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We study the lepton flavor models, whose flavor symmetries are finite subgroups of the modular group
such as S3 and A4. In our models, couplings are also nontrivial representations of these groups and modular
functions of the modulus. We study the possibilities that these models realize realistic values of neutrino
masses and lepton mixing angles.
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I. INTRODUCTION

One of the unsolved but important mysteries in particle
physics is the mystery about the flavor structure of the
quarks and leptons, such as the generation number, mass
hierarchy, and mixing angles. Such a mystery would
provide us with hints to explore physics beyond the
standard model. Indeed, several types of scenarios have
been proposed to understand quark and lepton masses and
mixing angles as well as CP phases.
One of interesting ideas is to impose non-Abelian

discrete flavor symmetries. Many models have been pro-
posed imposing non-Abelain discrete flavor symmetries,
e.g., S3, A4, S4 and other various finite groups. (See for
review [1–4].) In particular, the lepton sector has been
intensively studied, because at least two of three lepton
mixing angles are large compared with the quark mixing
angles, and their experimental results have been improved
precisely. Recently, CP symmetry and its violation were
also studied [5–7].
Superstring theory is a promising candidate for the

unified theory of all interactions including gravity and
matter fields such as quarks and leptons as well as Higgs
fields. It is shown that superstring theory on certain
compactifications leads to non-Abelian discrete flavor
symmetries. For example, heterotic string theory on orbi-
folds can lead to D4, Δð54Þ, etc. [8]. (See also [9,10].)1 In
addition, type II magnetized and intersecting D-brane
models can lead to similar flavor symmetries [12–16].

On the other hand, string theory on tori and orbifolds has
the modular symmetry. For example, modular symmetries
were studied in heterotic orbifold models [17–19] and
magnetized D-brane models [20–22]. In general, modular
transformations act nontrivially on string modes and inter-
change massless modes such as quarks and leptons to each
other. In this sense, modular symmetry is a non-Abelain
discrete flavor symmetry. Furthermore, it is interesting that
the modular symmetry includes S3, A4, S4, A5 as its
congruence subgroups, ΓðNÞ. However, there is a difference
between the modular symmetry and the usual flavor sym-
metries.2 Coupling constants such as Yukawa couplings
also transform nontrivially under the modular symmetry
[17,20–22], while coupling constants are invariant under the
usual flavor symmetries, although flavon fields, which
develop their vacuum expectation values (VEVs), transform
nontrivially under flavor symmetries. Moreover, Yukawa
couplings as well as higher order coupling constants are
modular functions of moduli [20,23–25].
By use of the above aspects, an interesting ansatz was

proposed in Ref. [26], where Γð3Þ ≃ A4 was used and
leptons were assigned to triplets and singlets of A4. Also
coupling constants were assigned to A4 triplet and singlets,
which are modular functions. Then, neutrino masses and
mixing angles were analyzed. Such an ansatz would be
interesting in order to bridge a gap between underlying
theory such as superstring theory and low-energy physics
like neutrino phenomena. Our purpose in this paper is to
study systematically the above approach. We study the A4

model following Ref. [26]. Also, we extend our analysis to
S3 models.
This paper is organized as follows. In Sec. II, we give a

briel review on modular symmetry. In Sec. III, using
experimental values, we write the neutrino mass matrix,
which is convenient to our analyses. In Sec. IV, we study
systematically the A4 model following Ref. [26]. In Sec. V,
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we construct S3 models in a way similar to the A4 model
and study them systematically. Section VI is our conclusion
and discussions. In Appendix, we briefly review modular
functions and show modular functions corresponding to the
A4 triplet and the S3 doublet.

II. MODULAR TRANSFORMATION
AND ITS SUBGROUP SYMMETRIES

In this section, we give a brief review on the modular
symmetry and its congruence subgroups.
Toroidal compactification is one of simple compactifi-

cations. The two-dimensional torus T2 is obtained as
T2 ¼ R2=Λ. Here, Λ is the two-dimensional lattice,
which is spanned by two lattice vectors, α1 ¼ 2πR and
α2 ¼ 2πRτ. We use the complex coordinate, where R is a
real parameter, and τ is a complex modulus parameter.
The choice of the basis vectors has some ambiguity. The

same lattice can be spanned by other bases,

�
α02
α01

�
¼
�
a b

c d

��
α2

α1

�
; ð1Þ

where a, b, c, d are integer with satisfying ad − bc ¼ 1.
That is the SLð2; ZÞ transformation.
The modular parameter τ ¼ α2=α1 transforms as

τ → τ0 ¼ aτ þ b
cτ þ d

; ð2Þ

under (1). Both lattice bases ðα1; α2Þ and ðα01; α02Þ, and both
modular parameters, τ and τ0, lead to the same lattice Λ and
the same T2. The modular transformation is generated by
the S and T transformations,

S∶ τ → −
1

τ
; ð3Þ

T∶ τ → τ þ 1: ð4Þ

In addition, these satisfy the following algebraic relations,

S2 ¼ 1; ðSTÞ3 ¼ 1: ð5Þ

On top of that, when we impose TN ¼ 1, the so-called
congruence subgroups ΓðNÞ can be realized. The congru-
ence subgroups ΓðNÞ are isomorphic to (even) permutation
groups, e.g., Γð2Þ ≃ S3, Γð3Þ ≃ A4, Γð4Þ ≃ S4, and
Γð5Þ ≃ A5. (For subgroups of the modular group, e.g.,
see Ref. [27].)
String theory on T2 as well as orbifolds T2=ZN has the

modular symmetry. Furthermore, four-dimensional low-
energy effective field theory on the compactification
T2 × X4 as well as ðT2=ZNÞ × X4 also has the modular
symmetry, where X4 is a four-dimensional compact space.

A set of chiral superfields ϕðIÞ transform under the
modular transformation (2) as a multiplet [28],

ϕðIÞ → ðcτ þ dÞ−kIρðIÞðγÞϕðIÞ; ð6Þ

where −kI is the so-called modular weight and ρðIÞ denotes
a representation matrix. Modular invariant kinetic terms
expanded around a VEV of the modulus τ are written by

j∂μτj2
hτ − τ̄i2 þ

X
I

j∂μϕ
ðIÞj2

hτ − τ̄ikI : ð7Þ

Also, the superpotential should be invariant under the
modular symmetry. That is, the superpotential should have
vanishing modular weight in global supersymmetric mod-
els. Indeed, Yukawa coupling constants as well as higher-
order couplings constants are modular functions of τ
[20,23–25]. In the framework of supergravity theory, the
superpotential must be invariant up to the Kähler trans-
formation [28]. That implies that the superpotential of
supergravity models with the above kinetic term should
have modular weight one. In Secs. IV and V, we consider
the global supersymmetric models, and require that the
superpotential has vanishing modular weight, although it is
straightforward to arrange modular weights of chiral super-
fields for supergravity models.
The Dedekind eta-function ηðτÞ is one of famous

modular functions, which is written by

ηðτÞ ¼ q1=24
Y∞
n¼1

ð1 − qnÞ; ð8Þ

where q ¼ e2πiτ. The ηðτÞ function behaves under S and T
transformations as

ηð−1=τÞ ¼
ffiffiffiffiffiffiffi
−iτ

p
ηðτÞ; ηðτ þ 1Þ ¼ eiπ=12ηðτÞ: ð9Þ

The former transformation implies that the ηðτÞ function
has the modular weight 1=2.
The modular functions ðY1; Y2; Y3Þwith weight 2, which

behave as an A4 triplet, are obtained as

Y1ðτÞ¼
i
2π

�
η0ðτ=3Þ
ηðτ=3Þ þ

η0ððτþ1Þ=3Þ
ηððτþ1Þ=3Þ

þη0ððτþ2Þ=3Þ
ηððτþ2Þ=3Þ −

27η0ð3τÞ
ηð3τÞ

�
;

Y2ðτÞ¼
−i
π

�
η0ðτ=3Þ
ηðτ=3Þ þω2

η0ððτþ1Þ=3Þ
ηððτþ1Þ=3Þ þω

η0ððτþ2Þ=3Þ
ηððτþ2Þ=3Þ

�
;

Y3ðτÞ¼
−i
π

�
η0ðτ=3Þ
ηðτ=3Þ þω

η0ððτþ1Þ=3Þ
ηððτþ1Þ=3Þ þω2

η0ððτþ2Þ=3Þ
ηððτþ2Þ=3Þ

�
;

ð10Þ

in Ref. [26], where ω ¼ e2πi=3. (See Appendix)
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We can obtain the modular functions with weight 2,
which behave as an S3 doublet,

Y1ðτÞ ¼
i
4π

�
η0ðτ=2Þ
ηðτ=2Þ þ

η0ððτ þ 1Þ=2Þ
ηððτ þ 1Þ=2Þ −

8η0ð2τÞ
ηð2τÞ

�
;

Y2ðτÞ ¼
ffiffiffi
3

p
i

4π

�
η0ðτ=2Þ
ηðτ=2Þ −

η0ððτ þ 1Þ=2Þ
ηððτ þ 1Þ=2Þ

�
; ð11Þ

by a similar technique. (See Appendix)
We use the following expansions:

Y1ðτÞ ¼
1

8
þ 3qþ 3q2 þ 12q3 þ 3q4 � � � ;

Y2ðτÞ ¼
ffiffiffi
3

p
q1=2ð1þ 4qþ 6q2 þ 8q3 � � �Þ: ð12Þ

In Sec. V, we fit Y2=Y1 to experimental data. That is, we use
the following expansion:

1

Y1

¼ 1

8
·

1

1þ 24qþ � � � : ð13Þ

Such an expansion would be valid for j24qj≲ 0.1, i.e.

ImðτÞ≳ 0.65: ð14Þ

III. NEUTRINO MASS MATRIX

Before studying the A4 and S3 models, here using
experimental values of neutrino oscillations we write the
neutrino mass matrix, which is convenient to our analyses
in Secs. IV and V.

A. Experimental values

Flavor eigenstates of neutrino ðνe; νμ; ντÞ are linear
combinations of mass eigenstates ðν1; ν2; ν3Þ. Their mixing
matrix U, i.e. the so-called PMNS matrix can be written by

U ¼

0
B@

Ue1 Ue2 Ue3

Uμ1 Uμ2 Uμ3

Uτ1 Uτ2 Uτ3

1
CA

¼

0
B@

1 0 0

0 c23 s23
0 −s23 c23

1
CA
0
B@

c13 0 s13e−iδCP

0 1 0

−s13eiδCP 0 c13

1
CA

×

0
B@

c12 s12 0

−s12 c12 0

0 0 1

1
CA
0
B@

1 0 0

0 eiα2=2 0

0 0 eiα3=2

1
CA; ð15Þ

where cij ¼ cos θij and sij ¼ sin θij for mixing angles θij,
δCP is the Dirac CP phase, and αi are Majorana CP phases.
The mass-squared differences are defined by

δm2 ¼ m2
2 −m2

1; ð16Þ

Δm2 ¼ m2
3 −

m2
1 þm2

2

2
; ð17Þ

where mi is the mass eigenvalue of νi. We also define the
ratio between the mass-squared differences as

r ¼ δm2

jΔm2j : ð18Þ

Experimental values with normal ordering (NO) and
inverted ordering (IO) are shown in Table I.

B. General setup of our models

In Secs. IV and V, we consider the models, where the
charged lepton mass matrix is diagonal, following [26]. In
such models, the neutrino mass matrix mν is written as

mν ¼ U�diagðm1; m2; m3ÞU†; ð19Þ

by use of the PMNS matrix. By using three column vectors
U ¼ ðU⃗1; U⃗2; U⃗3Þ, the matrix mν can be decomposed into

mν ¼ mð1Þ
ν þ e−iα2mð2Þ

ν þ e−iα3mð3Þ
ν ; ð20Þ

where

mð1Þ
ν ≡m1ðU⃗�

1 · U⃗
†
1Þ; e−iα2mð2Þ

ν ≡m2ðU⃗�
2 · U⃗

†
2Þ;

e−iα3mð3Þ
ν ≡m3ðU⃗�

3 · U⃗
†
3Þ: ð21Þ

The matrices mðiÞ
ν are symmetric matrices and do not

depend on Majorana phases αi in this definition. The

overall sizes of mðiÞ
ν are of OðmiÞ.

In the case of NO (m1 ≃m2 ≪ m3), mν can be approxi-
mated by

TABLE I. The best-fit values and 1σ ranges in experiments with
NO and IO from Ref. [29].

Parameter Normal ordering Inverted ordering

δm2=10−5 eV2 7.37þ0.17
−0.16 7.37þ0.17

−0.16

jΔm2j=10−3 eV2 2.525þ0.042
−0.030 2.505þ0.034

−0.032

sin2 θ12=10−1 2.97þ0.17
−0.16 2.97þ0.17

−0.16

sin2 θ13=10−2 2.15þ0.07
−0.07 2.16þ0.08

−0.07

sin2 θ23=10−1 4.25þ0.21
−0.15 5.89þ0.16

−0.22 ⊕ 4.33þ0.15
−0.16

δCP=π 1.38þ0.23
−0.20 1.31þ0.31

−0.19
r 2.92þ0.10

−0.11 × 10−2 2.94þ0.11
−0.10 × 10−2
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mν≃mð3Þ
ν

¼m3

0
B@
s213e

2iδCP c13s13s23eiδCP c13s13c23eiδCP

c213s
2
23 c213c23s23

c213c
2
23

1
CA; ð22Þ

up to the phase. Here, we have omitted to write explicitly

some elements, because mð3Þ
ν is the symmetric matrix.

These matrix elements have the following relations:

ðmνÞ11ðmνÞ22 ¼ ðmνÞ212; ðmνÞ11ðmνÞ33 ¼ ðmνÞ213;

ðmνÞ22ðmνÞ33 ¼ ðmνÞ223;
ðmνÞ22
ðmνÞ33

¼ t223;

ðmνÞ11
ðmνÞ22 þ ðmνÞ33

¼ t213e
2iδCP ; ð23Þ

where tij ¼ tan θij. Thus, realistic models should be con-
sistent with these rules (23).
In the case of IO (m3 ≪ m1 ≃m2), the mass matrix mν

can be approximated by

mν ≃mð1Þ
ν þ e−iα2mð2Þ

ν : ð24Þ

Since α2 has not been determined by experiments, there is
one more parameter in IO than in NO.

IV. A4 MODEL

In this section, we consider the model in Ref. [26]
systematically. This model is the supersymmetric model,
although we can construct a similar nonsupersymmetric
model. This model has the flavor symmetry Γð3Þ ≃ A4.
We concentrate on the lepton sector. Table II shows the

A4 representations and kI of lepton and Higgs superfields,
Li, ecRi andHu;d. Recall that −kI is the modular weight. The
superfield ϕ is a flavon field and the A4 triplet. We arrange
kI such that the charged lepton masses are not modular
functions of τ and the flavon field does not appear in the
Weinberg operator. For example, we take kϕ ¼ 3,
kHu;d

¼ 0, kL ¼ 1 and kei ¼ −4 [26]. Then, the super-
potential terms of the charged lepton sector can be written
by

We ¼ β1ecR1
HdðLϕÞ1 þ β2ecR2

HdðLϕÞ10 þ β3ecR3
HdðLϕÞ100 ;

ð25Þ

where the βi are constant coefficients.
We assume that the flavon multiplet develops the VEV

along the direction, hϕi ¼ ðu; 0; 0Þ. Such a VEVas well as
the VEV vd of the neutral component of Hd leads to the
diagonal charged lepton mass matrix,

me ¼ uvd

0
B@

β1

β2

β3

1
CA: ð26Þ

By choosing proper values of couplings βi, we can realize
the experimental values of the charged lepton masses,
me;μ;τ.
On the other hand, we can write the Weinberg operator in

the superpotential

Wν ¼
1

Λ
ðHuHuLLYðτÞÞ1: ð27Þ

Since kL ¼ 1 and kHu
¼ 0, the couplings Y ¼ ðY1; Y2; Y3Þ

must be a modular form with modular weight 2 and an A4

triplet.3 We use the modular functions (10). Then, we obtain
the mass matrix of neutrinos written by

mmodel
ν ¼ v2u

Λ

0
B@

2Y1 −Y3 −Y2

−Y3 2Y2 −Y1

−Y2 −Y1 2Y3

1
CA; ð28Þ

where vu denotes the VEVof the neutral component of Hu.
Note that the charged lepton mass matrix is diagonal.

Thus, mixing angles as well as the CP phases originated
from the neutrino mass matrix. In the following subsec-
tions, we perform numerical analyses by using the mass
matrix (28).

A. Normal ordering in A4 model

Here, we study the NO case. In the case of NO, there are
constraints (24) for the realistic mass matrix. By using the
equations in the second line of (24), we obtain

t213e
2iδCP ¼ Y1

Y2 þ Y3

¼
�
4

�
1þ Y2

Y3

�
Y2

Y3

�
−1

¼ 1

4t223ð1þ t223Þ
:

ð29Þ

TABLE II. A4 representations and kI in the A4 model.

SUð2ÞL ×Uð1ÞY A4 kI

ecR1
ð1;þ1Þ 1 ke1

ecR2
ð1;þ1Þ 100 ke2

ecR3
ð1;þ1Þ 10 ke3

L ð2;−1=2Þ 3 kL
Hu ð2;þ1=2Þ 1 kHu

Hd ð2;−1=2Þ 1 kHd

ϕ (1, 0) 3 kϕ

3Although three more couplings 1þ 10 þ 100 can be included
in (27) generally, we only consider triplet coupling artificially
according to [26].

KOBAYASHI, TANAKA, and TATSUISHI PHYS. REV. D 98, 016004 (2018)

016004-4



This is the theoretical prediction in this model. By putting
experimental values with �3σ, the left- and right-hand
sides of (29) become

jt213e2iδCP j ∼ 0.02;
1

4t223ð1þ t223Þ
∼ 0.2; ð30Þ

respectively. The theoretical prediction (29) is inconsistent
with experimental data (30). Thus, this model does not
reproduce the experimental results for NO.

B. Inverted ordering in A4 model

Here, we study the IO case. The mass matrix in this
model mmodel

ν (28) obeys the following relations:

F1ðα2; sij; δCPÞ≡ ðmmodel
ν Þ11 þ 2ðmmodel

ν Þ23 ¼ 0; ð31Þ

F2ðα2; sij; δCPÞ≡ ðmmodel
ν Þ22 þ 2ðmmodel

ν Þ13 ¼ 0; ð32Þ

F3ðα2; sij; δCPÞ≡ ðmmodel
ν Þ33 þ 2ðmmodel

ν Þ12 ¼ 0: ð33Þ

Figure 1 shows a plot of ReF1. The shaded region shows
the 3σ deviation of sij and δCP. Figure 2 shows plots of
ReFi; i ¼ 2, 3. Since a realistic model must satisfy Fi ¼ 0
at the same α2, this model does not reproduce the
experimental results within the 3σ range for IO.

V. S3 MODEL

In this section, we construct the models with the flavor
symmetry Γð2Þ ≃ S3 in a way similar to the A4 model, and
study them systematically.
Table III shows the S3 representations and kI of lepton

and Higgs superfields. The ϕð1Þ and ϕð2Þ fields are flavon
fields, and ϕð1Þ and ϕð2Þ are S3 singlet and doublet,
respectively. In order to distinguish eRa

and eRb
, we assign

kI different from each other. For such a purpose, we can
impose an additional symmetry, e.g., Z2. We assign kI such
that we can realize the diagonal charged lepton mass matrix
similar to the A4 model. Indeed, the superpotential terms in
the charged lepton sector can be written by

We ¼ βaecRa
HdðLð1Þϕð1ÞÞ1 þ βbecRb

HdðLð2Þϕð2ÞÞ1
− βcecRc

HdðLð2Þϕð2ÞÞ10 ; ð34Þ

where the βi are constant coefficients. We assume that the
flavon fields develop their VEVs as

hϕð1Þi ¼ u1; hϕð2Þi ¼ ðu2; 0Þ: ð35Þ

Then, we can realize the diagonal charged lepton mass
matrix when the neutral component of Hd develops its
VEV. Similar to the A4 model, we can realize the exper-
imental values of the charged lepton masses, me;μ;τ by

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

2

R
e

F
1

FIG. 1. Plot of ReF1 with 3σ deviation of sij and δCP.
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2

R
e
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FIG. 2. Plots of ReF2 (left) and ReF3 (right) with 3σ deviation of sij and δCP.

TABLE III. S3 representations and kI in the S3 models.

SUð2ÞL × Uð1ÞY S3 kI

ecRa
ð1;þ1Þ 1 −3

ecRb
ð1;þ1Þ 1 −4

ecRc
ð1;þ1Þ 10 −4

Lð1Þ ð2;−1=2Þ 1 1
Lð2Þ ð2;−1=2Þ 2 1
Hu ð2;þ1=2Þ 1 0
Hd ð2;−1=2Þ 1 0
ϕð1Þ (1, 0) 1 2

ϕð2Þ (1, 0) 2 3
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choosing proper values of couplings βa. Note that the
assignment of generations to eRi

; i ¼ a, b, c is not fixed yet.
Modular invariant Weinberg operators in the superpo-

tential can be written by

Lν
eff ¼

1

Λ
½dHHðLð2ÞLð2ÞÞ2Yð2Þ þaHHðLð1ÞLð2ÞÞ2Yð2Þ

þbHHðLð1ÞLð1ÞÞ1Yð1Þ þcHHðLð2ÞLð2ÞÞ1Yð1Þ�; ð36Þ

where a; b; c; d ∈ C are constant coefficients. Yð1Þ and Yð2Þ

are modular forms with modular weight 2, and Yð1Þ and Yð2Þ
are S3 singlet and doublet,4 respectively. Note that since 10

in 2 × 2 ¼ 1þ 10 þ 2 is antisymmetric, ðLð2ÞLð2ÞÞ10 ¼ 0.
We denote Yð1Þ ¼ Y and Yð2Þ ¼ ðY1; Y2Þ. There are 6 ways
to assign 3 generations of lepton Li to S3 singlet Lð1Þ and
doublet Lð2Þ. The replacement of Lð2Þ ¼ ðLi; LjÞ →
ðLj; LiÞ corresponds to the replacement of Y1 ↔ Y2 and
less affects analysis. Therefore, we study 3 models shown
in table (IV). The fifth column shows the neutrino mass
matrix in each model. Since parameters b and c always
appear in bY and cY, respectively, we rewrite B≡ bY
and C≡ cY.

A. Normal ordering in S3 models

Here, we study the NO case in the three S3 models. In the
model 1, the neutrino mass matrix is written by

mmodel
ν ¼

0
B@

Cþ dY2 dY1 aY1

dY1 C − dY2 aY2

aY1 aY2 B

1
CA: ð37Þ

Since the charged lepton mass matrix is diagonal, the
PMNS matrix is determined only by the neutrino mass
matrix. The consistency conditions (24) are written by

ðCþ dY2ÞðC− dY2Þ ¼ ðdY1Þ2; BðCþ dY2Þ ¼ ðaY1Þ2;
BðC− dY2Þ ¼ ðaY2Þ2; ð38Þ

C − dY2

B
¼ t223;

Cþ dY2

Bþ ðC − dY2Þ
¼ e2iδCPt213: ð39Þ

We obtain dY2 ¼ C=2 from (38), and then

t223 ¼
C
2B

; e2iδCPt213 ¼
3

1þ 2B
C

ð40Þ

from (39). Thus, a prediction of this model is

e2iδCPt213 ¼ 3s223: ð41Þ

Experimental values lead to t213¼Oð10−2Þ and 3s223¼Oð1Þ.
Hence this model is inconsistent with experiments. Note
that since this result (41) does not depend on Yi, we obtain
the same result by replacing Y1 ↔ Y2, that is, Lð2Þ ¼
ðL1; L2Þ → ðL2; L1Þ.
In the models 2 and 3, we can analyze in the same way as

in the model 1. A prediction of the model 2 is

e2iδCPt213 ¼ 3c223; ð42Þ

and a prediction of the model 3 is

t223 ¼ 3: ð43Þ

Both of these predictions are inconsistent with experiments.
Hence, these models are not realistic.

B. Inverted ordering in S3 models

Here, we study the IO case in the three S3 models.

1. Model 1

In the model 1, the mass matrix is written by

mmodel
ν ¼

0
B@

Cþ dY2 dY1 aY1

dY1 C − dY2 aY2

aY1 aY2 B

1
CA: ð44Þ

From this matrix, we find

ðmmodel
ν Þ11 − ðmmodel

ν Þ22
2ðmmodel

ν Þ12
¼ ðmmodel

ν Þ23
ðmmodel

ν Þ13
¼ Y2

Y1

; ð45Þ

and hence

Fmodel ≡ 2ðmmodel
ν Þ12ðmmodel

ν Þ23
− ðmmodel

ν Þ13½ðmmodel
ν Þ11 − ðmmodel

ν Þ22� ¼ 0: ð46Þ

This is a prediction of this model.

TABLE IV. Three S3 models.

Model Lð1Þ Lð2Þ mmodel
ν

1 L3 ðL1; L2Þ  dY2 dY1 aY1

dY1 −dY2 aY2

aY1 aY2 0

!
þ
 cY 0 0

0 cY 0

0 0 bY

!

2 L2 ðL1; L3Þ  dY2 aY1 dY1

aY1 0 aY2

dY1 aY2 −dY2

!
þ
 cY 0 0

0 bY 0

0 0 cY

!

3 L1 ðL2; L3Þ � 0 aY1 aY2

aY1 −dY2 dY1

aY2 dY1 dY2

�
þ
�bY 0 0

0 cY 0

0 0 cY

�

4There are two independent modular forms with weight 2 and
Γð2Þ [26,30]. Thus, there is only one independent modular form
doublet Yð2Þ in (36).
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First, we define a function

F1ðα2;sij;δCPÞ¼2ðmνÞ12ðmνÞ23−ðmνÞ13½ðmνÞ11−ðmνÞ22�;
ð47Þ

with mν in (24), and search a set of the values of
ðα2; sij; δCPÞ satisfying F1 ¼ 0 within the 3σ experimental
range. Here, we treat α2 as a free parameter. Figure 3 shows
a plot of the F1 on a complex plane. The blue curve is an
one-parametric plot of the F1ðα2Þwith α2 ∈ ½0; 2πÞ and the
best-fit values of sij and δCP. The blue shaded region is a
two-parametric plot of the F1ðα2; δCPÞ with α ∈ ½0; 2πÞ,
δCP ∈ ð3σ-rangeÞ, and the best-fit values of sij. The origin
F1 ¼ 0 is the point consistent with the model prediction
(46), and this point corresponds to α2=π ≃ 0.26 and
δCP=π ≃ 0.89.
Second, we solve mmodel

ν ¼ mν with numerical matrix
mν. Since there are six complex model parameters and six
complex equations, we can solve these equations. An
approximate solution is

a ¼ 0.874 − 0.162i; B ¼ 0.469 − 0.246i;

C ¼ 0.607 − 0.235i; d ¼ −0.473 − 0.269i;

Y1 ¼ 0.163þ 0.330i; Y2 ¼ −0.468þ 0.218i: ð48Þ

At this stage, numerically expressed mass matrix mν has
degenerate eigenvalues m2

1 ¼ m2
2, and therefore mν does

not reproduce the mixing angle s212 and mass-squared
differences.
We can resolve the degeneracy m2

1 ¼ m2
2 by changing

parameters slightly. That is, we modify the parameter B →
Bþ ϵB to reproduce the s212 andmass-squared differences by
resolving the degeneracy. When the ϵB ¼ 0.030þ 0.026i,
observables are given by

s212¼2.79×10−1; s213¼2.37×10−2; s223¼5.95×10−1;

r¼2.91×10−2; sinδCP¼−0.58; ð49Þ

and Majorana phases are given by

α2=π ¼ 0.39; α3=π ¼ 0.70: ð50Þ

These observables are consistent with experimental results
up to 3σ, and the values of Majorana phases are predictions
of the model 1.
Finally, we fit the values of Y1 and Y2 in (48) with the

modular functions in (11). Since the overall coefficient of
YiðτÞ is not fixed in (A23), we fit the value of Y2=Y1 by

Y2ðτÞ
Y1ðτÞ

≃ 1.403 × e0.507πi: ð51Þ

Such a ratio can be obtained for τ ¼ 0.505þ 0.781i. This
value is sufficiently large compared with Eq. (14).
When we change the generation assignment as

Lð2Þ ¼ ðL1; L2Þ → ðL2; L1Þ, Y1 and Y2 are replaced each
other. Thus, we fit the values of Y1 and Y2 by

Y2ðτÞ
Y1ðτÞ

≃ 0.713 × e−0.507πi; ð52Þ

and we get the solution τ ¼ −0.507þ 0.960i.

2. Model 2

In the model 2, we can analyze with the same way as in
the model 1.
The model 2 predicts

Fmodel ≡ 2ðmmodel
ν Þ13ðmmodel

ν Þ23
− ðmmodel

ν Þ12½ðmmodel
ν Þ11 − ðmmodel

ν Þ33� ¼ 0: ð53Þ

We define

F2ðα2;sij;δCPÞ¼2ðmνÞ13ðmνÞ23−ðmνÞ12½ðmνÞ11−ðmνÞ33�;
ð54Þ

and this is shown in Fig. 4 similar to the model 1.
The condition F2 ¼ 0 is satisfied at α2=π ≃ 0.16 and
δCP=π ≃ 1.67.
An approximate solution of mmodel

ν ¼ mν is

a ¼ 0.872 − 0.277i; B ¼ 0.346 − 0.106i;

C ¼ 0.748 − 0.182i; d ¼ −0.361 − 0.098i;

Y1 ¼ −0.037 − 0.271i; Y2 ¼ −0.523þ 0.036i: ð55Þ

We can tune B → Bþ ϵB with ϵB ¼ 0.033þ 0.049i, and
we obtain

0.5 0.0 0.5

0.5

0.0

0.5

Re F1

Im
F

1

FIG. 3. F1 in the model 1.

NEUTRINO MIXING FROM FINITE MODULAR GROUPS PHYS. REV. D 98, 016004 (2018)

016004-7



s212¼2.94×10−1; s213¼2.30×10−2; s223¼5.81×10−1;

r¼2.93×10−2; sinδCP¼0.79; ð56Þ

and

α2=π ¼ 0.01; α3=π ¼ 0.42: ð57Þ

These observables are consistent with experimental results
up to 3σ except for the δCP. The value of δCP is out of 3σ
deviation. The values of Majorana phases are predictions of
the model 2. In this model, we can also tune a or d instead
of B.
Finally, we fit the values of Yi by

Y2ðτÞ
Y1ðτÞ

≃ 1.917 × e−0.479πi: ð58Þ

By solving this equation, we obtain the solution
τ ¼ −0.487þ 0.714i. When we change the generation
assignment as Lð2Þ ¼ ðL1; L3Þ → ðL3; L1Þ, we find

Y2ðτÞ
Y1ðτÞ

≃ 0.521 × e0.479πi; ð59Þ

and we obtain the solution τ ¼ 0.480þ 1.052i,

3. Model 3

The model 3 predicts

Fmodel ≡ 2ðmmodel
ν Þ13ðmmodel

ν Þ23
− ðmmodel

ν Þ12½ðmmodel
ν Þ33 − ðmmodel

ν Þ22� ¼ 0: ð60Þ

We define

F3ðα2;sij;δCPÞ¼2ðmνÞ13ðmνÞ23−ðmνÞ12½ðmνÞ33−ðmνÞ22�;
ð61Þ

and this is shown in Fig. 5 similar to the model 1.
The condition F2 ¼ 0 is satisfied at α2=π ≃ 0.14 and
δCP=π ≃ 1.53.
An approximate solution of mmodel

ν ¼ mν is

a ¼ 0.000þ 0.188i; B ¼ 0.952 − 0.121i;

C ¼ 0.458 − 0.143i; d ¼ 0.395 − 0.037i;

Y1 ¼ −1.203þ 0.255i; Y2 ¼ 0.289 − 0.061i: ð62Þ

We can tune B → Bþ ϵB with ϵB ¼ 0.001þ 0.081i, and
we obtain

s212¼3.02×10−1; s213¼2.16×10−2; s223¼5.89×10−1;

r¼2.89×10−2; sinδCP¼0.84; ð63Þ

and

α2=π ¼ −0.03; α3=π ¼ −0.54: ð64Þ

These observables are consistent with experimental results
up to 1σ except for the δCP. The value of δCP is out of 3σ
deviation. The values of Majorana phases are predictions of
the model 3. In this model, we can also tune C or d instead
of B.
Finally, we fit the values of Yi by

Y2ðτÞ
Y1ðτÞ

≃ 0.240 × e−1.000πi: ð65Þ

By solving this equation, we obtain the solution τ ¼
1.000þ 1.289i. When we change the generation assign-
ment as Lð2Þ ¼ ðL2; L3Þ → ðL3; L2Þ, we get

0.5 0.0 0.5

0.5

0.0

0.5

Re F2

Im
F

2

FIG. 4. F2 in the model 2.

0.5 0.0 0.5

0.5

0.0

0.5

Re F3

Im
F

3

FIG. 5. F3 in the model 3.
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Y2ðτÞ
Y1ðτÞ

≃ 4.163 × e1.000πi; ð66Þ

This equation has no solution.

VI. CONCLUSION

We have studied neutrino mixing in the models with A4

and S3 discrete flavor symmetries. In our models, couplings
are also nontrivial representations under the discrete flavor
symmetries, and they are modular functions. In the A4

model, following [26], we assigned the three generations of
leptons to the triplet of A4, and we restricted coupling
constant to be a triplet. In this case, the form of the neutrino
mass matrix is strongly restricted as (28), and there are no
realistic solution. In the S3 models, we assigned the three
generations of leptons to a singlet and a doublet of S3. In
these cases, there are five model parameters except for an
overall coefficient in Table IV. It may be easier to fit the
experimental data by increasing the number of parameters.
However, neutrino mass matrices in our models have
restricted forms, and are written by modular functions.
Thus, it is nontrivial to realize the experimental values by
many parameters. Indeed, there are no solution in the case
of normal ordering. In the case of inverted ordering, we can
reconstruct experimental results except for the δCP within
the 3σ-range in all three models. Additionally, we can fit
the mass matrix by using modular functions in all three
models. Also, we have predictions on the Majorana CP
phases.
It would be interesting to study more general form of

couplings including three singlets 1þ 10 þ 100 in A4 mod-
els, or other assignments of leptons in A4 and S3 models
such that the charged lepton mass matrix is not diagonal
and depend on modular functions of τ. Also, it would be
interesting to extend our analyses to other congruence
subgroups, e.g., Γð4Þ ≃ S4 and Γð5Þ ≃ A5.
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APPENDIX: MODULAR FUNCITONS

Here, following [26], we derive modular functions with
modular weight 2, which behave as an A4 triplet and an S3
doublet.
Suppose that the function fiðτÞ has modular weight ki.

That is, it transforms under the modular transformation (2),

fiðτÞ → ðcτ þ dÞkifiðτÞ: ðA1Þ

Then, it is found that

d
dτ

X
i

log fiðτÞ → ðcτ þ dÞ2 d
dτ

X
i

log fiðτÞ

þ cðcτ þ dÞ
X
i

ki: ðA2Þ

Thus, d
dτ

P
i log fiðτÞ is a modular function with the weight

2 if X
i

ki ¼ 0: ðA3Þ

We find the following transformation behaviors under T,

ηð3τÞ → eiπ=4ηð3τÞ;
ηðτ=3Þ → ηððτ þ 1Þ=3Þ;

ηððτ þ 1Þ=3Þ → ηððτ þ 2Þ=3Þ;
ηððτ þ 2Þ=3Þ → eiπ=12ηðτ=3Þ; ðA4Þ

and the following transformations under S,

ηð3τÞ →
ffiffiffiffiffiffiffi
−iτ
3

r
ηðτ=3Þ;

ηðτ=3Þ →
ffiffiffiffiffiffiffiffiffiffi
−i3τ

p
ηð3τÞ;

ηððτ þ 1Þ=3Þ → e−iπ=12
ffiffiffiffiffiffiffi
−iτ

p
ηððτ þ 2Þ=3Þ;

ηððτ þ 2Þ=3Þ → eiπ=12
ffiffiffiffiffiffiffi
−iτ

p
ηððτ þ 1Þ=3Þ: ðA5Þ

Using them, we can construct the modular functions with
weight 2 by

Yðα;β;γ;δjτÞ ¼ d
dτ

ðα logηðτ=3Þþ β logηððτþ 1Þ=3Þ
þ γ logηððτþ 2Þ=3Þþ δ logηð3τÞÞ; ðA6Þ

with αþ β þ γ þ δ ¼ 0 because of Eq. (A3). These func-
tions transform under S and T as

S∶ Yðα; β; γ; δjτÞ → τ2Yðδ; γ; β; αjτÞ;
T∶ Yðα; β; γ; δjτÞ → Yðγ; α; β; δjτÞ: ðA7Þ

Now let us construct an A4 triplet by the modular
functions Yðα; β; γ; δjτÞ. We use the (3 × 3) matrix pre-
sentations of S and T as

ρðSÞ¼ 1

3

0
B@
−1 2 2

2 −1 2

2 2 −1

1
CA; ρðTÞ¼

0
B@
1 0 0

0 ω 0

0 0 ω2

1
CA; ðA8Þ

where ω ¼ e2πi=3. They satisfy

ðρðSÞÞ2 ¼ I; ðρðSÞρðTÞÞ3 ¼ I; ðρðTÞÞ3 ¼ I; ðA9Þ
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that is, Γð3Þ ≃ A4. Using these matrices and Yðα; β; γ; δjτÞ,
we search an A4 triplet, which satisfy,0

B@
Y1ð−1=τÞ
Y2ð−1=τÞ
Y3ð−1=τÞ

1
CA ¼ τ2ρðSÞ

0
B@

Y1ðτÞ
Y2ðτÞ
Y3ðτÞ

1
CA;

0
B@

Y1ðτ þ 1Þ
Y2ðτ þ 1Þ
Y3ðτ þ 1Þ

1
CA ¼ ρðTÞ

0
B@

Y1ðτÞ
Y2ðτÞ
Y3ðτÞ

1
CA: ðA10Þ

Their solutions are written by

Y1ðτÞ¼ 3cYð1;1;1;−3jτÞ; Y2ðτÞ¼−6cYð1;ω2;ω;0jτÞ;
Y3ðτÞ¼−6cYð1;ω;ω2;0jτÞ; ðA11Þ
up to the constant c. They are explicitly written by use of
eta-function as

Y1ðτÞ¼
i
2π

�
η0ðτ=3Þ
ηðτ=3Þ þ

η0ððτþ1Þ=3Þ
ηððτþ1Þ=3Þ

þη0ððτþ2Þ=3Þ
ηððτþ2Þ=3Þ −

27η0ð3τÞ
ηð3τÞ

�
;

Y2ðτÞ¼
−i
π

�
η0ðτ=3Þ
ηðτ=3Þ þω2

η0ððτþ1Þ=3Þ
ηððτþ1Þ=3Þ þω

η0ððτþ2Þ=3Þ
ηððτþ2Þ=3Þ

�
;

Y3ðτÞ¼
−i
π

�
η0ðτ=3Þ
ηðτ=3Þ þω

η0ððτþ1Þ=3Þ
ηððτþ1Þ=3Þ þω2

η0ððτþ2Þ=3Þ
ηððτþ2Þ=3Þ

�
;

ðA12Þ
where we set c ¼ i=ð2πÞ. They can be expanded as

Y1ðτÞ ¼ 1þ 12qþ 36q2 þ 12q3 þ � � � ;
Y2ðτÞ ¼ −6q1=3ð1þ 7qþ 8q2 þ � � �Þ;
Y3ðτÞ ¼ −18q2=3ð1þ 2qþ 5q2 þ � � �Þ: ðA13Þ

Similarly, we can construct the modular functions, which
behave as an S3 doublet. Under T, we find the following
transformation behaviors,

ηð2τÞ → eiπ=6ηð2τÞ;
ηðτ=2Þ → ηððτ þ 1Þ=2Þ; ðA14Þ

ηððτ þ 1Þ=2Þ → eiπ=12ηðτ=2Þ: ðA15Þ
Also, S transformation is represented by

ηð2τÞ →
ffiffiffiffiffiffiffi
−iτ
2

r
ηðτ=2Þ;

ηðτ=2Þ →
ffiffiffiffiffiffiffiffiffiffi
−i3τ

p
ηð2τÞ; ðA16Þ

ηððτ þ 1Þ=2Þ → e−iπ=12
ffiffiffiffiffiffiffi
−iτ

p
ηððτ þ 1Þ=2Þ: ðA17Þ

Then, we consider

Yðα; β; γjτÞ ¼ d
dτ

ðα log ηðτ=2Þ þ β log ηððτ þ 1Þ=2Þ
þ γ log ηð2τÞÞ: ðA18Þ

These functions are the modular functions with the weight
2 if αþ β þ γ ¼ 0. They transform under S and T as

S∶ Yðα; β; γjτÞ → τ2Yðγ; β;αjτÞ;
T∶ Yðα; β; γjτÞ → Yðγ; α; βjτÞ: ðA19Þ

Using Yðα; β; γjτÞ, we construct the S3 doublet. For
example, we use the (2 × 2) matrix representations of S and
T as

ρðSÞ ¼ 1

2

�
−1 −

ffiffiffi
3

p

−
ffiffiffi
3

p
1

�
; ρðTÞ ¼

�
1 0

0 −1

�
: ðA20Þ

They satisfy

ðρðSÞÞ2 ¼ I; ðρðSÞρðTÞÞ3 ¼ I; ðρðTÞÞ2 ¼ I; ðA21Þ

that is, Γð3Þ ≃ S3. Using these matrices and Yðα; β; γjτÞ, we
search an S3 doublet, which satisfy,

�
Y1ð−1=τÞ
Y2ð−1=τÞ

�
¼ τ2ρðSÞ

�
Y1ðτÞ
Y2ðτÞ

�
;

�
Y1ðτ þ 1Þ
Y2ðτ þ 1Þ

�
¼ ρðTÞ

�
Y1ðτÞ
Y2ðτÞ

�
: ðA22Þ

Their solutions are written by

Y1ðτÞ ¼ cYð1; 1;−2jτÞ;
Y2ðτÞ ¼

ffiffiffi
3

p
cYð1;−1; 0jτÞ; ðA23Þ

up to the constant c. They are explicitly written by use of
eta-function as

Y1ðτÞ ¼
i
4π

�
η0ðτ=2Þ
ηðτ=2Þ þ

η0ððτ þ 1Þ=2Þ
ηððτ þ 1Þ=2Þ −

8η0ð2τÞ
ηð2τÞ

�
;

Y2ðτÞ ¼
ffiffiffi
3

p
i

4π

�
η0ðτ=2Þ
ηðτ=2Þ −

η0ððτ þ 1Þ=2Þ
ηððτ þ 1Þ=2Þ

�
; ðA24Þ

where we set c ¼ i=ð2πÞ. Moreover, they can be
expanded as

Y1ðτÞ ¼
1

8
þ 3qþ 3q2 þ 12q3 þ 3q4 � � � ;

Y2ðτÞ ¼
ffiffiffi
3

p
q1=2ð1þ 4qþ 6q2 þ 8q3 � � �Þ: ðA25Þ
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