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We revisit the “interpolating formula” proposed in our previous publication. It allows one to calculate the
0νββ-decay half-life for arbitrary neutrino mass without the involvement of the complicated results for
nuclear matrix elements (NMEs) obtained within specific nuclear structure models. The formula derives
from the finding that the value of a properly normalized ratio of the NMEs for the light and heavy neutrino
mass mechanisms weakly depends on the isotope. From this fact, it follows, in particular, that the light and
heavy neutrino mass mechanisms can hardly be distinguished in a model-independent way searching for
0νββ decay of different nuclei. Here, we show that this formula holds for all the known nuclear structure
approaches. We give a mathematical justification of our results examining analytical properties of the
NMEs. We also consider several simplified benchmark scenarios within left-right symmetric models and
analyze the conditions for the dominance of the light or heavy neutrino mass mechanisms in 0νββ decay.
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I. INTRODUCTION

Neutrinoless double-beta decay (0νββ) is a lepton
number–violating (LNV) process changing the lepton
number by two units ΔL ¼ 2. It is forbidden in the
Standard Model (SM), in which the lepton number is
conserving. Basically, there are two sources of lepton-
number violation: Majorana neutrino mass and LNV
vertices. The latter may emerge from numerous high-scale
models giving rise to the corresponding mechanisms of
0νββ decay. Once this process is observed, the question of
distinguishing between the dominant mechanisms will
arise. Certainly, this task is highly nontrivial. One may
hope that measurements of the 0νββ half-life with different
isotopes would facilitate its solution due to the variability of
nuclear matrix elements (NMEs) of particular mechanisms
from one isotope to the other. In the present paper, we show

that at least the light and heavy Majorana neutrino mass
mechanisms are indistinguishable in this way without
additional hypothesis. This fact becomes especially com-
prehensible in terms of the so-called interpolating formula
(IntF) [1] merging the light and heavy neutrino mass ranges
in the NMEs and allowing a transparent physical inter-
pretation of the above fact. The IntF is a simple analytical
formula representing with an accuracy of 30% or better the
NME as a function of the Majorana neutrino mass. This
accuracy is sufficient for practical purposes, taking into
account the limited accuracy of the available nuclear
structure approaches to the NME calculations. In what
follows, we will show that that the IntF is valid for all these
nuclear structure approaches with the above-indicated
accuracy and elucidate some of its other useful properties.
On the particle physics side, we adopt a generic scenario
with Majorana neutrinos of arbitrary value masses and
consider their contribution to 0νββ decay via mass mecha-
nism mediated by both left- and right-handed weak
currents. Then, for the sake of concreteness, we consider
the neutrino mass mechanism within the left-right sym-
metric models (LRSMs) [2,3] and extend our analysis
toward some more particular scenarios.
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II. NEUTRINO MASS MECHANISM
OF 0νββ DECAY

We start with a generic Majorana neutrino mass mecha-
nism of 0νββ decay induced by the low-energy effective
Lagrangian

Lβ ¼ Gβffiffiffi
2

p ½jρLJ†Lρ þ λjρRJ
†
Rρ þ H:c:� ð1Þ

with the left-/right-handed hadronic JL=R and leptonic jL=R
currents. As usual, Gβ ¼ GF cos θC, where GF and θC are
Fermi constant and the Cabbibo angle, respectively. The
dimensionless parameter λ depends on the underlying high-
scale model. In the particular case of the left-right sym-
metric (LRS) models, based on the SUð2ÞL ⊗ SUð2ÞR ⊗
Uð1ÞB−L gauge group [2,3], the Lagrangian (1) appears at
low energies after integrating out W�

L;R massive gauge
bosons. In this model,

λ ¼ ðMWL
=MWR

Þ2; ð2Þ
whereMWL

andMWR
(MWL

< MWR
) are masses ofWL and

WR gauge bosons, respectively. The current constraint on
the mass of WR MWR

≥ 2.9 TeV [4] sets the limit

λ ≤ 7.7 × 10−4: ð3Þ
The upper limit λ ¼ 7.7 × 10−4 we use everywhere
in the present paper as a reference value for this parameter.
Since we focus on the mass mechanism, we discard in
Eq. (1) the jL;RJR;L terms irrelevant in this case (for a
review see, for instance, Ref. [5]). In Eq. (1), the explicit
form of the left- and right-handed hadronic currents J†L;R in
nuclei can be found, e.g., in Ref. [6]. The leptonic currents
are given by

jρL ¼ ēLγρν0eL; jρR ¼ ēRγρν0eR:

The ν0eL and ν0eR are the weak eigenstate electron neutrinos,
which are expressed as superpositions of the light and
heavy Majorana mass eigenstate neutrinos νj and Nk as

ν0eL ¼
X3
j¼1

Uejνj þ
Xn
k¼1

SekNC
k ;

ν0eR ¼
X3
j¼1

T�
ejν

C
j þ

Xn
k¼1

V�
ekNk; ð4Þ

where the unitary matrix

U ¼
�
U S

T V

�
ð5Þ

is the generalization of the Pontecorvo-Maki-Nakagawa-
Sakata (PMNS) matrix, which diagonalizes the general
ð3þ nÞ × ð3þ nÞ neutrino mass matrix

M ¼
�
ML MD

MT
D MR

�
ð6Þ

in the basis ðν0eL; ν0μL; ν0τL; N0C
1R;…N0C

nRÞ. Here, ML;R and
MD are Majorana and Dirac mass terms, respectively. After
diagonalization, one should end up with three light νi ði ¼
1; 2; 3Þ and n heavy Nkðk ¼ 1;…; nÞ Majorana neutrino
mass eigenstates with the masses mi and Mk, respectively.
In the LRS models, n ¼ 3. The smallness of mi can be
guaranteed by the seesaw-I condition MR ≫ MD. As is
well known, this leads to very heavy states Nk with masses
Mk ≫ 1 TeV being beyond the experimental reach. In the
scenarios with n > 3, the inverse seesaw mechanism can be
implemented. In this case among Nk, accompanying the
light νi states, there can appear moderately heavy or even
light Majorana states. Actually, their masses can be of
arbitrary value. This is the case of our particular interest,
for which we designed the above-mentioned interpolating
formula.
Assuming the dominance of the mass mechanism, we

write down the 0νββ-decay half-life

½T0ν
1=2�−1 ¼ G0νg4Am

2
p

�����
X3
j¼1

U2
ejmjM00ν

LLðmjÞ þ
Xn
k¼1

S2ekMkM00ν
LLðMkÞ

����
2

þ λ2

×

����
X3
j¼1

T2
ejmjM00ν

RRðmjÞ þ
Xn
k¼1

V2
ekMkM00ν

RRðMkÞ
����
2�

: ð7Þ

The proton mass is denoted by mp, and gA is the unquenched value of axial-vector coupling constant (gA ¼ 1.269).
The phase-space factor G0ν is tabulated for various 0νββ-decaying nuclei in Ref. [7]. The NMEs M00ν as functions of
neutrino mass mν (mν ¼ mi or Mk) are given by [1]

M00ν
LL;RRðmνÞ ¼

1

mpme

R
2π2g2A

X
n

Z
d3xd3yd3p × eip·ðx−yÞ

h0þF jJμ†L;RðxÞjnihnjJ†L;RμðyÞj0þI iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

ν

p
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

ν

p
þ En −

EI−EF
2

Þ
: ð8Þ

A. BABIČ et al. PHYS. REV. D 98, 015003 (2018)

015003-2



Here, R and me are the nuclear radius and the mass of
electron, respectively. We use as usual R ¼ r0A1=3 with
r0 ¼ 1.2 fm. Initial and final nuclear ground states with
energies EI and EF are denoted by j0þI i and j0þF i,
respectively. The summation runs over intermediate nuclear
states jni with energies En. The weak one-body nuclear
charged current JL;R [1,6] depends on the effective value
of axial-vector coupling constant geffA of the nucleon, which
is renormalized to a smaller, the so-called quenched
value, geffA [8].

III. INTERPOLATING FORMULA FOR
THE 0νββ-DECAY HALF-LIFE

For the Majorana neutrino exchange mechanism in the
literature, there are usually two limiting cases considered:
light mi ≪ pF and heavy Mi ≫ pF neutrinos, where pF ∼
200 MeV is the Fermi momentum. For these limiting cases,
the half-life formula (8) is reduced to

½T0ν
1=2�−1 ¼ G0νg4A ×

� jηνj2jM00ν
ν j2; for mi ≪ pF;

jηNj2jM00ν
N j2; for Mk ≫ pF;

ð9Þ

with

jηνj2m2
e ¼

����
X3
j¼1

U2
ejmj

����
2

þ λ2
����
X3
j¼1

T2
ejmj

����
2

≃
����
X3
j¼1

U2
ejmj

����
2

jηN j2
1

m2
p
¼ ðjηLN j2 þ jηRN j2Þ

1

m2
p

¼
����
Xn
k¼1

S2ek
1

Mk

����
2

þ λ2
����
Xn
k¼1

V2
ek

1

Mk

����
2

: ð10Þ

Here, the NMEs M00ν
ν and M00ν

N are derived from the NME
M00ν in Eq. (8) in the following way:

M00νðmi → 0Þ ¼ 1

mpme
M00ν

ν ; ð11Þ

M00νðMi → ∞Þ ¼ 1

M2
i

M00ν
N : ð12Þ

In the case of a neutrino spectrum with mass states Nk
of an arbitrary mass value, one has to apply Eq. (8) for the
NME calculations, resulting in a complicated function of
the neutrino mass. This is a real hassle for use in practice.
Fortunately, there is a very good approximate analytical
representation for Eq. (8) proposed in Ref. [1] (and
references therein) and having a remarkably simple form,

M00ν
LL;RRðmνÞ ≃M00ν

N
1

hp2i þm2
ν
: ð13Þ

This is what we call the “interpolating formula” since it
interpolates two limiting cases (11) and (12) and is valid to
a good accuracy for an arbitrary value of mν. Equation (13)
contains the parameter

hp2i ¼ mpme
M00ν

N

M00ν
ν

ð14Þ

with the dimension of ðmassÞ2. The form of Eq. (13)
suggests the interpretation of hp2i as the mean square
momentum of the virtual neutrino propagating between
two β-decaying nucleons. Therefore, it is expected to be of
the order of p2

F ∼ ð200 MeVÞ2. The current values of the
matrix elements M00ν

ν and M00ν
N calculated within different

nuclear structure approaches can be found in Tables 6 and 7
of Ref. [8]. The value of corresponding parameter

ffiffiffiffiffiffiffiffiffi
hp2i

p
is given for various isotopes together with its averaged
value

ffiffiffiffiffiffiffiffiffiffiffi
hp2ia

p
with variance σ in Table I. The unquenched

value of axial-vector coupling constant is assumed:
geffA ¼ gA ¼ 1.25–1.27. We see that the value of

ffiffiffiffiffiffiffiffiffi
hp2i

p
depends noticeably on the chosen nuclear structure method
and considered choice of the two-nucleon short-range
correlation function. The values of

ffiffiffiffiffiffiffiffiffiffiffi
hp2ia

p
are displayed

for different nuclear structure approaches and types of two-
nucleon short-range correlations (src) in Fig. 1. The largest
value of the parameter

ffiffiffiffiffiffiffiffiffiffiffi
hp2ia

p
≃ 200 MeV is found for

the quasiparticle random phase approximation (QRPA)
with isospin restoration and CD-Bonn two-nucleon src.
Surprisingly, within all the considered nuclear structure
approaches, the variance σ is very small, being of the order
of 3%–10%; i.e., the value of hp2i is practically the same
for all isotopes of experimental interest and can be replaced
with averaged value hp2ia. In the Appendix, we discuss this
finding from the view point of the analytical properties of
the NME in Eq. (8) as a function in the complex plane
of mν. The above conclusion is also supported by the
statistical treatment of M00ν

ν and M00ν
N NMEs performed

in Ref. [9].
Using the parameter hp2ia in the interpolating for-

mula (13), we can write to a good accuracy the 0νββ-
decay half-life for the Majorana neutrino exchange
mechanism as

½T0ν
1=2�−1 ¼ η2νNCνN; ð15Þ

where

CνN ¼ g4AjM00ν
ν j2G0ν ð16Þ

and
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η2νN ¼
����
X3
j¼1

U2
ej

mj

me
þ
Xn
k¼1

S2ek
hp2ia

hp2ia þM2
k

Mk

me

����
2

þ λ2
����
X3
j¼1

T2
ej

mj

me
þ
Xn
k¼1

V2
ek

hp2ia
hp2ia þM2

k

Mk

me

����
2

ð17Þ

for arbitrary mass Mk. The sum runs over j ¼ 1, 2, 3 and
k ¼ 1;…; n. The values of parameter CνN are given for
various isotopes in Table II. The interpolating formula in
Eq. (15) reproduces the “exact” QRPA result with rather
good accuracy except for the transition region where its
deviation, as seen from Fig. 8, amounts to 20%–25%. The
parameter ηνN is a general LNV parameter for the light and

heavy neutrino mass mechanisms, which is practically
independent of the isotope under consideration.

IV. LIGHT VS HEAVY NEUTRINO MASS
MECHANISMS

From the conclusion of the previous section and Eq. (17),
it follows that, contrary to the previous expectations in the
literature (see, for instance, Refs. [18,19]), the dominance
of light or heavy neutrino mechanisms of 0νββ decay cannot
be recognized just by observation of this process with
different isotopes. An additional theoretical or experimental
input about neutrino masses and mixing is needed to shed
light on the particular role of each of these mechanisms.
Let us give a couple of examples of model inputs allowing

us to distinguish the two above-mentioned mechanisms.
For a scenario with three SM singlet neutrinos νe;μ;τR,

the 6 × 6 mixing matrix U in Eq. (5) is completely
parametrized with 15 angles, 10 Dirac and 5 Majorana
CP-violating phases. Let consider some viable structures of
this mixing matrix.

A. Uncoupled light and heavy neutrino sectors

In the particular case of

U ¼
�
U0 0

0 V0

�
; ð18Þ

there is no mixing between heavy and light neutrino
sectors. Then, we have

η2νN ¼ 1

m2
e
ðm2

ββ þ ðMR
ββÞ2Þ ð19Þ

TABLE I. The values of the parameter
ffiffiffiffiffiffiffiffiffi
hp2i

p
of the interpolating formula (13), (14) for a given isotope and their average valueffiffiffiffiffiffiffiffiffiffiffi

hp2ia
p

used in Eq. (17) with the variance σ (in parentheses) calculated within different nuclear structure approaches: interacting shell
model (ISM) [Strasbourg-Madrid (StMa) [10] and Central Michigan University (CMU) [11] groups], interacting boson model (IBM)
[12], quasiparticle random phase approximation [Tuebingen-Bratislava-Caltech (TBC) [13,14] and Jyväskyla (Jy) [15] groups],
projected Hartree-Fock Bogoliubov approach (PHFB) [16], and covariant density functional theory (CDFT) [17]. The Argonne,
CD-Bonn, and UCOM two-nucleon short-range correlations (src) are taken into account. The nonquenched value of weak axial-vector
coupling gA is assumed.

ffiffiffiffiffiffiffiffiffi
hp2i

p
(MeV) ffiffiffiffiffiffiffiffiffiffiffi

hp2ia
p

(σ)
(MeV)Method gA src 48Ca 76Ge 82Se 96Zr 100Mo 110Pd 116Cd 124Sn 128Te 130Te 136Xe 150Nd

ISM-StMa 1.25 UCOM 178 150 149 160 161 159 160(10)
ISM-CMU 1.27 Argonne 178 134 138 153 159 170 155(17)

CD-Bonn 203 165 162 177 184 197 181(17)
IBM 1.27 Argonne 113 103 103 129 136 135 130 109 109 109 107 155 120(17)
QRPA-TBC 1.27 Argonne 189 163 164 180 174 166 157 186 178 180 183 175(11)

CD-Bonn 231 193 194 211 204 194 182 214 207 209 211 205(13)
QRPA-Jy 1.26 CD-Bonn 191 192 217 207 187 177 202 196 201 175 194(13)
PHFB 1.25 Argonne 130 127 124 131 132 121 128(4)

CD-Bonn 150 145 143 150 150 139 146(5)
CDFT 1.25 Argonne 122 129 131 129 131 133 138 138 137 138 132(5)

UCOM src

Argonne src

CD Bonn src

ISM

StMa

ISM

CMU

IBM QRPA

TBC

QRPA

Jy

PHFB CDFT
0

50

100

150

200

250

p2
a

M
eV

FIG. 1. The average value
ffiffiffiffiffiffiffiffiffiffiffi
hp2ia

p
over the set of the

considered isotopes with variance σ calculated within different
nuclear structure approaches. The notations are the same as in
Table I.
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mββ ¼
����
X3
j¼1

U2
ej

mj

1þm2
j=hp2ia

���� ≃
����
X3
j¼1

U2
ejmj

����; ð20Þ

MR
ββ ¼ λ

����
X3
k¼1

U2
ek

Mk

1þM2
k=hp2ia

���� ≃ λhp2ia
����
X3
k¼1

U2
ek

1

Mk

����:
ð21Þ

In this scenario, U0 can be identified with the PMNS
mixing matrix U. Thus, we assume U0 ¼ U. The mixing
matrix V0 for the heavy neutrinos is unknown, but it is
similar to U0 in the light neutrino sector; then, V0 ¼ U is
frequently assumed. For sake of simplicity, we consider
two different cases for the heavy neutrino masses:

Mi ¼
�
mi=ζr constant ratios

ζp=mi constant products:
ð22Þ

In the case of the constant products ζp ¼ miMi, we have
for the LNV parameter in Eq. (19)

η2νN ¼ 1

m2
e

�
1þ λ2

�hp2ia
ζp

�
2
�
m2

ββ ≡ κ2m2
ββ: ð23Þ

Thus, in this scenario, the presence of heavy neutrinos leads
to a vertical shift of the standard plot in Fig. 2 by a constant
factor κ. As a result, the 0νββ-decay experimental upper
bound on mββ is significantly less stringent, if ζp ≪
λhp2ia ≃ 24 MeV2. In our estimation, we used the upper-
bound value in (3), i.e., λ ¼ 7.7 × 10−4, and

ffiffiffiffiffiffiffiffiffiffiffi
hp2ia

p
¼

175 MeV calculated within the QRPA by assuming
Argonne potential and gA ¼ 1.27 (see Table II).

In the case of the constant ratios ζr ¼ mi=Mi in
Eq. (22), the effective Majorana neutrino mass Mββ is
shown in Fig. 3. Contribution of Mββ becomes comparable
to mββ as soon as ζr ¼ 10−17, which corresponds to
Mi ∼ 1016 eV ¼ 104 TeV, with λ ¼ 7.7 × 10−4 being
assumed again. Notice the reverse behavior of the mass
hierarchies: normal hierarchy no longer exhibits a region
unbounded from below, while inverted hierarchy does.

B. Seesaw-mixed light and heavy neutrino sectors

Assuming for simplicity the flavor universal mixing
between the active and sterile neutrino sectors, the seesaw
mixing matrix U takes the form

TABLE II. The value of the parameter CνN in Eq. (16) for the isotopes of experimental interest. The calculated light neutrino exchange
NME M00ν

ν within the interacting shell model (ISM) [Strasbourg-Madrid (StMa) [10] and Central Michigan University (CMU) [11]
groups], interacting boson model (IBM) [12], QRPA [Tuebingen-Bratislava-Caltech (TBC) [13,14] and Jyväskyla (Jy) [15] groups],
projected Hartree-Fock Bogoliubov approach (PHFB) [16], and covariant density functional theory (CDFT) [17] are considered. The
Argonne, CD-Bonn, and UCOM two-nucleon short-range correlations (src) are taken into account. The nonquenched value of the weak
axial-vector coupling gA is assumed.

CνN (10−14 yrs−1)

Method gA src 48Ca 76Ge 82Se 96Zr 100Mo 110Pd 116Cd 124Sn 128Te 130Te 136Xe 150Nd

ISM-StMa 1.25 UCOM 4.38 4.56 17.3 15.1 24.4 17.1
ISM-CMU 1.27 Argonne 4.12 6.96 26.8 9.38 11.8 10.0

CD-Bonn 4.98 7.81 30.3 10.8 13.7 11.7
IBM 1.27 Argonne 19.7 13.4 36.7 42.7 73.5 20.5 41.6 23.9 2.56 50.5 35.2 27.0
QRPA-TBC 1.27 Argonne 1.88 16.3 56.7 39.5 120. 41.4 70.7 15.4 3.17 55.8 18.0

CD-Bonn 2.24 19.0 66.4 46.8 141. 48.9 81.6 19.9 3.93 70.4 22.9
QRPA-Jy 1.26 CD-Bonn 16.5 35.6 51.1 61.0 51.6 76.4 64.0 3.59 57.3 31.1
PHFB 1.25 Argonne 40.5 132. 59.6 2.18 50.4 23.7

CD-Bonn 44.6 143. 64.7 2.39 55.0 25.6
CDFT 1.25 Argonne 47.3 22.4 74.0 216. 173. 128. 42.3 88.2 68.0 113.

FIG. 2. The effective Majorana neutrino massmββ as a function
of the lightest neutrino mass for the normal (blue) and inverted
(red) hierarchy of neutrino masses. The best-fit values of neutrino
oscillation parameters from the global analysis of neutrino
oscillation data [20] are considered. NH and IH stand for the
normal and inverted hierarchy of neutrino masses, respectively.
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U ¼
�

U0 ζ1

−ζ1 V0

�
: ð24Þ

Here, ζ ¼ mD
mLNV

, wheremD is the typical scale of the charged
leptons masses and mLNV is the LNV scale of the order of
the Majorana masses Mi of the heavy neutrinos. As in the
previous scenario, U0 can be identified with the PMNS U
matrix. Thus, we assumeU0 ¼ U. For V0, the analog ofU0

in the heavy neutrino sector, we find from the unitarity
conditions

V0 ¼ U†
0 ð25Þ

and

U0U
†
0 ¼ ð1 − ζ2Þ1;

V0V
†
0 ¼ ð1 − ζ2Þ1: ð26Þ

It is assumed that a small violation of the unitarity of U0

and V0 matrices is beyond the current accuracy of phe-
nomenological determination of elements of the PMNS
matrix. The matrix V0 takes the form

V0 ¼ U† ¼

0
B@

c12c13e−iα1 ð−s12c23 − c12s13s23e−iδÞe−iα1 ðs12s23 − c12s13c23e−iδÞe−iα1
s12c13e−iα2 ðc12c23 − s12s13s23e−iδÞe−iα2 ð−c12s23 − s12s13c23e−iδÞe−iα2

s13eiδ c13s23 c13c23

1
CA: ð27Þ

We note that each element of the first row is multiplied
by the same phase factor e−iα1. Analogously, the second
row is multiplied by e−iα2. Therefore, the Majorana phases
α1;2 do not affect the heavy neutrino LNV parameter MR

ββ

in this case. On the contrary, the Dirac phase δ, which does
not affect the light neutrino LNV parameter mββ, will
impact the value of MR

ββ. The seesaw structure of (24)
implies mi ≃m2

D=mLNV and Mi ≃mLNV . For a product of
light and heavy neutrino masses, let us assumemiMi ≃m2

D.
If the LNV scale is significantly larger than hp2ia, we find

η2νN ¼ 1

m2
e
ðm2

ββ þ ðMR
ββÞ2Þ ð28Þ

with

MR
ββ ¼ λ

hp2ia
m2

D

����
X3
j¼1

ðU†
0Þ2ejmj

����: ð29Þ

We note that for mD ≃ 5 MeV the coefficient λhp2ia=m2
D

entering MR
ββ in Eq. (29) is close to unity and it might be

that contributions from the light and heavy neutrinos to ηνN
are comparable. However,MR

ββ is not proportional tomββ as
off-diagonal elements of matrices U0 and ðU†Þ are differ-
ent. Therefore, a detailed analysis is needed to establish a
useful constraint on the Yukawa potential associated with
neutrinos. In Fig. 4, we showMR

ββ as function of the lightest
neutrino mass both for normal and inverted hierarchy by
assuming mD ≃ 5 MeV (and λ ¼ 7.7 × 10−4).
Within the seesaw structure, one can also assume

mi ≃ ζ2Mi. Then, we find

MR
ββ ¼ λζ2

����
X3
j¼1

ðU†
0Þ2ej

hp2ia
mj

����: ð30Þ

For ζ2 ¼ 10−17 and λ ¼ 7.7 × 10−4, the effective massMR
ββ

in Eq. (30) is plotted in Fig. 5. We see again that for a

FIG. 3. Scenario IVA with mi=Mi ¼ const. The effective
Majorana neutrino massMR

ββ as a function of the lightest neutrino
mass m0 for the normal (blue) and inverted (red) hierarchy of
neutrino masses. The same notation as in Fig. 2 is used.

FIG. 4. Scenario IV B. The effective Majorana neutrino mass
MR

ββ in Eq. (29) with mD ¼ 5 MeV as a function of the lightest
neutrino massm0 for the normal (blue) and inverted (red) hierarchy
of neutrino masses. The same notation as in Fig. 2 is used.
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chosen set of parameters the value of MR
ββ can be compa-

rable with mββ (see Fig. 2).
In Table III, we show upper bounds on ηνN in Eq. (28)

derived from the current 0νββ-decay experiments. As
seen, the most stringent bound comes out from the 136Xe
0νββ-decay experiment, Ref. [21]. For this bound, we
analyzed the separate contributions of the light and heavy
neutrinos to 0νββ decay. Figure 6 displays the corre-
sponding results in the plane of the parameters mD and
m0 (mi ≃m2

D=Mi is assumed) for the cases of the normal
(upper panel) and inverted hierarchy (lower panel) of
neutrino masses. We see that in the considered scenario
for normal (inverted) hierarchy the values mD ≤ 1.4 MeV
(mD ≤ 2.9 MeV) are already excluded by the existing
experimental data on 0νββ decay. We also see that in
the case of normal (inverted) neutrino mass hierarchy
the heavy neutrino exchange mechanism cannot
dominate over the light one in the region m0 ≥ 0.08 eV
(m0 ≥ 0.065 eV). The constraint from the 0νββ-decay
experiment implies that the limit on the mass of lightest
heavy neutrino is M3 > 38 TeV and M2 > 171 TeV in
the cases of normal and inverted hierarchy, respectively.

Figure 7 shows results of an analysis similar to the above-
discussed one, but for the ζ2 ¼ mi=Mi scenario. In this case,
the heavy neutrino mechanism cannot dominate in practi-
cally the same domain of m0 as previously. It is concluded
that in the case of normal (inverted) hierarchy ζ ≤ 1.75 ×
10−8 (ζ ≤ 1.65 × 10−8). We note that within the considered
seesaw scenario within the LRSM the effective Majorana
neutrinomassmββ cannot be identifiedwith the first element
of the Dirac-Majorana mass (see Appendix B) ðMLÞee,
which contains the additional term ζ2M1 in magnitude

FIG. 5. The same as in Fig. 4, but for MR
ββ defined according to

Eq. (30) with ζ2 ¼ 10−17. The same notation as in Fig. 2 is used.

TABLE III. Upper bounds on the effective lepton number–violating parameter ηνN imposed by the current constraints on the 0νββ-
decay half-life T0ν−exp

1=2 (the first row). The values in the second and the third rows were obtained using the largest and lowest values of
CνN for a given isotope from Table II, respectively.

48Ca 76Ge 82Se 100Mo 116Cd 130Te 136Xe

T0ν−exp
1=2 (yrs) 2.0 × 1022 [22] 5.3 × 1025 [23] 2.5 × 1023 [24] 1.1 × 1024 [25] 1.7 × 1023 [26] 4.0 × 1024 [27] 1.07 × 1026 [21]

ηνN × 106 10.3 0.290 2.32 0.724 2.14 0.532 0.117
33.8 0.643 4.81 1.22 3.76 1.455 0.306

FIG. 6. Scenario IV B with the mass relationmi ≃m2
D=Mi. The

comparison of the light mββ and heavy MR
ββ neutrino contribu-

tions to 0νββ decay for the normal (inverted) hierarchy is shown
in the upper (lower) panel.
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comparable with m1. The corresponding term in mββ has
been neglected as it is suppressed by properties of the
neutrino propagator for large neutrino mass. For the same
reason, Mββ cannot be identified with ðMRÞee.

V. CONCLUSIONS

In summary, we have shown that the ratio of nuclear
matrix elements for the light and heavy neutrino mass
mechanisms exhibits practically no dependence on the
isotope for all favored nuclear structure methods. This
quantity, when properly scaled, can be identified with the
squared average neutrino momentum hp2i of the interpo-
lating formula including light and heavy neutrino exchange
mechanisms. The universality of the averaged value of hp2i
for a set of isotopes allows the determination of a new LNV
parameter ηνN, which is a sum of squared LNV parameters
mββ and MR

ββ characterizing the light and heavy neutrino
exchange mechanisms, respectively. Thus, the observation
of 0νββ decay on two and more nuclear isotopes will allow
one to deduce information about the size of ηνN but not
about the relative contribution of the light or heavy
neutrino-exchange mechanism to the decay rate. An addi-
tional theoretical or experimental input about neutrino

masses and mixing is needed to shed light on the particular
role of each of these mechanisms. For an example, we
considered a simplified seesaw-type 6 × 6 neutrino mixing
matrix (24), which implies that the 3 × 3 mixing matrix of
heavy neutrinos is the Hermitian conjugate of the 3 × 3
PMNS mixing matrix of light neutrinos. Assuming several
viable seesaw relations among the light mi and heavy Mi
neutrino masses (i ¼ 1, 2, and 3), useful constraints on the
parameters, in particular Dirac neutrino mass mD, entering
these relations have been obtained from the experimental
lower bounds on the 0νββ-decay half-life. The region of
dominance of heavy over light neutrino exchange mech-
anisms for the considered scenarios has been identified.
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APPENDIX A: ANALYTICAL PROPERTIES
OF THE NMES AND THE

INTERPOLATING FORMULA

Here, we give some comments on the possible improve-
ment of our interpolating formula in Eq. (13), which we call
the “monopole” approximation. Numerically, the latter is
already a very good approximation to the exact NMEs given
by Eq. (8) and calculated in the framework of any specific
nuclear structure approach. However, in certain cases, one
may need an approximate formula having not only a good
numerical precision but also the analytical properties in the
complex planeofmν the sameormaximally close to the exact
NME defined in expression (8).
Obviously, the monopole approximation (13) has two

imaginary poles in the complex plane of mν, while they are
absent in the exact expression (8). Below,we describe a class
of approximations with the analytic properties of the exact
NME (8).
Let us rewrite Eq. (8) in the form

M00ν
LL;RRðmνÞ ¼

4π

ð2πÞ3
Z

∞

0

p2dp
φðpÞ

EpðEp þ ΔÞ ; ðA1Þ

where Δ ¼ En − ðEI − EFÞ=2 > 0, Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

ν

p
,

φðpÞ ¼
Z

dxdyeip·ðx−yÞφðx; yÞ; ðA2Þ

FIG. 7. The same as in Fig. 6, but with the mass relation
ζ2 ¼ mi=Mi.
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and

φðx; yÞ ¼ 1

mpme

4πR
g2A

X
n

h0þF jJμ†LRðxÞjnihnjJ†μLRðyÞj0þi i:

ðA3Þ

The function φðx; yÞ describes a distribution of currents
inside the nucleus. In Eq. (A1), the neutrino mass enters the
denominator of the integrand.
Analytic properties of functions defined in terms of a

contour integral are fixed by the Landau rules [28,29].
The singular points of the first kind are associated with

singular behavior of the integrand at the end points of the
integration contour. In the case of Eq. (A1), these singu-
larities could occur provided that χðpÞ≡ EpðEp þ ΔÞ ¼ 0
for p ¼ 0 or ∞. This equation can be fulfilled for p ¼ 0
only to give m ¼ 0 and m ¼ �Δ. The points m ¼ �Δ are
located on the different sheets of the Riemann surface of
M00ν

LL;RRðmνÞ. It is clear that model-dependent features of
the nuclear structure entering φðx; yÞ do not affect the end
point singularities.
Singular points of the second kind are associated with the

pinch singularities of the integrand. To find them, the
equations χðpÞ=φðpÞ ¼ 0 and ð χðpÞ=φðpÞÞ0 ¼ 0, which
localize high-order poles of the integrand in the complex p
plane, are to be solved. These singularities depend on
φðx; yÞ and thereby on the nuclear structure model.
Analytic properties ofM00ν

LL;RRðmνÞ as a function of Δ are
particularly simple. Changing the variable in Eq. (A4) to
p ¼ m sinh θ, we arrive at the dispersion integral

M00ν
LL;RRðmνÞ ¼

4πm
ð2πÞ3

Z
∞

0

sinh2θdθ
φðm sinh θÞ
cosh θ − ξ

; ðA4Þ

where ξ ¼ −Δ=mν. This equation shows that M00ν
LL;RR is an

analytic function in the complex ξ planewith the cut ð1;þ∞Þ
corresponding to the cut ð−Δ; 0Þ inmν. Provided φðpÞ is an
analytic function for jpj < ∞ and the integral (A4) con-
verges,M00ν

LL;RRðmÞ turns out to be an analytic function in the
complexmν plane with the cut ð−Δ; 0Þ. On the second sheet
of the Riemann surface, one finds a branch point m ¼ þΔ.
As we discussed before, the monopole parametrization

(13) is numerically very accurate. This parametrization
corresponds to an approximation of the spectral function
with the delta function:ϕmðpÞ ∼ δðp2 − hp2iÞ. Then, for the
formula with the correct analytical properties, which we are
going to construct here, we chose the spectral function in a
form close to the ϕmðpÞ to guarantee its numerical accuracy
comparable with the monopole parametrization. We may
choose

ϕðpÞ ¼ exp

�
−
ρ2p2

2

�
sinhðρ2pp0Þ

ρ2pp0

ðA5Þ

with the free parameters, ρ and p0 ∼ hp2i1=2, which can be
fixed by normalization to the exact values at zero and at

infinity. The function ϕðpÞ for p ¼ p0 is close to the
maximum, and the value of 1=ρ determines the width of
momentum distribution. This spectral function is analytic for
jpj < ∞, and it generates model-independent end point
singularities only. The corresponding interpolating formula
appears to be an analytic function in the complex mν plane
with the cut ð−Δ; 0Þ. The cut position is model independent.
The discontinuity depends on ϕðpÞ and is model dependent.
A particularly strong effect on the behavior of analytic
functions in a fixed domain comes from nearest singularities.
Taking into account thatΔ ∼ 10 MeV, an improved descrip-
tion of the neutrinomass dependence can be expected around
zero neutrino mass in the circle with a radius of a few tens
of MeV. This scale is smaller than the characteristic momen-
tum transfer p0 ∼ 200 MeV. Reasonable accuracy is also
expected for the large mν domain, provided the spectral
function (A5) approximates closely the monopole spectral
function found to be successful phenomenologically.
The ratio between the interpolating formula of Eq. (13)

and the exact calculation for 76Ge is shown in Fig. 8. The
result is compared to the interpolating formula of the
spectral function (A5) with ρ ¼ 5 fm and p0 ¼ 0.84=fm.
For low neutrino masses up to about 40 MeV, the analytic
interpolation formula approximates the exact result with
better accuracy. For higher masses, the nuclear structure at
about 200 MeV becomes important, which could reflect a
contribution of the model-dependent pinch singularities
that we do not consider.

APPENDIX B: DIRAC-MAJORANA NEUTRINO
MASS TERM WITHIN SEESAW IN LRSM

In this Appendix, the Dirac-Majorana neutrino mass
term associated with the seesaw mass mechanism within
the LRSM and particular case of neutrino mixing given in
Eq. (24) is presented. We have

10-1 100 101 102 1032 3 45 2 3 45 2 3 45 2 3 45

m [MeV]

0.9

1.0

1.1

1.2

1.3
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n/
E

xa
ct

FIG. 8. Ratio between the interpolation formulas and the exact
calculation for 76Ge vs neutrino mass. The curve M is for the
monopole interpolation (13), and the curve A shows the ratio for
the analytic interpolation formula.
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LDþM ¼ −
1

2

�
ν0CL ν0R

��
ML MD

MT
D MR

��
ν0L
ν0R

C

�
þ H:c:

¼ −
1

2

X3
i¼1

ðmiν̄iνi þMiN̄iNiÞ: ðB1Þ

Here, ν0L ¼ ðν0eL; ν0μL; ν0τLÞT and ν0R ¼ ðν0eR; ν0μR; ν0τRÞT are
three-component columns of the active left-handed ν0αL
and sterile right-handed ν0αR (α ¼ e, μ, τ) flavor-neutrino
fields, respectively. The elements of the 6 × 6 Dirac-
Majorana mass matrix M are calculated as follows:

M ¼
�
ML MD

MT
D MR

�

¼
�

U ζ1

−ζ1 U†

���m 0

0 M

��
U ζ1

−ζ1 U†

�†
: ðB2Þ

Here,m andM stand for diagonal 3 × 3 mass matricesm ¼
diagðm1; m2; m3Þ andM ¼ diagðM1;M2;M3Þ, respectively.
By assuming the seesaw relation mi ∼ ζ2Mi (i ¼ 1, 2, 3)
between light and heavy neutrinomasses, the elements ofM
expressed in terms of three mixing angles θ12, θ13, and θ23;
three CP phases α1, α2, and δ; six neutrino masses; and the
seesaw parameter ζ are given by

ðMLÞee ¼ ζ2M1 þ c212c
2
13e

−i2α1m1

þ s212c
2
13e

−i2α2m2 þ s213e
i2δm3;

ðMLÞeμ ¼ −c12c13ðs12c23 þ c12s13s23e−iδÞe−i2α1m1

þ s12c13ðc12c23 − s12s13s23e−iδÞe−i2α2m2

þ s13c13s23eiδm3;

ðMLÞeτ ¼ c12c13ðs12s23 − c12s13c23e−iδÞe−i2α1m1

− s12c13ðc12s23 þ s12s13c23e−iδÞe−i2α2m2

þ s13c13c23eiδm3;

ðMLÞμμ ¼ ðs12c23 þ c12s13s23e−iδÞ2e−i2α1m1

þ ðc12c23 − s12s13s23e−iδÞ2e−i2α2m2

þ c213s
2
23m3 þ ζ2M2;

ðMLÞμτ ¼ ð−s12s23 þ c12s13c23e−iδÞ
× ðs12c23 þ c12s13s23e−iδÞe−i2α1m1

− ðc12s23 þ s12s13c23e−iδÞ
× ðc12c23 − s12s13s23e−iδÞe−i2α2m2

þ c213s23c23m3;

ðMLÞττ ¼ ðs12s23 − c12s13c23e−iδÞ2e−i2α1m1

þ ðc12s23 þ s12s13c23e−iδÞ2e−i2α2m2

þ c213c
2
23m3 þ ζ2M3; ðB3Þ

ðMDÞee ¼ ζ½−c12c13e−iα1m1 þ c12c13eiα1M1�;
ðMDÞeμ ¼ ζ½−s12c13e−iα2m2 þ s12c13eiα2M1�;
ðMDÞeτ ¼ ζ½−s13eiδm3 þ s13e−iδM1�;
ðMDÞμe ¼ ζ½ðs12c23 þ c12s13s23e−iδÞe−iα1m1

− ðs12c23 þ c12s13s23eiδÞeiα1M2�;
ðMDÞμμ ¼ ζ½−ðc12c23 − s12s13s23e−iδÞe−iα2m2

þ ðc12c23 − s12s13s23eiδÞeiα2M2�;
ðMDÞμτ ¼ ζ½−c13s23m3 þ c13s23M2�;
ðMDÞτe ¼ ζ½−ðs12s23 − c12s13c23e−iδÞe−iα1m1

þ ðs12s23 − c12s13c23eiδÞeiα1M3�;
ðMDÞτμ ¼ ζ½ðc12s23 þ s12s13c23e−iδÞe−iα2m2

− ðc12s23 þ s12s13c23eiδÞeiα2M3�;
ðMDÞττ ¼ ζ½−c13c23m3 þ c13c23M3�; ðB4Þ

ðMRÞee ¼ ζ2m1 þ c212c
2
13e

i2α1M1

þ ðs12c23 þ c12s13s23eiδÞ2ei2α1M2

þ ðs12s23 − c12s13c23eiδÞ2ei2α1M3;

ðMRÞeμ ¼ s12c12c213e
iðα1þα2ÞM1

− ðs12c23 þ c12s13s23eiδÞ
× ðc12c23 − s12s13s23eiδÞeiðα1þα2ÞM2

− ðs12s23 − c12s13c23eiδÞ
× ðc12s23 þ s12s13c23eiδÞeiðα1þα2ÞM3;

ðMRÞeτ ¼ c12s13c13e−iδeiα1M1

− c13ðs12s23c23 þ c12s13s223e
iδÞeiα1M2

þ c13ðs12s23c23 − c12s13c223e
iδÞeiα1M3;

ðMRÞμμ ¼ ζ2m2 þ s212c
2
13e

i2α2M1

þ ðc12c23 − s12s13s23eiδÞ2ei2α2M2

þ ðc12s23 þ s12s13c23eiδÞ2ei2α2M3;

ðMRÞμτ ¼ s12s13c13e−iδeiα2M1

þ c13ðc12s23c23 − s12s13s223e
iδÞeiα2M2

− c13ðc12s23c23 þ s12s13c223e
iδÞeiα2M3;

ðMRÞττ ¼ s213e
−i2δM1 þ c213s

2
23M2

þ c213c
2
23M3 þ ζ2m3: ðB5Þ

We note that, due to the seesaw relation mi ∼ ζ2Mi, terms
ζmi and ζ2mi entering elements of matrices MD and MR,
respectively, can be safely neglected, unlike terms ζ2Mi
appearing in the diagonal elements of the ML matrix.
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