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Building upon the fundamental partial compositeness framework, we provide consistent and potentially
complete composite extensions of the Standard Model. These are used to determine the effective operators
emerging at the electroweak scale in terms of the standard model fields upon consistently integrating out the
heavy composite dynamics. We exhibit the first effective field theories matching these composite theories
of flavor and analyze their physical consequences for the third generation quarks. Relations with other
approaches, ranging from effective analyses for partial compositeness to extra dimensions as well as purely
fermionic extensions, are briefly discussed. Our methodology is applicable to any composite theory of
dynamical electroweak symmetry breaking featuring a complete theory of flavor.
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I. INTRODUCING THE MINIMAL
FUNDAMENTAL COMPOSITE MODEL

Since the earliest proposals of new composite dynamics
(aka Technicolor—TC) as the underlying theory of electro-
weak symmetry breaking [1,2], generating masses for the
Standard Model (SM) fermions has been the biggest hurdle
on the way to a complete model. Many attempts have been
made, from extending the TC gauge sector [3] to intro-
ducing scalar mediators as in bosonic TC [4–9]. The SM
fermion masses are generated either by effective operators
bilinear in the fermion spinors, or via linear mixing to a
fermionic bound state as in the partial compositeness
mechanism [10]. In all cases, the main difficulty has been
to construct a complete theory in the ultraviolet (UV).
Phenomenologically it is difficult to accommodate a heavy
top quark with the stringent bounds on the scale of flavor
violation in the light quark and lepton sectors. Recently, in
Ref. [11], an alternative paradigm has been introduced that
allows for writing a potentially complete UV theory of
composite flavor. The models account for a pseudo Nambu
Goldstone boson (pNGB) Higgs particle [12] and can
possibly be extrapolated to the strong gravity scale. Here

fermion masses are generated via Yukawa couplings
involving TC-charged scalars. Partial compositeness is
thus obtained at low energy by the formation of fer-
mion-scalar bound states. For the top quark, the values
of these Yukawas are required to be large at the condensa-
tion scale; thus further investigation is needed to prove that
their running can be extrapolated all the way to the Planck
scale without further new physics. This is based on an order
of magnitude estimate; thus favorable strong form factors
may avoid this potential issue. Composite theories includ-
ing (super) TC scalars, attempting to give masses to some
of the SM fermions, appeared earlier in the literature
[13–18] for (walking) TC theories that did not feature a
pseudo Nambu Goldstone boson Higgs particle.
In models of fundamental partial compositeness (FPC)

the SM is extended with a new TC sector featuring new
elementary fermions and scalars charged under a new
gauge group GTC [11]. Electroweak symmetry breaking
(EWSB) is caused by the TC dynamics in which the Higgs
boson is replaced by a light composite state.
The TC Lagrangian before introducing the electroweak

sector reads

LTC ¼ −
1

4
GμνGμν þ iF̄ σ̄μDμF −

�
1

2
FmF ϵTCF þ H:c:

�
þ ðDμSÞ†ðDμSÞ − S†m2

SS − VðSÞ; ð1Þ

where TC-fermions and TC-scalars are in pseudoreal
representations of the GTC group, mF and m2

S are mass
matrices and ϵTC is the antisymmetric invariant tensor of
GTC. This choice of representation is due to the fact that the
most minimal models are of this nature [19]. Nevertheless
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the following analysis and methodology is generalisable to
complex and real representations as well, for which a list of
FPC models was made in [11].
Assuming NF Weyl TC-fermions the maximal quantum

global symmetry of the fermions in the kinetic term is
SUðNF Þ. The symmetries are such that mF is an anti-
symmetric tensor in flavor space.
As the TC-scalars transform according to the same

representation as the TC-fermions with respect to the new
gauge group, no Yukawa interactions among the TC-
fermions and TC-scalars can be written (except for a few
exceptions [11]). This implies that, with zeromass terms, the
TC-scalars have an independent Spð2NSÞ symmetry. We
assume the potential VðSÞ to respect the maximum global
symmetries of the TC theory. To elucidate the symmetry in
the scalar sector we note that theNS complex TC-scalars can
be arranged in the following single field:

Φ ¼
�

S

−ϵTCS�

�
; ð2Þ

still transforming according to a pseudoreal representation
ofGTC. The TC indices are hidden to keep the notation light,
cf. Appendix A. One can show that this rearrangement
leaves the TC Lagrangian invariant under the Spð2NSÞ
flavor symmetry. The scalar kinetic andmass termnow reads

1

2
ðDμΦÞϵTCϵðDμΦÞ − 1

2
ΦϵTCM2

SΦ; ð3Þ

with

M2
S ¼

�
0 −m2

S
T

m2
S 0

�
; ð4Þ

and ϵ is the invariant symplectic form of Spð2NSÞ.
A straightforward realization for this model is obtained

choosingGTC ¼ Spð2NÞ with the TC fundamental states in
the fundamental representation. In Table I we summarize
the elementary states of the TC theory as well as the bilinear
gauge singlets along with their global transformation
properties and multiplicities.
When adding the electroweak (EW) sector we embed it

within the SUðNF Þ of the TC-fermion sector. In this way the
EWSB is tied to the breaking of SUðNF Þ and the Higgs
boson can be identified with a pNGB of the theory [12,19].
Assuming for the scalars a positivemass squared, it is natural
to expect spontaneous symmetry breaking in the fermion
sector1 according to the pattern SUðNF Þ → SpðNF Þ. This
breaking pattern was established in the absence of scalars
for NF ¼ 4 and GTC ¼ Spð2Þ via first principle lattice

simulations [20]. The ensuing TC-fermion bilinear con-
densate is

hF aϵTCF a0 i ¼ f2TCΛTCΣaa0
0 ; ð5Þ

where Lorentz and TC indices are opportunely contracted,
and the Σ0 matrix is an antisymmetric, two-index repre-
sentation of SUðNF Þ. We also haveΛTC ¼ 4πfTC withΛTC
the composite scale of the theory andfTC the associated pion
decay constant.
In addition, we envision two possibilities for the TC-

scalars: the formation of a condensate hΦiϵTCΦji may not
happen or be proportional to the singlet of Spð2NSÞ, in which
case the flavor symmetry in the scalar sector is left unbroken,
or a condensate forms and breaks Spð2NSÞ generating light
bosonic degrees of freedom. For the remainder of this paper
we will focus on the former case for the sake of simplicity.
We now turn our attention to the SM fermion mass

generation. The presence of TC-scalars in FPC models
allow for a new type of Yukawa interactions interfacing the
TC and the SM sectors. In fact each new Yukawa operator
involves a TC-fermion, a TC-scalar and a SM fermion and
the new fundamental Yukawa Lagrangian to replace the SM
one reads

Lyuk ¼ −ψ i
aϵijΦjϵTCF a þ H:c:; ð6Þ

in which we make use of the spurion ψ transforming under
the relevant global symmetries as

ψ i
a ≡ ðΨyÞia ∈ □S ⊗ □̄F : ð7Þ

Here Ψ is a generic SM fermion and y is the new Yukawa
matrix. With this spurionic construction we may formally
consider Lyuk an invariant of the global TC symmetries.
Additionally, the notation has the benefit that all Yukawa
interactions are summarized in a single operator. Note that
with the notation introduced here, the generation, color, and
electroweak indices are all embedded in the global sym-
metries. At low energy, the Yukawa couplings in Eq. (6)

TABLE I. The fundamental matter fields of the theory appear in
the first two lines of the table, both transforming according to the
fundamental representation of TC. The last three lines correspond
to the bilinear composite TC singlet states. The number of states
counts the Weyl fermions or real scalars.

States SUðNF Þ Spð2NSÞ Number of states

F □ 1 2N × NF

Φ 1 □ 2N × 2NS

ΦΦ 1 1þ NSð2NS − 1Þ
FΦ □ □ 2NSNF

FF 1 NF ðNF − 1Þ

1In [11] there is also a preliminary analysis of the potential
conformal window including light TC-scalars that allows us to
argue that the model is expected to be in a chirally broken phase.
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generate linear mixing of the SM fermions with spin-1=2
resonances made of one TC-fermion and one TC-scalar
(see Table I), thus implementing partial compositeness.
This way of endowing masses for the SM fermions is free
from long-standing problems in models of composite Higgs
dynamics and, as we shall discuss later, can be also related
to previous incomplete extensions.
Besides the SM fermions and Yukawas, the underlying

theory contains two more spurions that explicitly break the
flavor symmetries, that is the masses of the TC-fermions
and scalars,

ð8Þ

As they are dimensionful parameters, they can be inserted
at the effective Lagrangian level only if an order parameter
can be defined, i.e., either if the mass is small compared to
the TC scale ΛTC, or if they are much larger. In the latter
case, one can then expand in powers of the inverse of the
mass matrices. We will start with the former case and
classify the relevant operators in terms of powers of the
spurion ψ i

a and then discuss how to consistently move to
the limit of large TC-scalar masses.
We are now ready to determine the effective operators

emerging at the EW scale in terms of the SM fields upon
consistently integrating out the heavy TC dynamics aside
from the pNGB excitations. De facto we provide the first
effective field theory that matches to a concrete and
complete example of a composite theory of flavor. In turn,
this allows for investigating its impact on electroweak
observables and low energy flavor physics.
We structure the work as follows. In Sec. II we construct

the effective field theory. We set the stage by first briefly
reviewing the essentials of the TC pNGB effective field
theory. We then move on to construct the symmetry
allowed TC-induced effective operators involving SM
fermions. We construct both fermion bilinears and four-
fermions operators. Then we formulate the standard model
induced one-loop pNGB potential and higher derivatives
pNGB operators. Physical consequences and phenomeno-
logical constraints deriving from the third generation
quarks physics are investigated in Sec. III, in which we
also briefly comment on the light generations. Section IV is
devoted to the relation with other approaches ranging from
effective analyses for partial compositeness to extra dimen-
sions as well as purely fermionic extensions. We finally
offer our conclusions in Sec. V.

II. EFFECTIVE FIELD THEORY AT THE
ELECTROWEAK SCALE

Having spelled out the underlying fundamental dynam-
ics we now move to determine the effective operators at
the EW scale. We start with a brief summary of the chiral
Lagrangian for the TC sector. We then list the effective

operators in terms of the SM fields generated by explicit
realizations of partial compositeness. This is achieved by
coherently matching the operators to the underlying
composite flavor dynamics. This allows us, for the first
time, to build in a controlled manner the full effective field
theory. All operators will then appear in the Lagrangian

LEFT ¼
X
A

CAOA þ
�X

A

C0
AO

0
A þ H:c:

�
ð9Þ

for the effective field theory with coefficients Cð0Þ
A deter-

mined by the underlying TC dynamics. Here Oð0Þ
A refers to

the self-hermitian/complex operators respectively.
To organize the expansion of the EFT we adopt the

counting of chiral dimension [21] as a generalization of the
naive dimensional analysis (NDA) [22] for EW effective
field theories with strong underlying dynamics. It will be
apparent that this counting agrees with the naive estimates
for the effective operators considered in Ref. [11]. In a
realistic FPC model the power-counting is complicated
slightly, by the potential occurrence of strong Yukawa
couplings; achieving the correct top mass requires the
product yQ3

yt ∼ 4π. Strong couplings in the chiral expan-
sion, can potentially enhance certain operators beyond the
order ascribed to them by simple counting of the chiral
dimension. To alleviate this issue we defined the effective
Yukawa couplings

yfundffiffiffiffiffiffi
4π

p → y; ð10Þ

which are simple rescalings of the fundamental couplings.
This will allow us to treat the Yukawa couplings as
perturbative, albeit with a chiral dimension lowered to
1=2 down from 1. This is the prescription used in the
remainder of this article. In the end, onemust remember that
the Yukawa parameters entering in the EFT are different
from the fundamental Yukawa couplings by a rescaling.
For the underlying model to be fundamental, it must be

possible to run a perturbative Yukawa coupling from the
scale of strong gravity down to the scale of compositeness
where it should become strong. The leading order beta
function for the fundamental Yukawa coupling, yt, belong-
ing to the right-handed top quark (cf. Sec. III) in the
presence of an Spð2NÞ technicolor group is2

∂yt
∂ ln μ ¼ yt

ð4πÞ2
ð4N þ 10Þy2t − ð6N þ 3Þg2TC

4
ð11Þ

in the absence of other Yukawa couplings. Starting the RG
flow in the perturbative regime at high scales (e.g., the
Planck scale) and evolving the couplings down to ΛTC, one

2This result differs from the analogous Eq. (32) in Ref. [11];
however the qualitative features of the running are retained.
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will find that yt increases in the IR as long as gTC ≥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið4N þ 10Þ=ð6N þ 3Þp
yt. With gTC becoming strong at the

scale of compositeness, we can expect that it pulls the
Yukawa couplings with it. This effect, however, is outside
the reach of perturbation theory and cannot be probed
quantitatively, as one can only achieve yt ∼ 1, before gTC
becomes nonperturbative. A nonperturbative study is there-
fore required to quantitatively determine whether the
requirement of a strong yt is compatible with completeness
of the underlying model. This tension in the top Yukawas
might also be resolved by favorable strong coefficients
departing from unity by OðfewÞ.

A. Chiral Lagrangian setup

The effective low-energy limit of the model may be
described by a nonlinearly realized chiral Lagrangian,
incorporating the Goldstone modes of the spontaneously
broken symmetry [23,24]. As discussed in the previous
section, the TC sector is invariant under the SUðNF Þ flavor
symmetry, which is broken to the stability group SpðNF Þ
by the fermion condensate Σ0. The breaking pattern will
result in NF ðNF − 1Þ=2 − 1 broken generators Xi with
corresponding (p)NGBs Πi. The associated manifold
SUðNF Þ=SpðNF Þ is parametrized by

uðxÞ ¼ exp

� ffiffiffi
2

p
i

fTC
ΠiðxÞXi

�
; ð12Þ

having normalized the generators as Tr½XiXj� ¼ 1
2
δij. The

Goldstone matrix u transforms as

u → guh†; ð13Þ
under flavor transformations, with g ∈ SUðNF Þ. Here
hðg;ΠÞ ∈ SpðNF Þ is a space-time dependent element of
the stability group uniquely determined via the constraint
guh† ∈ SUðNF Þ=SpðNF Þ. This results in a well-defined,
though highly nontrivial transformation of the NGBs.
Utilizing the fact that the broken generators satisfy XiΣ0 ¼
Σ0XT

i , one may parametrize the low-lying, pNGB, bilinear
fermion composite states as

Σ ¼ uΣ0uT ¼ u2Σ0; ð14Þ
transforming like Σ → gΣgT while leaving the vacuum
alignment unchanged. This parametrization of the pNGBs
around the vacuum coincides with that of Ref. [19] (even
though the normalization of the decay constant is different).
As discussed in the previous section the SM gauge

symmetries are embedded into the global symmetries. Parts
of these are therefore promoted to local symmetries leading
to the introduction of the covariant derivative Dμ. With this
gauging, the lowest order effective theory reads

L2 ¼
1

8
f2TCTr½uμuμ þ χþ�: ð15Þ

Following Ref. [25] we introduced

uμ ¼ 4iXiTr½Xiu†Dμu� → huμh†; ð16Þ

χ� ¼ u†χΣ0u† � uΣ0χ
†u → hχ�h†; ð17Þ

both transforming homogeneously under the stability group.
The TC-fermion mass is encoded in χ ¼ 2B0m�

F , where B0

is a TC constant. Formally this is considered to be a spurion
field which transforms as χ → gχgT to preserve SUðNF Þ
invariance through all steps. For a detailed discussion of the
next-to-leading order (NLO) pion Lagrangian we refer to
Refs. [26,27].We also note that the chiral Lagrangian allows
for the inclusion of a topological term, known as the Wess-
Zumino-Witten term, which has been gauged in [28].

B. Effective bilinear operators with
Standard Model fermions

We now turn to the effective operators in terms of the SM
fermion fields starting with the bilinear ones. They can be
neatly organized according to their chiral dimension,
starting with the lowest one which reads

OYuk ¼ −
fTC
2

ðψ i1
a1ψ

i2
a2ÞΣa1a2ϵi1i2 : ð18Þ

The above corresponds to ordinary mass terms for the SM
fermions and contains the Higgs couplings at linear order in
the pNGB fields. The antisymmetric matrix ϵi1i2 , defined in
Appendix A, contracts the Spð2NSÞ indices, while spinor
indices are hidden with the convention that two Weyl
spinors in parenthesis are contracted to a scalar.
At the next order we have the operator,

OΠf ¼
ifTC
2ΛTC

ðψ̄ i1a1 σ̄μψ
i2
a2ÞΣ†

a1a3D
↔μ

Σa3a2ϵi1i2 : ð19Þ

The above affects the coupling of massive gauge bosons,
contained in the covariant derivative, to the SM fermions.
At next order again we find the dipole operators,

OfW ¼ fTC
2Λ2

TC
ðψ i1

a1σ
μνψ i2

a2ÞAI
μνðTI

FΣ−ΣðTI
F ÞTÞa1a2ϵi1i2 ;

ð20Þ

OfG ¼ fTC
2Λ2

TC
ðψ i1

a1σ
μνψ i2

a2ÞGA
μνΣa1a2ðϵTA

S − ðTA
SÞTϵÞi1i2 ;

ð21Þ

where Tk
F=S are the generators of SUðNF Þ and Spð2NSÞ

respectively, and Ak
μν=Gk

μν the field strength tensors of the
relative gauge bosons (more precisely, of the gauged
subgroup). We note that the gauge couplings constants have
been absorbed into the generators Tk

F=S to account for there
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being several SMgaugegroups embedded into each of them.
The two operators, (20) and (21), have structures mimicking
the Penguin-induced operators in the SM.3

C. Effective four-fermion operators with
Standard Model fermions

We now construct a consistent basis of four-fermion
operators starting with five independent operators featuring
two left-handed spinors ψ and two right-handed ones ψ̄ ,

O1
4f ¼

1

4Λ2
TC

ðψ i1
a1ψ

i2
a2Þðψ̄ i3a3 ψ̄ i4a4Þ

× Σa1a2Σ†
a3a4ϵi1i2ϵi3i4 ; ð22Þ

O2
4f ¼

1

4Λ2
TC

ðψ i1
a1ψ

i2
a2Þðψ̄ i3a3 ψ̄ i4a4Þ

× ðδa1a3δa2a4 − δa1a4δ
a2

a3Þϵi1i2ϵi3i4 ; ð23Þ

O3
4f ¼

1

4Λ2
TC

ðψ i1
a1ψ

i2
a2Þðψ̄ i3a3 ψ̄ i4a4Þ

× Σa1a2Σ†
a3a4ðϵi1i4ϵi2i3 − ϵi1i3ϵi2i4Þ; ð24Þ

O4
4f ¼

1

4Λ2
TC

ðψ i1
a1ψ

i2
a2Þðψ̄ i3a3 ψ̄ i4a4Þ

× ðδa1a3δa2a4ϵi1i3ϵi2i4 þ δa1a4δ
a2

a3ϵi1i4ϵi2i3Þ; ð25Þ

O5
4f ¼

1

4Λ2
TC

ðψ i1
a1ψ

i2
a2Þðψ̄ i3a3 ψ̄ i4a4Þ

× ðδa1a3δa2a4ϵi1i4ϵi2i3 þ δa1a4δ
a2

a3ϵi1i3ϵi2i4Þ; ð26Þ

where ψ̄ai ¼ ϵijψ̄a
j. Note also that the above operators are

self-conjugate. Similarly, one can construct five correspond-
ing operators containing four left-handed spinors. However,
we find that only three of them are truly independent, as
shown in Appendix B. We take these three to be

O6
4f ¼

1

8Λ2
TC

ðψ i1
a1ψ

i2
a2Þðψ i3

a3ψ
i4
a4Þ

× Σa1a2Σa3a4ϵi1i2ϵi3i4 ; ð27Þ

O7
4f ¼

1

8Λ2
TC

ðψ i1
a1ψ

i2
a2Þðψ i3

a3ψ
i4
a4Þ

× ðΣa1a4Σa2a3 − Σa1a3Σa2a4Þϵi1i2ϵi3i4 ; ð28Þ

O8
4f ¼

1

8Λ2
TC

ðψ i1
a1ψ

i2
a2Þðψ i3

a3ψ
i4
a4Þ

× Σa1a2Σa3a4ðϵi1i4ϵi2i3 − ϵi1i3ϵi2i4Þ: ð29Þ

For completeness, we also show the two-dependent
operators

O9
4f ¼

1

8Λ2
TC

ðψ i1
a1ψ

i2
a2Þðψ i3

a3ψ
i4
a4Þ

× ðΣa1a3Σa2a4ϵi1i3ϵi2i4 þ Σa1a4Σa2a3ϵi1i4ϵi2i3Þ; ð30Þ

O10
4f ¼

1

8Λ2
TC

ðψ i1
a1ψ

i2
a2Þðψ i3

a3ψ
i4
a4Þ

× ðΣa1a3Σa2a4ϵi1i4ϵi2i3 þ Σa1a4Σa2a3ϵi1i3ϵi2i4Þ; ð31Þ

which are related to O6−8
4f via

O6
4f þO9

4f ¼ 0; O7
4f þO8

4f −O10
4f ¼ 0: ð32Þ

For the case of NF ¼ 4 one can write another operator,

OA ¼−
1

8Λ2
TC

ðψ i1
a1ψ

i2
a2Þðψ i3

a3ψ
i4
a4Þϵa1a2a3a4ϵi1i2ϵi3i4 ; for

NF ¼ 4; ð33Þ

where ϵa1a2a3a4 is the fully antisymmetric 4-index matrix
which is naturally linked to the Adler-Bell-Jackiw anomaly
of the global Uð1ÞF . However this operator is already
contained in the list above because of the following operator
identity:

OA ¼O10
4f−O8

4f−O9
4f ¼O6

4fþO7
4f; for NF ¼ 4: ð34Þ

It is useful to represent each of the ten operatorsO1…10
4f in

terms of representative diagrams involving F and S loops,
as shown in Figs. 1 and 2. Here the “X” signifies an
insertion of the dynamical TC-fermion mass, that is
proportional to Σ. Thus the diagrams show how the
Σ-dependence occurs in each operator. At a naive

FIG. 1. Representative Feynman diagrams corresponding to the
operators O1

4f–O5
4f in Eqs. [(22)–(26)]. The blue colored lines

are SM fermions, the red colored solid lines are TC fermions, the
red colored curly lines are TC gluons, and the magenta lines are
TC scalars.

3The naming of these operators are loosely inspired by the
corresponding operators in the SM effective field theory [29].
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perturbative level (these diagrams are only mnemonics) the
operators O6−10

4f need mass insertion, while nonperturba-
tively one obtains operators such as OA stemming from
instanton corrections.
The case in which the masses of the scalars are much

heavier than ΛTC is obtained by replacing

ϵij → Λ2
TC

�
1

M2
S

�
ij

ð35Þ

in each operator. The large mass limit corresponds physi-
cally to integrating out the scalars, which in the naive
diagrams corresponds to replacing each heavy scalar propa-
gator with the inverse mass matrix. Of course one needs to
identify diagrammatically the leading contributions in the
inverse scalar mass expansion, as shown in Figs. 1 and 2.

D. Standard model loop-generated pNGB operators

Loops of the elementary fermions are crucial in gen-
erating a potential for the pNGBs that includes the Higgs
boson. As in other pNGB Higgs models, the potential
contains radiative corrections that violate the global sym-
metries of the model once the spurionic Yukawa couplings
assume their constant value. Accordingly, they play an
important role in determining the vacuum alignment of the
models. The simplest way to write down the fermion loop
generated operators is to separate the Yukawa couplings yf
from the elementary fermions: the Yukawa spurions thus
inherit the same quantum numbers as ψ under the global
symmetries of the strong dynamics, but they also acquire
transformation properties under the SM gauge symmetries
as carried by the elementary fermions. If a SM fermion is in
the representation RSM of the SM gauge group then the
corresponding yf transforms as

ðyfÞia ∈ □S ⊗ □̄F ⊗ R̄SM; ð36Þ

where, for simplicity, we do not explicitly write the gauge
SM indices.

1. Radiatively generated pNGB potential

At leading order in the chiral expansion, and quadratic
order in the spurions, two operators might appear

fTCΛ3
TC

16π2
ðyfÞi1a1ðyf0 Þi2a2Σa1a2ϵi1i2 ;

fTCΛ3
TC

16π2
ðy�fÞi1;a1ðyf0 Þi2a2δa1a2ϵi1i2 : ð37Þ

However the latter is independent on the pNGB fields and
therefore just an irrelevant constant in the potential, while
the former is not SM gauge invariant and therefore is not
generated.4

In contrast to the lack of operators at quadratic order in
the spurions, there is a plethora of operators at quartic order.
They involve loops of two SM fermions, each contracting
the SM indices of two spurions yf. Thus they all share the
spurion structure

ðy�fyfÞa1a2 i1i2 ; ð38Þ

where the SM indices are contracted inside the parentheses
and a sum over the SM fermions f is left understood. This
gives rise to three operators contributing to the pNGB
potential,

O1
Vf
¼f2TCΛ2

TC

16π2
ðy�fyfÞa1a2 i1i2ðy�f0yf0Þa3a4 i3i4Σ†

a1a3Σa2a4ϵi1i2ϵi3i4 ;

ð39Þ

O2
Vf
¼f2TCΛ2

TC

16π2
ðy�fyfÞa1a2 i1i2ðy�f0yf0Þa3a4 i3i4Σ†

a1a3Σa2a4ϵi1i3ϵi2i4 ;

ð40Þ

O3
Vf
¼f2TCΛ2

TC

16π2
ðy�fyfÞa1a2 i1i2ðy�f0yf0Þa3a4 i3i4Σ†

a1a3Σa2a4ϵi1i4ϵi2i3 ;

ð41Þ

all of which satisfy all symmetries. Again onemay construct
mnemonic, representative diagrams for the operators
cf. Fig. 3. The factor of 16π2 is a naive effort to account
for the loops of the elementary fermions. One can think of
these operators as coming from the three different ways of
contracting the external SM fermions in operators O1;3

4f .

FIG. 2. Representative Feynman diagrams corresponding to the
operatorsO6

4f–O10
4f in Eqs. [(27)–(31)]. The blue colored lines are

SM fermions, the red colored solid lines are TC fermions, the red
colored curly lines are TC gluons, and the magenta lines are TC
scalars.

4The former is due to the fact that the combination of Yukawas
has the quantum numbers of mass terms for the SM fermions.
Thus, the only term that may survive is proportional to the
Majorana mass of right-handed neutrinos.
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As in any other composite Higgs model there are
contributions to the pNGB potential stemming from SM
gauge bosons. At lowest order this is due to the operator,

OVg
¼ f2TCΛ2

TC

16π2
Tr½TI

FΣðTI
F ÞTΣ†�: ð42Þ

Together with the χþ term in Eq. (15) stemming from the
fundamental fermion masses, the operators mentioned in
this section are responsible for the pNGB potential at
leading order.

2. Radiative corrections to the kinetic terms

At NLO in the chiral expansion one finds corrections to
the pNGB kinetic terms.We find a total of 21 such operators
involving four yf spurions the full list of which can be found
in Appendix C. Physically, they give corrections to the
masses of the EW gauge bosons; however, we find that only
six of them contribute to the oblique T parameter.5 They are

O1
yΠD ¼ 1

4

f2TC
16π2

ðy�fyfÞa1a2 i1i2ðy�f0yf0 Þa3a4 i3i4ðΣ†D
↔μ

ΣÞa1a2ðΣ†D
↔μ

ΣÞa3a4ϵi1i2ϵi3i4 ; ð43Þ

O2
yΠD ¼ 1

4

f2TC
16π2

ðy�fyfÞa1a2 i1i2ðy�f0yf0 Þa3a4 i3i4ðΣ†D
↔μ

ΣÞa1a2ðΣ†D
↔μ

ΣÞa3a4ϵi1i3ϵi2i4 ; ð44Þ

O3
yΠD ¼ 1

4

f2TC
16π2

ðy�fyfÞa1a2 i1i2ðy�f0yf0 Þa3a4 i3i4ðΣ†D
↔μ

ΣÞa1a2ðΣ†D
↔μ

ΣÞa3a4ϵi1i4ϵi2i3 ; ð45Þ

O4
yΠD ¼ 1

4

f2TC
16π2

ðy�fyfÞa1a2 i1i2ðy�f0yf0 Þa3a4 i3i4ðΣ†D
↔μ

ΣÞa1a4ðΣ†D
↔μ

ΣÞa3a2ϵi1i2ϵi3i4 ; ð46Þ

O5
yΠD ¼ 1

4

f2TC
16π2

ðy�fyfÞa1a2 i1i2ðy�f0yf0 Þa3a4 i3i4ðΣ†D
↔μ

ΣÞa1a4ðΣ†D
↔μ

ΣÞa3a2ϵi1i3ϵi2i4 ; ð47Þ

O6
yΠD ¼ 1

4

f2TC
16π2

ðy�fyfÞa1a2 i1i2ðy�f0yf0 Þa3a4 i3i4ðΣ†D
↔μ

ΣÞa1a4ðΣ†D
↔μ

ΣÞa3a2ϵi1i4ϵi2i3 : ð48Þ

These operators can be visualized as loops of TC-scalars
and SM fermions, with TC-fermions in the external legs
that close on meson fields and currents.
Again, for completeness, we note the SM gauge cor-

rections to pNGB kinetic term. From one propagating
gauge bosons, there are two operators which contribute to
the T parameter,

O1
ΠD ¼ 1

4

f2TC
16π2

Tr½ðΣD↔μΣ†ÞTI
F ðΣD

↔μ
Σ†ÞTI

F �; ð49Þ

O2
ΠD ¼ 1

4

f2TC
16π2

Tr½ðΣD↔μΣ†ÞTI
F �Tr½ðΣD

↔μ
Σ†ÞTI

F �: ð50Þ

Here there is an implicit sum over all the gauge bosons I,
and a trace over the SUðNF Þ index. The full list can again
be found in Appendix C.
Furthermore, also at NLO in the chiral expansion the

operator

OWW ¼ f2TC
2Λ2

TC
AI
μνAJμνTr½TI

FΣðTJ
F ÞTΣ†� ð51Þ

gives the only contribution to the S parameter.

III. TOP AND BOTTOM PHYSICS IN THE
MOST MINIMAL MODEL OF FUNDAMENTAL

PARTIAL COMPOSITENESS

We now specialize to the most minimal model [11],
defined by the choice of gauge group GTC ¼ SUð2Þ ∼
Spð2Þ and NF ¼ 4 Weyl TC-fermions in the fundamental

FIG. 3. Representative Feynman diagrams corresponding to
the operators O1

Vf
–O3

Vf
in Eqs. [(39)–(41)]. The blue colored

lines are SM fermions, the red colored solid lines are TC
fermions, and the magenta lines are TC scalars.

5Assuming couplings to all SM fermions and right-handed
neutrinos with fundamental Yukawa couplings as given in
Eq. (68).
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representation. We start the analysis by studying in detail
the minimal TC-scalar sector to give mass to top and
bottom alone. The TC-scalar sector, therefore, only con-
tains a single field St, with quantum numbers summarized
in Table II: the global symmetry is Sp(6) since NS ¼ 3.
With respect to the SM gauge group GSM, the Weyl TC-
fermions transform as FQ ∈ ð1; 2Þ0, F u ∈ ð1; 1Þ−1=2, and
F d ∈ ð1; 1Þ1=2. The overall theory is gauge anomaly free.
Note that the fermionic sector of this TC model was
originally proposed in Refs. [30,31]. The vacuum align-
ment of the theory can be written as the following
antisymmetric matrix in the SU(4) space [19]:

Σab
0 ¼

0
BBB@

0 cθ sθ 0

−cθ 0 0 sθ
−sθ 0 0 −cθ
0 −sθ cθ 0

1
CCCA: ð52Þ

The angle θ parametrizes the alignment of the vacuum with
respect to the EW embedding [32] and relates the pNGB
decay constant to theEWscale asvEW ¼ fTCsθ ¼ fTC sin θ.
At the fundamental Lagrangian level the new Yukawa

couplings with the SM fields read

Ltop−bottom ¼ yQ3
Q3;αStϵTCF α

Q − ytu3S�
tF d

þ ybd3S�
tF u þ H:c:; ð53Þ

where α is the SUð2ÞL index, and u3 and d3 are the left-
handed spinors constructed out of the charge-conjugate
right-handed top and bottom singlets. The above Yukawa
interactions can be written in the compact form of Eq. (6)
by defining a spurion

ψ i
a ¼

 
0 0 ybd3 −ytu3

yQ3
qðdÞ3 −yQ3

qðuÞ3 0 0

!
; ð54Þ

where each row transforms as antifundamental of SUð4ÞF
and each column as a fundamental of Spð6ÞS.6 Note that

Q3;α ¼ εαβQ
β
3 ¼ ð−qðdÞ3 ; qðuÞ3 Þ transforms as an antidoublet

of SUð2ÞL, while (ybd3, −ytu3) as a doublet of SUð2ÞR,
consistently with the decomposition of an □̄ of SUð4ÞF .
The operator OYuk, in Eq. (18), is responsible for the

generation of the SM fermion masses and Yukawa cou-
plings to the Higgs boson (up to the effects of nonlinearities
in the pNGB fields),

LEFT ⊃ −CYukvEWðyQ3
ybq

ðdÞ
3 d3 þ yQ3

ytq
ðuÞ
3 u3Þ

×

�
1þ cθh

vEW
þ � � �

�
þ H:c: ð55Þ

The top and bottom masses can, thus, be identified with

mt ¼ jCYukyQ3
ytjvEW and mb ¼ jCYukyQ3

ybjvEW: ð56Þ

A potential for the Higgs boson, and the other pNGB,
generated by loops of top and bottom, is encoded in the
operators in Eqs. (39)–(41). Expanding in the pNGB fields,
the term that corresponds to a potential for the alignment
angle θ reads

V t=bðθÞ ¼ −
3f2TCΛ2

TC

8π2
½jyQ3

j2ðjytj2 þ jybj2Þð3C1
Vf

þ C2
Vf
Þs2θ

þ ðjyQ3
j4 þ jytybj2Þð3C1

Vf
− C3

Vf
Þc2θ�: ð57Þ

This first term, proportional to s2θ, has the same form as the
contribution generated by a direct bilinear coupling of the
top and bottom to the TC-fermions, as used in Ref. [19,31]:
the combinations of Yukawas are, in fact, proportional to
the top and bottom masses. As usual, expecting a negative
sign in front coming from the fermion loop, this term alone
tends to destabilize the vacuum alignment towards the TC
limit θ ¼ π=2. The second term, proportional to c2θ, is new
in FPC models and, depending on the sign of the coef-
ficients, it may either contribute to the destabilization or
tend to flip the alignment to the EW preserving direction.
To achieve electroweak symmetry breaking one should
have jyQ3

j < jytj, which, as we shall see, is supported by
the constraints coming from the Z boson to b̄b.
The potential also receives contributions from the gauge

interactions, encoded in Eq. (42), and the TC-fermion
mass, as shown in Eq. (15), which have the same form as in
models without FPC [19,31,33]. In particular, the contri-
bution of the TC-fermion mass can be used to stabilize the
potential around small θ values against the top loops, in
order to obtain a pNGB Higgs boson. Note that higher
dimension operators generated by top loops may also help

TABLE II. Fundamental technicolor states with their gauge
quantum numbers and global symmetries. The table includes the
third generation quarks too and the charge assignment under the
baryon number Uð1ÞB.

SUð3Þc SUð2ÞL Uð1ÞY Uð1ÞB SUð4ÞF Spð6ÞS
FQ 1 □ 0

F u 1 1 − 1
2

0 □ 1

F d 1 1 1
2

St □̄ 1 − 1
6

− 1
3

1 □

Q3 □ □ 1
6

1
3

u3 □̄ 1 − 2
3

− 1
3

d3 □̄ 1 1
3

− 1
3

6The implicit QCD color indices of the quarks are embedded
as part of Sp(6).
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stabilizing the potential; however they are expected to be
subleading.

A. Couplings of the Z to the bottom quark

We now turn to the operator in Eq. (19) that generates
corrections to the gauge couplings of the massive gauge
bosons to fermions,

OΠf ¼
g

2cosθW

fTC
ΛTC

s2θZμðjyQ3
j2ðt̄LγμtL− b̄LγμbLÞ

þ jybj2b̄RγμbR− jytj2t̄RγμtRÞ

−
gffiffiffi
2

p fTC
ΛTC

s2θW
þ
μ ðy�bytt̄RγμbR− jyQ3

j2t̄LγμbLÞþH:c:;

ð58Þ

where the SM top and bottom are in the usual Dirac spinor
notation. While the couplings of the top to the Z are
unconstrained, and yb can be taken small to reproduce the
bottom mass, the coupling of the left-handed bottom to
the Z receives sizeable corrections proportional to jyQ3

j2.
The well-known issue is that yQ3

coupling cannot be too
small, as it enters the formula for the top mass. Imposing
the latest constraints [34,35], we obtain the 2σ limit,7,8

CΠfjyQ3
j2s2θ < 0.043; @95% C:L: ð59Þ

This constraintmainly comes from themeasurement ofRb at
LEP [36]. The constraint on θ from electroweak precision
tests tends to ease the tension, as s2θ ≲ 0.1 is generically
required [37]. Furthermore, it is possible to obtain the correct
top mass with a small yQ3

by maximizing the right-handed
mixing yt; i.e., assuming that the right-handed top is more
composite than the left-handed part. Interestingly, this
configuration is also preferred in the top-loop induced
potential for the alignment of the vacuum, as we have seen
in (57). Using Eq. (56), the above bound translates into the
following lower bound on the right-handed top mixing9:

jytj
jCYukjffiffiffiffiffiffiffiffi
CΠf

p ≳ mt

fTC

1ffiffiffiffiffiffiffiffiffiffiffi
0.043

p ¼ 10 TeV
ΛTC

; ð60Þ

which, for reasonably low scale compositeness, ΛTC ¼
10 TeV, and CYuk ¼ CΠf ¼ 1, corresponds to the bound
jytj≳ 1. This implies that the fundamental Yukawa coupling
would have to be larger than 2

ffiffiffi
π

p
∼ 3.5, as discussed in

Sec. II. It should be mentioned that it is enough that one (or
both) strong coefficient departs from unity by a factor of a

few to lower the bound on the fundamental Yukawa
coupling, thus allowing for perturbative values at the
condensation scale.
A possible concern for the model is that the fundamental

Yukawa couplingsmay become large enough that they cause
an unwanted condensate, hfF i, to form between techni-
fermions and SM fermions [breaking both SU(3) color
and TC]. An approximate Schwinger-Dyson analysis for a
Yukawa model with SUð2ÞL × SUð2ÞR symmetry would
indicate that such a condensate only forms for y≳Oð2πÞ
[38,39]. If this estimate is also valid in the MFPC, it would
suggest that the model may be safe from forming a Yukawa
induced condensate. However, further work is required to
verify this, e.g., on the lattice. Once more, suitable OðfewÞ
strong coefficients would render this potential problemmute.

B. Effective interactions for the top sector

The effective Lagrangian for EW physics contains four
fermion interactions which are induced by the underlying
strong dynamics. In Sec. II C, we showed that there are eight
independent operators, five of which are self-Hermitian.
Expanding the operators Oi

4f we obtain four-fermion inter-
actions involving the SM fermions listed in Appendix D.
Note that these set of operators cannot be directly matched to
the Warsaw basis [29] because our theory contains non-
linearities in the Higgs field. Effectively, this gives us the
Wilson coefficient for each operator in terms of the funda-
mental Yukawa couplings, the scale of strong dynamicsΛTC,
and the coefficients Ci

4f of the strong dynamics.
The phenomenologically relevant operators involve four

tops, as they are directly probed at the LHC in four top final
states, such as

LEFT ⊃
C4
4f þ C5

4f

4Λ2
TC

jytj4ðt̄RγμtRÞðt̄RγμtRÞ

¼ C4
4f þ C5

4f

4Λ2
TC

jytj4O3333
uu ; ð61Þ

where the four 3’s refer to the generation of each of the four
fermions. ATLAS [40] puts an upper limit on this operator
at 95% C.L., yielding the constraint,

jC4
4fþC5

4fj
4Λ2

TC
jytj4< 2.9 TeV−2

⇒ jC4
4fþC5

4fj1=4jytj< 5.8

�
ΛTC

10 TeV

�
1=2

; @95%C:L:

ð62Þ

The above upper bound is compatible with the lower bound
in Eq. (60), and the situation improves significantly for
increasing values of ΛTC.
In addition to the four fermion interactions, the operators

OfW andOfG, in Eqs. (20) and (21), give rise to new dipole

7For all our numerical estimates we have used ΛTC ¼ 4πfTC.8Please note that all bounds found here, are on the effective
rather than the fundamental Yukawa parameters.

9Note that our normalization for the pre-Yukawa couplings
differs from the one usually considered in EFT realizations, see
Sec. IVA for more details.
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interactions between gauge fields and SM fermions.
Knowing that the SM gauge bosons are embedded in
the two global symmetries SUð4ÞF and Spð6ÞS in the
following way:

AI
μðTI

F Þab¼
1

2

�
gWi

μτ
i 0

0 −g0Bμτ
3

�
and

GA
μ ðTA

SÞij¼
gS
2
GA

μ

�
−λ�A 0

0 λA

�
þg0

6
Bμ

�−1 0

0 1

�
; ð63Þ

where W, B and G represent respectively the SUð2ÞL,
hypercharge and QCD gauge bosons respectively, the
operators generate the following couplings:

OfW ¼ −1
CYukΛ2

TC

mt

2
ffiffiffi
2

p
vEW

ðgO33�
uW þ g0O33�

uB Þ þ � � � ð64Þ

OfG ¼ −1
CYukΛ2

TC

ffiffiffi
2

p
mt

vEW

�
gsO33�

uG þ g0

6
O33�

uB

�
þ � � � ; ð65Þ

where the Yukawa couplings have been expressed in terms
of the physical top mass, as in Eq. (56). The dots contain
couplings of the pNGBs generated by the nonlinearities,
and the operators O33

uV are from the SM EFT [41]. The
TopFitter Collaboration [42] has extracted constraints
on the anomalous couplings of the top quarks, in the EFT
language, by considering the latest data on top production
cross sections and distributions. The bound on O33

uB is
weaker than that onO33

uW , so we can use the latter to impose
bounds on CfW ,

���� CfW

CYuk

���� < 2500

�
ΛTC

10 TeV

�
2

@95% C:L: ð66Þ

The bound from the gluon coupling O33
uG yields a stronger

bound,10���� CfG

CYuk

���� < 110

�
ΛTC

10 TeV

�
2

@95% C:L: ð67Þ

Both of these constraints are obtained from marginalized
bounds on the operators. Limiting other operators may
therefore lead to stronger bounds.

C. Extension to light generations and leptons

The fundamental Lagrangian can be expanded to include
all three generations of quarks and leptons. The minimal
strategy [11] is to extend the TC-scalar sector by three extra

uncolored scalars Sl to couple to the three generations of
leptons, and two extra colored scalars Su and Sc (corre-
sponding to six complex scalars) to couple to the two light
quark generations. In total, therefore, we have NS ¼ 12
complex scalars, which enjoy a global Spð24ÞS symmetry.
The quantum numbers of both the TC and the SM fields are
summarized in Table III.
The complete Yukawa interactions now read11

Lyuk ¼ yQQαSqϵTCF α
Q − yuuS�

qF d þ yddS�
qF u

þ ylLαSlϵTCF α
Q − yννS�

lF d þ yeeS�
lF u

− ỹννSlϵTCF u þ H:c:; ð68Þ

where each coupling is a 3 × 3 matrix in flavor space, and
the flavor indices are left implicit for readability. Table III
also contains the symmetries Uð3Þg1;2 corresponding to
global approximate flavor symmetries between the three
generations of each TC scalar. Additionally the full model
still preserves a baryon number symmetry as does the SM.
However, the lepton number symmetry is explicitly vio-
lated by the coupling ỹν, not surprisingly as the inclusion of
such a coupling gives rise to a Majorana mass term for the
right-handed neutrinos.
Just as in the case of the top and bottom, the Yukawa

interactions can be written in the more compact form from
Eq. (6) by defining the spurion field ψ as (color and
generation indices are, once again, left implicit)

TABLE III. Fundamental technicolor states and SM
fermions with their SM gauge quantum numbers. The table also
includes the charge assignments under the baryon and lepton
number Uð1ÞB;l.

SUð3Þc SUð2ÞL Uð1ÞY Uð1ÞB Uð1Þl Uð3Þg1 Uð3Þg2
FQ 1 □ 0

F u 1 1 − 1
2

0 0 1 1

F d 1 1 1
2

Sq □̄ 1 − 1
6

− 1
3

0 □ 1

Sl 1 1 1
2

0 −1 1 □

Q □ □ 1
6

1
3

0

u □̄ 1 − 2
3

− 1
3

0

d □̄ 1 1
3

− 1
3

0

L 1 □ − 1
2

0 1

e 1 1 −1 0 −1
ν 1 1 0 0 −1

10The bounds come from the 95% C.L. limits on the SM EFT

operator coefficients v2EW
Λ2 jC33

uW j < 0.242 and v2EW
Λ2 jC33

uGj < 0.079
from Ref. [42].

11Note that the scalars are in the conjugate representation
of GSM as compared to the minimal model suggested in
Ref. [11].
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ψ i
a ¼

0
BBBB@

0 0 ydd −yuu
0 0 yee −yνν

yQqðdÞ −yQqðuÞ 0 0

yllðeÞ −yllðνÞ ỹνν 0

1
CCCCA; ð69Þ

where a ∈ SUð4ÞF and i ∈ Spð24ÞS. Details of this con-
struction are found in Appendix A. The hierarchy of the
fermion masses can be encoded either in the fundamental
Yukawa couplings or in a hierarchy in the mass spectrum of
the TC-scalars. The phenomenology of the two scenarios is
different for the low energy flavor observables as well as for
the spectrum of the massive composite states of the theory.
It is noteworthy that, thanks to the compact spurion form,
the effect of the light generations can be expressed in terms
of the same operator basis we used for the top/bottom case.
Of course, at the EW scale the effect of light quarks will be
negligible, as they are suppressed by the small effective
Yukawas (or scalar masses), and we leave the effects on
low energy flavor physics and lepton masses for further
investigations.
The only exception is given by the physics of the right-

handed neutrinos that might have Majorana masses and
order-1 fundamental Yukawa couplings. Note that the
presence of both Yukawas yν and ỹν will also generate a
composite Majorana mass for the right-handed neutrino of
the orderCYukcθfTCyνỹν. At the same time, the first operator
in Eq. (37) gives rise to a nonvanishing contribution to the
Higgs potential

VνðθÞ ∼ −
fTCΛ3

TC

8π2
yνỹνcθ; ð70Þ

which only exists if an elementaryMajorana mass is present.
A mnemonic diagram for this operator is sketched in Fig. 4.
This term has the same dependence on the alignment angle θ
as the contribution of theTC fermionmass [19]; thus it can be
used to stabilize the potential generated by the top loops
towards small values of θ if the Yukawa couplings of at least
one neutrino are of order 1. This would provide a new
mechanism where partial compositeness for neutrinos gen-
erates both TeV-scale seesaw and stabilizes the Higgs
potential.

IV. CONNECTIONS WITH OTHER APPROACHES
TO PARTIAL COMPOSITENESS

In this section we sketch the connection between our
analysis, and other approaches used in the literature to study
partial compositeness.We first address effective approaches,
based either on the construction of an EFT or on extra
dimensional implementations. Finally, we comment on the
possible applicability of our results to purely fermionic
underlying theories featuring partial compositeness.

A. Effective operator approach

The most popular approach to composite Higgs
models in the literature has been to construct EFTs simply
based on the symmetry breaking patterns (see Refs. [43,44]
for a pedagogical introduction), without any reference to
the underlying theory.12 As a consequence, to implement
partial compositeness, the choice of the representation
under which the top partners transform has been arbitrary.
Furthermore, top partners in the EFT approach have been
assumed to be the main driving force in the stabilization of
the vacuum alignment along the small-θ limit: this mecha-
nism can only work if the top partners are light [45,46] and
the contribution to the pNGB potential is dominated by
their loops. Accepting the lightness of top partners with
respect to the natural resonance scale, i.e., ΛTC ∼ 4πfTC,
one is justified to include them in the EFT construction.
Note however that top partners are not necessarily the only
contributors to the Higgs potential [19,31,33].
In the case under study in this work, the representation of

the top partners is fixed to be the fundamental of the global
symmetry SU(4). This choice has been considered prob-
lematic in the literature, as it typically leads to large
corrections to the Z coupling to bottoms. However, as
we will see shortly, this problem only applies if the top
partners are light. It is instructive to compare our general
operator approach presented in Sec. III with the results one
would obtain by adding the top partners to the EFT. The
couplings of the top partners, that we collectively call B, to
the SM fermions can be written as

LPC ¼−ȳEFTQ3
fTCψ̄Q3

·Σ† ·BR− ȳEFTt fTCB̄L ·Σ ·ψ t;

with ψQ3
¼

0
B@
Q3

0

0

1
CA and ψ t ¼

0
B@

0

u3
0

1
CA; ð71Þ

where the SM fermions are embedded into spurions trans-
forming as the fundamental of SUð4ÞF . The symmetries
associated to the scalars S are thus ignored. The mass of the
top can be obtained by diagonalizing the resulting mass
matrix, yielding

FIG. 4. Representative diagram for the contribution to the
Higgs potential of a right-handed neutrino with an elementary
Majorana mass, symbolized here by a blue cross.

12This approach might be the only available one if the
underlying theory is conformal, in which case it can only be
defined in terms of operators and their conformal dimensions.
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mt ¼ 2MBsθ
ȳEFTQ3

fTCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

Bþ ȳEFTQ3

2f2TC
q ȳEFTt fTCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
Bþ ȳEFTt

2f2TC

q þ�� � ;

ð72Þ

where the dots stand for higher orders in an expansion for
small sθ. This equation should be compared to Eq. (56). We
see that the two results coincide once we identify

yQ3=t

ffiffiffiffiffiffiffiffi
fTC

pffiffiffiffiffiffiffiffi
ΛTC

p →
ȳEFTQ3=t

fTCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

Bþ ȳEFTQ3=t
2f2TC

q ; CYukΛTC→ 2MB:

ð73Þ

We see that the operator estimate matches if the mass of the
top-partners is at its natural value MB ∼ ΛTC. The mixing
between SM fermions and top partners induces corrections
to the gauge couplings of the top and bottom to the massive
W and Z too, due to the fact that the top partners are
vectorlike fermions [47]. In the bottom sector, we thus
obtain

g
2 cos θW

s2θZμ

ȳEFTQ3

2f2TC
M2

B þ ȳEFTQ3

2f2TC
b̄LγμbL þ � � � ; ð74Þ

which nicely compares with Eq. (58) once the identification
in Eq. (73) is taken into account. We see, therefore, that the
approach with top partners in the EFT gives the same results
as the effective operators we consider, and the two actually
coincide if the mass of the top partners is at the natural scale
ΛTC. Thus, for heavy top partners, the bound from the Z
coupling are not problematic, as we showed in Sec. III A.
Another effective approach to partial compositeness

relies on extra dimensions: it is mainly based on adapting
the conjectured correspondence of anti–de Sitter (AdS)
space-time with four-dimensional conformal field theories
[48] to nonsupersymmetric scenarios. Models based on
warped extra dimensions have been used to characterize
composite Higgs bosons based on a conformal underlying
theory [49,50]. The light Higgs boson is identified with an
additional polarization of gauge fields in the bulk, thus
borrowing many similarities from Gauge-Higgs unification
models [51,52] (see also Ref. [53] in warped space). The
mechanism of partial compositeness is described by fer-
mions propagating in the bulk of the extra dimensions, as
discussed in Refs. [54,55]. An extradimensional version of
the model under study can be easily obtained by promoting
the global symmetries SUðNF Þ × Spð2NSÞ to gauge sym-
metries in the bulk, broken by boundary conditions to the
SM on the Planck brane, while on the TeV brane the
breaking induced by the fermion condensate; i.e.,
SUðNF Þ → SpðNF Þ, is imposed. Composite fermions
are represented by bulk fermions transforming as the
bifundamental of the symmetries, while the mixing of

the SM fermions, at the basis of partial compositeness,
comes from explicit mass mixings on the Planck brane [56].
The theory would thus automatically describe spin-1
resonances in the form of Kaluza-Klein resonances of
the gauge bosons. The advantage of extra dimensions,
which is also their limitation, is the fact that the spectrum is
determined by the geometry. In the model under consid-
eration, which is not conformal in the UV, the spectrum will
hardly match the prediction of a warped extra dimension.

B. Pure fermionic extensions

Traditional approaches hope to achieve partial compos-
iteness via pure underlying gauge-fermion realisations. In
this case the new composite fermion operators B, that
couple linearly to the SM fermions, must be built out of the
underlying gauge-fermion dynamics. This necessarily lim-
its its underlying composition. In addition the need to have
the composite fermion operator B with a physical dimen-
sion such that the operator ΨB (with Ψ a generic SM
fermion) is either superrenormalizable or marginal further
constrains the underlying origin of B. Therefore one can
schematically build B as follows:

B∼FFF ; FFX ; FXX ; FXZ; FσμνGμν; ð75Þ

with X and Z potentially new TC-fermions transforming
according to different representations of thegaugegroup and
Gμν the technicolor field strength. Clearly which technicolor
invariant composite operator can actually be built depends
on the underlying dynamics. Theories inwhichB is made by
an even larger number of fermionic degrees of freedom
are strongly disfavored because of the anomalously large
anomalous dimensions that the composite fermion must
have forΨB to be at least a marginal operator. In fact, in [57]
it has been argued that even realizations with three under-
lying fermions are challenging.13

As noted in [11] because any purely fermionic extension
[58–61] is required to have composite baryons with
dimensions close to 5=2, these baryons would presumably
behave as if they were made by a fermion and a composite
scalar similar to ours (see also [62] for a supersymmetric
realisation). Naively, at some intermediate energy, our
description can be viewed as an effective construction of
the purely gauge-fermionic one with

F ðΦÞ∼B∼F ðFF Þ; F ðXF Þ; F ðXXÞ; F ðXZÞ:
ð76Þ

Obviously this identification is just a mnemonic, and it
means that the composite baryon made by FΦ can

13The remaining challenge is to build a theory that actually
generates the operator ΨB with the required hierarchies for the
SM fermions.
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describe, at an intermediate effective level, one of the
composite baryons with the same quantum number and
physical dimensions. A similar relation can be thought for
the FσμνGμν operator.
We can use group theory to investigate related theories.

For example, from Table I of [63], we learn that modelM6,
that features five two-index antisymmetric F under the
technicolor gauge group SU(4) as well as three Dirac
fermions in the fundamental representation X [61], gives
rise to composite baryons FXX and FXX . At intermedi-
ate energies these composite baryons can be mapped into a
fundamental partial composite theory featuring the same F
fermions and six two index antisymmetric TC-scalars.

V. CONCLUSION

We built consistent extensions of the standard model of
fundamental partial composite nature and determined their
electroweak effective theories in terms of the standard
model fields. The bases of effective operators of different
mass dimensions were built and constrained using the
symmetries of the underlying theories. Our results can now
be used as a stepping stone to undertake studies both in the
lepton and quark flavor observables within a controlled
theory of composite dynamics.
To elucidate the power of our approach, we focused on

the most minimal theory of fundamental partial compos-
iteness. We analyzed the physical consequences for the
composite Higgs sector as well as the third generation
quarks. Here we discovered new contributions to the Higgs
potential generated from the left-handed mixing of top and
bottom. Intriguingly, we also discovered that right-handed
neutrinos with TeV scale composite Majorana masses can
affect the Higgs potential with relevant consequences for
the vacuum alignment of the theory. We show that con-
straints on the top and bottom sectors can be naturally
abided. Our effective operators are ready to be deployed for
full scale analyses of composite lepton and light quark
flavor physics.
Finally, we provided relations with other approaches. The

overall methodology can be employed to derive effective
operators stemming from related underlying composite
theories of dynamical electroweak symmetry breaking able
to give masses to the standard model fermions.
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APPENDIX A: DEFINITIONS AND NOTATION

Whenever we write an invariant of an SpðMÞ group, be it
ϵTC for Spð2NÞ, ϵ for Spð2NSÞ, or ε for SUð2ÞL, they are
defined in a similar manner. For all three ϵ’s we define

ϵij ¼ −ϵij ¼
�
0 −1
1 0

�
; ðA1Þ

where 1 is a unitary matrix or 1 depending on the group.
According to usual convention we take all “up”-indices to
be in the fundamental representation of a given group and
“down”-indices are taken to be in the antifundamental. For
the pseudoreal groups the epsilons can be used to raise or
lower indices accordingly. Take e.g., the scalar field from
Eq. (2) transforming in the fundamental of Spð2NÞ

Φci ¼
�

Sc

−ϵcdTCS�
d

�
: ðA2Þ

We note that when using the conjugate spurion field,
we always use it transforming in the fundamental of
Spð2NSÞ, viz.

ψ̄ ia ¼ ϵijψ̄ j
a ¼ ϵijðψ j

aÞ�: ðA3Þ

To construct the spurion field ψ of the SM fermions and
Yukawa couplings from the fundamental Yukawa terms,
one simply embeds the TC-scalars and TC-fermions in
F and Φ respectively. Then it is simply a matter of
matching the Yukawa terms to the explicitly symmetric
construction in Eq. (6). In the case of the full model
presented in Sec. III C we have

F a ¼

0
BBBB@

FQu

FQd

F u

F d

1
CCCCA; and Φi ¼

0
BBBB@

Sq

Sl

−ϵTCS�
q

−ϵTCS�
l

1
CCCCA; ðA4Þ

in which case one recovers the spurion field given
in Eq. (69).
For the definition of the σ matrices (and general Weyl-

spinor algebra) we follow the notation in [64] where σμ and
σ̄μ are defined as

σμ ¼ ð1; σ⃗Þ; σ̄μ ¼ ð1;−σ⃗Þ ðA5Þ
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and σμν is defined as

σμν ¼ i
4
ðσμσ̄ν − σνσ̄μÞ: ðA6Þ

APPENDIX B: DETERMINING A BASIS FOR THE
COMPLEX FOUR-FERMION OPERATORS

Here we determine all possible four fermion operators
respecting the symmetries of the model. The operators must
be singlets under SUðNF Þ, Spð2NSÞ, and Lorentz trans-
formation, while being symmetric under exchange of the
external fermions. The Lorentz contractions are denoted
with parenthesis, ψ i1

a1
αψ i2

a2α ¼ ðψ i1
a1ψ

i2
a2Þ.

We start by noting that the operators must have the
general form

OTC
i ¼ 1

8Λ2
TC

ðψ i1
a1ψ

i2
a2Þðψ i3

a3ψ
i4
a4ÞRa1a2a3a4

i1i2i3i4
; ðB1Þ

where Ra1a2a3a4
i1i2i3i4

is the tensor structure. This is the only kind
of Lorentz structure at lowest order as any Lorentz
contraction between σμ matrices can be written as a
combination of the trivial tensors δ and ε. The tensor R
must satisfy the symmetries

Ra1a2a3a4
i1i2i3i4

¼ Ra2a1a3a4
i2i1i3i4

¼ Ra3a4a1a2
i3i4i1i2

; ðB2Þ

corresponding to the exchange of the external fermions
(antisymmetric parts gives vanishing contributions). On the
other hand R cannot be totally symmetric under exchange
of all the pairs ðas; isÞ. Otherwise the operator would
vanish due to the fermion identity

ðf1f2Þðf3f4Þ þ ðf1f3Þðf2f4Þ þ ðf1f4Þðf2f3Þ ¼ 0: ðB3Þ

R should furthermore be an invariant under the global
symmetries SUðNF Þ and Spð2NSÞ. For this purpose the
only nontrivial tensors are the antisymmetric fermion
condensate formally transforming as under SUðNF Þ,
though the vacuum breaks the symmetry to SpðNF Þ and the
antisymmetric invariant ϵ of Spð2NSÞ.
Thus one finds that Ra1a2a3a4

i1i2i3i4
must be a linear combina-

tion of the tensors

Σaσð1Þaσð2ÞΣaσð3Þaσð4Þϵiρð1Þiρð2Þϵiρð3Þiρð4Þ ; ðB4Þ

where σ, ρ denotes the different permutations of the
integers 1 through 4. Down to a multiplicative factor there
are only nine different tensors of this type corresponding to
the different ways of arranging the as and is indices into
pairs. Constraining the tensors to satisfy the symmetry
conditions of Eq. (B2) we find just five operators that span
the space of the 4-fermion operators;

O6
4f ¼ 1

8Λ2
TC

ðψ i1
a1ψ

i2
a2Þðψ i3

a3ψ
i4
a4ÞΣa1a2Σa3a4ϵi1i2ϵi3i4 ; ðB5Þ

O7
4f ¼ 1

8Λ2
TC

ðψ i1
a1ψ

i2
a2Þðψ i3

a3ψ
i4
a4ÞðΣa1a4Σa2a3 − Σa1a3Σa2a4Þϵi1i2ϵi3i4 ; ðB6Þ

O8
4f ¼ 1

8Λ2
TC

ðψ i1
a1ψ

i2
a2Þðψ i3

a3ψ
i4
a4ÞΣa1a2Σa3a4ðϵi1i4ϵi2i3 − ϵi1i3ϵi2i4Þ; ðB7Þ

O9
4f ¼

1

8Λ2
TC

ðψ i1
a1ψ

i2
a2Þðψ i3

a3ψ
i4
a4ÞðΣa1a3Σa2a4ϵi1i3ϵi2i4 þ Σa1a4Σa2a3ϵi1i4ϵi2i3Þ; ðB8Þ

O10
4f ¼

1

8Λ2
TC

ðψ i1
a1ψ

i2
a2Þðψ i3

a3ψ
i4
a4ÞðΣa1a3Σa2a4ϵi1i4ϵi2i3 þ Σa1a4Σa2a3ϵi1i3ϵi2i4Þ: ðB9Þ

The constraint that a tensor which is totally symmetric
under exchange of the pairs ðas; isÞ leads to a vanishing
operators, implies the following linear dependence between
the operators:

O6
4f þO9

4f ¼ O7
4f þO8

4f −O10
4f ¼ 0: ðB10Þ

Having used all the constraints on the operators, we find
that O6

4f, O
7
4f, and O8

4f make up a basis for the complex
4-fermion operators.

We note that the basis for the self-conjugate 4-fermion
operators follows similarly, by noticing that any any Lorentz
structure reduces to the forms ðψ i1

a1ψ
i2
a2Þðψ̄ i3a3 ψ̄ i4a4Þ.

APPENDIX C: LIST OF NLO KINETIC
OPERATORS

In this appendix we list the remaining NLO operators for
the chiral kinetic term, arising through loop corrections
from SM fermions. All these operators contain two
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derivatives of the pNGB field and some symmetry breaking
parameter(s). In the list we have ignored all the terms on
the form

CTr½ðΣ†D
↔μ

ΣÞ2� ∝ Tr½uμuμ�; ðC1Þ

for some constant C, as these can be reabsorbed into a
renormalization of the LO kinetic term. Furthermore we
have utilized the fact that

Tr½ðDμΣÞΣ†� ¼ −iTr½uuμu†� ¼ −iTruμ ¼ 0; ðC2Þ

as the Maurer-Cartan form uμ takes values in the Lie
algebra of SUð4ÞF . Any potential term containing this
structure has thus been ignored.
The above consideration leave just one nontrivial, SUð4ÞF

invariant kinetic term with only one insertion of y�fyf,

OyΠD ¼ f2TC
4π

ðy�fyfÞa1a2 i1i2ðDμΣ†Þa1a3ðDμΣÞa3a2ϵi1i2 : ðC3Þ

With two insertions of y�fyf there are a total of six
different contractions of the SUðNF Þ indices, and each of
these have three different ways of contracting the Spð2NSÞ
indices, only one of which is listed here (the naming is for
all three operators). These operators are

O1−3
yΠD ¼ 1

4

Λ2
TC

16π2
ðy�fyfÞa1a2 i1i2ðy�fyfÞa3a4 i3i4ðΣ†D

↔μ
ΣÞa1a2ðΣ†D

↔μ
ΣÞa3a4ϵi1i2ϵi3i4 ; ðC4Þ

O4−6
yΠD ¼ 1

4

Λ2
TC

16π2
ðy�fyfÞa1a2 i1i2ðy�fyfÞa3a4 i3i4ðΣ†D

↔μ
ΣÞa1a4ðΣ†D

↔μ
ΣÞa3a2ϵi1i2ϵi3i4 ; ðC5Þ

O7−9
yΠD ¼ Λ2

TC

16π2
ðy�fyfÞa1a2 i1i2ðy�fyfÞa3a4 i3i4ðDμΣ†Þa1a3ðDμΣÞa2a4ϵi1i2ϵi3i4 ðC6Þ

O10−12
yΠD ¼ Λ2

TC

16π2
ðy�fyfÞa1a1 i1i2ðy�fyfÞa2a3 i3i4ðDμΣ†Þa2a4ðDμΣÞa4a3ϵi1i2ϵi3i4 ; ðC7Þ

O13−15
yΠD ¼ Λ2

TC

16π2
ðy�fyfÞa1a2 i1i2ðy�fyfÞa2a3 i3i4ðDμΣ†Þa1a4ðDμΣÞa4a3ϵi1i2ϵi3i4 ; ðC8Þ

O16−18
yΠD ¼ 1

2

Λ2
TC

16π2
ðy�fyfÞa1a2 i1i2ðy�fyfÞa3a4 i3i4Σ†

a1a3ðDμΣÞa2a5ðΣ†D
↔μ

ΣÞa5a4ϵi1i2ϵi3i4 ; ðC9Þ

where the last operator is complex.
There are four real operators with two EW gauge

insertion

O1
ΠD ¼ 1

4

f2TC
16π2

Tr½ðΣD↔μΣ†ÞTI
F ðΣD

↔μ
Σ†ÞTI

F �; ðC10Þ

O2
ΠD ¼ 1

4

f2TC
16π2

Tr½ðΣD↔μΣ†ÞTI
F �Tr½ðΣD

↔μ
Σ†ÞTI

F �; ðC11Þ

O3
ΠD ¼ f2TC

16π2
Tr½ðDμΣÞðDμΣÞ†TI

FT
I
F �; ðC12Þ

O4
ΠD ¼ f2TC

16π2
Tr½ðDμΣÞðTI

F ÞTðDμΣÞ†TI
F �; ðC13Þ

where the trace is over the SUðNF Þ indices. Additionally
there is 1 complex operator too,

O5
ΠD ¼ 1

2

f2TC
16π2

Tr½ðDμΣÞðΣ†D
↔μ

ΣÞðTI
F ÞTΣ†TI

F �: ðC14Þ

Finally there is one complex term involving the funda-
mental fermion mass,

OmΠD ¼ 1

2

f2TC
16π2

Tr½ðDμΣÞχ�ðΣD
↔μ

Σ†Þ�: ðC15Þ

APPENDIX D: LIST OF FOUR-FERMION
OPERATORS

We now list all the four-fermion operators found in the
model containing only top and bottom SM fermions. These
are found by expanding the operators O1;…;8

4f . As it is
usually done color indices are always contracted along the
spinor structure, and where needed we have made use of the
SUð3Þc generators TA ¼ 1

2
λA.
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Operators with four left-handed quarks,

LEFT ⊃
C4
4f þ C5

4f

4

jyQ3
j4

Λ2
TC

½ðt̄LγμtLÞðt̄LγμtLÞ þ ðb̄LγμbLÞðb̄LγμbLÞ� þ
c2θC

3
4f þ C4

4f

2

jyQ3
j4

Λ2
TC

ðb̄LγμbLÞðt̄LγμtLÞ

þ −c2θC3
4f þ C5

4f

2

jyQ3
j4

Λ2
TC

ðb̄LγμtLÞðt̄LγμbLÞ: ðD1Þ

Operators with four right-handed quarks,

LEFT ⊃
C4
4f þ C5

4f

4

jytj4
Λ2
TC

ðt̄RγμtRÞðt̄RγμtRÞ þ
C4
4f þ C5

4f

4

jybj4
Λ2
TC

ðb̄RγμbRÞðb̄RγμbRÞ

þ c2θC
3
4f þ C4

4f

2

jytybj2
Λ2
TC

ðb̄RγμbRÞðt̄RγμtRÞ þ
−c2θC3

4f þ C5
4f

2

jytybj2
Λ2
TC

ðb̄RγμtRÞðt̄RγμbRÞ: ðD2Þ

Operators with two left-handed and two right-handed top quarks,

LEFT ⊃ ð−s2θC1
4f þ C2

4fÞ
jyQ3

ytj2
Λ2
TC

ðt̄RtLÞðt̄LtRÞ −
s2θC

3
4f þ C4

4f

2

jyQ3
ytj2

Λ2
TC

ðt̄LγμtLÞðt̄RγμtRÞ

þ
�
s2θy

2
Q3
y2t

Λ2
TC

�
3C6

4f − 3C7
4f − C8

4f

6
ðt̄RtLÞðt̄RtLÞ − C8

4fðt̄RTAtLÞðt̄RTAtLÞ
�
þ H:c:

�
: ðD3Þ

Operators with two left-handed and two right-handed bottom quarks:

LEFT ⊃ ð−s2θC1
4f þ C2

4fÞ
jyQ3

ybj2
Λ2
TC

ðb̄RbLÞðb̄LbRÞ −
s2θC

3
4f þ C4

4f

2

jyQ3
ybj2

Λ2
TC

ðb̄LγμbLÞðb̄RγμbRÞ

þ
�
s2θy

2
Q3
y2b

Λ2
TC

�
3C6

4f − 3C7
4f − C8

4f

6
ðb̄RbLÞðb̄RbLÞ − C8

4fðb̄RTAbLÞðb̄RTAbLÞ
�
þ H:c:

�
: ðD4Þ

Operators with two left-handed and two right-handed quarks, either top and bottom respectively or vice versa,

LEFT ⊃ C2
4f

jyQ3
j2

Λ2
TC

½jytj2ðt̄RbLÞðb̄LtRÞ þ jybj2ðt̄LbRÞðb̄RtLÞ�

−
C4
4f

2

jyQ3
j2

Λ2
TC

½jytj2ðb̄LγμbLÞðt̄RγμtRÞ þ jybj2ðt̄LγμtLÞðb̄RγμbRÞ�: ðD5Þ

Operators with a left-handed and right-handed top quark, and a left-handed and right-handed bottom quark,

LEFT⊃−C1
4f

s2θjyQ3
j2

Λ2
TC

½yty�bðt̄RtLÞðb̄LbRÞþyby�t ðb̄RbLÞðt̄LtRÞ�−
C3
4f

2

s2θjyQ3
j2

Λ2
TC

½yty�bðb̄LγμtLÞðt̄RγμbRÞþyby�t ðt̄LγμbLÞðb̄RγμtRÞ�

þ
�
2C8

4f

y2Q3
ytyb

Λ2
TC

½c2θðb̄RTAbLÞðt̄RTAtLÞ−c2θðb̄RTAtLÞðt̄RTAbLÞ�þ
−3C7

4fþ2c2θC
8
4f

3

y2Q3
ytyb

Λ2
TC

ðb̄RtLÞðt̄RbLÞ

þ3s2θC
6
4fþ3c2θC

7
4f−ð1þc2θÞC8

4f

3

y2Q3
ytyb

Λ2
TC

ðb̄RbLÞðt̄RtLÞþH:c:

�
: ðD6Þ
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