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Neutrino mixing from finite modular groups
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We study the lepton flavor models, whose flavor symmetries are finite subgroups of the modular group
such as S3 and A,4. In our models, couplings are also nontrivial representations of these groups and modular
functions of the modulus. We study the possibilities that these models realize realistic values of neutrino

masses and lepton mixing angles.
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I. INTRODUCTION

One of the unsolved but important mysteries in particle
physics is the mystery about the flavor structure of the
quarks and leptons, such as the generation number, mass
hierarchy, and mixing angles. Such a mystery would
provide us with hints to explore physics beyond the
standard model. Indeed, several types of scenarios have
been proposed to understand quark and lepton masses and
mixing angles as well as CP phases.

One of interesting ideas is to impose non-Abelian
discrete flavor symmetries. Many models have been pro-
posed imposing non-Abelain discrete flavor symmetries,
e.g., S3, Ay, S4 and other various finite groups. (See for
review [1-4].) In particular, the lepton sector has been
intensively studied, because at least two of three lepton
mixing angles are large compared with the quark mixing
angles, and their experimental results have been improved
precisely. Recently, CP symmetry and its violation were
also studied [5-7].

Superstring theory is a promising candidate for the
unified theory of all interactions including gravity and
matter fields such as quarks and leptons as well as Higgs
fields. It is shown that superstring theory on certain
compactifications leads to non-Abelian discrete flavor
symmetries. For example, heterotic string theory on orbi-
folds can lead to Dy, A(54), etc. [8]. (See also [9,10].)" In
addition, type II magnetized and intersecting D-brane
models can lead to similar flavor symmetries [12—16].
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On the other hand, string theory on tori and orbifolds has
the modular symmetry. For example, modular symmetries
were studied in heterotic orbifold models [17-19] and
magnetized D-brane models [20-22]. In general, modular
transformations act nontrivially on string modes and inter-
change massless modes such as quarks and leptons to each
other. In this sense, modular symmetry is a non-Abelain
discrete flavor symmetry. Furthermore, it is interesting that
the modular symmetry includes S;, A4, S4, As as its
congruence subgroups, I'(N). However, there is a difference
between the modular symmetry and the usual flavor sym-
metries. Coupling constants such as Yukawa couplings
also transform nontrivially under the modular symmetry
[17,20-22], while coupling constants are invariant under the
usual flavor symmetries, although flavon fields, which
develop their vacuum expectation values (VEVs), transform
nontrivially under flavor symmetries. Moreover, Yukawa
couplings as well as higher order coupling constants are
modular functions of moduli [20,23-25].

By use of the above aspects, an interesting ansatz was
proposed in Ref. [26], where I'(3) ~ A, was used and
leptons were assigned to triplets and singlets of A;. Also
coupling constants were assigned to A, triplet and singlets,
which are modular functions. Then, neutrino masses and
mixing angles were analyzed. Such an ansatz would be
interesting in order to bridge a gap between underlying
theory such as superstring theory and low-energy physics
like neutrino phenomena. Our purpose in this paper is to
study systematically the above approach. We study the A,
model following Ref. [26]. Also, we extend our analysis to
S5 models.

This paper is organized as follows. In Sec. II, we give a
briel review on modular symmetry. In Sec. III, using
experimental values, we write the neutrino mass matrix,
which is convenient to our analyses. In Sec. IV, we study
systematically the A, model following Ref. [26]. In Sec. V,

%See for their difference and relation [22].
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we construct S; models in a way similar to the A4 model
and study them systematically. Section VI is our conclusion
and discussions. In Appendix, we briefly review modular
functions and show modular functions corresponding to the
A, triplet and the S5 doublet.

II. MODULAR TRANSFORMATION
AND ITS SUBGROUP SYMMETRIES

In this section, we give a brief review on the modular
symmetry and its congruence subgroups.

Toroidal compactification is one of simple compactifi-
cations. The two-dimensional torus T2 is obtained as
T?> = R?/A. Here, A is the two-dimensional lattice,
which is spanned by two lattice vectors, a; = 2zR and
a, = 2xRt. We use the complex coordinate, where R is a
real parameter, and 7 is a complex modulus parameter.

The choice of the basis vectors has some ambiguity. The
same lattice can be spanned by other bases,

a a b\ [/«
()= o
a; c d)\a
where a, b, ¢, d are integer with satisfying ad — bc = 1.

That is the SL(2, Z) transformation.
The modular parameter 7 = a,/a; transforms as

, at+b
= 2
T ct+d @)
under (1). Both lattice bases (., @) and (o}, @), and both
modular parameters, 7 and 7/, lead to the same lattice A and
the same T2. The modular transformation is generated by
the S and T transformations,

1

Sit—>——, (3)
T

T:7->7+1. (4)

In addition, these satisfy the following algebraic relations,

§? =1, (ST)® = 1. (5)
On top of that, when we impose TV = 1, the so-called
congruence subgroups I'(N) can be realized. The congru-
ence subgroups I'(NV) are isomorphic to (even) permutation
groups, e.g., [(2)~S;, T(3)~A;, T'(4)~S,, and
['(5) ~ As. (For subgroups of the modular group, e.g.,
see Ref. [27].)

String theory on T2 as well as orbifolds 72/Zy has the
modular symmetry. Furthermore, four-dimensional low-
energy effective field theory on the compactification
T? x X, as well as (T?/Zy) x X, also has the modular
symmetry, where X, is a four-dimensional compact space.

A set of chiral superfields ¢! transform under the
modular transformation (2) as a multiplet [28],

P — (ct+d)F1pD(y)pD, (6)

where —k; is the so-called modular weight and p/) denotes
a representation matrix. Modular invariant Kkinetic terms
expanded around a VEV of the modulus 7 are written by

Dpces )

Also, the superpotential should be invariant under the
modular symmetry. That is, the superpotential should have
vanishing modular weight in global supersymmetric mod-
els. Indeed, Yukawa coupling constants as well as higher-
order couplings constants are modular functions of z
[20,23-25]. In the framework of supergravity theory, the
superpotential must be invariant up to the Kihler trans-
formation [28]. That implies that the superpotential of
supergravity models with the above kinetic term should
have modular weight one. In Secs. IV and V, we consider
the global supersymmetric models, and require that the
superpotential has vanishing modular weight, although it is
straightforward to arrange modular weights of chiral super-
fields for supergravity models.

The Dedekind eta-function #(z) is one of famous
modular functions, which is written by

19 TI2

T—T

9=gI[0- ), )

where g = ¢%**. The 5(7) function behaves under S and T
transformations as

n(=1/7) = V=im(z),

The former transformation implies that the #(z) function
has the modular weight 1/2.

The modular functions (Y, Y, Y3) with weight 2, which
behave as an A, triplet, are obtained as

i(ﬂ’(fﬂ) W ((z+1)/3)
(/3) " n((z+1)/3)
W ((c+2)/3) 27n’(3f)>
n(+2)/3) 1B )

n(r+1) = e p(z). (9)

Yi(r)=

+

(n 1/3 2T 1D/3) wn’((7+2)/3)>
nf/3 n((z+1)/3)  n((z+2)/3) )’
<f1’ o/3) , EE1/3) wzn’((f+2)/3))
n(@/3) i+ 1)/3) n((z+2)/3) )

(10)

in Ref. [26], where @ = ¢?*/3. (See Appendix)
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We can obtain the modular functions with weight 2,
which behave as an S5 doublet,

i (&2 A=+ 1)/2) 87 (27)
"= <n<r/2> iz +1)/2)  n(2e) )

VB ((e/2) q(z+1)/2)
ne =g (e i) (1)

by a similar technique. (See Appendix)
We use the following expansions:

1
Yl(f):§+3q+3q2+12q3+3q4--~,

Y, (7) :\/§q1/2(1+4q+6q2+8q3-~-). (12)

In Sec. V, we fit Y, /Y to experimental data. That is, we use
the following expansion:

1

Y,

1

S — 13
1424q + - (13)

_1
-8

Such an expansion would be valid for [24¢| < 0.1, i.e.

Im(z) > 0.65. (14)

III. NEUTRINO MASS MATRIX

Before studying the A, and S; models, here using
experimental values of neutrino oscillations we write the
neutrino mass matrix, which is convenient to our analyses
in Secs. IV and V.

A. Experimental values

Flavor eigenstates of neutrino (v,,v,.v,) are linear
combinations of mass eigenstates (v, v, v3). Their mixing
matrix U, i.e. the so-called PMNS matrix can be written by

Uy Up Ug
U=|U,; Up Ug
Uy Up Ug
1 0 0 13 0 s5y3e7i0cr
=10 cy3 Sy 0 1 0
0 —sp3 3 —size’er 0 €13
crn s O 1 0 0
x| =sp cp 0|0 =2 0o |, (15)
0 0 1 0 0 elw/?

where c;; = cos 0;; and s;; = sin§;; for mixing angles 0;;,
Ocp 1s the Dirac CP phase, and «; are Majorana CP phases.
The mass-squared differences are defined by

om? = m3 — m?, (16)
2 4 2
Am? = m3 _mitmy (17)

2 ’

where m; is the mass eigenvalue of v;. We also define the
ratio between the mass-squared differences as

5m?

r= —|Am2| .

(18)

Experimental values with normal ordering (NO) and
inverted ordering (I0) are shown in Table L.

B. General setup of our models

In Secs. IV and V, we consider the models, where the
charged lepton mass matrix is diagonal, following [26]. In
such models, the neutrino mass matrix m,, is written as

m, = U*diag(m,, m,, m3)U", (19)

by use of the PMNS matrix. By using three column vectors
U= (171, l72, 173), the matrix m, can be decomposed into

m, = m") + emiem?) 4 emim ), (20)
where
m) =m (U} -0)).  eem =my (U3 - UY),
e—i“3m£3> = m3((7§ . l?%) (21)

The matrices mii) are symmetric matrices and do not

depend on Majorana phases «; in this definition. The
overall sizes of m\ are of O(m;).

In the case of NO (m; ~ m, < m3), m, can be approxi-
mated by

TABLE L. The best-fit values and 1o ranges in experiments with
NO and IO from Ref. [29].

Parameter Normal ordering Inverted ordering
sm? /1075 eV? 737017 737101
|Am2|/1073 eV? 2.52510:942 2.50510933
sin2,,/10~! 2974017 297104
sin%05/10-2 215709 216257

sin? 0,3/107! 425203 5.801055 @ 4.3310:13
Sep/m 138702 13159

r 2.927019 x 102 2.941011 x 1072
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3)

m,~my
513627 138138237 13513003877
=my ctys3 31023503 . (22)
3633

up to the phase. Here, we have omitted to write explicitly

3) . . .
some elements, because mﬁ) is the symmetric matrix.

These matrix elements have the following relations:

(my) 1 (my)y = (mu)%p (my)1(my)33 = ("%)%37
()l ) = (my, 22z
(m,)33
(mu)ll _ [%382550,’ (23)

(my)an + (my)33

where 7;; = tan 6;;. Thus, realistic models should be con-
sistent with these rules (23).

In the case of 10 (m3; <« m; ~ m,), the mass matrix m,,
can be approximated by

m, ~ m,(}) + e‘iazm,Ez). (24)

Since a, has not been determined by experiments, there is
one more parameter in IO than in NO.

IV. A, MODEL

In this section, we consider the model in Ref. [26]
systematically. This model is the supersymmetric model,
although we can construct a similar nonsupersymmetric
model. This model has the flavor symmetry I'(3) ~ A,.

We concentrate on the lepton sector. Table II shows the
A, representations and k; of lepton and Higgs superfields,
L;, e%; and H,, 4. Recall that —k; is the modular weight. The
superfield ¢ is a flavon field and the A, triplet. We arrange
k; such that the charged lepton masses are not modular
functions of 7 and the flavon field does not appear in the
Weinberg operator. For example, we take kj, =3,
ky,, =0, kp =1 and k,; = —4 [26]. Then, the super-
potential terms of the charged lepton sector can be written
by

W, = preg Ha(L), + Prei, Hi(LP)y + Pref Ha(Lp),r,
(25)

where the 3; are constant coefficients.

We assume that the flavon multiplet develops the VEV
along the direction, (¢) = (u,0,0). Such a VEV as well as
the VEV v, of the neutral component of H, leads to the
diagonal charged lepton mass matrix,

TABLE II. A, representations and k; in the A, model.

SU2), xU(1)y Ay k;
e;l (1,+1) 1 ke
eICQZ (1’ +1) 1” keZ
(1.+1) v kes
L (2,-1/2) 3 kr
H, (2,+1/2) 1 ky,
H, (2,-1/2) 1 ky,
¢ 1, 0) 3 ky

b
me = Uby P . (26)
P

By choosing proper values of couplings f;, we can realize
the experimental values of the charged lepton masses,

Mg iz
On the other hand, we can write the Weinberg operator in
the superpotential

W, = (H,H,LLY(2). (27)

Since k;, = 1 and k= 0, the couplings ¥ = (Y, Y,,Y3)
must be a modular form with modular weight 2 and an A,
triplet.3 We use the modular functions (10). Then, we obtain
the mass matrix of neutrinos written by

2Y, -Y; -Y,

_Y3 2Y2 _Yl ’ (28)
Y, Y, 2Ys

2
model __ &

my, A

where v, denotes the VEV of the neutral component of H,,.

Note that the charged lepton mass matrix is diagonal.
Thus, mixing angles as well as the CP phases originated
from the neutrino mass matrix. In the following subsec-
tions, we perform numerical analyses by using the mass
matrix (28).

A. Normal ordering in A4 model

Here, we study the NO case. In the case of NO, there are
constraints (24) for the realistic mass matrix. By using the
equations in the second line of (24), we obtain

. Y Y5\ Y,]-! 1
fye?er = ——1_ = [4 (1 + —2> —2} BV NI
Y, +7; Y3) Y3 4133(1 + 133)
(29)
3Although three more couplings 1+ 1’ +1” can be included

in (27) generally, we only consider triplet coupling artificially
according to [26].
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2.0

0.0 0.5 1.0 1.5
(22/71'

FIG. 1. Plot of Re F; with 3¢ deviation of s;; and 5¢p.

This is the theoretical prediction in this model. By putting
experimental values with 430, the left- and right-hand
sides of (29) become

1

2. e2%¢r |~ 0.02. S
7 | 413,(1 + 133)

02, (30)

respectively. The theoretical prediction (29) is inconsistent
with experimental data (30). Thus, this model does not
reproduce the experimental results for NO.

B. Inverted ordering in A, model

Here, we study the 10 case. The mass matrix in this
model m™d%! (28) obeys the following relations:

Fi(a2; 845, 6cp) = (), +2(mpt),; =0, (31)
Fy(ap: s, 6cp) = (mPo%) ), +2(mPl) 3 =0,  (32)
F3(ap: 8, 6cp) = (mJ°%) 33 + 2(mp) , = 0. (33)

Figure 1 shows a plot of Re F';. The shaded region shows
the 3o deviation of s;; and 6¢p. Figure 2 shows plots of
Re F;,i = 2, 3. Since a realistic model must satisfy F; =0
at the same a,, this model does not reproduce the
experimental results within the 3¢ range for 10.

0.0k s s s
0.0 0.5 1.0 15

ay/r

2.0

TABLE IIl. S5 representations and k; in the S;3 models.
SU2), xU(1)y S3 ky
R, (1,+1) 1 -3
ex, (1,+1) 1 -4
ex (1,+1) 1 -4
LM (2,-1/2) 1 1
L®? (2,-1/2) 2 1
H, (2,+1/2) 1 0
H, (2,-1/2) 1 0
pM {1, 0) 1 2
P 1, 0) 2 3
V. S3 MODEL

In this section, we construct the models with the flavor
symmetry ['(2) ~ S5 in a way similar to the A; model, and
study them systematically.

Table III shows the S5 representations and k; of lepton
and Higgs superfields. The ¢(!) and ¢ fields are flavon
fields, and ¢! and ¢ are S; singlet and doublet,
respectively. In order to distinguish e and e, , we assign
k; different from each other. For such a purpose, we can
impose an additional symmetry, e.g., Z,. We assign k; such
that we can realize the diagonal charged lepton mass matrix
similar to the A, model. Indeed, the superpotential terms in
the charged lepton sector can be written by

W, = paeg Ho(LYPD), + Byeg, Ha(LD 1)),

~ feeg Ho(LP¢)),., (34)
where the f§; are constant coefficients. We assume that the
flavon fields develop their VEVs as

<¢(1>> = Uy, <¢<2)> = (u2,0). (35)
Then, we can realize the diagonal charged lepton mass
matrix when the neutral component of H, develops its
VEV. Similar to the A, model, we can realize the exper-
imental values of the charged lepton masses, m,, . by

N L

o —0.5
o~
-1.0¢
—-15¢
0.0 0.5 1.0 1.5 2.0

a/r

FIG. 2. Plots of Re F, (left) and Re F’5 (right) with 3¢ deviation of s;; and d¢p.
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TABLE IV. Three S; models.

Model LY L@ mmodel

1 Ly (Ly.Ly) dY, dY, aY, Y 0 0
(le —dY, aY2)+(O cY O)
a¥, a¥, O 0 0 bY

2 Ly (Ly,L3) dYy, a¥, dy, cY 00
(aYl 0 aY2)+(O bY O)
dY, aY¥, —dY, 0 0 c¢Y

3 Ly (L Ly) 0 aY, avY, bY 0 0
aY, —=dY, dY|)+(O cY 0)
aY, dY, dy, 0 0 ¢Y

choosing proper values of couplings f,. Note that the
assignment of generations to e, i = a, b, ¢ is not fixed yet.

Modular invariant Weinberg operators in the superpo-
tential can be written by

1
b :K[dHH(L<2)L<2>)2Y<2) +aHH(LWL?),y?)

+bHH(LMWLM), YD) 4 cHH(LP L), YD], (36)

where a, b, ¢, d € C are constant coefficients. Y1) and Y?)
are modular forms with modular weight 2, and Y(!) and Y
are S singlet and doublet,* respectively. Note that since 1/
in 2x2 =141 42 is antisymmetric, (L»L®?), =0.
We denote Y!) = ¥ and Y®) = (Y|, Y,). There are 6 ways
to assign 3 generations of lepton L; to Sy singlet L(!) and
doublet L?). The replacement of L®?) = (L, L;)—
(L;j,L;) corresponds to the replacement of ¥, < Y, and
less affects analysis. Therefore, we study 3 models shown
in table (IV). The fifth column shows the neutrino mass
matrix in each model. Since parameters b and ¢ always

appear in bY and cY, respectively, we rewrite B = bY
and C = cY.

A. Normal ordering in S; models

Here, we study the NO case in the three S3 models. In the
model 1, the neutrino mass matrix is written by

C+dY2 le CZYI
mrdel — | gy, c—dv, av, |. (37)
aYl aY2 B

Since the charged lepton mass matrix is diagonal, the
PMNS matrix is determined only by the neutrino mass
matrix. The consistency conditions (24) are written by

“There are two independent modular forms with weight 2 and
I'(2) [26,30]. Thus, there is only one independent modular form
doublet Y? in (36).

(C+dY,)(C—dY,)=(dY,)?, B(C+dY,)=(aY,)?
B(C—dY,) = (aY,)*, (38)

C-dy, )
B — 23

_CHdl,
B+ (C—dY,)

= e, (39)

We obtain dY, = C/2 from (38), and then

C . 3
Gy =7z, e =—— (40)
2B 1+2

from (39). Thus, a prediction of this model is
eiderp2, = 352, (41)

Experimental values lead to 3, =O(1072) and 353, = O(1).
Hence this model is inconsistent with experiments. Note
that since this result (41) does not depend on Y;, we obtain
the same result by replacing Y, <> Y,, that is, L(®) =
(le LZ) - (LZv Ll)

In the models 2 and 3, we can analyze in the same way as
in the model 1. A prediction of the model 2 is

e¥ocrp3, =3c3,, (42)
and a prediction of the model 3 is
By =3. (43)

Both of these predictions are inconsistent with experiments.
Hence, these models are not realistic.

B. Inverted ordering in S; models

Here, we study the 10O case in the three S3 models.

1. Model 1

In the model 1, the mass matrix is written by
C + de dY] aY]

mym()del = le C- dY2 ClYZ . (44)
(lYl aY2 B

From this matrix, we find

(mgmdel)n - (minOdel)zz _ (min(’dd)m _ ﬁ
del - el y. (45)
2(mypesel)y, (mpes) ;Y

and hence

Fmodel = 2(m210del)12(mlr/nodel)23

- (mTOde])m[(merOdel)n - (mLm)de])zz] =0. (46)

This is a prediction of this model.

016004-6
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First, we define a function

Fy (az;siﬁ&CP) =2(m, ) 15(m, )23 = (my,)13[(my, )1, —

with m, in (24), and search a set of the values of
(ap, 5, 5¢cp) satisfying F; = 0 within the 36 experimental
range. Here, we treat a, as a free parameter. Figure 3 shows
a plot of the F'; on a complex plane. The blue curve is an
one-parametric plot of the F (a,) with a, € [0, 27) and the
best-fit values of s;; and §cp. The blue shaded region is a
two-parametric plot of the F(ay;8cp) with a € [0,2x),
Scp € (30-range), and the best-fit values of s;;. The origin
F; =0 is the point consistent with the model prediction
(46), and this point corresponds to a,/7~0.26 and
écp / /e 089

Second, we solve m™%! =, with numerical matrix
m,,. Since there are six complex model parameters and six
complex equations, we can solve these equations. An
approximate solution is

a=0.874 —0.162i,
C = 0.607 — 0.235i,
Y, = 0.163 + 0.330i,

B = 0.469 — 0.246i,
d = —0.473 — 0.269i,
Y, = —0.468 +0.218i.  (48)

At this stage, numerically expressed mass matrix m, has
degenerate eigenvalues m? = m3, and therefore m, does
not reproduce the mixing angle s?, and mass-squared
differences.

We can resolve the degeneracy m? = m3 by changing
parameters slightly. That is, we modify the parameter B —
B + e toreproduce the 57, and mass-squared differences by
resolving the degeneracy. When the ez = 0.030 + 0.0264,
observables are given by

057

ImF]
(=]
(=)

=057

-0.5 0.0 0.5

Re F]
FIG. 3. F, in the model 1.

51, =2.79x1071,
r=291x1072,

2, =237x 1072, $2,=5.95x10"",
sinep=—0.58, (49)

and Majorana phases are given by

a/m = 0.39, a3 /m = 0.70. (50)
These observables are consistent with experimental results
up to 30, and the values of Majorana phases are predictions
of the model 1.

Finally, we fit the values of Y, and Y, in (48) with the
modular functions in (11). Since the overall coefficient of
Y,() is not fixed in (A23), we fit the value of Y,/Y; by

~ 1.403 x %3077, (51)

Such a ratio can be obtained for 7 = 0.505 + 0.781i. This
value is sufficiently large compared with Eq. (14).
When we change the generation assignment as

L? = (L,,L,) = (L,,L,), Y, and Y, are replaced each
other. Thus, we fit the values of Y; and Y, by

Y,(7)
Y(z)

~(0.713 x 703077, (52)
and we get the solution 7 = —0.507 + 0.960i.

2. Model 2

In the model 2, we can analyze with the same way as in
the model 1.
The model 2 predicts

Fmodel =2 (mrynodel) = (mlr/nodel ) ’

- (mIUHOdd)lz[(minOdel)u - (minOdel)33] =0. (53)

We define

(m,)33],
(54)

Fa(aa3sj,0¢p) =2(my,)13(my ) o5 — (my) 12[(my) 1 —

and this is shown in Fig. 4 similar to the model 1.
The condition F, =0 is satisfied at a,/7~0.16 and
5CP/T[ ~ 167
An approximate solution of m™°%! = m, is
a=0.872-0.277i,
C =0.748 — 0.1824,

Y, = —0.037 — 0.271i,

B = 0.346 — 0.1064,
d =-0.361 — 0.098i,
Y, = —0.523 +0.036i. (55)

We can tune B — B + ¢ with €5 = 0.033 4 0.049i, and
we obtain

016004-7



KOBAYASHI, TANAKA, and TATSUISHI

PHYS. REV. D 98, 016004 (2018)

05T

IIan

=057t

-0.5 0.0 0.5
Re F2

FIG. 4. F, in the model 2.

53,=2.94x 107",
r=293x1072,

53,=2.30x1072, s3;,=5.81x107",
sinécp =0.79, (56)

and

a /7 =0.01, az/r =042, (57)
These observables are consistent with experimental results
up to 3o except for the §-p. The value of dcp is out of 3¢
deviation. The values of Majorana phases are predictions of
the model 2. In this model, we can also tune a or d instead
of B.

Finally, we fit the values of Y; by

~ 1.917 x e~ 04797 (58)

By solving this equation, we obtain the solution
7 =—0.487 4 0.714i. When we change the generation
assignment as L) = (L, L;) - (Ls,L,), we find

Y,(z
1(7)

and we obtain the solution 7 = 0.480 + 1.052i,

~—

~0.521 x 04797 (59)

~

3. Model 3
The model 3 predicts

Fmodel =2 (mIrJnodel ) 3 (minodel ) ’

- (mTOde])u[(m;nOdel)ﬁ - (anOdel)zz] =0. (60)

We define

T T

05

A AN

-05r

ImF3

-0.5 0.0 0.5

Re F3
FIG. 5. Fj3 in the model 3.

F3(aa;sij.0cp) =2(my, ) 13(m, )23 = (my,) 15 [(m,)33 = (m,,) 5],
(61)
and this is shown in Fig. 5 similar to the model 1.
The condition F, =0 is satisfied at a,/7~0.14 and
5CP/71' ~ 153
An approximate solution of mM%! =, is
a = 0.000 + 0.188i,
C =0.458 — 0.143i,
Y, = -1.203 + 0.255i,

B =0.952 - 0.1214,
d =0.395 - 0.037i,

Y, =0289-0.061i. (62)
We can tune B — B + ¢ with ez = 0.001 + 0.081i, and
we obtain
5%2 =3.02x 107!,

r=2.89x1072,

5 =216x1072, s2,=5.89x10"",
sindcp =0.84, (63)

and

a,/m = —0.03, ay/m = —0.54. (64)
These observables are consistent with experimental results
up to 1o except for the §-p. The value of dcp is out of 3¢
deviation. The values of Majorana phases are predictions of
the model 3. In this model, we can also tune C or d instead
of B.

Finally, we fit the values of Y; by

Y,(7)
Y(7)

~ (0.240 x =100 (65)

By solving this equation, we obtain the solution 7 =
1.000 + 1.289i. When we change the generation assign-
ment as L?) = (L,,L;) = (L3, L,), we get
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Y,(7)
Y (7)

~4.163 x ¢!0007, (66)

This equation has no solution.

VI. CONCLUSION

We have studied neutrino mixing in the models with A4
and S5 discrete flavor symmetries. In our models, couplings
are also nontrivial representations under the discrete flavor
symmetries, and they are modular functions. In the A,
model, following [26], we assigned the three generations of
leptons to the triplet of A4, and we restricted coupling
constant to be a triplet. In this case, the form of the neutrino
mass matrix is strongly restricted as (28), and there are no
realistic solution. In the S; models, we assigned the three
generations of leptons to a singlet and a doublet of S5. In
these cases, there are five model parameters except for an
overall coefficient in Table IV. It may be easier to fit the
experimental data by increasing the number of parameters.
However, neutrino mass matrices in our models have
restricted forms, and are written by modular functions.
Thus, it is nontrivial to realize the experimental values by
many parameters. Indeed, there are no solution in the case
of normal ordering. In the case of inverted ordering, we can
reconstruct experimental results except for the d-p within
the 3o-range in all three models. Additionally, we can fit
the mass matrix by using modular functions in all three
models. Also, we have predictions on the Majorana CP
phases.

It would be interesting to study more general form of
couplings including three singlets 1+ 1’ + 1” in A4 mod-
els, or other assignments of leptons in A4 and S3 models
such that the charged lepton mass matrix is not diagonal
and depend on modular functions of z. Also, it would be
interesting to extend our analyses to other congruence
subgroups, e.g., ['(4) ~ S, and ['(5) ~ As.

ACKNOWLEDGMENTS

The authors would like to thank Y. Takano for useful
discussions. T.K. was is supported in part by MEXT
KAKENHI Grant No. JP17H05395 and JSPS KAKENHI
Grant No. JP26247042.

APPENDIX: MODULAR FUNCITONS

Here, following [26], we derive modular functions with
modular weight 2, which behave as an Ay triplet and an S3
doublet.

Suppose that the function f;(z) has modular weight k;.
That is, it transforms under the modular transformation (2),

fi(z) =

Then, it is found that

(ct+a)fi(o). (A1)

Zlogf,
+c(er + d)z ;.

i

d
EZI.:Ing[(T) = (ct+d)?

(A2)

Thus, £ >, log f;(7) is a modular function with the weight
2 if

> ki=0.

i

(A3)

We find the following transformation behaviors under 7,

( T 171/4 (37)’
n(z/3) = n((z +1)/3),
n((z+1)/3) = n((z+2)/3),

3)—
n((z+2)/3) = e/'2y(z/3), (A4)

and the following transformations under S,

n(3z) — \/?n(r/-“ﬁ),

n(z/3) —» v —i3t(37),
n((x +1)/3) = 712/ =iy ((z + 2)/3),

n((z+2)/3) = ™' 2/—izy((z +1)/3). (A5)

Using them, we can construct the modular functions with
weight 2 by

V(@ p.1.000) = 5-(alogn(z/3) + Plogn((z +1)/3)
Frlogn((z+2)/3) + slogn(37)).

with a + f +y + 6 = 0 because of Eq. (A3). These func-
tions transform under S and 7 as

(A6)

Y(a.p.y.8lz) = *Y(8.7. p.alz).

Y(a.p.y.6lr) = Y(r.a.p.8]7). (A7)

Now let us construct an A, triplet by the modular
functions Y(a,p,y,8|r). We use the (3 x 3) matrix pre-
sentations of S and T as

| -1 2 2 100
p(S) =3 2 -1 2|, p)=[0w 0 |, (A8)
2 2 -1 00 o
where @ = ¢*/3. They satisfy
(P(8))* =L (p($)p(T))’ =L (p(T))* =L  (A9)
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that is, I'(3) ~ A4. Using these matrices and Y (a, #,7, d|7),
we search an A, triplet, which satisfy,

Yi(=1/7) Y (7)

Yo(=1/7) | =2p(S)| Ya(2) |,

Y3(=1/7) Y;(7)

Yi(r+1) Y, (1)

Yo(z+ 1) | =p(T)]| Ya(z) (A10)
Yi(z+1) Y3(1)

Their solutions are written by

Y (7)=3cY(1,1,1,-3|7),
Y5(t) =—-6¢Y(1,w,0%,0|7),

Y,(7) =—6¢Y(1,0?, w,07),
(A11)

up to the constant c¢. They are explicitly written by use of
eta-function as

L(n’(rm W ((+1)/3)

(/3)  n((z+1)/3)

H((z+2)/3) 27n’(3f)>

H(c+2)/3) 160 )’
( (t/3) (e +1)/3) wﬂ’((7+2)/3)>
nw/3) e DB)  Ca(c+2)/3))
<n<1/3> n(f+1)/3) wzn'<<r+2>/3>>
nw3) " e+ 0/3) " al(t+2)/3))
(A12)

Yi(r)=

+

where we set ¢ = i/(2x). They can be expanded as

Yi(z) =1+ 12qg+ 364> +12¢° + - - -,
Y,(7) = =6¢"3(1 +7q +8¢> +--),

Y3(z) = —18¢*3(1 +2g + 5¢> + - - -). (A13)

Similarly, we can construct the modular functions, which
behave as an S3 doublet. Under 7', we find the following
transformation behaviors,

n(27) — e'/%y(27),

n(z/2) = n((z+1)/2), (A14)
n((r +1)/2) = &"/y(z/2). (Al5)
Also, § transformation is represented by
n(27) - \/?’I(T/z)’
n(z/2) - V=i3m(27), (A16)
n((r+1)/2) > ™2V =in((c +1)/2).  (Al7)

Then, we consider

< (alogn(c/2) +

+ ylogn(%)).

Y(a.p.7lr) = Plogn((z+1)/2)

(A18)

These functions are the modular functions with the weight
2 if a4+ p +y = 0. They transform under S and T as

S: Y(a,p.yle) = Y (r, p.al7),

T: Y(a,p,7|7) = Y(7, (A19)

Using Y(a,f,y|r), we construct the S; doublet. For
example, we use the (2 x 2) matrix representations of S and
T as

ps=3( T 7). m=(p ) e
They satisfy
PEF=L (P =L  (GOP=L (a21)

that is, ['(3) =~ S5. Using these matrices and Y (a, 3, y|7), we
search an S5 doublet, which satisfy,

(icarm) = i)

(=179
a(-1/2
() =0 (ia)

(A22)
Their solutions are written by
Yi(z) = cY(1,1,-2|7),
Y, () = V3cY(1,-1,0/7), (A23)

up to the constant c. They are explicitly written by use of
eta-function as

(M2 (4 1)/2) 8y (20
10 =5 (o7 s 070~ ey
_VBi((=/2) n((z+1)/2)

n) =5 (e s A2
where we set ¢ =i/(2z). Moreover, they can be
expanded as

Y (7) :%+3q+3q2+ 124> +3q* - - -,

Y5(r) = V3q"2(1 + 4 + 642 + 84 - - ). (A25)

016004-10



NEUTRINO MIXING FROM FINITE MODULAR GROUPS

PHYS. REV. D 98, 016004 (2018)

[1] G. Altarelli and F. Feruglio, Rev. Mod. Phys. 82, 2701
(2010).

[2] H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada,
and M. Tanimoto, Prog. Theor. Phys. Suppl. 183, 1 (2010);
Lect. Notes Phys. 858, 1 (2012).

[3] S.F. King and C. Luhn, Rep. Prog. Phys. 76, 056201 (2013).

[4] S.F. King, J. Phys. G 42, 123001 (2015).

[5] F. Feruglio, C. Hagedorn, and R. Ziegler, J. High Energy
Phys. 07 (2013) 027.

[6] M. Holthausen, M. Lindner, and M. A. Schmidt, J. High
Energy Phys. 04 (2013) 122.

[71 M. C. Chen, M. Fallbacher, K. T. Mahanthappa, M. Ratz,
and A. Trautner, Nucl. Phys. B883, 267 (2014).

[8] T. Kobayashi, H. P. Nilles, F. Ploger, S. Raby, and M. Ratz,
Nucl. Phys. B768, 135 (2007).

[9] T. Kobayashi, S. Raby, and R. J. Zhang, Nucl. Phys. B704, 3
(2005).

[10] P. Ko, T. Kobayashi, J. h. Park, and S. Raby, Phys. Rev. D
76, 035005 (2007); 76, 059901(E) (2007).

[11] F. Beye, T. Kobayashi, and S. Kuwakino, Phys. Lett. B 736,
433 (2014).

[12] H. Abe, K. S. Choi, T. Kobayashi, and H. Ohki, Nucl. Phys.
B820, 317 (2009).

[13] H. Abe, K. S. Choi, T. Kobayashi, and H. Ohki, Phys. Rev.
D 80, 126006 (2009); 81, 126003 (2010).

[14] M. Berasaluce-Gonzalez, P. G. Camara, F. Marchesano, D.
Regalado, and A.M. Uranga, J. High Energy Phys. 09
(2012) 059.

[15] F. Marchesano, D. Regalado, and L. Vazquez-Mercado,
J. High Energy Phys. 09 (2013) 028.

[16] H. Abe, T. Kobayashi, H. Ohki, K. Sumita, and Y. Tatsuta,
J. High Energy Phys. 06 (2014) 017.

[17] J. Lauer, J. Mas, and H. P. Nilles, Phys. Lett. B 226, 251
(1989); Nucl. Phys. B351, 353 (1991).

[18] W. Lerche, D. Lust, and N. P. Warner, Phys. Lett. B 231,417
(1989).

[19] S. Ferrara, D. Liist, and S. Theisen, Phys. Lett. B 233, 147
(1989).

[20] D. Cremades, L.E. Ibanez, and F. Marchesano, J. High
Energy Phys. 05 (2004) 079.

[21] T. Kobayashi and S. Nagamoto, Phys. Rev. D 96, 096011
(2017).

[22] T. Kobayashi, S. Nagamoto, S. Takada, S. Tamba, and T. H.
Tatsuishi, Phys. Rev. D 97, 116002 (2018).

[23] S. Hamidi and C. Vafa, Nucl. Phys. B279, 465 (1987); L. J.
Dixon, D. Friedan, E. J. Martinec, and S. H. Shenker, Nucl.
Phys. B282, 13 (1987); T.T. Burwick, R. K. Kaiser, and
H.F. Muller, Nucl. Phys. B355, 689 (1991); J. Erler, D.
Jungnickel, M. Spalinski, and S. Stieberger, Nucl. Phys.
B397, 379 (1993); K.-S. Choi and T. Kobayashi, Nucl.
Phys. B797, 295 (2008).

[24] M. Cvetic and I. Papadimitriou, Phys. Rev. D 68, 046001
(2003); 70, 029903(E) (2004); S. A. Abel and A. W. Owen,
Nucl. Phys. B663, 197 (2003); D. Cremades, L. E. Ibanez,
and F. Marchesano, J. High Energy Phys. 07 (2003) 038;
S. A. Abel and A. W. Owen, Nucl. Phys. B682, 183 (2004).

[25] H. Abe, K.S. Choi, T. Kobayashi, and H. Ohki, J. High
Energy Phys. 06 (2009) 080.

[26] F. Feruglio, arXiv:1706.08749.

[27] R. de Adelhart Toorop, F. Feruglio, and C. Hagedorn, Nucl.
Phys. B858, 437 (2012).

[28] S. Ferrara, D. Lust, A. D. Shapere, and S. Theisen, Phys.
Lett. B 225, 363 (1989).

[29] F. Capozzi, E. Di Valentino, E. Lisi, A. Marrone, A.
Melchiorri, and A. Palazzo, Phys. Rev. D 95, 096014
(2017).

[30] R.C. Gunning, Lectures on Modular Forms (Princeton
University Press, Princeton, NJ, 1962).

016004-11


https://doi.org/10.1103/RevModPhys.82.2701
https://doi.org/10.1103/RevModPhys.82.2701
https://doi.org/10.1143/PTPS.183.1
https://doi.org/10.1007/978-3-642-30805-5
https://doi.org/10.1088/0034-4885/76/5/056201
https://doi.org/10.1088/0954-3899/42/12/123001
https://doi.org/10.1007/JHEP07(2013)027
https://doi.org/10.1007/JHEP07(2013)027
https://doi.org/10.1007/JHEP04(2013)122
https://doi.org/10.1007/JHEP04(2013)122
https://doi.org/10.1016/j.nuclphysb.2014.03.023
https://doi.org/10.1016/j.nuclphysb.2007.01.018
https://doi.org/10.1016/j.nuclphysb.2004.10.035
https://doi.org/10.1016/j.nuclphysb.2004.10.035
https://doi.org/10.1103/PhysRevD.76.035005
https://doi.org/10.1103/PhysRevD.76.035005
https://doi.org/10.1103/PhysRevD.76.059901
https://doi.org/10.1016/j.physletb.2014.07.058
https://doi.org/10.1016/j.physletb.2014.07.058
https://doi.org/10.1016/j.nuclphysb.2009.05.024
https://doi.org/10.1016/j.nuclphysb.2009.05.024
https://doi.org/10.1103/PhysRevD.80.126006
https://doi.org/10.1103/PhysRevD.80.126006
https://doi.org/10.1103/PhysRevD.81.126003
https://doi.org/10.1007/JHEP09(2012)059
https://doi.org/10.1007/JHEP09(2012)059
https://doi.org/10.1007/JHEP09(2013)028
https://doi.org/10.1007/JHEP06(2014)017
https://doi.org/10.1016/0370-2693(89)91190-8
https://doi.org/10.1016/0370-2693(89)91190-8
https://doi.org/10.1016/0550-3213(91)90095-F
https://doi.org/10.1016/0370-2693(89)90686-2
https://doi.org/10.1016/0370-2693(89)90686-2
https://doi.org/10.1016/0370-2693(89)90631-X
https://doi.org/10.1016/0370-2693(89)90631-X
https://doi.org/10.1088/1126-6708/2004/05/079
https://doi.org/10.1088/1126-6708/2004/05/079
https://doi.org/10.1103/PhysRevD.96.096011
https://doi.org/10.1103/PhysRevD.96.096011
https://doi.org/10.1103/PhysRevD.97.116002
https://doi.org/10.1016/0550-3213(87)90006-X
https://doi.org/10.1016/0550-3213(87)90676-6
https://doi.org/10.1016/0550-3213(87)90676-6
https://doi.org/10.1016/0550-3213(91)90491-F
https://doi.org/10.1016/0550-3213(93)90348-S
https://doi.org/10.1016/0550-3213(93)90348-S
https://doi.org/10.1016/j.nuclphysb.2008.01.016
https://doi.org/10.1016/j.nuclphysb.2008.01.016
https://doi.org/10.1103/PhysRevD.68.046001
https://doi.org/10.1103/PhysRevD.68.046001
https://doi.org/10.1103/PhysRevD.70.029903
https://doi.org/10.1016/S0550-3213(03)00370-5
https://doi.org/10.1088/1126-6708/2003/07/038
https://doi.org/10.1016/j.nuclphysb.2003.11.032
https://doi.org/10.1088/1126-6708/2009/06/080
https://doi.org/10.1088/1126-6708/2009/06/080
http://arXiv.org/abs/1706.08749
https://doi.org/10.1016/j.nuclphysb.2012.01.017
https://doi.org/10.1016/j.nuclphysb.2012.01.017
https://doi.org/10.1016/0370-2693(89)90583-2
https://doi.org/10.1016/0370-2693(89)90583-2
https://doi.org/10.1103/PhysRevD.95.096014
https://doi.org/10.1103/PhysRevD.95.096014

