
 

Revisiting electroweak symmetry breaking and the Higgs boson mass in
gauge-Higgs unification

Yuki Adachi1 and Nobuhito Maru2
1Department of Sciences, Matsue College of Technology, Matsue 690-8518, Japan

2Department of Mathematics and Physics, Osaka City University, Osaka 558-8585, Japan

(Received 18 April 2018; published 16 July 2018)

We propose a new model of five-dimensional SUð3Þ ⊗ Uð1ÞX gauge-Higgs unification with a
successful electroweak symmetry breaking and a realistic Higgs boson mass. In our model, the
representations of the fermions are very simple, the 3; 3̄ and 15 representations of SUð3Þ gauge group.
Employing the antiperiodic boundary conditions for 15 reduces massless exotic fermions and simplifies the
brane-localized mass terms. We calculate the one-loop Higgs potential in detail and find that a realistic
electroweak symmetry breaking and the observed Higgs mass are obtained.
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I. INTRODUCTION

Gauge-Higgs unification (GHU) [1,2] unifies the stan-
dard model (SM) gauge boson and Higgs boson into the
higher-dimensional gauge fields. This scenario is one of the
attractive ideas that solves the hierarchy problem without
invoking supersymmetry, since the Higgs boson mass and
its potential are calculable due to the higher-dimensional
gauge symmetry [2]. These characteristic features have
been studied and verified in models with various types of
compactification at the one-loop level [3] and at the two-
loop level [4]. The calculability of other physical observ-
ables such as S and T parameters [5], Higgs couplings to
digluons, diphotons [6], muon g − 2, and the electric dipole
moment of a neutron [7] have also been investigated. The
flavor physics, which is very nontrivial in GHU, has been
studied in Ref. [8].
In five-dimensional (5D) GHU, the Higgs potential at the

tree level is forbidden by the gauge symmetry in higher
dimensions, but it is radiatively generated. Because of its
characteristic features, it is nontrivial to obtain a realistic
electroweak symmetry breaking and the observed Higgs
mass. In GHU, Higgs quartic coupling is provided by the
gauge coupling squared and is one-loop suppressed.1

Therefore, the Higgs mass squared is naively of order
the one-loop factor times the compactification scale
squared m2

h ∼
1

16π2R2. Noting that the W boson mass and
the compactification scale are related by MW ¼ c=R in
terms of a dimensionless parameter “c,” which is deter-
mined from the potential minimum, the Higgs mass is too
small if the parameter c is an order of the unity [9]. If we
manage to realize a small parameter c by potential
minimization, this allows the larger compactification scale
and heavier Higgs mass. To obtain a small parameter c, it
is well known that it has to be generated by the
contributions from different representations of the gauge
group.
It is troublesome to eliminate the massless exotic

fermions. Embedding the SM fermions into the large
representations, there exist many massless exotic fermions,
and they are ordinarily made massive by introducing the
brane mass terms and extra brane-localized fermions
coupling to the Dirac mass with the exotic fermions.
Even for the SUð2Þ SM doublets, the number of massless
doublets is duplicated in each generation since massless
doublets appear from the isospin up and down components.
To eliminate half of the massless doublets, we also must
introduce the brane mass terms and extra brane-localized
doublets coupling to the Dirac mass with the exotic
massless doublets. Such brane mass terms complicate
models and analysis. Therefore, it is desirable to construct
a model in which the brane mass terms are as little as
possible.
In this paper, we propose a new model of 5D SUð3Þ ⊗

Uð1ÞX GHU with a successful electroweak symmetry
breaking and a realistic Higgs boson mass. In our model,
the representations of the fermions are only two kinds,
that is, the 3; 15 for the third-generation quarks and
3 ⊕ 3̄ representations of SUð3Þ gauge group for other
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1Note that top-quark contribution to the Higgs quartic coupling
is also given by the gauge coupling squared due to the fact that the
Yukawa couplings are proportional to the gauge coupling in this
scenario. The contribution is crucial in order to realize the
electroweak symmetry breaking.
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SM fermions.2 In our setup, the top quark is not embedded
into the 15 representations. In this case, we have no need to
obtain the massless zero mode from the bulk fermions, and
we can impose the antiperiodic boundary conditions for 15.
Therefore, we have no need to introduce the brane-
localized mass terms since the lightest mode is necessarily
massive. From the fundamental representations, the mass-
less exotic SUð2ÞL doublets are unavoidable because these
massless doublets appear from the up- and down-type
sectors. Namely, the number of the massless SUð2ÞL
doublets is doubled. We have to introduce the brane mass
terms for one linear combination of doublets to make them
massive.
We calculate the one-loop Higgs potential and search

viable matter content to realize a realistic electroweak
symmetry breaking and the observed Higgs mass. To
accomplish this, it is found that a pair of additional 15
representations other than the SM fermions should be
included. We also study whether the top- and bottom-quark
masses are reproduced. Note that the masses of SUð2ÞL
doublets are correlated through the mixing between the
SUð2ÞL doublets from the up- and down-type sectors.3 For
the third-generation quarks, it is not a trivial issue since the
mass difference between the top and bottom is larger than
those of the first two generations.
This paper is organized as follows. In Sec. II, we describe

our model. In Sec. III, we calculate the mass spectrum of
the various fields introduced in our model. The Higgs
potential is calculated and analyzed in Sec. IV. Section V is
devoted to a summary. In the Appendix, the details of
several representations are summarized.

II. MODEL

We consider the SUð3Þ ⊗ Uð1ÞX gauge theory in five-
dimensional flat space-time. The fifth extra dimension is
compactified on an orbifold S1=Z2, where the radius of S1

is R. Because the weak mixing angle θW in the SUð3Þ is not
consistent with the realistic one, the correct value is
effectively realized by the mixing between the Uð1ÞX
and neutral gauge bosons of SUð3Þ.
The SM chiral fermions are introduced as follows: the

top-quark (t) and bottom-quark (b) are fermions brane
localized at the y ¼ πR brane. Other SM fermions are
embedded in the bulk fermions Ψl and Ψq. They obtain a
mass through the five-dimensional gauge interaction in the
ordinary way in the context of the gauge-Higgs unification

scenario. Since the t and b quarks cannot interact directly
with the Higgs boson (Ay), the extra bulk fermions Ψ
(referred to as messenger fermions) are necessary to
connect them. We also introduce a pair of fermions
(referred to as mirror fermions) ΨM and XM to realize
the realistic electroweak symmetry breaking. Such fer-
mions may be a possible candidate of the dark matter as
pointed out in Ref. [10]. The outline of this model is
depicted in the Fig. 1. Such a strategy simplifies our model:
the top quark needs a large representation to reproduce the
large top Yukawa coupling as will be mentioned in the
following sections. In general, such a large representation
includes the massless exotic fermions, but they are auto-
matically removed from the low-energy effective theory by
the use of the antiperiodic boundary condition. The other
light fermions are embedded in the fundamental represen-
tations to assign the suitableUð1ÞX charges. Thus, the extra
brane fermions and brane mass terms are greatly reduced in
our model.
Since the gauge sectors of our model have been

discussed in detail [11], we focus on the fermion sector
in the following subsections.

A. Third-generation quark

In this subsection, we discuss the t and b quarks. As is
mentioned in the previous paragraph, the third-generation
tR, bR, and ð tLbLÞ are put on the y ¼ πR brane. The chirality is
defined as the eigenvalues of the chiral projection operators
L ¼ ð1 − γ5Þ=2; R ¼ ð1þ γ5Þ=2. As for the messenger
fermion, the 30 and 15−2=3 representations are introduced.
The subscripts stand for the Uð1ÞX charges in order to
couple with the brane fermions. These messenger fermions
include the two quark doublets Q3 and Q15 and the two
singlets B and T.
We impose the Z2 symmetry and antiperiodic boundary

condition on the messenger fermions to leave the chiral
fermions,

Ψðyþ 2πRÞ ¼ −ΨðyÞ; ΨðyÞ ¼ −Pγ5Ψð−yÞ; ð2:1Þ

where the matrix P is defined as P ¼ diagðþ þ −Þ for the
SUð3Þ fundamental representation. Because of such an
antiperiodic boundary condition, they obtain a mass at least
around 1=ð2RÞ, so the exotic fermions are automatically
removed from the low-energy effective theory. Since the Z2

parities at y ¼ πR are opposite of those of the y ¼ 0

FIG. 1. Setup of the model.

2The reason why the representation of the third generation is
only different from other SM fermions is to generate top Yukawa
coupling. In GHU, an enhancement factor is required to obtain
the top Yukawa coupling since Yukawa coupling is provided by a
gauge coupling and it gives the W boson mass after the
electroweak symmetry breaking.

3These mixings are crucial for the flavor violation in the
context of GHU; see Ref. [8].
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because of the antiperiodicity, the right-handed doublet and
left-handed singlet in the messenger fermion can couple to
the SM fermions (t andb quarks) at y ¼ πR. The Lagrangian
of the third-generation quarks becomes

Lfermion ⊃ ψ̄ð30ÞiD3ψð30Þ þ ψ̄ð15−2=3ÞiD15ψð15−2=3Þ

þ δðy − πRÞ
�
Q̄Li∂μγ

μQL þ t̄Ri∂μγ
μtR

þ b̄Ri∂μγ
μbR þ ϵLffiffiffiffiffiffi

πR
p QLðcos θQ15R þ sin θQ3RÞ

þ ϵtRffiffiffiffiffiffi
πR

p T̄LtR þ ϵbRffiffiffiffiffiffi
πR

p B̄LbR þ H:c:

�
: ð2:2Þ

The covariant derivative is DM ¼ ∂M þ ig5AM
a Taþ

ig05QXBMðM ¼ 0; 1; 2; 3; 4Þ. The AM and BM represent
the gauge fields of SUð3Þ and Uð1ÞX, respectively. The
QX stands for theUð1ÞX charges. The g5 and g05 represent the
five-dimensional gauge couplings, respectively. One can see
from this Lagrangian that the SM chiral fermions tR, bR, and
QL can interact with the Higgs (Ay) through the messenger
fermions.

B. First and second generations of quarks and leptons

We choose 3 and 3̄ representations for the SM chiral
fermions except for the t and b quarks. They include the
two doublets and two singlets as follows:

Ψqð3Þ ⊃
�
Q3

d

�
; Ψqð3̄1=3Þ ⊃

�
iσ2Q3̄

u

�
;

Ψlð3−2=3Þ ⊃
�
L3

e

�
; Ψlð3̄−1=3Þ ⊃

�
iσ2L3̄

ν

�
: ð2:3Þ

We impose the Z2 symmetry and periodic boundary
conditions on the Ψq and Ψl:

Ψl;qðþyÞ¼−Pγ5Ψl;qð−yÞ; Ψl;qðyÞ¼Ψl;qðyþ2πRÞ: ð2:4Þ
Then, the Lagrangian of the first two generations of quarks
is written as

Lfermion ⊃
X2
i¼1

fΨ̄i
qð30Þ½iD3þMi

qϵðyÞ�Ψi
qð30Þ

þ Ψ̄i
qð3̄1=3Þ½iD3̄þMi

qϵðyÞ�Ψi
qð3̄1=3Þg

þ
X3
i¼1

fΨ̄i
lð3−2=3Þ½iD3þMi

lϵðyÞ�Ψi
lð3−2=3Þ

þ Ψ̄i
lð3̄−1=3Þ½iD3̄þMi

lϵðyÞ�Ψi
lð3̄−1=3Þg

þδðyÞ
X2
i¼1

½Q̄i
Bi∂μγ

μQi
Bþ

ϵqffiffiffiffiffiffi
πR

p Q̄i
BQ

i
HþH:c:�

þδðyÞP3
i¼1

�
L̄i
Bi∂μγ

μLi
Bþ ϵlffiffiffiffiffi

πR
p L̄i

BL
i
HþH:c:

�
:

ð2:5Þ

The QB and LB are the brane-localized fermions that
couple one of the duplicated doublets. The QH and LH
are the linear combinations of doublets in the bulk fields.
The bulk mass terms Mq and Ml give exponential
suppressions like e−MqπR or e−MlπR to the Yukawa
couplings, and the hierarchical fermion masses can be
achieved by mild tuning of bulk mass parameters Mq

and Ml.

C. Mirror fermions

In our setup with the SM fermions and the messenger
fermions, we have to introduce further mirror fermions
since the realistic electroweak symmetry breaking does
not happen. In this paper, a pair of the 15 representa-
tions, which is referred to as mirror fermions, is
introduced. They obey the Z2 symmetry and periodic
boundary conditions as follows:

ΨMðþyÞ ¼ Pγ5ΨMð−yÞ;
ΨMðyÞ ¼ ΨMðyþ 2πRÞ: ð2:6Þ

Similar boundary conditions are imposed on the
XM as

XMðþyÞ ¼ −Pγ5XMð−yÞ;
XMðyÞ ¼ XMðyþ 2πRÞ: ð2:7Þ

Since these boundary conditions allow the massless
chiral fermion in the zero mode, the bulk mass term is
added to make them massive. The Lagrangian of the
mirror fermions is given by

Lfermion ⊃ Ψ̄MiDΨM þ X̄MiDXM þM½Ψ̄MXM þ X̄MΨM�:
ð2:8Þ

As mentioned earlier, mirror fermions introduced in
this subsection are interesting in that their lightest
fermion might be a dark matter candidate. Such a pair
of 15 representations is also natural from the viewpoint
of the minimal dark matter scenario in the context of
gauge-Higgs unification [10].

III. MASS SPECTRUM

We discuss here the mass spectrum necessary
for calculating the one-loop effective potential for
Higgs field.

A. Top and bottom sectors

The 15 representation of SUð3Þ includes the singlet T,
doublet Q15, triplet Σ, quartet Λ, and quintet Δ of SUð2Þ.
Since the 3 representation includes doubletQ3 and singletB,
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there are two doublets Q3 ¼ ðT3

B3
Þ and Q15 ¼ ðT15

B15
Þ in our

model. Adopting the vector notation T⃗ ¼ ðT; T3; T15;Σt;
Λt;ΔtÞ and B⃗ ¼ ðB;B3; B15;Σb;Λb;ΔbÞ, the quadratic parts
of the Lagrangian for the top and bottom quarks are

Lfermion ⊃ ψ̄ð30ÞiD3ψð30Þ þ ψ̄ð15−2=3ÞiD15ψð15−2=3Þ
⊃ ⃗T̄

T
i∂MΓMT⃗ þ ⃗B̄

T
i∂MΓMB⃗þMW

× ½ ⃗T̄T
Mtγ

5T⃗ þ ⃗B̄
T
Mbγ

5B⃗� ð3:1Þ
where the covariant derivatives are given by

D3M ¼ ∂M − ig5AM;

D15M ¼ ∂M þ 2ig5AM þ i
2

3
g05BM: ð3:2Þ

The subscripts t and b in the T⃗ and B⃗mean that they have the
same electric charge of t and b quarks, respectively.T3;15 and
B3;15 mean SUð2Þ quark doublets involved in the 3 and 15
representations. The W boson mass is MW ¼ gv=2. The
matrices Mt and Mb are defined by

Mt ¼

0
BBBBBBBB@

0 0 2 0 0 0

0 0 0 0 0 0

2 0 0
ffiffiffi
6

p
0 0

0 0
ffiffiffi
6

p
0

ffiffiffi
6

p
0

0 0 0
ffiffiffi
6

p
0 2

0 0 0 0 2 0

1
CCCCCCCCA
;

Mb ¼

0
BBBBBBBB@

0 1 0 0 0 0

1 0 0 0 0 0

0 0 0
ffiffiffi
3

p
0 0

0 0
ffiffiffi
3

p
0 2 0

0 0 0 2 0
ffiffiffi
3

p

0 0 0 0
ffiffiffi
3

p
0

1
CCCCCCCCA
: ð3:3Þ

The boundary conditions are

�
T⃗ð−yÞ ¼ −γ5PT⃗ðþyÞ
T⃗ðyÞ ¼ −T⃗ðyþ 2πRÞ

;

�
B⃗ð−yÞ ¼ −γ5PB⃗ðþyÞ
B⃗ðyÞ ¼ −B⃗ðyþ 2πRÞ;

ð3:4Þ
where P ¼ diagðþ;−;−;þ;−;þÞ.
We first focus on the top-quark Kaluza-Klein mass

spectrum. The equations of motion (EOM) of the t quark are

0 ¼ i∂μΓμT⃗L þ i∂5Γ5T⃗R þ iMWMtΓ5T⃗R

þ ϵtRffiffiffiffiffiffi
πR

p ðtR; 0; 0; 0; 0; 0ÞTδðy − πRÞ; ð3:5Þ

0 ¼ i∂μΓμT⃗R þ i∂5Γ5T⃗L þ iMWMtΓ5T⃗L

þ ϵLffiffiffiffiffiffi
πR

p ð0; sin θtL; cos θtL; 0; 0; 0ÞTδðy − πRÞ; ð3:6Þ

0 ¼
�
i∂μγ

μtL þ ϵLffiffiffiffiffiffi
πR

p ðcos θT15R þ sin θT3RÞ
�
δðy − πRÞ;

ð3:7Þ

0 ¼
�
i∂μγ

μtR þ ϵtRffiffiffiffiffiffi
πR

p TL

�
δðy − πRÞ: ð3:8Þ

The field redefinition

⃗T̃ ¼ exp½iMWMty�T⃗ ð3:9Þ

simplifies the bulk equations as

0 ¼ i∂μγ
μ ⃗T̃L − ∂y

⃗T̃R; ð3:10Þ

0 ¼ i∂μγ
μ ⃗T̃R þ ∂y

⃗T̃L: ð3:11Þ

Then, we obtain the followingmode functions respecting the
Z2 parities at y ¼ 0:

⃗T̃L ∝
1ffiffiffiffiffiffi
πR

p

2
6666666664

sinðmnyÞTn
L

cosðmnyÞTn
3L

cosðmnyÞTn
15L

sinðmnyÞΣn
tL

cosðmnyÞΛn
tL

sinðmnyÞΔn
tL

3
7777777775
;

⃗T̃R ∝
1ffiffiffiffiffiffi
πR

p

2
6666666664

cosðmnyÞTn
R

− sinðmnyÞTn
3R

− sinðmnyÞTn
15R

cosðmnyÞΣn
tR

− sinðmnyÞΛn
tR

cosðmnyÞΔn
tR

3
7777777775
: ð3:12Þ

mn stands for mass eigenvalues: i∂μγ
μT⃗ ¼ mnT⃗. To obtain

the mass spectrum, we have to impose the boundary con-
ditions. One is an antiperiodic boundary condition with
respect to S1, and the other is the boundary condition at
the y ¼ πR that is precisely discussed in Ref. [12]. The latter
can be obtained by integrating out the EOM around y ¼ πR:

0 ¼ lim
ε→0

Z
πR

πR−ε
dy½EOM�: ð3:13Þ

For example, the boundary condition from the first line of
Eq. (3.5) gives
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0 ¼ lim
ε→0

Z
πR

πR−ε
dy

�
i∂μΓμT⃗L þ i∂5Γ5T⃗R þ iMWMtΓ5T⃗R þ ϵtRffiffiffiffiffiffi

πR
p ðtR; 0; 0; 0; 0; 0ÞTδðy − πRÞ

�

¼ lim
ε→0

½iΓ5ðTR; T3R; T15R;ΣtR;ΛtR;ΔtRÞT�πRπR−ε þ
ϵtRffiffiffiffiffiffi
πR

p ðtR; 0; 0; 0; 0; 0ÞT; ð3:14Þ

where we use the fact that the bulk fields are continuous.
From the Z2 parities at the y ¼ πR that are derived from
Eq. (3.4), Z2-odd fields vanish at the fixed point: 0 ¼
TRðπRÞ ¼ ΣtRðπRÞ ¼ ΔtRðπRÞ. Simplifying the notation
as πR− ¼ πR − ε, it becomes

0 ¼ iΓ5lim
ε→0

0
BBBBBBBB@

−TRðπR−Þ
T3RðπRÞ − T3RðπR−Þ
T15RðπRÞ − T15RðπR−Þ

−ΣtRðπR−Þ
ΛtRðπRÞ − ΛtRðπR−Þ

−ΔtRðπR−Þ

1
CCCCCCCCA

þ ϵtRffiffiffiffiffiffi
πR

p

0
BBBBBBBB@

tR
0

0

0

0

0

1
CCCCCCCCA
:

ð3:15Þ
The first component indicates that the boundary conditions
are modified by the boundary term. The others are ordinary
boundary conditions: continuity conditions and Z2 condi-
tions. Combining the first relation in (3.15) and the EOM for
the boundary fermion tR (3.5), we have

0 ¼ ϵtRffiffiffiffiffiffi
πR

p i∂μγ
μtR þ ϵ2tR

πR
TL ¼ i∂μγ

μTR þ ϵ2tR
πR

TL: ð3:16Þ

To summarize, the modified boundary conditions are

0 ¼ i∂μγ
μTRðπR−Þ − ϵ2tR

πR
TLðπR−Þ; ð3:17Þ

0 ¼ i∂μγ
μT3LðπR−Þ þ ϵ2L

πR
sin θ½cos θT15RðπR−Þ

þ sin θT3RðπR−Þ�; ð3:18Þ

0 ¼ i∂μγ
μT15LðπR−Þ þ ϵ2L

πR
cos θ½cos θT15RðπR−Þ

þ sin θT3RðπR−Þ�; ð3:19Þ
0 ¼ ΣtRðπR−Þ ¼ ΛtLðπR−Þ ¼ ΔtRðπR−Þ: ð3:20Þ
Taking into account these boundary conditions,we find avery
complicated relation determining the KK mass spectrum of
the top quark,

0 ¼ 2m̂2
ncos2m̂nðcos2m̂n − sin2ð2M̂WÞÞðcos2m̂n − sin2ð4M̂WÞÞ

− ϵ2Lm̂n cos m̂n sin m̂n½sin2θfsin2ð4M̂WÞcos2m̂n þ sin2ð2M̂WÞcos2m̂n − 2sin2ð2M̂WÞsin2ð4M̂WÞg
− 2cos4m̂n þ sin2ð4M̂WÞcos2m̂n þ sin2ð2M̂WÞcos2m̂n�

þ ϵ2tR
4
m̂n sin m̂n cos m̂n½8cos4m̂n − 7sin2ð4M̂WÞcos2m̂n − 4sin2ð2M̂WÞcos2m̂n þ 3sin2ð2M̂WÞsin2ð4M̂WÞ�

−
ϵ2Lϵ

2
tR

8
½cos2θf8ðsin2ð4M̂WÞ þ sin2ð2M̂WÞÞcos4m̂n

þ cos2m̂nðð−11sin2ð2M̂WÞ − 7Þsin2ð4M̂WÞ þ sinð4M̂WÞ sinð8M̂WÞ − 4sin2ð2M̂WÞÞ
þ 6sin2ð2M̂WÞsin2ð4M̂WÞg þ 16cos6m̂n − 2ð7sin2ð4M̂WÞ þ 4sin2ð2M̂WÞ þ 8Þcos4m̂n

þ 2cos2m̂nfð3sin2ð2M̂WÞ þ 7Þsin2ð4M̂WÞ þ 4sin2ð2M̂WÞg − 6sin2ð2M̂WÞsin2ð4M̂WÞ�; ð3:21Þ
where m̂n ¼ πRmn and M̂W ¼ πRMW are dimensionless parameters normalized by πR. The lightest mass eigenvalue can be
found by taking the limit M̂W → 0:

m̂2
t ¼

4ϵ2Lϵ
2
tR

ð1þ ϵ2LÞð1þ ϵ2tRÞ
ð1 − sin2θÞM̂2

W þOðM̂4
WÞ: ð3:22Þ

For the small θ and large ϵtR and ϵL, the mt is almost equal to 2MW . This result allows us to interpret it as a top quark.
The bottom-quark mass is obtained by the same procedure as the top-quark mass except for the Yukawa coupling.

The EOM for the bottom-quark sector become

0 ¼ i∂μΓμB⃗L þ i∂5Γ5B⃗R þ iMWMbΓ5B⃗R þ ϵbRffiffiffiffiffiffi
πR

p ðbR; 0; 0; 0; 0; 0ÞTδðy − πRÞ; ð3:23Þ

0 ¼ i∂μΓμB⃗R þ i∂5Γ5B⃗L þ iMWMbΓ5B⃗L þ ϵLffiffiffiffiffiffi
πR

p ð0; sin θbL; cos θbL; 0; 0; 0ÞTδðy − πRÞ; ð3:24Þ
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0 ¼
�
i∂μγ

μbL þ ϵLffiffiffiffiffiffi
πR

p ðcos θB15R þ sin θB3RÞ
�
δðy − πRÞ;

ð3:25Þ

0 ¼
�
i∂μγ

μbR þ ϵbRffiffiffiffiffiffi
πR

p BL

�
δðy − πRÞ: ð3:26Þ

The mode functions are given as

⃗B̃L ∝
1ffiffiffiffiffiffi
πR

p

2
6666666664

sinðmnyÞBn
L

cosðmnyÞBn
3L

cosðmnyÞBn
15L

sinðmnyÞΣn
bL

cosðmnyÞΛn
bL

sinðmnyÞΔn
bL

3
7777777775
;

⃗B̃R ∝
1ffiffiffiffiffiffi
πR

p

2
6666666664

cosðmnyÞBn
R

− sinðmnyÞBn
3R

− sinðmnyÞBn
15R

cosðmnyÞΣn
bR

− sinðmnyÞΛn
bR

cosðmnyÞΔn
bR

3
7777777775
; ð3:27Þ

B⃗ ¼ exp½iMWMby� ⃗B̃: ð3:28Þ

The modified boundary conditions are

0 ¼ i∂μγ
μBRðπR−Þ − ϵ2tR

πR
BLðπR−Þ; ð3:29Þ

0 ¼ i∂μγ
μB3LðπR−Þ þ ϵ2L

πR
sin θ½cos θB15RðπR−Þ

þ sin θB3RðπR−Þ�; ð3:30Þ

0 ¼ i∂μγ
μB15LðπR−Þ þ ϵ2L

πR
cos θ½cos θB15RðπR−Þ

þ sin θB3RðπR−Þ�; ð3:31Þ

0 ¼ ΣbRðπR−Þ ¼ ΛbLðπR−Þ ¼ ΔbRðπR−Þ: ð3:32Þ

Repeating the same analysis, we find a corresponding
relation determining the KK mass spectrum of the bottom
quark:

0 ¼ −2m̂2
nðsin2m̂n − cos2M̂WÞ2ðsin2m̂n − cos2ð3M̂WÞÞ

−
ϵ2L
2
m̂n sin m̂n cos m̂nðsin2m̂n − cos2M̂WÞ½sin2θðcos2ð3M̂WÞ − cos2M̂WÞ − 4sin2ðm̂nÞ þ 3cos2ð3M̂WÞ þ cos2ðM̂WÞ�

þ 2ϵ2bRm̂n sin m̂n cos m̂nðsin2m̂n − cos2M̂WÞðsin2m̂n − cos2ð3M̂WÞÞ

þ ϵ2Lϵ
2
bR

2
½fðcos2M̂W − cos2ð3M̂WÞÞsin4m̂n − 4sin2M̂Wcos2M̂Wcos2ð3M̂WÞ

þ ðcos2ð3M̂WÞ − 4cos4M̂W þ 3cos2M̂WÞsin2m̂ngsin2θ þ 4sin6m̂n

− ð3cos2ð3M̂WÞ þ cos2M̂W þ 4Þsin4m̂n þ ð3cos2ð3M̂WÞ þ cos2ðM̂WÞÞsin2m̂n�: ð3:33Þ

The lightest mass is obtained as

m̂2
b ¼

ϵ2Lϵ
2
bR

ð1þ ϵ2LÞð1þ ϵ2tRÞ
sin2θM̂2

W þOðM̂4
WÞ; ð3:34Þ

where m̂b ¼ πRmb. The bottom mass can be achieved by
tuning parameters θ; ϵbR. To reproduce the observed masses
mt ¼ 170 GeV and mb ¼ 4.2 GeV in (3.34), ϵL, ϵtR ≫ 1
and θ ≪ 1 are required. For example, if we choose
ϵL ¼ ϵtR ¼ 10, θ ¼ 0.1, and ϵbR ¼ 0.6, then we obtain
mt ∼ 1.97MW ∼ 158 GeV and mb ∼ 4.09 GeV.
We note that the exotic fermions with the different

quantum numbers from those of the SM particle are
included in the 15 representation. Their spectra are given
by the solutions of the following equations:

0 ¼ cos m̂n cosðm̂n − 2M̂WÞ cosðm̂n þ 2M̂WÞ;
0 ¼ cosðm̂n − M̂WÞ cosðm̂n þ M̂WÞ;
0 ¼ cos m̂n: ð3:35Þ

The lightest mode of the exotic fermions obtains a mass
around ∼1=ð2RÞ as we mentioned before.

B. First two generations of quarks and three
generations of leptons

In this subsection, we derive the mass spectrum
of the 3 and 3̄ representation. Since the procedure is almost
similar, we only point out the differences. The QH and LH
are given by
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ðQSM; QHÞT ¼ UQðQ3; Q3̄ÞT; ðLSM; LHÞT ¼ UlðL3; L3̄ÞT:
ð3:36Þ

The QH and LH have the brane mass term and become
massive. On the other hand, the QSM and LSM are left
massless, which corresponds to the SM doublets.
The EOM of the down-type quark is derived as

½i∂MΓMþ iMWσ1γ
5−MϵðyÞ�d⃗¼−

ϵffiffiffiffiffiffi
πR

p U†
Qð0;0;dBÞTδðyÞ;

ð3:37Þ

i∂μγ
μdBδðyÞ ¼ −

ϵffiffiffiffiffiffi
πR

p δðyÞðUQd⃗Þ3 ¼ −
ϵffiffiffiffiffiffi
πR

p δðyÞdH;

ð3:38Þ
where d⃗ ¼ ðd; d3; d3̄ÞT. Themixing matrixUQ is defined by

UQ ¼

0
BB@

1 0 0

0 cos θq − sin θq
0 sin θq cos θq

1
CCA: ð3:39Þ

The KK expansions of bulk fields are given by solving the
bulk equation and respecting the Z2 parities:

⃗d̃L ∝
1ffiffiffiffiffiffi
πR

p

2
666666664

sin
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
n −M2

q

q
y
	
dnL� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m̂2
n − M̂2

q

q
cos

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

n −M2
q

q
y
	
þ M̂q sin

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

n −M2
q

q
jyj

	

dnSML� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m̂2
n − M̂2

q

q
cos

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

n −M2
q

q
y
	
þ ðM̂q þ ϵ2q=2Þ sin

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

n −M2
q

q
jyj

	

dnHL

3
777777775
; ð3:40Þ

⃗d̃R ∝
1ffiffiffiffiffiffi
πR

p

2
666666664

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̂2

n − M̂2
q

q
cos

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

n −M2
q

q
y
	
− M̂q sin

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

n −M2
q

q
jyj

	o
dnR

sin
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
n −M2

q

q
y
	
dnSMR

sin
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
n −M2

q

q
y
	
dnHR

3
777777775
: ð3:41Þ

They are determined to satisfy the boundary condition at the origin,

lim
ε→0

Z
ε

−ε
dy½EOM� ¼ 0: ð3:42Þ

We impose the periodic boundary condition on the bulk fermion,

0 ¼ ½d⃗ðyÞ�y¼πR
y¼−πR; ð3:43Þ

and the boundary conditions at y ¼ �πR, which become

0 ¼ ½EOM�y¼πR
y¼−πR: ð3:44Þ

It gives the conditions on the first derivative of the mode function.
The KK mass spectrum is obtained from Eqs. (3.43) and (3.44). Substituting the mode expansion into these conditions,

we find the KK mass spectrum for the down-type quark by solving an equation:

0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̂2

n − M̂2
q

q
ϵ2q
h
ðM̂2

q − m̂2
nÞ sin2 M̂W cos2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̂2

n − M̂2
q

q
sin2 θq þ m̂2

n sin2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̂2

n − M̂2
q

q i
× cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̂2

n − M̂2
q

q
þ ϵ2q sin2 θqM̂qðm̂2

n − M̂2
qÞ sin2 M̂W sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̂2

n − M̂2
q

q
þ m̂2

n

h
ðM̂qϵ

2
q − 2m̂2

nÞ cos2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̂2

n − M̂2
q

q
þ 2m̂2

n cos2 M̂W þ M̂qð2M̂q sin2 M̂W − ϵ2qÞ
i
sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̂2

n − M̂2
q

q
: ð3:45Þ

As for the up-type quark, the KK mass spectrum can be found by solving an equation:
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0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̂2

n − M̂2
q

q
ϵ2q
h
ðM̂2

q − m̂2
nÞ sin2 M̂W cos2 θq þ m̂2

n sin2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̂2

n − M̂2
q

q i
cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̂2

n − M̂2
q

q
þ M̂qϵ

2
qðm̂2

n − M̂2
qÞ sin2 M̂W sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̂2

n − M̂2
q

q
cos2 θq

þ m̂2
nðm̂2

n − M̂qϵ
2
qÞ sin3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̂2

n − M̂2
q

q
þ 2m̂2

nðM̂2
q − m̂2

nÞ sin2 M̂W sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̂2

n − M̂2
q

q
: ð3:46Þ

The lightest masses can be obtained as

m̂2
u ¼

M̂2
q

sinh2M̂q
sin2θqM2

W þOðM̂4
WÞ;

m̂2
d ¼

M̂2
q

sinh2M̂q
cos2θqM2

W þOðM̂4
WÞ: ð3:47Þ

This result is easily understood from the fact that the angle
θq represents how the singlets in each representations
couple to the SM doublet QSM. Namely, the SM doublet
is purely Q3ðQ3̄Þ in the case θ ¼ 0ðπ=2Þ, so the singlet
uðdÞ in the 3̄ð3Þ cannot connect to the SM doublet. The
lepton sector is completely the same in this scenario. We
can read the lepton masses from the above result by
replacing Mq → Ml, ϵq → ϵl, and θq → θl.

C. Mirror fermion

As will be seen in the next section, the dominant
contributions from fermions with the antiperiodic boundary
condition to the Higgs potential at one loop behave as
bosonic fields, which implies that the contributions from
the extra bulk fermions with the periodic boundary con-
dition are indispensable for realizing the realistic electro-
weak symmetry breaking. To accomplish it, we introduce
two massive fermions ΨM and XM with the relative
opposite Z2 parities, which we call mirror fermions.
To investigate the spectrum of the mirror fermion, we

beginwith the tripletmirror fermion as the simplest example:

ΨM ¼

0
B@

Ψ1

Ψ2

Ψ3

1
CA; XM ¼

0
B@

X1

X2

X3

1
CA: ð3:48Þ

Since the first components do not couple with the Higgs
boson, we concentrate on the lower two components.
Hereafter, the vector notations Ψ⃗M ¼ ðΨ2;Ψ3ÞT and

X⃗M ¼ ðX2; X3ÞT are employed, and then the EOM becomes

0 ¼ i∂μγ
μΨ⃗M þ i∂yΓ5Ψ⃗M −MX⃗M þ Γ5MWσ1Ψ⃗M ð3:49Þ

0 ¼ i∂μγ
μX⃗M þ i∂yΓ5X⃗M −MΨ⃗M þ Γ5MWσ1X⃗M; ð3:50Þ

where σ1 is a Pauli matrix. Eliminating MW by the field
redefinition as

⃗Ψ̃M ¼ e−iMWσ1yΨ⃗M;
⃗X̃M ¼ e−iMWσ1yX⃗M; ð3:51Þ

we have

0 ¼ i∂μγ
μ ⃗Ψ̃M þ i∂yΓ5 ⃗Ψ̃M −M ⃗X̃M; ð3:52Þ

0 ¼ i∂μγ
μ ⃗X̃M þ i∂yΓ5 ⃗X̃M −M ⃗Ψ̃M: ð3:53Þ

In this base, the bulk equations are easily solved as

⃗̃ΨM ¼ 1ffiffiffiffiffiffi
πR

p
"
ψn
2L cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

n−M2
p

yþψn
2R sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

n−M2
p

y

ψn
3R cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

n−M2
p

yþψn
3L sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

n−M2
p

y

#
;

ð3:54Þ

⃗̃XM¼ 1ffiffiffiffiffiffi
πR

p
"
χn2L sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

n−M2
p

yþχn2R cos
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

n−M2
p

y

χn3R sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

n−M2
p

yþχn3L cos
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

n−M2
p

y

#
:

ð3:55Þ

From the periodic boundary conditions and the EOM at the
fixed points,

0 ¼ ½Ψ⃗M�þπR
−πR ; 0 ¼ ½EOM�þπR

−πR ∝ ½∂yΨ⃗M�þπR
−πR; ð3:56Þ

the KK mass spectrum are obtained from

0 ¼ sin
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m̂2
n − M̂2

q
− M̂W

	
sin

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̂2

n − M̂2

q
þ M̂W

	
:

ð3:57Þ
Noting that the bulk masses for the mirror fermions are
constrained from the search for the fourth-generation
fermions, the mass of the lightest mode in the extra bulk
fermion should be larger than the Oð700 GeVÞ or so [13],
which implies that the bulk mass of the extra bulk fermion
must satisfy the lower bound

M >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð700 GeVÞ2 −M2

W

q
: ð3:58Þ

IV. HIGGS POTENTIAL ANALYSIS

Now, we are ready to discuss the Higgs potential
generated by the quantum corrections. Since some of the
mass spectrum cannot be solved explicitly, we employ the ζ
function regularization method. A particle with the mass
mn contributes to the one-loop effective potential as
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V5D ¼ 1

2πR

Z
d4pE

ð2πÞ4
ð−1ÞFNDOF

2

X∞
n¼−∞

lnðp2
Eþm2

nÞ; ð4:1Þ

where NDOF stands for the degree of freedom and F ¼ 1ð0Þ
stands for the fermion (boson). The above infinite summa-
tion can be rewritten by the following integral form:

V5D ¼−
1

2πR
ð−1ÞFNDOF

32π2
1

R4

Z
∞

0

duu4
d
du

ln ½NðiuÞ� ð4:2Þ

The mass spectrum mn is determined by zeros of the
function NðiuÞ,

NðmnÞ ¼ 0: ð4:3Þ
The function NðiuÞ is defined such that m̂n and M̂W are
replaced by iπu and πα in the relation determining the KK
mass spectrum, respectively. As an illustration, the func-
tions NWðiuÞ and NZðiuÞ for W and Z gauge bosons are
explicitly shown,

NWðiuÞ ¼ cosh2ðπuÞ − cos2ðπαÞ; ð4:4Þ

NZðiuÞ ¼ −tanh2ðπuÞ − sin2ðπαÞ½4cos2θW − sin2ðπαÞ�
ð2cos2θW − sin2ðπαÞÞ2

ð4:5Þ
where θW is the weak mixing angle. One can verify that
these functions are obtained by the above replacements in
the relations determining the KK spectrum of W and Z
bosons [11],

0 ¼ cos2ðm̂nÞ − cos2ðM̂WÞ; ð4:6Þ

0 ¼ tan2ðm̂nÞ −
sin2ðM̂WÞ½4cos2θW − sin2ðM̂WÞ�

ð2cos2θW − sin2ðM̂WÞÞ2
: ð4:7Þ

The four-dimensional effective potential is given by inte-
grating out the extra dimension:

V¼
Z

2πR

0

dyV5D¼−
ð−1ÞFNDOF

32π2
1

R4

Z
∞

0

duu4
d
du

ln ½NðiuÞ�:

ð4:8Þ

Finally, the one-loop Higgs effective potential of our model
is given by

VR ¼ −
1

32π2
1

R4

Z
∞

0

duu4
d
du

½3 lnNZðiuÞ þ 3 lnNWðiuÞ

− 3 · 4 lnNBOTðiuÞ − 3 · 4 lnNTOPðiuÞ
− 3 · 4 lnNexoticðiuÞ − 3 · 4 lnNMðiuÞ�
− ðα → 0Þ; ð4:9Þ

where NBOTðiuÞ, NTOPðiuÞ, NexoticðiuÞ, and NMðiuÞ are the
functions for the bottom quark, top quark, exotic fermions,
and mirror fermions. Their explicit forms are omitted since

they are very lengthy and complicated. These functions can
be similarly obtained like NW=ZðiuÞ as explained above.
Note that the divergent α-independent terms in the effective
potential, which are vacuum energy, are subtracted.
Let us discuss the behavior of the effective potential in

detail. First, the effective potential from the SM fields and
messenger fermions is shown in Fig. 2. We immediately see
that the third generation of quarks gives dominant con-
tributions to the effective potential since they have no bulk
mass term. Note that the contributions from the third
generation behave as a bosonic field similar to the gauge
fields due to the antiperiodicity. In particular, the potential
curvature at the origin is positive. As for other SM
fermions, they have bulk mass terms, and the Yukawa
couplings are highly suppressed by the factor e−πRMq or
e−πRMl , and therefore their contributions to the effective
potential are negligible and will not be included in the
potential analysis later.
These observations indicate that the large contributions

from the mirror fermions with the periodic boundary

FIG. 2. Contributions from the gauge bosons, the SM quarks,
and exotic and mirror fermions. The mirror fermion in this figure
is 3 representation.

FIG. 3. Effective potential of mirror fermions.
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condition are necessary for realizing a realistic electroweak
symmetry breaking. In this paper, we introduce the 15
representations as the mirror fermion because the period of
the potential from the higher-dimensional representations is
smaller and the curvature of the potential at the origin is
more negative. Therefore, the potential is likely to realize
the small vacuum expectation value as shown in Fig. 3. As
shown in Fig. 4, the total effective potential of our model
has a minimum at α ¼ 0.0544 if we choose the compacti-
fication scale and the bulk mass for the third-generation
quarks as R−1 ¼ 1.82 TeV,M ¼ 0.8 TeV. In this case, the
Higgs boson mass mh ¼ 127 GeV and the W boson mass
MW ¼ 79.6 GeV are obtained.

V. SUMMARY

In this paper, we proposed a new model of 5D SUð3Þ ⊗
Uð1ÞX GHU with a successful electroweak symmetry break-
ing and a realistic Higgs boson mass. In our model, the
representations of the fermions are very simple, the 3, 3̄, and
15 representations of the SUð3Þ gauge group. Since the top
quark is not embedded into the 15 representations, the
antiperiodic boundary conditions can be imposed on 15.
This reduced the number of the exotic massless fermions and
the brane-localized mass terms, which largely simplifies our
analysis.
We have shown by calculating the one-loop Higgs

potential that a realistic electroweak symmetry breaking

and the observed Higgs mass are realized in the case
R−1 ¼ 1.82 TeV, M ¼ 0.8 TeV. Note that a pair of addi-
tional 15 representations other than the SM fermions have
been introduced to accomplish the above result. The fact that
the observed Higgs mass cannot be obtained without mirror
fermions is consistent with the results in the third paper in [6]
and the second paper in [10]. Furthermore, such mirror
fermions have been pointed out as the possible dark matter
candidate [10].We have also shown that the top- and bottom-
quark masses are reproduced. As described in the main text,
this is not a trivial issue since these masses are correlated
through the mixing between the massless SUð2ÞL doublets
from the up- and down-type sectors.
Finally, we give a comment on the relation to the SM-like

property of the Higgs particle reported at the LHC. Our
Higgs potential has a periodicity with respect to the Higgs
field because of the higher-dimensional gauge symmetry. It
is significantly different from the SM. However, the small
expectation values are required to happen the electroweak
symmetry breaking and to obtain a realistic Higgs mass. In
that case, the differences are generically small and con-
sistent with the current experimental data.
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