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When building CP-symmetric models beyond the Standard Model, one can impose CP symmetry of
higher order. This means that one needs to apply the CP transformation more than two times to get the
identity transformation, but still the model is perfectly CP-conserving. A multi-Higgs-doublet model based
on CP symmetry of order 4, dubbed CP4, was recently proposed and its phenomenology is being explored.
Here, we show that the construction does not stop at CP4.We build examples of renormalizablemulti-Higgs-
doublet potentials which are symmetric under CP8 or CP16, without leading to any accidental symmetry.
If the vacuum conservesCP symmetry of order 2k, then the neutral scalars becomeCP eigenstates, which are
characterized not byCP parities but byCP charges definedmodulo 2k. One ormore lightest states can be the
darkmatter candidates, which are protected against decay not by the internal symmetry but by the exoticCP.
We briefly discuss their mass spectra and interaction patterns for CP8 and CP16.
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I. INTRODUCTION

The Standard Model (SM) is agnostic about the origin of
theCP violation which we observe in weak interactions [1].
SM simply postulates it and describes it via the complex
Cabibbo-Kobayashi-Maskawa (CKM) matrix [2], but it
provides no answer why the CP symmetry should be
broken at all. The search for a dynamical reason of why CP
is broken is one of the motivations for building models
beyond the SM (bSM), especially those with nonminimal
Higgs sectors [3]. In fact, in the same year as Kobayashi
and Maskawa put forward the idea that three quark
generations can accommodate all CP-violating phenomena
[2], T.D. Lee proposed in [4] the two-Higgs doublet model
(2HDM), where the CP symmetry is broken spontaneously,
as a result of the minimization of a CP-symmetric Higgs
sector. At present we know that the CKM paradigm is
indeed at work, while the Higgs boson properties revealed
by the LHC are compatible with the SM Higgs [5]. Still,
since the origin of the complex CKM matrix remains
unexplained and since baryogenesis calls for yet additional
sources of CP violation, the intensive exploration of

2HDM [6] and more sophisticated multi-Higgs models
[3,7] continues at full speed.
This research brought up an important technical chal-

lenge: it is not immediately clear if a given Higgs sector is
CP conserving or CP violating, and whether CP violation
is introduced explicitly in the potential or happens sponta-
neously, after its minimization. Any phenomenological
insight about CP violation in the real world runs into
these technical questions. They must be clarified for a safe
application to phenomenology and, therefore, represent an
important quest on their own.
One aspect is that a model may be written in a basis in the

space of Higgs doublets which hides the presence of a CP
symmetry, which calls for basis-independent criteria for CP
conservation or violation. Another, somewhat surprising
finding is that there may exist different forms of CP
conservation. They are represented byCP symmetrieswhich
cannot be related to each other via any basis change and
which lead to manifestly distinct multi-Higgs models. They
highlight thewell known but, arguably, not fully appreciated
fact that irremovable complex coefficients in the lagrangian
do not always indicate the presence of CP violation.
The first example of such multi-Higgs doublet models

with exotic form ofCP conservation was constructed in [8].
Dubbed CP4 3HDM, this model is based on three-Higgs
doublets and incorporates a generalized CP symmetry of
order 4 denoted CP4.1 Although it is known since long ago
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1We remind the reader that the order of a transformation shows
how many times one needs to apply this transformation to obtain
the identity transformation.
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that models with several scalar fields ϕi, i ¼ 1;…; N with
identical quantum numbers allow for unconventional def-
initions of CP symmetry [9–11],

ϕiðx⃗; tÞ→CP CPϕiðx⃗; tÞCP−1

¼ Xijϕ
�
jð−x⃗; tÞ; Xij ∈ UðNÞ; ð1Þ

in the vast majority of cases these definitions can be
reduced to the standard one, with Xij ¼ δij, by a basis
change. For example, in 2HDM, one can define the CP
symmetry in the scalar sector in a variety of ways [12–15],
but whatever definition one takes, the scalar sector of the
model contains, in an appropriate basis, the conventional
CP symmetry [16].2

However, CP4 being a symmetry transformation of order
4, is markedly different. One needs to apply it four times,
not twice, to obtain an identity transformation on fields.
Thus, it cannot be reduced to the ordinary CP symmetry by
any basis change. In other words, the matrix Xij in (1)
cannot be linked to δij by any basis change. This feature has
clearly visible consequences in the scalar potential: despite
the model being CP conserving, it is impossible to find a
basis in which all coefficients would be real. Technically,
this is due to the existence of gauge-invariant non-
Hermitian combinations of Higgs fields which are invariant
under CP4 instead of being mapped to their Hermitian
conjugates.
This property may also be linked to an interesting group-

theoretical observation made in [18,19]. If one starts with a
certain symmetry group G (which may include the Lorentz
and gauge groups) and enlarges it with a CP-type sym-
metry, then this CP transformation acts on G by an outer
automorphism [10]. It turns out that the structure of the
group G and the properties of its Clebsch-Gordan coef-
ficients may influence this construction. In particular, for
certain groups, this construction is possible but leads to a
higher-order CP transformation due to the complex
Clebsch-Gordan coefficients. This offers another look at

how irremovable complex coefficients may arise in CP-
conserving models.
CP4 3HDM is the minimal multi-Higgs doublet model

whose scalar sector incorporates only CP4 without any
accidental symmetries [8,20]. If CP4 is conserved at the
minimum of the Higgs potential, then the model produces
two mass-degenerate scalar dark matter (DM) candidates h
and a. The model then resembles an enhanced version of
the inert doublet model (IDM) [21–25], with two inert
doublets and with the DM candidates stabilized not by the
Z2 symmetry but by aCP symmetry, albeit an unusual one.3

We stress that the pairwise mass-degenerate spectrum of the
inert scalars arises in thismodel as a result not of a continuous
symmetry group, as for example in [27], but of a discrete
symmetry group degenerated by a peculiar CP transforma-
tion. This resemblance between CP4 3HDM and IDM is not
limited to the mass spectrum but extends to the entire
lagrangian and allows one, for example, to relate the DM
dynamics of the two models.
Although the model is truly CP-conserving, one cannot

classify h and a as being CP even or CP odd, as they

transform under CP4 as h→
CP

− a and a→
CP
h. However, one

can combine them into a single complex field φ, which then
transforms under CP4 as

φðx⃗; tÞ→CP iφð−x⃗; tÞ: ð2Þ

The presence of the i factor and the absence of complex
conjugation usually associated with a CP transformation
are highly peculiar and were discussed at length in [28].
With conserved CP4, one can quantify CP properties of

a field not by its CP parity but by a global quantum number
q defined modulo 4. One then assigns q ¼ þ1 to φ and
q ¼ −1 to its conjugate. In any transition between initial
and final states with definite q, this quantum number is
additively conserved modulo 4. When rewriting the inert
self-interaction potential in terms of fields φ, terms such
as φ4 þ ðφ�Þ4 are allowed, since they also conserve the
CP-charge q.
Can one go beyond CP4, while still keeping the

interactions renormalizable? Can one build a multi-Higgs
model invariant under a CP symmetry of order 2k, where
k > 2? On the one hand, one can certainly define gener-
alized CP symmetries of an arbitrary even order. However,
if k contains any prime factor other than 2, one can split the
group Z2k into a pure family symmetry group and a group
generated by a smaller-order CP transformation. For
example, since Z6 ≃ Z2 × Z3, imposing a CP symmetry
of order 6 would produce a model with a usual CP and aZ3

2It is worth mentioning that the scalar sector of 2HDM can
accommodate a CP transformation which cannot be transformed
into the usual CP by any basis change [12–15]. This CP
transformation is defined by exactly the same matrix X as the
one used in CP4 3HDM. However, within 2HDM, its effective
order is not 4 but 2 due to the Uð1ÞY rephasing symmetry. This is
best seen in the geometric picture where this unusual CP
transformation is described by a point reflection rather than
plane reflection in the bilinear space, see detailed discussion in
[14]. It is still a reflection, that is, a transformation of order 2, but
it is different from the usual CP. The 2HDM based on this
symmetry, which was dubbed in [14] the maximally CP-
symmetric model, has a very peculiar phenomenology, especially
when this symmetry is extended to the fermionic sector, [17]. It
turns out, however, that the imposition of this maximal CP
symmetry entails other symmetries in 2HDM including the usual
CP. The CP4 3HDM example is free from these accidental
symmetries.

3An example of models in which P symmetry stabilizes a
fermionic DM was presented in [26] and appeals to the known
fact that a Majorana fermion picks up an i-factor upon P-
transformation. In our case, CP4 stabilizes scalar DM candidates,
and this phenomenon has a different origin.
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family-symmetry group. The only way to prevent it is to
take the order of the CP symmetry 2k ¼ 2p, with integer
p ≥ 1. The usual CP, which is of order two, can be denoted
as CP2, the first nontrivial higher-order CP symmetry is
CP4, the next ones are CP8, CP16, and so on.
Next, although one can define CP8 or CP16 transforma-

tions in multi-Higgs models and impose them on the
potential, it may easily happen that the model leads to
accidental symmetries. For example, this is what happens in
3HDM [20]. Trying to impose CP8 leads to a model with an
accidental continuous symmetry Uð1Þ and the usual CP, so
that CP8 plays no special role in it. Since the classification
performed in [20] was exhaustive, it means that one needs to
move beyond three-Higgs doublets, at least as long as one
keeps the renormalizability. Thus, even though there seems
to be no obstacles a priori, one should demonstrate explicitly
how such models based on yet higher-order CP symmetries
can be built and what novel features they involve.
In this paper we perform this task. We begin by

explaining why 3HDM and 4HDM offer insufficient free-
dom to incorporate CP symmetries beyond CP4 and then
build two examples of five-Higgs doublet models based on
CP symmetries CP8 and CP16. Assuming that these
symmetries are respected by the minimum, we derive
scalar mass spectrum and discuss the properties of the
DM candidates. The five doublets are grouped in a natural
way: one-Higgs doublet acquires the vacuum expectation
value (vev) and produces the SM-like Higgs particle, while
the inert sector includes two pairs of two doublets, with the
CP transformation mixing the doublets within each pair.
When constructing these examples, we will explain the
strategy of building models with even higher-order CP
symmetries, should an interest in such models appear.
We admit that, at present, these models seem rather

exotic, especially given that CP4 3HDM phenomenology
has not yet been explored in sufficient detail. Our main
motivation is purely theoretical: we want to demonstrate to
the model-building community that there exist other self-
consistent options for defining CP symmetry and, there-
fore, other routes to CP violation. It may happen that such a
symmetry can arise as the residual low-energy symmetry of
yet another highly symmetric construction. Or an exoticCP
symmetry may single-handedly lead to a phenomenologi-
cally attractive and predictive model of fermion properties.
These issues remain to be investigated in detail. For the
moment, we want to convey to the community the message
that all these previously overlooked possibilities exist.

II. NHDMS WITH HIGHER ORDER CP

A. The freedom of defining CP symmetries

A self-consistent local quantum field theory does not
uniquely specify how discrete symmetries, such asC and P,
act on field operators [1,11,29,30]. There is freedom in
defining these transformations, which becomes especially

large in the case of several fields with equal quantum
numbers. These fields are not physical by themselves; any
linear combination of those fields which preserves the
kinetic terms will be equally acceptable as a basis choice
for the theory. Therefore, any symmetry of the Lagrangian
which is supposed to incorporate a physically measurable
property is defined up to an unconstrained basis change.
Focusing on several scalar fields ϕi, i ¼ 1;…; N with

equal quantum numbers, one can define the CP trans-
formation as in (1). If there exists a unitary matrix X such
that the Lagrangian and the vacuum of a model are invariant
under this transformation, then the model is CP-conserving
in the very traditional sense that all CP-odd observables are
zero, and the transformation (1) plays the role of “the CP
symmetry” of the model [1]. It is only when none of
transformations (1) is a symmetry of the model that we say
that CP violation takes place.
Using the basis change freedom, it is possible to bring

the matrix X to a block-diagonal form [9,11], which has on
its diagonal either unit entries or 2 × 2 matrices of the
following type:�

cα sα
−sα cα

�
as in Ref: ½9�; or

�
0 eiα

e−iα 0

�
as in Ref: ½11�: ð3Þ

This is the simplest form of X one can achieve with basis
transformations in the scalar space CN .
Applying the transformation (1) twice, one obtains a pure

family transformation a ¼ XX�. If X contains at least one
2 × 2 block with α ≠ 0 or π, then a ≠ δij, which means that
the CP transformation (1) is not an order-2 transformation.
If k is the smallest integer such that ak ¼ δij, then we get the
CP transformation of order 2k, which we denote CP2k, and
the resulting family symmetry groupZk, which is generated
by a, the square of the CP transformation. As we explained
in the introduction, in order to avoid accidental symmetries,
one needs to consider only 2k ¼ 2p.

B. The strategy

Before moving to specific examples, let us first outline
the strategy of building N-Higgs doublet models (NHDMs)
whose only symmetries in the scalar sector are CP
symmetries of orders 2k and their powers.
One starts by writing the Higgs potential as a sum of

rephasing-invariant and rephasing-sensitive parts, V ¼
V0 þ V1. The rephasing-invariant part can be generically
written as

V0 ¼
X
i

m2
iiϕ

†
iϕi þ

X
i≤j

λijðϕ†
iϕiÞðϕ†

jϕjÞ

þ
X
i<j

λ0ijðϕ†
iϕjÞðϕ†

jϕiÞ; ð4Þ
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with all the coefficients being real. The rephasing-sensitive
part V1 contains only those quadratic and quartic combi-
nations which are invariant under the rephasing trans-
formation a.
Although for small values of k and N the phase-sensitive

part of the potential can be quickly constructed by trial-and-
error, there exists an algorithmic procedure described in
[20] which allows one to build V1 for a chosen rephasing
symmetry group Zk with a given number of doublets N. Of
course, not all discrete groups can be implemented. In the
same work [20], it is proven that, staying with N doublets
and renormalizable potentials, one can implement cyclic
groups Zk of order k ≤ 2N−1. Trying to impose any
symmetry whose order is larger than this bound unavoid-
ably leads to accidental continuous symmetries. Thus, the
order of generalized CP symmetry in NHDM cannot
exceed 2k ¼ 2N .
Even if the potential V1 is constructed with a guess, one

can always find its full rephasing symmetry group via the
systematic procedure based on Smith normal forms, which
were developed in [20] and explained in less technical
fashion in [31]. This computation can be done by hand or
implemented in a computer-algebra code. It is in this way
that one verifies the absence of accidental rephasing
symmetries. The absence of other symmetries beyond
rephasing ones is guaranteed by the fact that all free
parameters in (4) are independent.
Next, having the potential invariant under Zk generated

by a, one needs to check what additional conditions on its
parameters one must impose to make it invariant under the
desired CP symmetry of order 2k. Since higher-order CP
transformations mix pairs of doublets, there arise obvious
conditions on the parameters of V0 such as m2

22 ¼ m2
33, etc.

In addition, the parameters of V1 are also constrained.
These constraints can be analyzed term by term.
However, instead of such analysis, we will proceed in a

more efficient way. We will first construct all bilinear
combinations ϕ†

iϕj and classify them according to their
CP-charge q defined modulo 2k. Within each sector with
definite q, there may exist several bilinears ra, all of them
transforming in the same way under CP:

ra →
CP

ηq · ra: ð5Þ

It is sufficient to list only bilinears with 0 ≤ q ≤ k; the
complex conjugated bilinears r†a with CP-charges −q will
fill all other charge assignments from k to 2k. In terms of
these bilinears, the total potential can be schematically
written as

V ¼ Mara þ Λabrar
†
b; ð6Þ

where the nonzero coefficients Ma span only those ra with
q ¼ 0, and the Hermitian matrix Λab is block diagonal,
with unconstrained blocks within each q sector.

Once again, it is important to check that the resulting
CP2k-invariant potential does not acquire any accidental
symmetries. The rephasing symmetry group can again be
unambiguously found with the Smith normal form tech-
nique [20,31]. The absence of the usual CP symmetry is
guaranteed by the fact that the Hermitian matrix Λab in (6)
cannot be made real by any basis change. Absence of other
accidental symmetries beyond rephasing is assured by the
fact that the matrix Λab has sufficiently many independent
free parameters.
Since in this work we do not aim at producing minimal

models but rather look for examples of CP-protected scalar
darkmatter candidates,wewillmake sure that it is possible to
conserve this symmetry upon minimization of the Higgs
potential. Thiswill lead us, both forCP8 andCP16, tomodels
with five-Higgs doublets: one SM-likeϕ1 and four inert ones
ϕi, i ¼ 2, 3, 4, 5. These inert doublets form two pairs,
(ϕ2, ϕ3) and (ϕ4, ϕ5), which get mixed by the CP8 or CP16-
transformation. In each case, wewill take theCP-conserving
vev alignment v1 ¼ v, v2;3;4;5 ¼ 0, expand the potential
around the minimum, and calculate the neutral and charged
scalar mass matrices. We will confirm the general observa-
tion that the physical scalar fields in the inert sector are
pairwise mass-degenerate, just as in CP4 3HDM. For neutral
scalars, we will combine pairs of real mass eigenstates into
complex neutral fields with definiteCP-charge q and briefly
discuss the emerging self-interaction pattern.

C. 3HDM is not enough

It is instructive to begin the study by demonstrating why
3HDM fails to accommodate the CP8 symmetry [20].
According to the general strategy, one first needs to write a
model with rephasing symmetry Z4 and then extend the
symmetry to CP8. For three-Higgs doublets ϕi, i ¼ 1, 2, 3,
the Z4 group of symmetries is generated by the trans-
formation a4 which, after an appropriate basis change, can
be represented as

a4 ¼

0
B@

1 · ·

· −i ·

· · i

1
CA: ð7Þ

Here, dots stand for the zero entries. The Higgs potential is
written as V ¼ V0 þ V1, where V0 given in (4) and while
the phase-sensitive part V1

V1 ¼ λðϕ†
2ϕ3Þ2 þ λ0ðϕ†

1ϕ2Þðϕ†
1ϕ3Þ þ H:c: ð8Þ

Here, both coefficients can be complex andmust be nonzero.
If at least one of them is zero, then the number of independent
phase-sensitive terms drops below N−1, and the potential
acquires a continuous rephasing symmetry [20].
We now want to require that this potential be invariant

under CP8, which is generated by ϕi →
CP

Xijϕ
�
j of order 8.

The matrix X can be brought by a basis change to the form
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X ¼

0
B@

1 · ·

· · η�

· η ·

1
CA; η≡ eiπ=4; η8 ¼ 1: ð9Þ

One immediately checks that applying CP8 twice produces
XX� ¼ a4 from Eq. (7). Since CP8 mixes the doublets ϕ2

and ϕ3, one must equate their respective coefficients in V0.
In addition, one requires that V1 stays invariant under CP8.
Straightforward algebra shows that under CP8

ðϕ†
2ϕ3Þ2 →CP η4ðϕ†

2ϕ3Þ2 ¼ −ðϕ†
2ϕ3Þ2: ð10Þ

Therefore, one must set λ ¼ 0 to assure CP8-invariance of
V1. Since we are left with only one rephasing-sensitive
term, the potential acquires a continuous Uð1Þ rephasing
symmetry. Therefore, the true symmetry content of the
resulting model is not the discrete group generated by CP8
but the continuous group of arbitrary phase rotations and the
usual CP transformation. Colloquially speaking, 3HDM
potential does not offer enough room to incorporate CP8
without producing accidental symmetries.
In theAppendixwe show that this observation generalizes

to NHDM with any N. If one takes the largest cyclic group
possible forNHDM,Zkwith k ¼ 2N−1, and calculates for all
Higgs doublets ϕi their qi charges associated with the
rephasing group Zk, then one finds a very characteristic
pattern of these charges, which involves successive powers
of 2. However, if one starts with aCP symmetry of order 2k,
then one arrives at the same symmetry groupZk with a very
distinct pattern of charges: for any doublet with charge qi
there exists a doublet with charge−qi. These two patterns do
not match. It means that trying to impose CP symmetry of
order 2k ¼ 2N on NHDM leads to a continuous symmetry,
which ruins the construction.

D. Nor is 4HDM

Since CP8 requires going beyond three-Higgs doublet, it
is logical to try implementing it in 4HDM. When building
such a model, one has some freedom in constructing the
corresponding matrix X. In particular, one can assume that,
after an appropriate basis change, it takes one of the
following forms:

X ¼

0
BBB@

1 · · ·

· 1 · ·

· · · η�

· · η ·

1
CCCA or

0
BBB@

· −i · ·

i · · ·

· · · η�

· · η ·

1
CCCA or

0
BBB@

· η� · ·

η · · ·

· · · η�

· · η ·

1
CCCA; η8 ¼ 1: ð11Þ

We have attempted constructing the corresponding models
and have found that either assignment leads to a continuous
accidental symmetry.
In the case of a single 2 × 2 block, as in the first two

matrices in Eq. (11), we run into the same obstacle as
outlined above for 3HDM. Thus, one must use at least two
2 × 2 blocks and arrange for their cross-couplings.
However, in that case, when taking the fourth power of
the CP transformation, one arrives at the transformation
diagð−1;−1;−1;−1Þ, which is identity up to the overall
hypercharge transformation. Thus, in what concerns physi-
cal consequences, the CP symmetry imposed has order 4
not 8. From the arguments similar to those described in the
Appendix, we conclude that, once again, there is a mis-
match between the imposed form of the CP symmetry and
the requirement that, when squared, it should generate a
rephasing symmetry of order 4. Thus, to properly impose
CP8 in NHDM without generating accidental symmetries,
one must go to five-Higgs doublets.

III. BUILDING 5HDMS WITH CP8

A. 5HDM with CP8

The five-Higgs doublet model 5HDM can incorporate
cyclic groups with order up to 16. By the arguments
exposed in the Appendix, the maximal cyclic symmetry
Z16 cannot be extended to CP32. However, 5HDMs with
CP8 and CP16 are well possible, and in this and the next
sections, we construct such models.
The 5HDM uses N ¼ 5 Higgs doublets ϕi, all with the

same gauge quantum numbers. Similarly to the previously
considered 3HDM case, we define, in the appropriate basis,
the generator a4 of the group Z4 and the matrix X which
defines CP8:

a4¼

0
BBBBBB@

1 · · · ·

· −i · · ·

· · i · ·

· · · −i ·

· · · · i

1
CCCCCCA
; X¼

0
BBBBBB@

1 · · · ·

· · η� · ·

· η · · ·

· · · · η�

· · · η ·

1
CCCCCCA
; ð12Þ

with the same η≡ eiπ=4. The relation a4 ¼ XX� still holds.
The scalar potential can again be written as a sum of phase-
invariant and phase-sensitive parts V ¼ V0 þ V1, with V0

as in (4), where one implicitly assumes that the coefficients
m2

ii, λij, and λ0ij respect the symmetry under the simulta-
neous exchange ϕ2 ↔ ϕ3 and ϕ4 ↔ ϕ5. The phase-
sensitive part is now much richer than in 3HDM due to
the fact that we have two 2 × 2 blocks in the definition of X.
Following the strategy outlined in the previous section,

we write down all N2 ¼ 25 gauge-invariant bilinears
ϕ†
iϕj and build out of them combinations ra which are

CP8-eigenstates, that is, which transform under CP8 as
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in (5). Using the shorthand notation i≡ ϕi, we list these
CP8-eigenstates according to the value of q:

q¼ 0∶ 1†1; 2†2þ3†3; 4†4þ5†5;

2†4þ5†3; 4†2þ3†5;

q¼ 1∶ 2†1þ1†3; 4†1þ1†5;

q¼ 2∶ 2†3; 4†5; 4†3þ2†5; 3†4−5†2

q¼ 3∶ 1†2−3†1; 1†4−5†1

q¼ 4∶ 2†2−3†3; 4†4−5†5; 2†4−5†3; 4†2−3†5:

ð13Þ
Bilinears with CP charges from 5 to 8 are obtained by
complex conjugating the states listed here. Notice that only
the combinations corresponding to q ¼ 0 and q ¼ k ¼ 4
fall in the traditional classification of CP-even/odd states.
Thus, they can be coupled with other CP-even or odd

operators of the model in a CP-conserving way. The other
states cannot be classified according to CP parities.
In terms of these bilinears, the total potential is sche-

matically written as in (6). Using the methods outlined
above, one can verify that this potential indeed does not
possess any other symmetry.

B. Charged Higgs masses

When minimizing the potential, we focus on the case of
CP8-conserving vacuum, which implies that only the first
doublet acquires a vev v1 ¼ v. All inert Higgs doublets are
expanded as

ϕi ¼
� Hþ

i
1ffiffi
2

p ðhi þ iaiÞ
�
; i ¼ 2; 3; 4; 5: ð14Þ

The terms of the Higgs potential which generate the scalar
masses are

V ¼ m2
11ð1†1Þ þm2

22ð2†2þ 3†3Þ þm2
44ð4†4þ 5†5Þ þm2

24ð2†4þ 5†3Þ þ ðm2
24Þ�ð4†2þ 3†5Þ

þ λ1ð1†1Þ2 þ λ2ð1†1Þð2†2þ 3†3Þ þ λ3ð1†1Þð4†4þ 5†5Þ þ ½λ4ð1†1Þð2†4þ 5†3Þ þ H:c:�
þ λ5j2†1þ 1†3j2 þ λ6j4†1þ 1†5j2 þ λ05j2†1 − 1†3j2 þ λ06j4†1 − 1†5j2
þ ½λ7ð2†1þ 1†3Þð1†4þ 5†1Þ þ λ07ð2†1 − 1†3Þð1†4 − 5†1Þ þ H:c:�: ð15Þ

The SM-like Higgs boson acquires mass m2
h ¼ −2m2

11 ¼
2λ1v2. In the inert sector, we begin with the charged Higgs
masses, for which only the first two lines are relevant, and
obtain the following mass terms:�
m2

22 þ
λ2v2

2

�
ðH−

2H
þ
2 þH−

3H
þ
3 Þ

þ
�
m2

44 þ
λ3v2

2

�
ðH−

4H
þ
4 þH−

5H
þ
5 Þ

þ
��

m2
24 þ

λ4v2

2

�
ðH−

2H
þ
4 þH−

5H
þ
3 Þ þ H:c:

�
: ð16Þ

The charged mass matrix splits into two blocks 2 × 2

within subspaces (H�
2 ,H

�
4 ) and (H

�
3 ,H

�
5 ), with exactly the

same eigenvalues in each block. Thus, the charged Higgs
spectrum becomes pairwise mass degenerate.
Instead of explicitly diagonalizing each block, one can

take one step back and simplify the starting potential
without loss of generality. Indeed, the pairs of doublets
(ϕ2, ϕ3) and (ϕ4, ϕ5) transform in exactly the same way.
Therefore, one can perform basis transformations that mix
ϕ2 and ϕ4 by unitary matrix U and, simultaneously, ϕ3 and
ϕ5 by unitary matrix U�, and this basis change keeps the
symmetry transformations a4 and X unchanged. This
freedom of basis change is always there, and it allows
us to find such U which removes the cross term
ϕ†
2ϕ4 þ ϕ†

5ϕ3 altogether. In that basis, we still have the

same potential as before, but with reparametrized coeffi-
cients. In particular, the charged Higgs masses will now be
given only by the first line of (16). The four charged
Higgses then have the following masses:

m2
Hþ

2

¼ m2
Hþ

3

≡M2
Hþ

23

¼ m2
22 þ

λ2v2

2
;

m2
Hþ

4

¼ m2
Hþ

5

≡M2
Hþ

45

¼ m2
44 þ

λ3v2

2
: ð17Þ

C. Neutral Higgs masses and CP8-eigenstates

For neutral Higgses, instead of explicitly expanding all
the doublets into real components, it is convenient to define
neutral complex fields which are already CP8-eigenstates,
in similarity to the states φ and Φ in CP4 3HDM. These
fields can be read off the table (13); they correspond to the
bilinears with q ¼ 1 and q ¼ 3 in which ϕ0

1 set to its vev
hϕ0

1i ¼ v=
ffiffiffi
2

p
:

q ¼ 1∶ φ23 ¼
1

2
ðh2 þ h3 − ia2 þ ia3Þ;

φ45 ¼
1

2
ðh4 þ h5 − ia4 þ ia5Þ;

q ¼ 3∶ ψ23 ¼
1

2
ðh2 − h3 þ ia2 þ ia3Þ;

ψ45 ¼
1

2
ðh4 − h5 þ ia4 þ ia5Þ: ð18Þ
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The two sectors corresponding to q ¼ 1 and q ¼ 3 do not
mix in the mass matrix. Staying in the charged Higgs
eigenstate basis defined above, we can represent the mass
terms as

ðφ�
23;φ

�
45ÞMq¼1

�
φ23

φ45

�
þðψ�

23;ψ
�
45ÞMq¼3

�
ψ23

ψ45

�
; ð19Þ

where the two mass matrices are

Mq¼1 ¼
 
M2

Hþ
23

þ 2λ5v2 2λ7v2

2λ�7v
2 M2

Hþ
45

þ 2λ6v2

!
;

Mq¼3 ¼
 
M2

Hþ
23

þ 2λ05v
2 2λ07v

2

2λ0�7 v
2 M2

Hþ
45

þ 2λ06v
2

!
: ð20Þ

By diagonalizing them, we get the four different values for
the neutral Higgs masses for the fields φ, Φ in the q ¼ 1
sector, with mφ < mΦ, and ψ , Ψ in the q ¼ 3 sector, with
mψ < mΨ. If needed, these fields can also be written in
terms of real components. In that case we have eight real
fields which are pairwise mass degenerate.
The scalars from the q ¼ 1 and q ¼ 3 sectors can

interact with the Z-boson via Zφiψ j vertices. Indeed, each
inert Higgs doublet ϕi produces, via its kinetic term, the

term ðḡ=2ÞZμðhi∂
↔
aiÞ, where ḡ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p
is the com-

bined gauge coupling and h∂↔a ¼ hð∂μaÞ − að∂μhÞ. When
expressed in terms of CP8-eigenstates (18), these inter-
action terms become

i
ḡ
2
Zμðψ23∂

↔
φ23 þ ψ45∂

↔
φ45 − ψ�

23∂
↔
φ�
23 − ψ�

45∂
↔
φ�
45Þ: ð21Þ

These vertices represent the CP8-counterpart of the vertices
ZHA in the 2HDM and ZφΦ in the CP4 3HDM. They
conserve the CP8 quantum number: the sum of the internal
CP8-charges of φi and ψ i is 1þ 3 ¼ 4, which, for CP8
symmetry, is equivalent to being CP odd. After diagonal-
ization of the mass matrices in the φi and ψ i sectors, these
interactions render the next-to-lightest state metastable:

ψ → φ�Zð�Þ → φ� þ SM; if mψ > mφ;

φ → ψ�Zð�Þ → ψ� þ SM; if mψ < mφ: ð22Þ

To avoid confusion, we stress that notation φ� denotes the
state conjugated to φ (which, contrary to the usual expect-
ation, is not the antiparticle to φ, see detailed discussion in
[28]), while Zð�Þ denotes a real or virtual Z-boson. The only
exception is when the lightest states in these two sectors are
orthogonal, which would forbid Zφψ-vertex and render
both scalars stable.

The self-interaction in the inert sector leads to several
interaction terms involving φ and ψ :

Vðφ;ψÞ ¼ λφjφj4 þ λψ jψ j4 þ λφψ jφj2jψ j2
þ ½λ13φðψ�Þ3 þ λ31φ

3ψ� þ λ22φ
2ψ2 þ H:c:�:

ð23Þ

All coefficients here are independent; λ13, λ31, and λ22
can be complex, but it does not imply CP violation,
because the scalars here are themselves CP eigenstates,
and the CP8-charge is conserved by each term separately.
These interactions switch on new channels for two

identical DM candidates: although the direct annihilation
ψψ → SM is forbidden by the CP8 conservation, the
semiannihilation processes ψψ → ψ�φ are allowed for
mψ > mφ. Finally, for sufficiently large mass splitting,
the direct triple decays are also allowed:

ψ → φφφ; if mψ > 3mφ; φ→ ψψψ ; if mφ > 3mψ :

ð24Þ

IV. BUILDING 5HDM WITH CP16

In this section, we build yet another version of 5HDM,
the one with CP16. We use the same strategy as before,
but with the new parameter ξ≡ expðiπ=8Þ instead of
η ¼ expðiπ=4Þ. The first attempt is to use the same
structure for X as before:

a8¼

0
BBBBBB@

1 · · · ·

· η� · · ·

· · η · ·

· · · η� ·

· · · · η

1
CCCCCCA
; X¼

0
BBBBBB@

1 · · · ·

· · ξ� · ·

· ξ · · ·

· · · · ξ�

· · · ξ ·

1
CCCCCCA
; ð25Þ

and classify the bilinears according to their CP-charges q
defined modulo 2k ¼ 16. This classification is similar to
Eq. (13) but with an important change:

q ¼ 0∶ 1†1; 2†2þ 3†3; 4†4þ 5†5;

2†4þ 5†3; 4†2þ 3†5

q ¼ 1∶ 2†1þ 1†3; 4†1þ 1†5

q ¼ 2∶ 2†3; 4†5; 4†3þ 2†5

q ¼ k − 2∶ 3†4 − 5†2

q ¼ k − 1∶ 1†2 − 3†1; 1†4 − 5†1

q ¼ k∶ 2†2 − 3†3; 4†4 − 5†5; 2†4 − 5†3;

4†2 − 3†5: ð26Þ
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Once again, the states with q ¼ 0 and q ¼ k are CP even
and CP odd in the traditional sense. The key difference
with respect to CP8 case of Eq. (13) is that now, with k ¼ 8,
the charges q ¼ k − 2 and q ¼ 2 are distinct, and the matrix
Λab does not mix them. Thus, Λab stays block diagonal,
with blocks corresponding to subspaces of distinct values
of q. But then the structure of Λab does not depend on the
value of k provided k > 4. It means that the same potential
is invariant not only under CP16 but also under any higher-
order CP2k, as well as under the continuous Uð1Þ trans-
formations generated by a8 in Eq. (25) with η replaced by
any phase rotation. In short, the CP16 leads to accidental
symmetries including Uð1Þ and the usual CP.
However, we can try another quantum number

assignment:

a8¼

0
BBBBBB@

1 · · · ·

· η� · · ·

· · η · ·

· · · ðη3Þ� ·

· · · · η3

1
CCCCCCA
; X¼

0
BBBBBB@

1 · · · ·

· · ξ� · ·

· ξ · · ·

· · · · ðξ3Þ�
· · · ξ3 ·

1
CCCCCCA
:

ð27Þ

Within CP8, this assignment could be reduced to the
previously considered one by rephasing within the last
block, while here it leads to an essentially different model.
We also remark that it is absolutely inessential which block
is the third power of which. One can equally well denote
η0 ≡ η3 and then observe that η ¼ η9 ¼ ðη0Þ3. Group-
theoretically, this reflects the fact that the four inert
doublets are transformed under a8 by the four distinct
generators of the rephasing group Z8: η, η3, η5, and η7.
Again, classifying the bilinear transformations for CP2k,

we get:

q ¼ 0∶ 1†1; 2†2þ 3†3; 4†4þ 5†5

q ¼ 1∶ 2†1þ 1†3

q ¼ 2∶ 2†3; 4†2þ 3†5

q ¼ 3∶ 4†1þ 1†5

q ¼ 4∶ 4†3þ 2†5

q ¼ 6∶ 4†5

q ¼ k − 4∶ 3†4 − 5†2

q ¼ k − 3∶ 1†4 − 5†1

q ¼ k − 2∶ 2†4 − 5†3

q ¼ k − 1∶ 1†2 − 3†1

q ¼ k∶ 2†2 − 3†3; 4†4 − 5†5: ð28Þ

In the case of CP16, the value of k ¼ 8. Then, the
CP-charges q ¼ k − 4 and q ¼ 4 are identical, and so

are the charges q ¼ k − 2 and q ¼ 6. The corresponding
bilinears can be coupled via Λab, and the resulting potential
will not have the continuous symmetry.
Using the Smith normal form technique, one also verifies

that the rephasing symmetry of this model is indeed Z8. In
order to check that the model does not accidentally acquire
the usual CP symmetry, let us notice that the Hermitian
matrix Λab has three complex off-diagonal entries, coming
from the 2 × 2 blocks with charges q ¼ 2, 4, 6. They
generate six different rephasing-sensitive terms in the
potential. Using the rephasing freedom, one can make
two of these entries real, but not all three of them. Thus, the
coupling matrix Λab cannot be made real in any basis. This
fact forbids the usual CP symmetry as well as the
symmetry under ϕ2 ↔ ϕ3, ϕ4 ↔ ϕ5. Thus, we have a
viable 5HDM with CP16 and no accidental symmetry.
We proceed to the mass spectrum calculation for the case

of unbroken CP16. The terms in the Higgs potential that
generate the scalar masses are very similar to Eq. (15) but
with a few terms omitted:

V ¼m2
11ð1†1Þþm2

22ð2†2þ 3†3Þþm2
44ð4†4þ 5†5Þ

þ λ1ð1†1Þ2þ λ2ð1†1Þð2†2þ 3†3Þþ λ3ð1†1Þð4†4þ 5†5Þ
þ λ5j2†1þ 1†3j2þ λ6j4†1þ 1†5j2þ λ05j2†1− 1†3j2
þ λ06j4†1− 1†5j2: ð29Þ

Therefore, we can reuse exactly the same formulas for
scalar masses as before, Eqs. (17) and (20), but just set
λ7 ¼ λ07 ¼ 0 in the latter. The matrices in (20) become
diagonal, which is to be expected because the four complex
neutral fields carry now all distinct CP charges:

q¼1∶φ23¼
1

2
ðh2þh3− ia2þ ia3Þ; m2

φ23
¼M2

Hþ
23

þ2λ5v2

q¼3∶φ45¼
1

2
ðh4þh5− ia4þ ia5Þ; m2

φ45
¼M2

Hþ
45

þ2λ6v2

q¼5∶ψ45¼
1

2
ðh4−h5þia4þ ia5Þ; m2

ψ45
¼M2

Hþ
45

þ2λ06v
2

q¼7∶ψ23¼
1

2
ðh2−h3þia2þ ia3Þ; m2

ψ23
¼M2

Hþ
23

þ2λ05v
2:

ð30Þ

The interaction vertices Zφiψ j remain as in Eq. (21), and
they are already written in terms of mass states. All these
vertices still conserve the CP16-charge q. These vertices
lead to decays (22) within the 23 and 45 subsectors, but
they do not couple the two sectors, which renders the
lightest states in the two inert subsectors stable.
The self-interaction pattern in the inert sector depends on

which states in the 23 and 45 subsectors are the lightest
ones. For example, if the DM candidates are φ23 and φ45,
the self-interaction between them is given by
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Vðφ23;φ45Þ ¼ λ23jφ23j4 þ λ45jφ45j4 þ λ2345jφ23j2jφ45j2
þ ½λðφ23Þ3φ�

45 þ H:c:�: ð31Þ

If it happens that the DM candidates are φ23 and ψ45, then
the self-interaction terms are

Vðφ23;ψ45Þ ¼ λ23jφ23j4 þ λ45jψ45j4 þ λ2345jφ23j2jψ45j2
þ ½λφ23ðψ45Þ3 þ H:c:�: ð32Þ

In any of these cases, there exists an interaction term
involving asymmetric combinations of the two fields,
which can lead to semiannihilation and decays, in similarity
to what we found in the CP8 case.

V. DISCUSSION AND CONCLUSIONS

The key message of this study is that it is well possible to
construct renormalizable multi-Higgs models whose sym-
metry content is given only by a higher-order CP and its
powers. The CP4-symmetric 3HDM proposed initially in
[8] is the simplest example of this kind, but it is not the only
possibility. We have constructed here two versions of
5HDM with CP8 and CP16, and the methods we have
used can be generalized to CP symmetries of any order
2k ¼ 2p, should the need arise.
If the vacuum respects the higher-order CP symmetry,

then the real scalars emerging from the inert sector are
pairwise mass-degenerate and can be grouped into complex
neutral fields φi which are CP eigenstates. Just as in the
CP4 3HDM example, their CP properties are described by
CP2k-charges qi defined modulo 2k. They generalize the
notion of CP parity (that is, CP-charge defined modulo 2)
for the usual CP symmetry of order 2.
The lightest scalar in the inert sector serves as the DM

candidate, and its stability is insured by the exotic CP
symmetry rather than internal symmetry. Models with
elaborate CP sectors, such as CP16 5HDM, can contain
two or more DM candidates with different CP charges.
One may ask whether there is any difference between

models based on CP2k, considered here, and the more
traditional multi-Higgs models based on rephasing sym-
metries of order 2k, see examples in [32–34]. Despite the
symmetry group in both cases is the same, Z2k, there are
several distinctions.
First, the CP2k-based models possess vertices of the type

Zμφi∂
↔
φj, where qi þ qj ¼ k ≠ 0. Such vertices lead to

new coannihilation channels in the DM evolution and to
novel opportunities to detect scalars with exotic CP
properties at colliders. Such vertices are possible because
the Lorentz structure of this interaction term is by itself CP
odd and requires the internalCP properties of the two fields
φiφj to organize themselves into a CP-odd combination. In
the usual case, for example in the CP-conserving 2HDM,
the corresponding vertex is ZHA, where H is CP even

and A is CP odd, so that their product is CP odd. In the
CP2k-symmetric models, one just arranges qi þ qj ¼ k,
which exactly corresponds to being CP odd. In the tradi-
tional Z2k-symmetric model, such vertices are impossible
because the symmetry is internal, and therefore the
Z2k-charges of fields in any vertex must be a multiple of 2k.
Second, the mere fact that a complex field φ is a CP

eigenstate means that it is its own antiparticle. The one-
particle state φ�j0i is not an antiparticle to φj0i but is rather
a different particle with the same mass. This doubling of
spectrum is only possible for zero-charge fields and is
discussed at length in [28].
This feature allows one to consider an asymmetric DM

evolution regime, in which φ dominates over φ�. However,
unlike the traditional asymmetric DM models [35,36], this
imbalance does not imply particle-antiparticle asymmetry.
Constructing a model which exhibits such an imbalance
and studying its late-time observational signatures is a task
for future investigation.
Having demonstrated that it is possible to build CP-

conserving models based on various CP2k-symmetries, one
can ask whether this distinction is observable in any
imaginable experiment. If it is, we arrive at the exciting
possibility of determining experimentally the order of theCP
symmetry which the real world is closest to. This question
was already posed in [8], but it remains unanswered.
On the theoretical side, it is interesting to see if a CP2k

symmetry can arise as a low-energy residual symmetry
from a more symmetric model at high energy scale, whose
high symmetry spontaneously breaks down at lower
energies. All existing models of this kind generate at lower
energies only usual family symmetries, not an exotic CP.
On the other hand, as established in [18,19], certain
symmetry groups G not only allow but even require the
CP symmetry to be of higher order. Thus, equipping a
symmetric model with higher-order symmetries is not a
problem; one just needs to make sure it is the only
symmetry to survive at low energies. If such a construction
leading to a residual CP2k symmetry is found, it may
provide a natural explanation how the CP8 or CP16
5HDMs could emerge from a highly symmetric construc-
tion with one scalar singlet ϕ1 and one quadruplet (ϕ2, ϕ3,
ϕ4, ϕ5). It will then serve as an additional motivation to
look deeper at this exotic form of CP conservation and its
observable consequences.
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APPENDIX: NHDM WITH THE MAXIMAL
CYCLIC SYMMETRY

In Sec. II D we saw that trying to impose a CP symmetry
of order 8 in 3HDM leads to continuous family symmetry
and a usual CP. One may ask if this is a general result.
Here, we explore in some detail the CP properties of the
N-Higgs doubletmodel scalar sectorwith themaximal cyclic
symmetry Zk, where k ¼ 2N−1. We prove that it is indeed
impossible to extend it to a CP symmetry of order 2k ¼ 2N

without producing continuous accidental symmetries.
However, the fundamental reason is slightly different from
what we saw when attempting to impose CP8 in 3HDM.
We begin by reminding the reader of the result of [20]

that the largest cyclic group which can be imposed on the
scalar potential of the N-Higgs doublet model is Zk, where
k ¼ 2N−1. Trying to impose any larger cyclic group will
unavoidably produce a model with continuous rephasing
symmetry.
It is remarkable that, starting from this group-theoretical

fact, one can construct the Higgs potential of this model in
an essentially unique way, presented already in [20]. At first
glance, this may seem surprising. Indeed, one first finds a
basis in which the generator of this symmetry ak acts on all
doublets by rephasing. But there is a huge variety of ways
ak can act on each individual doublet. One can define such
action as ϕi → expð2πiqi=kÞ, and each particular imple-
mentation of Zk is defined by its spectrum of charges qi
defined modulo k. Different qi spectra will produce
nonequivalent models with the same Zk symmetry (in
fact, we already encountered this situation in Sec. IV when
we were building CP16 5HDM). However, we prove below
that there exists, up to permutation, a unique assignment of
charges, for which the potential does not acquire accidental
continuous symmetries.
Next, we briefly recap the technique based on the Smith

normal form (SNF), which was developed in [20] to
establish the rephasing symmetry group of any potential
and the exact form of the NHDM potential with the
maximal cyclic symmetry group Zk, k ¼ 2N−1.
For any scalar potential one first checks how each

individual term changes under a generic global rephasing
transformation ϕj → eiαjϕj. The i-th term picks up the
phase factor dijαj, where the integer coefficients dij are
immediately read off the expression for the i-term. For
example, if the first term is ðϕ†

2ϕ1Þðϕ†
3ϕ1Þ, its coefficients

are d1j ¼ ð2;−1;−1; 0;…; 0Þ. Going through allm rephas-
ing-sensitive terms, one builds in this way the coefficient
matrix dij, which is an integer-valued rectangular matrix

m × N. Then one can apply a sequence of certain elemen-
tary steps and reach its Smith normal form (SNF). The
Smith normal form exists and is unique for any rectangular
matrix with integer coefficients. The diagonal entries of
the SNF immediately give the rephasing symmetry group
of the potential.
The explicit form of the Zk-symmetric NHDM was

given in [20]:

d ¼

0
BBBBBBBBBB@

2 −1 0 0 � � � 0 0 −1
0 2 −1 0 � � � 0 0 −1
0 0 2 −1 � � � 0 0 −1
..
. ..

.

0 0 0 0 � � � 2 −1 −1
0 0 0 0 � � � 0 2 −2

1
CCCCCCCCCCA
: ðA1Þ

Notice that each row has the following properties:P
jdij ¼ 0, which reflects the global overall rephasing

symmetry, a subgroup of Uð1ÞY , and
P

jjdijj ¼ 4, which
reflects the fact that all interaction terms used here are
quartic. The SNF of this matrix has on its diagonal the
sequence (1; 1;…; 1; 2N−1), which indicates the rephasing
symmetry group Z2N−1 , in addition to the overall Uð1ÞY
rephasings of all doublets. Since the SNF is unique and
since its construction is invertible, any NHDM potential
with the same symmetry group Z2N−1 without any acci-
dental symmetry can be brought to this form by an
appropriate basis transformation.
The Higgs potential encoded in this matrix is

V1 ¼ λ1ðϕ†
Nϕ1Þðϕ†

2ϕ1Þ þ λ2ðϕ†
Nϕ2Þðϕ†

3ϕ2Þ
þ � � � þ λN−2ðϕ†

NϕN−2Þðϕ†
N−1ϕN−2Þ

þ λN−1ðϕ†
NϕN−1Þ2 þ H:c:; ðA2Þ

where all coefficients can be complex. From this expression
one can immediately obtain the spectrum of Zk charges:

qi ¼ ð1; 2; 4;…; 2N−2; 0Þ: ðA3Þ

All charges are defined modulo k ¼ 2N−1. There is a
freedom in simultaneous shift of all charges by the same
value, but their differences remain as they are. Up to
permutation, this is the only charge assignment which is
compatible with Zk and is capable of generating N − 1
different terms, thus avoiding accidental continuous
symmetries.
The potential (A2) has N − 1 terms constructed of N

Higgs doublets. There exist no other renormalizable terms
invariant under the same symmetry. This can be seen from
the matrix d itself. Suppose there exists yet another term,
which would appear in this matrix as N-th row dNj. Since
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the matrix is of rank N − 1, the new row can be written as
a linear combination of the existing rows with integer
coefficients. It is immediately seen by direct inspection
that any such combination would produce a row withP

jjdNjj > 4. Therefore, any such term can only be of
higher order.
Suppose now we want to impose the CP symmetry of

order 2k. Denoting the generator of the cyclic groupZk by a
and the generator of theCP2k symmetry by J, we are looking
for such a construction which satisfies J2 ¼ a. As men-
tioned in the introduction, a higher-orderCP-transformation
J acts on doublets asϕi → Xijϕ

�
j , where the matrixX can be

brought to the block-diagonal basis, with the diagonal
containing either entries 1 or 2 × 2 blocks of the form [11]

�
0 eiα

e−iα 0

�
: ðA4Þ

When squaring the CP transformation, one obtains the
diagonal matrix a ¼ XX�. Each block (A4) in X contributes
a pair of mutually conjugate entries e�2iα to its diagonal.
Sinceak ¼ 1, onemustmake sure that α is amultiple of π=k.
Different blocks can contain α’s as different multiples of
π=k, but in any case each block produces a pair of doublets
with opposite charge qi. Thus, the overall Zk-charge
spectrum, emerging from a CP2k-symmetric model, must
always exhibit a reflection symmetry: for every doublet with
charge qi, there exists a doublet with charge −qi.
However, we have already found the unique spectrum of

Zk-charges, which does not lead to accidental symmetries,
Eq. (A3). That spectrum does not possess this reflection
symmetry for N > 3. The conclusion is that although it is

possible to define a CP symmetry of order 2k ¼ 2N in
NHDM scalar sector, it will produce fewer than N − 1
rephasing-sensitive terms and, hence, the potential will
contain a continuous rephasing symmetry group and a
usualCP symmetry. This proves that NHDMwith maximal
cyclic symmetry group Zk, with k ¼ 2N−1, has so rigid
structure that it cannot accommodate the discrete CP2k-
symmetric structure.
3HDM is somewhat special. The Z4 charges are qi ¼

ð1; 2; 0Þ and they can be shifted by one unit to become
qi ¼ ð0; 1;−1Þ. This spectrum indeed demonstrates the
reflection symmetry mentioned. Therefore, one can
actually construct the desired CP8 transformation whose
square is the generator of Z4. Still, the model acquires an
accidental continuous symmetry as we saw in Sec. II D.
We conclude this study of the NHDM scalar sector with

the maximal cyclic symmetry group by noticing that the
potential (A2) is, in fact, automatically CP invariant under
a CP symmetry of order 2. Indeed, one can rephase N
doublets in such a way that all N − 1 coefficients λi in (A2)
become real; for an accurate proof see Sec. IVof [37]. Their
reality implies that the potential is invariant under the usual
complex conjugation, that is CP symmetry of order 2. In
addition to being explicitly CP conserving, this model also
forbids spontaneous CP violation. Once again, this con-
clusion follows from [37], where it was shown that if a
rephasing symmetry protects the model from explicit CP
violation, it also protects it against spontaneous CP
violation. The only class of models where this relation
does not hold must involve terms with four different fields
such as ðϕ†

1ϕ2Þðϕ†
3ϕ4Þ. However, such terms are absent in

our case.
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