hijip
hkiiq → e−iðp−qÞθi=2e−ipθj=2eþiqθk=2

hijip
hkiiq and

½ij�p
½ki�q → eþiðp−qÞθi=2eþipθj=2e−iqθk=2

½ij�p
½ki�q : ðB27Þ
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Focusing on particle i, we see that this ratio transforms as
particle with helicity h ¼ −ðp − qÞ=2 for angle brackets
and h ¼ þðp − qÞ=2 for square brackets. So, for each
massless vertex, we simply take the power of each particle
in the numerator minus the power of that particle in the
denominator and multiply by −1=2 if angle brackets or by
þ1=2 is square brackets, and this gives the helicity of the
particle. To clarify this process, consider the vertex,

½23�½31�
½12� : ðB28Þ

Beginning with particle 1, we see that its power in the
numerator is 1 and its power in the denominator is 1, so that
the difference is 0. From this, we learn that particle 1 must
have helicity 0. We find exactly the same feature for particle
2, so it is also helicity 0. Particle 3, on the other hand, has

two powers in the numerator but none in the denominator.
Since this vertex uses square brackets, we learn that the
helicity of particle 3 is h3 ¼ þð2 − 0Þ=2 ¼ þ1. This agrees
with our description of Eq. (B16). We will consider one
more example. Consider the vertex

h23ih31i3
h12i2 : ðB29Þ

We see particle 1 to the third power in the numerator and
the second power in the denominator. Since this vertex uses
angle brackets, we find that the helicity of particle 1 is
h1 ¼ −ð3 − 2Þ=2 ¼ −1=2. We find particle 2 to the first
power in the numerator and the second power in the
denominator, giving us h2 ¼ −ð1 − 2Þ=2 ¼ þ1=2. Finally,
we find particle 3 to the fourth power in the numerator and
not at all in the denominator, giving h3¼−ð4−0Þ=2¼−2.
Altogether, this agrees with our description of Eq. (B21).
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