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We propose a new model of five-dimensional SU(3) ® U(1)y gauge-Higgs unification with a
successful electroweak symmetry breaking and a realistic Higgs boson mass. In our model, the

representations of the fermions are very simple, the 3,3 and 15 representations of SU(3) gauge group.

Employing the antiperiodic boundary conditions for 15 reduces massless exotic fermions and simplifies the
brane-localized mass terms. We calculate the one-loop Higgs potential in detail and find that a realistic
electroweak symmetry breaking and the observed Higgs mass are obtained.

DOI: 10.1103/PhysRevD.98.015022

I. INTRODUCTION

Gauge-Higgs unification (GHU) [1,2] unifies the stan-
dard model (SM) gauge boson and Higgs boson into the
higher-dimensional gauge fields. This scenario is one of the
attractive ideas that solves the hierarchy problem without
invoking supersymmetry, since the Higgs boson mass and
its potential are calculable due to the higher-dimensional
gauge symmetry [2]. These characteristic features have
been studied and verified in models with various types of
compactification at the one-loop level [3] and at the two-
loop level [4]. The calculability of other physical observ-
ables such as S and T parameters [5], Higgs couplings to
digluons, diphotons [6], muon g — 2, and the electric dipole
moment of a neutron [7] have also been investigated. The
flavor physics, which is very nontrivial in GHU, has been
studied in Ref. [8].

In five-dimensional (SD) GHU, the Higgs potential at the
tree level is forbidden by the gauge symmetry in higher
dimensions, but it is radiatively generated. Because of its
characteristic features, it is nontrivial to obtain a realistic
electroweak symmetry breaking and the observed Higgs
mass. In GHU, Higgs quartic coupling is provided by the
gauge coupling squared and is one-loop suppressed.'

'Note that top-quark contribution to the Higgs quartic coupling
is also given by the gauge coupling squared due to the fact that the
Yukawa couplings are proportional to the gauge coupling in this
scenario. The contribution is crucial in order to realize the
electroweak symmetry breaking.
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Therefore, the Higgs mass squared is naively of order
the one-loop factor times the compactification scale
squared mj, ~ ;. Noting that the W boson mass and
the compactification scale are related by My = ¢/R in
terms of a dimensionless parameter “c,” which is deter-
mined from the potential minimum, the Higgs mass is too
small if the parameter c is an order of the unity [9]. If we
manage to realize a small parameter ¢ by potential
minimization, this allows the larger compactification scale
and heavier Higgs mass. To obtain a small parameter c, it
is well known that it has to be generated by the
contributions from different representations of the gauge
group.

It is troublesome to eliminate the massless exotic
fermions. Embedding the SM fermions into the large
representations, there exist many massless exotic fermions,
and they are ordinarily made massive by introducing the
brane mass terms and extra brane-localized fermions
coupling to the Dirac mass with the exotic fermions.
Even for the SU(2) SM doublets, the number of massless
doublets is duplicated in each generation since massless
doublets appear from the isospin up and down components.
To eliminate half of the massless doublets, we also must
introduce the brane mass terms and extra brane-localized
doublets coupling to the Dirac mass with the exotic
massless doublets. Such brane mass terms complicate
models and analysis. Therefore, it is desirable to construct
a model in which the brane mass terms are as little as
possible.

In this paper, we propose a new model of 5D SU(3) ®
U(l)y GHU with a successful electroweak symmetry
breaking and a realistic Higgs boson mass. In our model,
the representations of the fermions are only two kinds,

that _is, the 3,15 for the third-generation quarks and
3 @ 3 representations of SU(3) gauge group for other
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SM fermions.” In our setup, the top quark is not embedded
into the 15 representations. In this case, we have no need to
obtain the massless zero mode from the bulk fermions, and
we can impose the antiperiodic boundary conditions for 15.
Therefore, we have no need to introduce the brane-
localized mass terms since the lightest mode is necessarily
massive. From the fundamental representations, the mass-
less exotic SU(2), doublets are unavoidable because these
massless doublets appear from the up- and down-type
sectors. Namely, the number of the massless SU(2),
doublets is doubled. We have to introduce the brane mass
terms for one linear combination of doublets to make them
massive.

We calculate the one-loop Higgs potential and search
viable matter content to realize a realistic electroweak
symmetry breaking and the observed Higgs mass. To
accomplish this, it is found that a pair of additional 15
representations other than the SM fermions should be
included. We also study whether the top- and bottom-quark
masses are reproduced. Note that the masses of SU(2),
doublets are correlated through the mixing between the
SU(2), doublets from the up- and down-type sectors.” For
the third-generation quarks, it is not a trivial issue since the
mass difference between the top and bottom is larger than
those of the first two generations.

This paper is organized as follows. In Sec. II, we describe
our model. In Sec. III, we calculate the mass spectrum of
the various fields introduced in our model. The Higgs
potential is calculated and analyzed in Sec. I'V. Section V is
devoted to a summary. In the Appendix, the details of
several representations are summarized.

II. MODEL

We consider the SU(3) ® U(1)y gauge theory in five-
dimensional flat space-time. The fifth extra dimension is
compactified on an orbifold S'/Z,, where the radius of S!
is R. Because the weak mixing angle 6y, in the SU(3) is not
consistent with the realistic one, the correct value is
effectively realized by the mixing between the U(1)y
and neutral gauge bosons of SU(3).

The SM chiral fermions are introduced as follows: the
top-quark (#) and bottom-quark (b) are fermions brane
localized at the y = zR brane. Other SM fermions are
embedded in the bulk fermions ¥; and ¥,. They obtain a
mass through the five-dimensional gauge interaction in the
ordinary way in the context of the gauge-Higgs unification

*The reason why the representation of the third generation is
only different from other SM fermions is to generate top Yukawa
coupling. In GHU, an enhancement factor is required to obtain
the top Yukawa coupling since Yukawa coupling is provided by a
gauge coupling and it gives the W boson mass after the
electroweak symmetry breaking.

These mixings are crucial for the flavor violation in the
context of GHU; see Ref. [8].
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FIG. 1. Setup of the model.

scenario. Since the ¢t and b quarks cannot interact directly
with the Higgs boson (A,), the extra bulk fermions ¥
(referred to as messenger fermions) are necessary to
connect them. We also introduce a pair of fermions
(referred to as mirror fermions) ¥y, and Xy, to realize
the realistic electroweak symmetry breaking. Such fer-
mions may be a possible candidate of the dark matter as
pointed out in Ref. [10]. The outline of this model is
depicted in the Fig. 1. Such a strategy simplifies our model:
the top quark needs a large representation to reproduce the
large top Yukawa coupling as will be mentioned in the
following sections. In general, such a large representation
includes the massless exotic fermions, but they are auto-
matically removed from the low-energy effective theory by
the use of the antiperiodic boundary condition. The other
light fermions are embedded in the fundamental represen-
tations to assign the suitable U(1)y charges. Thus, the extra
brane fermions and brane mass terms are greatly reduced in
our model.

Since the gauge sectors of our model have been
discussed in detail [11], we focus on the fermion sector
in the following subsections.

A. Third-generation quark

In this subsection, we discuss the # and b quarks. As is
mentioned in the previous paragraph, the third-generation
tr, bg,and ( I’fL ) are put on the y = zR brane. The chirality is

defined as the eigenvalues of the chiral projection operators
L=(1-y5)/2,R=(1+ys)/2. As for the messenger
fermion, the 3, and 15_, /3 representations are introduced.
The subscripts stand for the U(1)y charges in order to
couple with the brane fermions. These messenger fermions
include the two quark doublets Q5 and Q5 and the two
singlets B and T.

We impose the Z, symmetry and antiperiodic boundary
condition on the messenger fermions to leave the chiral
fermions,

Y(y+22R) =-Y(y),  ¥(y)=-Prs¥(-y).
where the matrix P is defined as P = diag(+ + —) for the
SU(3) fundamental representation. Because of such an
antiperiodic boundary condition, they obtain a mass at least
around 1/(2R), so the exotic fermions are automatically
removed from the low-energy effective theory. Since the Z,
parities at y = xR are opposite of those of the y =0

(2.1)
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because of the antiperiodicity, the right-handed doublet and
left-handed singlet in the messenger fermion can couple to
the SM fermions (f and b quarks) at y = zR. The Lagrangian
of the third-generation quarks becomes

Ltermion D ¥ (30)iD3w (30) + w(15_2/3)iDiy (15_5)3)
+ 6(y — 7R) | QLi0, 1" QO + Tgi, ¥ tg

+ bgi0, 1" br + —== 0y (cos 0Qsg + sin OQsr)

\/“

TL[R+ BLbR+HC (22)

\/_ \/_
The covariant derivative is DM = oM + igsAMT+
igsOxBY(M =0,1,2,3,4). The AM and BM represent
the gauge fields of SU(3) and U(1)y, respectively. The
Qy stands for the U(1)y charges. The gs and g5 represent the
five-dimensional gauge couplings, respectively. One can see
from this Lagrangian that the SM chiral fermions ¢y, by, and
O, can interact with the Higgs (A,) through the messenger
fermions.

B. First and second generations of quarks and leptons

We choose 3 and 3 representations for the SM chiral
fermions except for the r and b quarks. They include the
two doublets and two singlets as follows:

¥,(3) 5 (Qd”), ¥, (3,5) (iGZQ3>,

lpl(3_2/3)3<l:>, ql,(i_l/g)D(igzij). (2.3)

We impose the Z, symmetry and periodic boundary
conditions on the ¥, and ¥;:

¥, (+y)=—Pyrs¥, ,(-y), ¥,,(v)=¥,(y+22R).

Then, the Lagrangian of the first two generations of quarks
is written as

(2.4)

L fermion > ZZ;{‘?Q(%) [iD3+Me(y)]¥, (3o)
:‘i’i §(/3)[iD3 + Mie(y)] ¥4 (31/3)}
231: 1(3-2/3)[iD3 + Mie(y)]'¥](3_2/3)
! ‘Pf(j—l/s)}

0Ll +H.c]

+%](3-1/3)[iD3+ Mie(y)]

\/_

+5(y) Y1 [ L§id,y"Li \/’—L’ Li+Hec.|.

(2.5)

The Qg and Ly are the brane-localized fermions that
couple one of the duplicated doublets. The Qy and Ly
are the linear combinations of doublets in the bulk fields.
The bulk mass terms M, and M, give exponential
suppressions like e ™M+ or e MR (o the Yukawa
couplings, and the hierarchical fermion masses can be
achieved by mild tuning of bulk mass parameters M,
and M,.

C. Mirror fermions

In our setup with the SM fermions and the messenger
fermions, we have to introduce further mirror fermions
since the realistic electroweak symmetry breaking does
not happen. In this paper, a pair of the 15 representa-
tions, which 1is referred to as mirror fermions, is
introduced. They obey the Z, symmetry and periodic
boundary conditions as follows:

PysPyv(-y).

Pu(+y) =

Pu(y) = (2.6)
Similar boundary conditions are imposed on the
Xu as

Xm(+y) = =PrsXm(=y),

Xm(y) = Xm(y + 27R). (2.7)
Since these boundary conditions allow the massless
chiral fermion in the zero mode, the bulk mass term is
added to make them massive. The Lagrangian of the
mirror fermions is given by

Litermion D PriD¥y + XpiDXy + M[PyXy + XpPul-
(2.8)

As mentioned earlier, mirror fermions introduced in
this subsection are interesting in that their lightest
fermion might be a dark matter candidate. Such a pair
of 15 representations is also natural from the viewpoint
of the minimal dark matter scenario in the context of
gauge-Higgs unification [10].

II1. MASS SPECTRUM

We discuss here the mass spectrum necessary
for calculating the one-loop effective potential for
Higgs field.

A. Top and bottom sectors

The 15 representation of SU(3) includes the singlet T,
doublet Qs, triplet X, quartet A, and quintet A of SU(2).
Since the 3 representation includes doublet Q5 and singlet B,
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there are two doublets Q3 = (gi) and Q5 = (22) in our

model. Adopting the vector notation T = (T,T5,Ts5,%,,
AL A) and B = (B, B3, Bys, %, Ay, Ap), the quadratic parts
of the Lagrangian for the top and bottom quarks are

'Cfermion > V7(30)iD3W(30> + l/_/(E—Z/S)iDEW(E—Zﬂ)
> 719, TT + B oy, TMB + My,

x [T"M 5T + B M,y B] (3.1)
where the covariant derivatives are given by
D3y = Oy — igsAn,
2

3

The subscripts t and b in the T and B mean that they have the
same electric charge of # and b quarks, respectively. 7’5 ;5 and
B35 mean SU(2) quark doublets involved in the 3 and 15
representations. The W boson mass is My = gv/2. The
matrices M, and M, are defined by

00 2 0 0 0
00 0 0 0 0
M_z()o\/éoo
" lo o v6 0 V6 o
00 0 V6 0 2
00 0 0 2 0
01 0 0 0 O
10 0 0 0 0
szoooﬁoo (33)
00 v3 0 2 0
00 0 2 0 V3
00 0 0 V3 0

The boundary conditions are

{ T(=y) = —ysPT(+y) {E(—y) = —ysPB(+y)
T(y) = -T(y + 22R) B B

where P = diag(+, —, —, +, —, +).
We first focus on the top-quark Kaluza-Klein mass
spectrum. The equations of motion (EOM) of the ¢ quark are

0 = i0,T*T,, +idsT°Ty + iMyM,Ty

2 (1£,0,0,0,0,0)"5(y — zR),

v (3.5)

0 = i0,[*Tg + idsT5T | + iMyMIT,

€r . T
+—=(0,sint;,cos0t;,0,0,0)' 6(y — zR), 3.6
\/JT_R( L L ) (y ) ( )
. €r, .
0= 1|id,y"t; + —==(cosOTsg + sin OT 6(y — zR),
|: ;4}/ L \/E( 15R 3R):| (y )
(3.7)
0= [ia P+ T :|5(y—71'R) (3.8)
" R \/JTR L . .
The field redefinition
T = expliMyM,y|T (3.9)
simplifies the bulk equations as
0=i0, T, — 0,Tk. (3.10)
0 = 0,y Tx +0,T,. (3.11)

Then, we obtain the following mode functions respecting the
Z, parities at y = 0:

[ sin(m,y)T} ]
cos(m,y)T%,

cos(m,y)Ts;
)
)

n
i sin(m,y)

sin(m,,

cos(m,y

n
ZIL
n
AtL
n
A tL

cos(m,y)Th
- Sin(mny)TglR
—sin(m,y)T}sg (3.12)
COS(m”y)X?R '

- Sin(mny)A;lR

L Cos(mny)Al;R _

m,, stands for mass eigenvalues: iaﬂy"f’ = m,j'. To obtain
the mass spectrum, we have to impose the boundary con-
ditions. One is an antiperiodic boundary condition with
respect to S', and the other is the boundary condition at
the y = zR that is precisely discussed in Ref. [12]. The latter
can be obtained by integrating out the EOM around y = zR:

0 =lim
e—0

R
dy[EOM].

nR—¢

(3.13)

For example, the boundary condition from the first line of
Eq. (3.5) gives
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=0

7R =
0 =lim dy [iaﬂr”TL + 105
nR—¢

= hm[zF (Tg.T3g. T15r Zigs Mg AtR) ]

where we use the fact that the bulk fields are continuous.
From the Z, parities at the y = zR that are derived from
Eq. (3.4), Z,-odd fields vanish at the fixed point: 0 =
Tr(zR) = Z,x(7R) = Ajg(zR). Simplifying the notation
as TR~ = nR — ¢, it becomes

—TR(ﬂ'R_) t
T3g(7R) — T3g(7R™)
Tysg(nR) — T sg(7R™) €R

—X,z(7R7) VxR
Ak (”R) - AtR(”R_)

—Ag (”R_)

=

0 = ilPlim
e—0

o O O o O

(3.15)

The first component indicates that the boundary conditions
are modified by the boundary term. The others are ordinary
boundary conditions: continuity conditions and Z, condi-
tions. Combining the first relation in (3.15) and the EOM for

nR—¢

\;% (t£.0.0,0,0,0)T8(y — 7R)
\;%(tR,O,O,O,O,O)T, (3.14)
|
0= 9yt +—T i0," Ty +—R €in Rr,. (3.16)
_\/ﬁ ulV" IR 7R L =10,y LR R L- .

To summarize, the modified boundary conditions are

2

0 = i0,y" Tx(zR") - eR T, (7R"), (3.17)
2
O = iaﬂyﬂT:;L(T[R_) + —;Sin Q[COS 9T15R(T[R_)
T
+ sin T3 (7R7)], (3.18)
&2
0 =i0,y"T s (7R™) + —;cos 0lcos OT ;sg(7R™)
n
“+ sin 9T3R(7TR_)], (319)
0 == Z[R(”R_) = ATL(”R_) ES AIR(ﬂR_). (320)

Taking into account these boundary conditions, we find a very
complicated relation determining the KK mass spectrum of
the top quark,

the boundary fermion 7, (3.5), we have |

0 = 2i2cos? i, (cos? 7, — sin®(2My,))(cos?7r, — sin®(4My))

— €2 1, cos i, sin 7ir,, [sin?@{sin? (4 M, )cos>#ir,, + sin®(2M ) cos?in, — 2sin®(2My, )sin®(4My) }

— 2cos*7t, + sin?(4My,)cos?#, + sin?(2My,)cos A,

2

+ %em sin 7, cos 7, [8cos* 7, — Tsin?(4My,)cos? A, — 4sin(2My, )cos? i, + 3sin?(2My, )sin? (4M )]
€16 . .

- % [cos?0{8(sin?(4My,) + sin®(2M ) )cos*in,,

+ cos?ii, ((—11sin?(2M ) — 7)sin(4My,) + sin(4M ) sin(8M ) — 4sin®(2M )

+ 6sin?(2M y )sin®(4M )} + 16cosr, — 2(Tsin®(4My,) + 4sin®(2M ) + 8)cos*iin,,

+ 2cos?7, { (3sin? (2M ) + 7)sin(4M ) + 4sin®(2M )} — 6sin (20, )sin? (44 )], (3.21)

where /i1, = 7Rm,, and My, = zRM, are dimensionless parameters normalized by zR. The lightest mass eigenvalue can be

found by taking the limit My, — 0:

A2 deten

my = p) 2
(1+ep)(1+ep)

For the small 6 and large ¢, and €;, the m, is almost equal to 2My,. This result allows us to interpret it as a top quark.

The bottom-quark mass is obtained by the same procedure as the top-quark mass except for the Yukawa coupling.
The EOM for the bottom-quark sector become

(1 —sin?0) M3, + O(M3y). (3.22)

0 = i0,["By + i0sT5 By + iMyM,T5 By + 2% (b, 0,0,0,0,0)T5(y — zR), (3.23)
V7R
0 = i0,["By + i0sT5B, + iMyM,SBy + —L=(0,sin 0b, , cos 0b;,0,0,0)T8(y — zR), (3.24)

VR
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0= |i0,y"by, + \/671/7‘_R (cos @B|sg + sinOBsg) | 5(y — zR),
(3.25)
0= | i, by + -2 B, | 5(y — ) (3.26)
- ﬂy R \/]‘ﬁ L y — k). .
The mode functions are given as
C sin(m,)B] ]
cos(m,y)Bj,
B L |costmBy,
VR Sin(mny) ZL
cos(m,y)A},
i sin(m,y)Ap, ]
cos(m,y)Bj
- Sin(mny)BgR
ER N |- sin(m,y)B'sz (3.27)
VaR | cos(m,y)Z)e
—sin(m,y)ALg
i cos(m,y) A7, ]
|
0 = =272 (sin®#, — cos® My )?(sin?#, — cos®(3My))
€

B= exp[iMWMby]fS;. (3.28)
The modified boundary conditions are
&2
0= i0,y"Bg(zR™) — LI’;BL (zR7), (3.29)
pis
2
0= l.a”]/ﬂngL (ﬂ'R_) + 7; sin H[COS HBISR (HR_)
pis
—+ sin 9B3R(7Z'R_)], (330)
€2
0 = i0,y*Bys(7R™) + —;cos O[cos OB sg(7R™)
T
+ sin @B3g (7R )], (3.31)
0=2%,r(zR™) = Ay (7R™) = Apr(zR™). (3.32)

Repeating the same analysis, we find a corresponding
relation determining the KK mass spectrum of the bottom
quark:

- ?ﬁ% sin i1, cos Aty (sin?i, — cos® My, ) [sin?0(cos?(3M ) — cos> My, ) — 4sin?(7,) + 3cos?(3My) + cos?(My)]

+ 26 11, Sin 7it,, cos 7it,, (sin7r,, — cos> My, ) (sin®7ir, — cos?(3My))

2

2

A

)
€le . . . . .
4 LR [ (cos®> My, — cos®(3My,))sin*#r,, — 4sin? My, cos> My cos?(3My,)

+ (cos?(3My,) — 4cos* My, + 3cos> My, )sin?in, }sin26 + 4sin‘7i,,

— (3cos?(3My,) + cos® My, + 4)sin*#n, + (3cos?(3My,) + cos(My))sin®7,].

The lightest mass is obtained as

2.2
€LEbR

= sin2OM3, + O(M3),
()1 ) oM+ O(Mi)

(3.34)

where 71, = 7Rm,;. The bottom mass can be achieved by
tuning parameters 0, €, z. To reproduce the observed masses
m; = 170 GeV and m;, = 4.2 GeV in (3.34), €;, €, > 1
and 0 <1 are required. For example, if we choose
e =€, =10, 6 =0.1, and ¢, = 0.6, then we obtain
m; ~1.97My, ~ 158 GeV and m;, ~4.09 GeV.

We note that the exotic fermions with the different
quantum numbers from those of the SM particle are
included in the 15 representation. Their spectra are given
by the solutions of the following equations:

(3.33)
|
0 = cos 7, cos(7r, — 2My) cos(i, + 2My),
0 = cos(iir, — My) cos(#, + My,),
0 = cos . (3.35)

The lightest mode of the exotic fermions obtains a mass
around ~1/(2R) as we mentioned before.

B. First two generations of quarks and three
generations of leptons

In this subsection, we derive the mass spectrum
of the 3 and 3 representation. Since the procedure is almost
similar, we only point out the differences. The Qy and Ly
are given by

015022-6
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€

(Osm> On)" = Up(0Q3, 03)". (Lsw, Ln)" = Uy(L3, L3)". 0,7 dpd(y) = —L5(y)(UQ2)3 o
T

5()’>dH,
(3.36) ViR

(3.38)

The _QH and Ly have the brane mass term and become  yhere 4 — (d. ds, d5)T. The mixing matrix Uy is defined by
massive. On the other hand, the Qg\ and Lg; are left

massless, which corresponds to the SM doublets. 1 0 0
The EOM of the down-type quark is derived as Up=|0 coso, —sing, |. (3.39)

[0, T +iM 5_ Me( )]J € it (0.0,d5)T6() 0 sinf, cosd,
l +iMyoy’ —Me == »U, )
M woiY y ViR 0 B y

The KK expansions of bulk fields are given by solving the

(3.37) bulk equation and respecting the Z, parities:

sin ( m2 — Méy)dﬁ

G| {0t cos (k= Mgy it sin (o = 31 fa
VaR

{\/ﬁzfl -2 cos(\/mﬁ - ng) + (M, +€2/2) sin( m?2 —MZM) }dﬁL

(3.40)

(i = 5 cos |k = 33) = it sin(fz = 311 i
dr < 7= sin(, [m? —ng)dgMR : (3.41)
sin(, [m3 —M?Iy) diig

They are determined to satisfy the boundary condition at the origin,
liné dy[EOM] = 0. (3.42)
We impose the periodic boundary condition on the bulk fermion,

-

0= [d(y)" (3.43)

_V=—iTR )

and the boundary conditions at y = +zR, which become

0 = [EOMJ,_"7,. (3.44)

It gives the conditions on the first derivative of the mode function.
The KK mass spectrum is obtained from Eqs. (3.43) and (3.44). Substituting the mode expansion into these conditions,
we find the KK mass spectrum for the down-type quark by solving an equation:

0= /2 — Mé? [(Mé — m2) sin® My, cos? \/ 2 — M sin? 0, + 2 sin” |/ 2 — Mﬂ
5202 220 B (A2 K2 <in2 K cin < a2 — 2
X cos \/ 1, — My + e sin” 0,M (i, — M) sin” My, sin 4 / iir;, — M
3| (1,63 = 202) cos? \ /i = B3 -+ 21 cos? My + My (20, sin® My — &) | sin ([ = B2 (3.45)

As for the up-type quark, the KK mass spectrum can be found by solving an equation:

015022-7



YUKI ADACHI and NOBUHITO MARU

PHYS. REV. D 98, 015022 (2018)

_ a2 2 a2y ain2 § 2 22 2 a0 i A2 _ 12
0= mn—quq[(Mq—m,,)sm My, cos” 0, + 7y sin mn—Mq]cos iy, — M

0F 2 (72 — 012) <in2 0o cin < /52 — K12 coc2
+ M €5 (i, — M) sin” My, sin 4/ 7iv;, — M cos” 6,

+ 2 (2 — M ,€2) sin’

The lightest masses can be obtained as

{72

o My

m, = ——==
sinh®M,,

{72

q 2 2 (74
~—cos“0,My, + O(My).
sinh®M W (Miy)

sin?0, M3, + O(MY,).

my = (3.47)
This result is easily understood from the fact that the angle
0, represents how the singlets in each representations
couple to the SM doublet Qgy. Namely, the SM doublet
is purely Q3(Qj3) in the case 8 = 0(x/2), so the singlet
u(d) in the 3(3) cannot connect to the SM doublet. The
lepton sector is completely the same in this scenario. We
can read the lepton masses from the above result by
replacing M, - M,, ¢, — ¢, and 0, — 0,.

C. Mirror fermion

As will be seen in the next section, the dominant
contributions from fermions with the antiperiodic boundary
condition to the Higgs potential at one loop behave as
bosonic fields, which implies that the contributions from
the extra bulk fermions with the periodic boundary con-
dition are indispensable for realizing the realistic electro-
weak symmetry breaking. To accomplish it, we introduce
two massive fermions Wy and X,; with the relative
opposite Z, parities, which we call mirror fermions.

To investigate the spectrum of the mirror fermion, we
begin with the triplet mirror fermion as the simplest example:

lI11 Xl
lPM — le N XM — X2 (348)
lPS X3

Since the first components do not couple with the Higgs
boson, we concentrate on the lower two components.
Hereafter, the vector notations Wy = (¥,, ;)T and

Xy = (X,, X3)T are employed, and then the EOM becomes
0 = id, " Py + i0,T Wy — MXy + TOMyo Py (3.49)
0 = laﬂyﬂiM + layFSiM - M@M + FSMWal)?M, (350)

where o7 is a Pauli matrix. Eliminating My, by the field
redefinition as

\PM - e—iMwﬁly\leb XM - e_iMWD-ly)?M, (351)

M2 — My + 22 (M — i) sin? My sin /% — M.

(3.46)
|
we have
0 = id, "By + i0,0Fy - MXy.,  (3.52)
0 = i, Xy + 0,0 %y — MBy.  (3.53)

In this base, the bulk equations are easily solved as

Wl cos\/mi—M*y +ylipsiny/m2 — M2y
Wi cos\/mi—M?y +ylty siny/ma —M?y ’
(3.54)

F 1 l}(é’L siny/m3 — M2y + x5, cos m%—MZY]

1

Py =
M V7R

M=
VIR |t siny/m2 — M*y+ x4, cos\/m2 —M?y
(3.55)

From the periodic boundary conditions and the EOM at the
fixed points,
0= [Pm] 7.

0 = [EOM7f o [0,Py] /2R, (3.56)

the KK mass spectrum are obtained from

ozsin( mﬁ—MZ—MW) sin( mﬁ—M2+MW>.

Noting that the bulk masses for the mirror fermions are
constrained from the search for the fourth-generation
fermions, the mass of the lightest mode in the extra bulk
fermion should be larger than the O(700 GeV) or so [13],
which implies that the bulk mass of the extra bulk fermion
must satisfy the lower bound

M > /(700 GeV)? - M3, (3.58)

IV. HIGGS POTENTIAL ANALYSIS

Now, we are ready to discuss the Higgs potential
generated by the quantum corrections. Since some of the
mass spectrum cannot be solved explicitly, we employ the {
function regularization method. A particle with the mass
m,, contributes to the one-loop effective potential as
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S n(ptm). (@&1)

n=-—oo

v _L/d“PE (=1)"Npor
P72R) 2t 2

where Npqp stands for the degree of freedom and F = 1(0)
stands for the fermion (boson). The above infinite summa-
tion can be rewritten by the following integral form:

1 (_1)FND0F1/°°
0

duu“diln [N (iu)]

- (4.2)

Vsp=—

T 2zR 3222 RY
The mass spectrum m, is determined by zeros of the
function N(iu),

N(m,) = 0. (4.3)

The function N(iu) is defined such that 7, and My, are
replaced by izu and za in the relation determining the KK
mass spectrum, respectively. As an illustration, the func-
tions Ny, (iu) and N(iu) for W and Z gauge bosons are
explicitly shown,

Ny (iu) = cosh?(zu) — cos?(za), (4.4)

sin?(za)[4cos?0y, — sin?(za))
(2c0s0y, — sin®(ra))?

Nz (iu) = —tanh?(zu) —
(4.5)

where 6y, is the weak mixing angle. One can verify that
these functions are obtained by the above replacements in
the relations determining the KK spectrum of W and Z
bosons [11],

0 = cos?(i,) — cos?(My,),

sin® (M) [4cos?0y, — sin®(M )]
(2c0820y, — sin®(My))?

(4.6)

0 = tan*(#r,,) — (4.7)

The four-dimensional effective potential is given by inte-
grating out the extra dimension:

V:AandyVSD:—w;ﬁmduu“iln[N(iu)].
(4.8)
Finally, the one-loop Higgs effective potential of our model
is given by
L
3272* R
—3-4InNpor(iu) — 3 - 41In Nyop(iu)
—3-41In Ny (iu) — 3 - 41In Ny (iu)]
= (a—0),

s .d
Ve = / duu (310N (i) + 3 1n Ny i)
0 u

(4.9)

where Ngor(itt), Noop(itt), Nexoic (itt), and Ny (iu) are the
functions for the bottom quark, top quark, exotic fermions,
and mirror fermions. Their explicit forms are omitted since

0.0014 :

0.0012 |

0.001 |
_ 0.0008F |
]
= L gauge |
> 0000 top and bottom —

0.0004 light generation — |

mirror fermion
0.0002 |
0 \/

-0.0002 1 1 1 1 1 1 1 1 1
0

FIG. 2. Contributions from the gauge bosons, the SM quarks,
and exotic and mirror fermions. The mirror fermion in this figure
is 3 representation.

they are very lengthy and complicated. These functions can
be similarly obtained like Ny, (iu) as explained above.
Note that the divergent a-independent terms in the effective
potential, which are vacuum energy, are subtracted.

Let us discuss the behavior of the effective potential in
detail. First, the effective potential from the SM fields and
messenger fermions is shown in Fig. 2. We immediately see
that the third generation of quarks gives dominant con-
tributions to the effective potential since they have no bulk
mass term. Note that the contributions from the third
generation behave as a bosonic field similar to the gauge
fields due to the antiperiodicity. In particular, the potential
curvature at the origin is positive. As for other SM
fermions, they have bulk mass terms, and the Yukawa
couplings are highly suppressed by the factor e "*Ms or
e ™’M;  and therefore their contributions to the effective
potential are negligible and will not be included in the
potential analysis later.

These observations indicate that the large contributions
from the mirror fermions with the periodic boundary

0 T T T T
-0.0005 B
-0.001 b
-0.0015 E
-0.002 [ B
g -0.0025 g
> -0.003 B
-0.0035 B
-0.004 - 3 rep. 1
6 rep.
-0.0045 15 rep. == ]
-0.005 L L L L
0 0.2 0.4 0.6 0.8 1
a
FIG. 3. Effective potential of mirror fermions.
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0.02 0.0012 T T T T
0.018
0.016 0.001
0.014 0.0008
PR
3 ~ 0.0006
S 0.01 3 ¢ 0y
0.008 > 0.0004
0.006
0.004 0.0002
0.002
0
0
-0.002 : : : ; -0.0002 : : : ;
0 0.1 0.2 0.3 0.4 0.02 0.04 0.06 0.08 0.1
a a
FIG. 4. Higgs potential including 15 representation mirror fermions. The compactification scale R~! = 1.82 TeV and the bulk mass

for the mirror fermion M = 0.8 TeV are chosen.

condition are necessary for realizing a realistic electroweak
symmetry breaking. In this paper, we introduce the 15
representations as the mirror fermion because the period of
the potential from the higher-dimensional representations is
smaller and the curvature of the potential at the origin is
more negative. Therefore, the potential is likely to realize
the small vacuum expectation value as shown in Fig. 3. As
shown in Fig. 4, the total effective potential of our model
has a minimum at a = 0.0544 if we choose the compacti-
fication scale and the bulk mass for the third-generation
quarks as R~' = 1.82 TeV, M = 0.8 TeV. In this case, the
Higgs boson mass m; = 127 GeV and the W boson mass
My =79.6 GeV are obtained.

V. SUMMARY

In this paper, we proposed a new model of 5D SU(3) ®
U(1)y GHU with a successful electroweak symmetry break-
ing and a realistic Higgs boson mass. In our model, the
representations of the fermions are very simple, the 3, 3, and
15 representations of the SU(3) gauge group. Since the top
quark is not embedded into the 15 representations, the
antiperiodic boundary conditions can be imposed on 15.
This reduced the number of the exotic massless fermions and
the brane-localized mass terms, which largely simplifies our
analysis.

We have shown by calculating the one-loop Higgs
potential that a realistic electroweak symmetry breaking

and the observed Higgs mass are realized in the case
R™1 =1.82 TeV, M = 0.8 TeV. Note that a pair of addi-
tional 15 representations other than the SM fermions have
been introduced to accomplish the above result. The fact that
the observed Higgs mass cannot be obtained without mirror
fermions is consistent with the results in the third paper in [6]
and the second paper in [10]. Furthermore, such mirror
fermions have been pointed out as the possible dark matter
candidate [10]. We have also shown that the top- and bottom-
quark masses are reproduced. As described in the main text,
this is not a trivial issue since these masses are correlated
through the mixing between the massless SU(2); doublets
from the up- and down-type sectors.

Finally, we give a comment on the relation to the SM-like
property of the Higgs particle reported at the LHC. Our
Higgs potential has a periodicity with respect to the Higgs
field because of the higher-dimensional gauge symmetry. It
is significantly different from the SM. However, the small
expectation values are required to happen the electroweak
symmetry breaking and to obtain a realistic Higgs mass. In
that case, the differences are generically small and con-
sistent with the current experimental data.
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