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Sannomiya et al. have recently studied an extension of the Nicolai supersymmetric fermion lattice
model, which is named “the extended Nicolai model.” The extended Nicolai model is parametrized by an
adjustable constant g ∈ R in its defining supercharge and satisfiesN ¼ 2 supersymmetry. We show that for
any nonzero g the extended Nicolai model breaks supersymmetry dynamically, and the energy density of
any homogeneous ground state for the model is strictly positive.
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I. INTRODUCTION

In Ref. [1] Sannomiya et al. investigated supersymmetry
breakdown for an extended version of the Nicolai super-
symmetric fermion latticemodel [2]. Thismodel is called the
extended Nicolai model. It satisfies the algebraic relation of
N ¼ 2 supersymmetry, and it is same as the original Nicolai
model when its adjustable parameter g is equal to 0.
Supersymmetry breakdown for the extended Nicolai

model has been shown for any nonzero g on finite systems
[1]. In the infinite-volume limit, however, Sannomiya et al.
verified supersymmetry breakdown of the model only when
g > g0 ≔ 4=π. This restriction upon the parameter g seems
to be technical, and its physics meaning is unclear. The
purpose of this paper is to remove this restriction upon g in
the case of the infinite-volume limit. We show that for any
g ≠ 0 the extended Nicolai model defined on Z breaks
supersymmetry dynamically. Furthermore,we prove that for
any g ≠ 0 the energy density of any (homogeneous) ground
state for the extended Nicolai model is strictly positive.
It is noted in Ref. [1] that, even if supersymmetry (SUSY)

is broken for any finite subsystem, supersymmetry may be
restored in the infinite-volume limit as exemplified by some
SUSY quantum mechanical model [3]. We, however, show
that such restoration does not happen for the extended
Nicolai model. We formulate the extended Nicolai model as
supersymmetric C�-dynamics [4] and verify its breaking of
supersymmetry in a rather model-independent manner. In
more detail, our proof makes essential use of a crucial
finding by Sannomiya et al. (Eq. (15) of Ref. [1]) that will be
reformulated in terms of superderivations.

II. EXTENDED NICOLAI SUPERSYMMETRIC
FERMION LATTICE MODEL

We consider spinless fermions over an infinitely
extended lattice Z. Let ci and c�i denote the annihilation

operator and the creation operator of a spinless fermion at
i ∈ Z, respectively. Those obey the canonical anticommu-
tation relations (CARs). For i, j ∈ Z,

fc�i ; cjg ¼ δi;j1; fc�i ; c�jg ¼ fci; cjg ¼ 0: ð1Þ

For any g ∈ R, we take the following infinite sum of
local fermion operators:

QðgÞ ≔
X
k∈Z

ðgc2k−1 þ c2k−1c�2kc2þ1Þ: ð2Þ

It is perturbation of the supercharge of the original Nicolai
model Qð0Þ by another supercharge

P
k∈Zc2k−1 multiplied

by g. Note that the perturbed term
P

k∈Zc2k−1 itself
generates a trivial model. By some formal computation
using the canonical anticommutation relations (1), we see
that QðgÞ is nilpotent:

0 ¼ QðgÞ2 ¼ QðgÞ�2: ð3Þ

Let a supersymmetric Hamiltonian be given as

HðgÞ ≔ fQðgÞ; QðgÞ�g: ð4Þ

For any g ∈ R, the model has N ¼ 2 supersymmetry by
definition. As noted above, if g ¼ 0, it corresponds to the
supersymmetric fermion lattice model defined by Nicolai
in Ref. [2].
We note that in the infinite-volume system eitherQðgÞ or

QðgÞ�, or both, cannot exist as a well-defined linear
operator if the supersymmetry associated with them breaks
dynamically. In fact, we will show that this is the case
unless g ¼ 0. Nevertheless, its supersymmetric dynamics
always makes sense in the infinitely extended system, as we
will see later.
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We shall consider the model under periodic-boundary
conditions as in Ref. [1]. Let M, N ∈ 2N. Define

Q̃ðgÞ½−Mþ1;N� ≔
XN=2

k¼−M=2þ1

ðgc2k−1 þ c2k−1c�2kc2kþ1Þ; ð5Þ

where N þ 1 is identified with −M þ 1. We see that

0 ¼ Q̃ðgÞ2½−Mþ1;N� ¼ Q̃ðgÞ�2½−Mþ1;N�: ð6Þ

Then, we define the corresponding local supersymmetric
Hamiltonian on the same region ½−M þ 1; N� as

H̃ðgÞ½−Mþ1;N� ≔ fQ̃ðgÞ½−Mþ1;N�; Q̃ðgÞ�½−Mþ1;N�g: ð7Þ

Also, we may consider free-boundary conditions upon
supercharges. Let

Q̂ðgÞ½−Mþ1;Nþ1� ≔
XN=2

k¼−M=2þ1

ðgc2k−1 þ c2k−1c�2kc2kþ1Þ

þ gcNþ1: ð8Þ

We see that

0 ¼ Q̂ðgÞ2½−Mþ1;Nþ1� ¼ Q̂ðgÞ�2½−Mþ1;Nþ1�: ð9Þ

We give a local supersymmetric Hamiltonian upon the
same region ½−M þ 1; N þ 1� by the supersymmetric form:

ĤðgÞ½−Mþ1;Nþ1�≔fQ̂ðgÞ½−Mþ1;Nþ1�;Q̂ðgÞ�½−Mþ1;Nþ1�g: ð10Þ

We have introduced two different local Hamiltonians for
finite subsystems. Note that those give rise to the same time
evolution on the total system by taking the infinite-volume
limit as we will see in the next section.

III. MATHEMATICALLY
RIGOROUS FORMULATION

In Ref. [4], a general framework of supersymmetric
fermion lattice models is given. By using this frame-
work, we shall reformulate the extended Nicolai model
introduced in the preceding section as supersymmetric
C�-dynamics [5].
For each finite subset I ⋐ Z, let AðIÞ denote the finite-

dimensional algebra generated by fci; c�i ; i ∈ Ig. For
I ⊂ J ⋐ Z, AðIÞ is imbedded into AðJÞ. We define

A∘ ≔ ⋃
I⋐Z

AðIÞ; ð11Þ

where all finite subsets I of Z are taken. The norm
completion of the *-algebra A∘ (with the operator norm)
yields a C�-algebraA, which is known as the CAR algebra.

The dense subalgebra A∘ is called the local algebra.
A linear functional ω of A is called a state if it is positive,
i.e., ωðA�AÞ ≥ 0 for any A ∈ A, and also normalized,
i.e., ωð1Þ ¼ 1.
Let σ denote the shift-translation automorphism group

on A. For each k ∈ Z,

σkðciÞ ¼ ciþk; σkðc�i Þ ¼ c�iþk; ∀ i ∈ Z: ð12Þ

Let γ denote the grading automorphism on the
C�-algebra A determined by

γðciÞ ¼ −ci; γðc�i Þ ¼ −c�i ; ∀ i ∈ Z: ð13Þ

The total system A is decomposed into the even part and
the odd part:

A ¼ Aþ ⊕ A−; where Aþ ≔ fA ∈ AjγðAÞ ¼ Ag;
A− ≔ fA ∈ AjγðAÞ ¼ −Ag: ð14Þ

For each I ⋐ Z,

AðIÞ ¼ AðIÞþ ⊕ AðIÞ−; where

AðIÞþ ≔ AðIÞ ∩ Aþ; AðIÞ− ≔ AðIÞ ∩ A−: ð15Þ

The graded commutator is defined as

½Fþ; G�γ ¼ ½Fþ; G� for Fþ ∈ Aþ; G ∈ A;

½F−; Gþ�γ ¼ ½F−; Gþ� for F− ∈ A−; Gþ ∈ Aþ;

½F−; G−�γ ¼ fF−; G−g for F− ∈ A−; G− ∈ A−: ð16Þ

From the canonical anticommutation relations (1), the
graded locality follows:

½A;B�γ ¼ 0 for all A ∈ AðIÞ and

B ∈ AðJÞ if I ∩ J ¼ ∅; I; J ⋐ Z: ð17Þ

The formal expression of the superchargeQðgÞ of Eq. (2)
will give a well-defined infinitesimal fermionic transfor-
mation. Define a superderivation (a linear map that satisfies
the graded Leibniz rule) from A∘ intoA∘ by

δgðAÞ ≔ ½QðgÞ; A�γ for every A ∈ A∘: ð18Þ

Similarly, the conjugate superderivation is given by

δ�gðAÞ ≔ ½QðgÞ�; A�γ for every A ∈ A∘: ð19Þ

Let us explain the formula (18) in some depth. For each
fixed local element A ∈ A∘, only finite terms in the
summation formula of QðgÞ are involved in ½QðgÞ; A�γ ,
because there is a least I ⋐ Z (with respect to the inclusion)
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such that A ∈ AðIÞ, and by the graded locality (17), only
local fermion terms of (2) that have nontrivial intersection
with I may contribute to ½QðgÞ; A�γ . The other infinite
number of terms vanish. Therefore, there exist M0,
N0 ∈ 2N such that ½−M0 þ 1; N0� ⊃ I and the identity

δgðAÞ ¼ ½Q̃ðgÞ½−Mþ1;N�; A�γ ð20Þ

holds for all Mð∈ 2NÞ ≥ M0 and Nð∈ 2NÞ ≥ N0, where
the periodic-boundary condition as in (5) is used. For
example, if I is a finite interval of the type ½−Sþ 1;
−Sþ 2;…; T − 1; T� with ðS; T ∈ 2NÞ, then it is enough
to take M0 ¼ Sþ 2, N0 ¼ T þ 2. An analogous identity
for free-boundary supercharges given in (8) is possible. For
each A ∈ A∘, we have the asymptotic formula

δgðAÞ ¼ lim
N→∞

½Q̃ðgÞ½−Nþ1;N�; A�γ; ð21Þ

and similarly

δgðAÞ ¼ lim
N→∞

½Q̂ðgÞ½−Nþ1;Nþ1�; A�γ: ð22Þ

The nilpotent condition (3) is expressed by the super-
derivation δg as

δg ∘ δg ¼ δ�g ∘ δ�g ¼ 0: ð23Þ

Define the derivation generated by the Hamiltonian
HðgÞ:

dgðAÞ ≔ ½HðgÞ; A� for every A ∈ A∘: ð24Þ

This is the infinitesimal time generator of the model. We
can immediately verify the following supersymmetric
relation:

dgðAÞ ¼ δ�g ∘ δgðAÞþ δg ∘ δ�gðAÞ for every A∈A∘: ð25Þ

It has been known that short-range interactions of fermion
lattice systems give Hamiltonian dynamics in the infinite-
volume limit [6]. Somewhat heuristically, we have for any
A ∈ A and t ∈ R

αgðtÞðAÞ ≔ lim
N→∞

exp ðitH̃ðgÞ½−Nþ1;N�Þ
× A exp ð−itH̃ðgÞ½−Nþ1;N�Þ ∈ A:

Here, special local Hamiltonians given in (7) are used for
concreteness. However, we may take any boundary con-
dition upon local Hamiltonians.
With the above mathematical preliminary, we can con-

struct supersymmetric dynamics in the infinitely extended
system corresponding to the extended Nicolai model as in

the following theorem. Note that it holds irrespective of
broken-unbroken supersymmetry.
Theorem III.I: For each g ∈ R, the superderivation δg

generates a supersymmetric dynamics in A. Precisely,
there exists a strongly continuous one-parameter group of
*-automorphisms αgðtÞ (t ∈ R) on A of which the pregen-
erator is given by the derivation dg ≡ δ�g ∘ δg þ δg ∘ δ�g on
the local algebra A∘.
Proof: From our work [4], the statement follows

immediately. ▪
We need to fix the crucial terminology “supersymmetry

breakdown.” In physics literature, SUSY breakdown is
usually identified with strict positivity of the SUSY
Hamiltonian; see, e.g., Ref. [7]. However, one should be
cautious when dealing with models on noncompact space.
(We see a somewhat relevant remark in Ref. [3].) As shown
in Theorem III.1, superderivations provide building blocks
of supersymmetric dynamics. So, let us propose the
following definition based on superderivations. We con-
sider that it is a straightforward formulation of the physics
concept of symmetry and symmetry breakdown.
Definition III.2: Suppose that a superderivation gen-

erates a supersymmetric dynamics as in Theorem III.1. If a
state of A is invariant under the superderivation defined on
the local systemA∘, then it is called a supersymmetric state.
If no supersymmetric state exists, then it is said that SUSY
is spontaneously broken.
Sannomiya et al. employed a different definition [1]:

SUSY is spontaneously broken if the energy density of
ground states is strictly positive.
This alternative definition based on the energy density

seems not satisfactory in some respects. First, it is only
limited to homogeneous ground states. There may be
nonperiodic ground states that do not have a well-defined
energy density; we have given such states for the
original Nicolai model [8,9]. It is not obvious how the
status of SUSY for homogeneous states implies that for
nonhomogeneous states in the infinite-volume limit.
Second, its full justification has not yet been done
even for the particular model (i.e., the extended Nicolai
model). We investigate the above second issue in the next
section.

IV. SUPERSYMMETRY BREAKDOWN

A. Supersymmetry breakdown
in the infinite-volume system

The first theorem is a direct consequence of a crucial
property of the extended Nicolai model found by
Sannomiya et al. for finite systems. It is stated below in
(26) and (27). We only need to show that it remains valid in
the infinite-volume limit.
Theorem IV.1: For any g ≠ 0, the extended Nicolai

supersymmetric fermion lattice model breaks SUSY
spontaneously.
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Proof: As given in Eq. (15) of Ref. [1], for each k ∈ Z,
let [10]

Xk ≔ c�2k−1

�
1 −

1

g
ðc�2kc2kþ1 þ c2k−3c�2k−2Þ

þ 2

g2
c2k−3c�2k−2c

�
2kc2kþ1

�
: ð26Þ

We shall show that for all k ∈ Z

δgðXkÞ ¼ g: ð27Þ

As the model is σ2 invariant, it is enough to show the
statement for a specific k ∈ Z. So, let us consider

X2 ¼ c�3

�
1 −

1

g
ðc�4c5 þ c1c�2Þ þ

2

g2
c1c�2c

�
4c5

�

∈ Að½1; 2; 3; 4; 5; 6�Þ−:

Then, for the identity (20) to be valid for X2, it is enough to
take M0 ¼ 0 − 2 ¼ −2 and N0 ¼ 6þ 2 ¼ 8. We compute

δgðX2Þ ¼ ½Q̃ðgÞ½−1;8�; X2�γ

¼
�X4
k¼0

ðgc2k−1 þ c2k−1c�2kc2kþ1Þ; X2

�
γ

ð9 ¼ −1Þ

¼ ½gðc−1 þ c1 þ c3 þ c5 þ c7Þ þ ðc−1c�0c1 þ c1c�2c3 þ c3c�4c5 þ c5c�6c7 þ c7c�8c−1Þ; X2�γ
¼ ½gðc1 þ c3 þ c5Þ þ ðc−1c�0c1 þ c1c�2c3 þ c3c�4c5 þ c5c�6c7Þ; X2�γ;

where the identification 9 ¼ −1 is made and the graded locality (17) is noted. Similarly, we can verify that

δgðX2Þ ¼ ½Q̂ðgÞ½−1;7�; X2�γ
¼ ½g ðc−1 þ c1 þ c3 þ c5 þ c7Þ þ ðc−1c�0c1 þ c1c�2c3 þ c3c�4c5 þ c5c�6c7Þ; X2�γ
¼ ½g ðc1 þ c3 þ c5Þ þ ðc−1c�0c1 þ c1c�2c3 þ c3c�4c5 þ c5c�6c7Þ; X2�γ:

By direct computation using the canonical anticommutation relations (1), we have

δgðX2Þ ¼
�
gðc1 þ c3 þ c5Þ þ ðc−1c�0c1 þ c1c�2c3 þ c3c�4c5 þ c5c�6c7Þ; c�3

�
1 −

1

g
ðc�4c5 þ c1c�2Þ þ

2

g2
c1c�2c

�
4c5

��
γ

¼ fgc3 þ c1c�2c3 þ c3c�4c5; c
�
3g
�
1 −

1

g
ðc�4c5 þ c1c�2Þ þ

2

g2
c1c�2c

�
4c5

�

− c�3δg

�
1 −

1

g
ðc�4c5 þ c1c�2Þ þ

2

g2
c1c�2c

�
4c5

�

¼ ðgþ c1c�2 þ c�4c5Þ
�
1 −

1

g
ðc�4c5 þ c1c�2Þ þ

2

g2
c1c�2c

�
4c5

�
− c�3 · 0

¼ g − ðc�4c5 þ c1c�2Þ þ
2

g
c1c�2c

�
4c5 þ ðc1c�2 þ c�4c5Þ − 2 ×

1

g
c1c�2c

�
4c5

¼ g;

where we have noted

δg

�
1 −

1

g
ðc�4c5 þ c1c�2Þ þ

2

g2
c1c�2c

�
4c5

�
¼

�
gðc1 þ c3 þ c5Þ þ ðc−1c�0c1 þ c1c�2c3 þ c3c�4c5 þ c5c�6c7Þ;�
1 −

1

g
ðc�4c5 þ c1c�2Þ þ

2

g2
c1c�2c

�
4c5

��
γ

¼ 0:

Analogously, we obtain (27) for any k ∈ Z.
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Now, take any (not necessarily homogeneous) state ω
of A. Then, for any k ∈ Z,

ωðδgðXkÞÞ ¼ ωðg1Þ ¼ g: ð28Þ

Thus, if g ≠ 0, then ω is not invariant under δg. As ω is
arbitrary, there exists no invariant state under δg, and hence
SUSY is spontaneously broken for any g ≠ 0. ▪

B. Strict positivity of energy density due to
supersymmetry breakdown

We shall discuss the energy density for homogeneous
ground states. Let us fix relevant notation. A state ω onA is
called translation invariant if ωðAÞ ¼ ωðσ1ðAÞÞ for all
A ∈ A. A state ω on A is called homogeneous (with
periodicity 2) if ωðAÞ ¼ ωðσ2ðAÞÞ for all A ∈ A.
For any homogeneous state ω, we can define the

energy density for the extended Nicolai model by the
expectation value of the local Hamiltonians per site in
the infinite-volume limit. As we can choose any boundary
condition upon local Hamiltonians as noted in Ref. [11],
we have

eðgÞðωÞ ≔ lim
N→∞

1

2N
ωðH̃ðgÞ½−Nþ1;N�Þ

¼ lim
N→∞

1

2N
ωðĤðgÞ½−Nþ1;Nþ1�Þ: ð29Þ

Since all H̃ðgÞ½−Nþ1; N� [as well as ĤðgÞ½−Nþ1;Nþ1�] are
positive operators by definition, we have

eðgÞðωÞ ≥ 0: ð30Þ

A general definition of ground states for C�-systems is
given in terms of the infinitesimal time evolution; see
Ref. [6]. Now, it is dg given in (25). For homogeneous
states, this general characterization of ground states is
known to be equivalent to the minimum energy-density
condition [12]. The extended Nicolai model on Z is a
homogeneous model of 2-periodicity. It has been known
that for any translation invariant model there is at least one
translation invariant ground state [13]. Hence, there exists
at least one (not necessarily pure) homogeneous ground
state φ of the periodicity 2 for the extended Nicolai model.
The second theorem is as follows.
Theorem IV.2: Let φ be any homogeneous ground

state for the extended Nicolai model. Then, its energy
density eðgÞðφÞ is strictly positive if the parameter g of the
model is not 0.
Proof: The basic idea of our proof is owing to

Refs. [14,15]. We will make use of the formulation of
the Gelfand-Naimark-Segal (GNS) construction; see
Ref. [16]. By ðHφ; πφ;ΩφÞ we denote the GNS represen-
tation associated to the state φ of A. Precisely, πφ is a

homomorphism fromA intoBðHφÞ (the set of all bounded
linear operators on the Hilbert space Hφ), and Ωφ ∈ Hφ is
a cyclic vector such that φðAÞ ¼ hΩφ; πφðAÞΩφi for
all A ∈ A.
We consider finite averages of local operators fXkg

defined in (26) under shift translations: for n ∈ N, let

χðnÞ ≔ 1

n

Xn
k¼1

Xk ∈ Að½−1; 2nþ 1�Þ−: ð31Þ

We shall study the asymptotic behavior of φðδgðχðnÞÞÞ as
n → ∞. By (27), we have

φðδgðχðnÞÞÞ ¼
1

n

Xn
k¼1

φðδgðXkÞÞ ¼
1

n

Xn
k¼1

g ¼ g: ð32Þ

We can rewrite δgðχðnÞÞ ∈ A∘ in terms of finite super-
charges, which are located in a slightly larger region
including the support region of χðnÞ. As in (20), by using
local supercharges (5) under periodic-boundary conditions,
we have

δgðχðnÞÞ ¼ ½Q̃ðgÞ½−3;2ðnþ2Þ�; χðnÞ�γ: ð33Þ

Similarly, we may use free-boundary supercharges (8). By
using the GNS representation ðHφ; πφ;ΩφÞ, we have

φðδgðχðnÞÞÞ ¼ hΩφ; πφð½Q̃ðgÞ½−3;2ðnþ2Þ�; χðnÞ�γÞΩφi
¼ hΩφ; ðπφðQ̃ðgÞ½−3;2ðnþ2Þ�ÞπφðχðnÞÞ
þ πφðχðnÞÞπφðQ̃ðgÞ½−3;2ðnþ2Þ�ÞÞΩφi

¼ hπφðQ̃ðgÞ½−3;2ðnþ2Þ�Þ�Ωφ; πφðχðnÞÞΩφi
þ hπφðχðnÞÞ�Ωφ; πφðQ̃ðgÞ½−3;2ðnþ2Þ�ÞΩφi:

ð34Þ

As Ωφ is a normalized vector, by using the triangle
inequality and the Cauchy-Schwarz inequality, Eq. (34)
above yields the following estimate:

jφðδgðχðnÞÞÞj≤ kπφðQ̃ðgÞ½−3;2ðnþ2Þ�Þ�Ωφk ·kπφðχðnÞÞΩφk
þkπφðχðnÞÞ�Ωφk ·kπφðQ̃ðgÞ½−3;2ðnþ2Þ�ÞΩφk

≤ ðkπφðQ̃ðgÞ½−3;2ðnþ2Þ�Þ�Ωφk
þkπφðQ̃ðgÞ½−3;2ðnþ2Þ�ÞΩφkÞ ·kχðnÞk: ð35Þ

By applying Lemma IV.3 and Lemma IV.4, which will be
shown later, to the above estimate (35), we obtain

lim
n→∞

jφðδgðχðnÞÞÞj ¼ 0: ð36Þ
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This contradicts Eq. (32) when g ≠ 0. Thus, when g ≠ 0,
the assumption of Lemma IV.4 does not hold, and
accordingly eðgÞðφÞ should be nonzero. ▪
Now, we will show the lemmas used in the proof of

Theorem IV.2 above. We recall the Landau notation: O is
called “big-O,” and o is called “little-o.” Let fðnÞ and gðnÞ
be real-valued functions on N. We write fðnÞ ¼ OðgðnÞÞ as
n → ∞ if there exists a positive M < ∞ and n0 ∈ N such
that jfðnÞj ≤ MjgðnÞj for all n > n0. We write fðnÞ ¼
oðgðnÞÞ as n → ∞ if for any ε > 0 there exists
n0 ∈ N such that jfðnÞj ≤ εjgðnÞj for all n > n0.
The following lemma states the nonexistence of aver-

aged fermion operators (fermion observables at infinity [6])
in the infinite-volume limit. As the estimate is also
essential, we shall recapture its derivation from the original
work [17].
Lemma IV.3:

kχðnÞk ¼ O

�
1ffiffiffi
n

p
�

as n → ∞: ð37Þ

In particular, limn→∞χðnÞ ¼ 0 in norm of the C�-algebra.
Proof: For any F ∈ A, the inequality kFk2 ¼

kF�Fk ≤ kF�F þ FF�k holds. By using this and the
triangle inequality, we obtain

kχðnÞk2 ≤ 1

n2
Xn
k¼1

Xn
k0¼1

kfX�
k; Xk0 gk: ð38Þ

Each term is estimated from the above by some constant:

kfX�
k; Xk0gk ≤ kX�

kXk0 k þ kXk0X�
kk

≤ 2kX�
kk · kXk0 k

¼ 2kX1k2 ≡ C2=5 ðC > 0Þ: ð39Þ

By the graded locality (17) and the definition of Xk given in
(26), we have

fX�
k; Xk0 g ¼ 0 if jk − k0j > 2: ð40Þ

Thus, for each fixed k ∈ f1; 2;…; ng, there are at most five
k0 ∈ f1; 2;…; ng such that fX�

k; Xk0g does not vanish. By
applying (39) and (40) to (38), we obtain

kχðnÞk2 ≤ 1

n2
Xn
k¼1

5 × C2=5 ¼ C2

n
: ð41Þ

It is equivalent to kχðnÞk ≤ Cffiffi
n

p , and so (37) is obtained.▪
Lemma IV.4: If the energy density eðgÞðφÞ of a

homogeneous ground state φ is equal to 0, then

kπφðQ̃ðgÞ½−3;2ðnþ2Þ�Þ�Ωφk ¼ oð ffiffiffi
n

p Þ as n → ∞;

and

kπφðQ̃ðgÞ½−3;2ðnþ2Þ�ÞΩφk ¼ oð ffiffiffi
n

p Þ as n → ∞: ð42Þ

Proof: By the assumption eðgÞðφÞ ¼ 0, we have

0 ¼ eðgÞðφÞ ¼ lim
n→∞

1

2nþ 8
φðH̃ðgÞ½−3;2ðnþ2Þ�Þ

¼ lim
n→∞

1

2n
φðH̃ðgÞ½−3;2ðnþ2Þ�Þ: ð43Þ

By (7),

φðH̃ðgÞ½−3;2ðnþ2Þ�Þ
¼φðfQ̃ðgÞ½−3;2ðnþ2Þ�; Q̃ðgÞ�½−3;2ðnþ2Þ�gÞ
¼ hπφðQ̃ðgÞ�½−3;2ðnþ2Þ�ÞΩφ;πφðQ̃ðgÞ�½−3;2ðnþ2Þ�ÞΩφi
þhπφðQ̃ðgÞ½−3;2ðnþ2Þ�ÞΩφ;πφðQ̃ðgÞ½−3;2ðnþ2Þ�ÞΩφi

¼ kπφðQ̃ðgÞ�½−3;2ðnþ2Þ�ÞΩφk2þkπφðQ̃ðgÞ½−3;2ðnþ2Þ�ÞΩφk2:
ð44Þ

By this together with (43), we have

kπφðQ̃ðgÞ�½−3;2ðnþ2Þ�ÞΩφk2 ¼ oð2nÞ as n → ∞;

kπφðQ̃ðgÞ½−3;2ðnþ2Þ�ÞΩφk2 ¼ oð2nÞ as n → ∞: ð45Þ

By taking square roots, we obtain (42). ▪
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