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We consider effective theory treatment for the lowest-lying S- and P-wave states of charmed mesons.
In our analysis, quantum corrections and contributions from leading chiral and heavy quark symmetry
breakings are taken into account. The heavy meson mass expressions have abundance parameters, low-
energy constants, in comparison to the measured charmed mesons masses. The experimental and lattice
QCD data on charmed meson spectroscopy are used to extract, for the first time, the numerical values of the
full set of low-energy constants of the effective chiral Lagrangian. Our results on these parameters can be
used for applications on other properties of heavy-light meson systems.
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I. INTRODUCTION

The properties of heavy-light meson systems can be well
described using heavy meson chiral perturbation theory
(HMχPT). This approach, which is formulated by combin-
ing chiral perturbation theory ( χPT) and heavy quark
effective theory, can be used in a systematic way to
calculate the corrections from chiral and heavy quark
symmetry breakings (see, e.g., Refs. [1–5]). Thomas
Mehen and Roxanne Springer in Ref. [6] used this theory
to study the masses of the lowest-lying odd- and even-
parity charmed mesons. In their analysis, the contributions
due to finite masses of light and heavy quarks and one-loop
chiral corrections are taken into account. The theory at this,
third, order has a large number of unknown low-energy
constants (LECs) in comparison to the charmed meson
spectrum, and hence a unique fit for them using nonlinear
fitting is impossible as concluded in Refs. [6,7].
The work of Mehen and Springer is reconsidered in our

paper [8]. There, we employed a different approach to get a
unique fit for these unknown LECs. It is based on reducing
their number in fit, which is simply done by grouping them
into certain linear combinations that equal the number of
charmed meson masses, and evaluating the one-loop cor-
rections using physical masses, which, unlike previous
approaches, ensures that the imaginary parts of loop func-
tions are consistent with the experimental widths of the
charmed mesons. By using physical masses in loops, the fit
becomes linear, andLECs of the effective Lagrangian, which
appear in linear combinations, are uniquely determined using

the lowest odd- and even-parity charmed spectrum.The fitted
parameters from charmedmesons are then used in Ref. [8] to
predict the spectrum of analog bottom mesons.
It is pointed out in our previous work that to separate the

combinations of the LECs into pieces that respect and break
chiral symmetry, lattice QCD (LQCD) information on
charmed mesons ground and excited states with different
quark masses are required. The recent lattice calculations on
the charmed meson spectroscopy undertaken by Cichy et al.
in Ref. [9] provide enough information to perform further
separations of LECs. Our purpose here is to use the
experimental and these lattice data on charmedmesonmasses
to extract, for the first time, the unique numerical values of
LECs of the effective Lagrangian used in Refs. [6–8].
The work undertaken in the present paper is comple-

mentary to our previous approach in Ref. [8] and organized
as follows. In Sec. II, we briefly review the mass expres-
sions for the lowest-lying S- and P-wave states of charmed
mesons that are derived within the framework of HMχPT.
We demonstrate how terms in these mass expansions link to
experimental measurements on such systems. We describe
in Sec. III the approach we have employed to extract the
unique numerical values for the full set of LECs of the
chiral Lagrangian. It relies on making constraints on certain
combinations of LECs using the charmed meson spectrum
and then utilizing lattice data on charmed mesons ground
and excited states to disentangle chirally symmetric LECs
from chiral breaking terms. After presenting the results on
LECs, we draw our conclusion.

II. LOW-ENERGY CONSTANTS IN HMχPT

Before proceeding, let us first present the mass formula
for odd- and even-parity charmed mesons that are used in
Refs. [6–8]. In a compact form, the residual charmed meson
mass [10] is
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m
Að�Þ
q

¼ δA þ aAmq þ σAm̄þ dð�Þ

4
ðΔA þ ΔðaÞ

A mq þ ΔðσÞ
A m̄Þ

þ Σ
Að�Þ
q
; ð1Þ

where A ¼ H, S denote the odd- and even-parity charmed
meson states, respectively. In the heavy quark limit,
the odd-parity states, i.e., pseudoscalar mesons JP ¼ 0−

(D0; Dþ; Dþ
s ) and vector mesons JP ¼ 1− (D�0; D�þ; D�þ

s ),
form members of the 1

2
−-ground-state doublet, and the even-

parity states, i.e., scalar mesons JP ¼ 0þ (D�0
0 ; D�þ

0 ; D�
0s)

and axial vector mesons JP ¼ 1þ (D00
1 ; D

01
1 ; D

00
1s), form

members of the 1
2
þ-excited-state doublet. The asterisk rep-

resents the spin-1 meson in both sectors, and the subscript q
refers to the flavor of light quarks. The values of the factor
dð�Þ are 1 for the spin-1 particles (d� ¼ 1) and −3 for the
spin-0 particles (d ¼ −3). The quantitiesmq and m̄ define as
mq ¼ ðmu;md;msÞ and m̄ ¼ mu þmd þms, respectively.
In the isospin limit, mu ¼ md ¼ mn, and hence mq ¼
ðmn;mn;msÞ and m̄ ¼ 2mn þms, where the subscripts n
denote nonstrange light quark flavor. Wework in the isospin
limit. The parameter δA represents the residual masses of
charmedmesons in sectorA. The operatorΔA gives rise to the
hyperfine splittings at leading order in the chiral expansion.

The quantities aA (ΔðaÞ
A ) and σA (ΔðσÞ

A ) are dimensionless
constants, and Σ

Að�Þ
q

refers to the one-loop corrections.

According to the power counting rules employed in

Refs. [6,8], these coefficients scale as δA ∼ ΔA ∼ ΔðaÞ
A ∼

ΔðσÞ
A ∼Q,mq ∼ m̄ ∼Q2, and ΣA ∼Q3, whereQ generically

denotes the low-energy scales in the theory, i.e., masses and
momenta of the Goldstone bosons and splittings between the
four lowest states of the charmed mesons introduced above.
The one-loop corrections can be obtained by adding all

one-loop graphs that are allowed by spin-parity quantum
numbers. Their explicit expressions can be found in the
Appendices of Refs. [6,8]. There are three coupling
constants g, g0, h entering the one-loop contributions.
The coupling g (g0) measures the strength of transitions
within states that belong to the 1

2
− (1

2
þ) doublet which are

represented by the chiral function

K1ðω;mi;μÞ¼
1

16π2

�
ð−2ω3þ3m2

iωÞln
�
m2

i

μ2

�

−4ðω2−m2
i ÞFðω;miÞþ

16

3
ω3−7ωm2

i

�
; ð2Þ

which is defined in the MS scheme [8]. The renormaliza-
tion scale is given by μ. The arguments mi and ω are the
mass of the Goldstone boson and mass difference between
external and internal heavy meson states. The function
Fðω; miÞ is given by [11]

Fðω;miÞ ¼

8>>><
>>>:

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i −ω2
p

cos−1ðωmi
Þ; m2

i > ω2;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

i

p h
iπ − cosh−1ð− ω

mi
Þ
i
; ω< −mi;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2 −m2
i

p
cosh−1ðωmi

Þ; ω>mi:

The transitions between states that belong to different
doublets are measured by the coupling strength h and
represented by

K2ðω; mi; μÞ ¼
1

16π2

�
ð−2ω3 þm2

iωÞ ln
�
m2

i

μ2

�

− 4ω2Fðω; miÞ þ 4ω3 − ωm2
i

�
; ð3Þ

in the MS scheme [8].
Let us now briefly show how terms in the above mass

expansion, Eq. (1), are linked to the experimental mea-
surements on the heavy-light meson systems. Terms with
the coefficients δA and σA give the same contributions to
heavy meson masses. The SUð3Þ mass splitting between
strange and nonstrange heavy charmed mesons is due to aA.

Other terms which contain ΔA, Δ
ðσÞ
A , and ΔðaÞ

A contribute to
chirally symmetric, chiral symmetry breaking, and SUð3Þ
symmetric breaking hyperfine splittings, respectively. By
fitting these LECs, one can use the theory, for example, to
compute
(a) hyperfine splittings,

mA�
q
−mAq

¼ΔAþΔðaÞ
A mqþΔðσÞ

A m̄þΣA�
q
−ΣAq

; ð4Þ

(b) SUð3Þ flavor splittings,

mAs
−mAn

¼ aAðms −mnÞ −
3

4
ΔðaÞ

A ðms −mnÞ
þ ΣAs

− ΣAn
; ð5Þ

(c) spin-average masses,

ðmAq
þ 3mA�

q
Þ=4 ¼ δA þ aAmq þ σAm̄

þ ðΣAq
þ 3ΣA�

q
Þ=4; ð6Þ

(d) SUð3Þ-violating hyperfine splittings,

ðmA�
s
−mAs

Þ− ðmA�
n
−mAn

Þ
¼ΔðaÞ

A ðms−mnÞþðΣA�
s
−ΣAs

Þ− ðΣA�
n
−ΣAn

Þ; ð7Þ

(e) spin-average strange and nonstrange mass differences,

ðmAs
þ3mA�

s
Þ=4−ðmAn

þ3mA�
n
Þ=4

¼aAðms−mnÞþðΣAs
−ΣAn

þ3ΣA�
s
−3ΣA�

n
Þ=4; ð8Þ
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in the odd- and even-parity charmed meson sectors. It can
also be used to predict the analog quantities in the bottom
meson sector. This requires rescaling hyperfine operators
by the mass ratio of charm and bottom quarks, mc=mb; see
Ref. [8] for details.

III. RESULTS AND CONCLUSION

There are 12 unknown LECs in Eq. (1) describing eight
charmed meson masses in the isospin limit. It is, thus,
hard to fix them using available data alone. To overcome
this, LECs can be grouped into the following linear
combinations [8],

ηA ¼ δA þ
�
aA
3
þ σA

�
m̄; ξA ¼ ΔA þ

�
ΔðaÞ

A

3
þΔðσÞ

A

�
m̄;

ð9Þ

LA ¼ ðms −mnÞaA; TA ¼ ðms −mnÞΔðaÞ
A ; ð10Þ

where terms in ηA and ξA (LA and TA) preserve (violate)
SUð3Þ flavor symmetry. The combinations ξA and TA
contain heavy quark spin-symmetry-violating operators.
In terms of these combinations, Eq. (1) can be written as

m
Að�Þ
q

¼ ηA þ dð�Þ

4
ξA þ αq

3
LA þ βð�Þq

2
TA þ Σ

Að�Þ
q
; ð11Þ

where αq and βð�Þq are αn ¼ −1, αs ¼ 2, βn ¼ 1=2,
βs ¼ −1, β�n ¼ −1=6, and β�s ¼ 1=3.
Now, the number of unknown coefficients in Eq. (11) is

8, which equals the number of the observed charmed
mesons shown in Fig. 1. By using physical values in
evaluating chiral loop functions in Eq. (11), as done in
Ref. [8], one can extract the unique values for the
parameters given in Eqs. (9) and (10).

It is clear from Eq. (10) that the available experimental
information is enough to fix the LECs aH,Δ

ðaÞ
H and aS,Δ

ðaÞ
S

of the both odd- and even-parity sectors. Nature, however,
cannot help us disentangle chirally symmetric coefficients
δA,ΔA in Eq. (9) from chiral breaking terms, more precisely

σA and ΔðσÞ
A as aA and ΔðaÞ

A already fixed by experiment. To
make further separations of the LECs in Eq. (9) in the odd-
and even-parity sectors, lattice calculations on charmed
mesons ground and excited states with different quark
masses are required. We will show below how to use
experimental and lattice data on the charmed meson masses
to fit the LECs that appear in the mass expansion given
in Eq. (1).
Let us first use the experimental information to extract

the parameters given in Eqs. (9) and (10). In our fit, the
empirical values we use are two masses of the ground-state
nonstrange mesons in the isospin limit, two masses of the
excited neutral charmed mesons, which are chosen due to
their relatively small errors in comparison with the excited
charged counterpart, and four masses of strange mesons
from both sectors; see Fig. 1. In our calculations, the
following physical values are used: mn ¼ 4 MeV, ms ¼
130 MeV, mπ ¼ 140 MeV, mK ¼ 495 MeV, mη ¼
547 MeV, and f¼92.4MeV [12]. For coupling constants,
we use the experimental determined values g ¼ 0.64�
0.075 and h ¼ 0.56� 0.04 [14]. The coupling constant g0
is experimentally unknown, and the computed LQCD value
g0 ¼ −0.122ð8Þð6Þ [15] is used in this work. In our
previous work [8], the normalization scale was set to the
average of pion and kaon masses, μ ¼ 317 MeV. It is
worth mentioning that in our approach the extracted
parameters and quantities derived from them, e.g., mass
splittings, are smoothly varying with the μ-scale and their
numerical values are in agreement within the associated
uncertainties. Therefore, performing calculations at any
other values of the μ-scale will not make much difference.
Here, we will use μ ¼ 1 GeV.
To fit parameters in Eq. (11) to the experiment, we need

to define the experimental residual masses. For this, we
choose mD, the mass of pseudoscalar nonstrange charmed
meson, as the reference mass, which yields the following
values for charmed meson residual masses:

mHn
¼ 0ð0Þ MeV; mHs

¼ 101.1ð1Þ MeV;

mH�
n
¼ 141.3ð7Þ MeV; mH�

s
¼ 244.9ð4Þ MeV;

mSn ¼ 451ð29Þ MeV; mSs ¼ 450.5ð6Þ MeV;

mS�n ¼ 560ð36Þ MeV; mS�s ¼ 592.3ð6Þ MeV: ð12Þ

Using physical values of charmed meson masses, pseudo-
Goldstone boson masses, and coupling constants in chiral
loop functions, one gets

ηH ¼ 228ð47Þ MeV; ξH ¼ 88ð20Þ MeV; ð13Þ

FIG. 1. The representation of the masses of the charmed meson
states of 1

2
− and 1

2
þ doublets. All masses are taken from the PDG

[12] excluding the mass of D0
1, which is reported by the BELLE

Collaboration [13]. We only take the isospin average of D0 and
D� (D�0 and D��) to obtain the mass of nonstrange ground state
D (D�); for details, please refer to the text.
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LH ¼ 262ð28Þ MeV; TH ¼ −138ð41Þ MeV; ð14Þ

ηS ¼ 542ð20Þ MeV; ξS ¼ 110ð33Þ MeV; ð15Þ

LS ¼ −42ð31Þ MeV; TS ¼ 42ð49Þ MeV; ð16Þ

from fitting the residual mass expression in Eq. (11) to the
corresponding experimental masses in Eq. (12). The
associated uncertainties with the fitted parameters, which
include the experimental errors of charmed meson masses
and coupling constants and the error on the coupling g0
from LQCD, are dominated by the uncertainty in the 0þ
and 1þ nonstrange masses. Therefore, improved experi-
ments on these mesons are needed to reduce the errors.
From the above extracted values of L’s and T’s, see

Eqs. (14) and (16), one can fix the following LECs, see
Eq. (10):

aH ¼ 2.08ð22Þ; ΔðaÞ
H ¼ −1.10ð33Þ;

aS ¼ −0.33ð25Þ; ΔðaÞ
S ¼ 0.33ð39Þ: ð17Þ

To extract the other LECs, we will use lattice calculations
on charmed meson spectroscopy undertaken in Ref. [9].
There, the computations were performed using three
different lattice spacings and several light quark masses.
In this paper, we use the values extracted in ensemble D
defined in Ref. [9] that have the lightest pion masses
(mπ ≲ 250 MeV that lies within the range of validity of
χPT) in our fit of LECs. In Table I, we present the
continuum masses of odd- and even-parity charmed mes-
ons computed at nonphysical pion masses. The shown
values are obtained by performing a continuum extrapo-
lation at the relevant nonphysical pion masses using
strategy 3 illustrated there [16]. For the nonstrange
ground-state charmed meson, the authors of Ref. [9] used
its mass as an input to fix the charm quark mass for each
ensemble, so in our fit, we will use the experimental value
shown in Fig. 1. In their work, strange valence quark mass
was chosen to be close to its physical value. This was
achieved by reproducing the physical value of 2m2

K −m2
π

using measured pion and kaon masses in each ensemble. In
leading order chiral perturbation theory, this quantity
represents the strange light quark mass and is insensitive
to the mass of nonstrange light quark flavor. Consequently,

one can use the computed values of pion mass in ensemble
D to extract the corresponding masses of kaon and eta
particles. This is simply done by using the mass relations
ðð2m2

K−m2
πÞphysþm2

π;LÞ=2 and ð2ð2m2
K−m2

πÞphysþm2
π;LÞ=3

to get m2
K and m2

η, respectively, where mπ;L is the lattice
measured pion mass; see Table I. The uncertainties asso-
ciated with the lattice determination of these masses are
negligible at our level of precision.
Using lattice data from Table I, extracted values of

parameters given in Eq. (9) are shown in Figs. 2(a)–2(d)
together with that obtained using experimental values; see
Eqs. (13) and (15). To fit these parameters, a constrained
fitting procedure [17] is employed with priors on the LECs
constructing them. For LECs aA and ΔðaÞ

A , their extracted
values in Eq. (17) are used as priors information. On the
other hand, the charmed meson spectrum constraints the
combinations of the other unphysical LECs, i.e., δA, ΔA,

σA, and ΔðσÞ
A ; therefore, it is appropriate to use broad priors

for them. We set 0� 1000 MeV (0� 1000) as priors on δA
and ΔA (σA and ΔðσÞ

A ). Performing a least chi-squared fit to
these parameters yields

δH¼223ð75ÞMeV; σH¼−0.66ð25Þ
ΔH¼91ð31ÞMeV; ΔðσÞ

H ¼0.34ð15Þ;
δS¼466ð31ÞMeV; σS¼0.66ð12Þ
ΔS¼95ð50ÞMeV; ΔðσÞ

S ¼−0.002ð185Þ; ð18Þ

where associated uncertainties include the experimental
errors of charmed meson masses and coupling constants
and errors from lattice data on charmed meson masses.
The extracted values given in Eqs. (17) and (18) are

consistent with the perturbative expansion of the theory.
They yield the following values for the residual masses,

mHn
¼ −1ð68Þ MeV; mHs

¼ 100ð59Þ MeV;

mH�
n
¼ 141ð105Þ MeV; mH�

s
¼ 244ð68Þ MeV;

mSn ¼ 450ð37Þ MeV; mSs ¼ 450ð27Þ MeV;

mS�n ¼ 559ð46Þ MeV; mS�s ¼ 592ð32Þ MeV; ð19Þ

which are compatible with the experimental values given in
Eq. (12). To shrink the uncertainties on the determined

TABLE I. The listed numerical values are in MeV. The charmed meson masses are obtained using strategy 3 [9,16]. The nonstrange
ground-state charmed meson mass, mD, was used in Ref. [9] to tune the charm quark mass in their lattice computations. In our
calculation, we use the experimental value shown in Fig. 1 for this nonmeasured lattice mass.

Ensemble mD� mDs
mD�

s
mD�

0
mD0

1
mD�

s0
mD0

s1
mπ mK mη m̄ ms −mn

D15.48 2029.0(7.0) 1962.6(2.8) 2119.3(3.8) 2351(10) 2490(15) 2400(11) 2565(10) 224 513 579 392 377
D20.48 2030.0(7.1) 1959.9(2.8) 2117.7(3.9) 2364(10) 2503(15) 2404(11) 2570(10) 257 521 583 395 376
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LECs [Eqs. (17) and (18)] and, hence, the extrapolated
residual masses [Eq. (19)], accurate experimental and
lattice results on charmed meson masses are needed.
By fitting LECs of the effective Lagrangian, we

increased the usefulness of HMχPT to other applications
of heavy-light meson systems, e.g., calculating masses and
strong mass splittings that are shown in Eqs. (4)–(8) for the

lowest-lying S- and P-wave states of charmed and bottom
mesons.
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