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We revisit the “interpolating formula” proposed in our previous publication. It allows one to calculate the
Ovpp-decay half-life for arbitrary neutrino mass without the involvement of the complicated results for
nuclear matrix elements (NMEs) obtained within specific nuclear structure models. The formula derives
from the finding that the value of a properly normalized ratio of the NME:s for the light and heavy neutrino
mass mechanisms weakly depends on the isotope. From this fact, it follows, in particular, that the light and
heavy neutrino mass mechanisms can hardly be distinguished in a model-independent way searching for
Ovpp decay of different nuclei. Here, we show that this formula holds for all the known nuclear structure
approaches. We give a mathematical justification of our results examining analytical properties of the
NMEs. We also consider several simplified benchmark scenarios within left-right symmetric models and
analyze the conditions for the dominance of the light or heavy neutrino mass mechanisms in Ovff decay.
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I. INTRODUCTION

Neutrinoless double-beta decay (Ovpf) is a lepton
number—violating (LNV) process changing the Ilepton
number by two units AL = 2. It is forbidden in the
Standard Model (SM), in which the lepton number is
conserving. Basically, there are two sources of lepton-
number violation: Majorana neutrino mass and LNV
vertices. The latter may emerge from numerous high-scale
models giving rise to the corresponding mechanisms of
Ovpp decay. Once this process is observed, the question of
distinguishing between the dominant mechanisms will
arise. Certainly, this task is highly nontrivial. One may
hope that measurements of the Ovff half-life with different
isotopes would facilitate its solution due to the variability of
nuclear matrix elements (NMESs) of particular mechanisms
from one isotope to the other. In the present paper, we show
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that at least the light and heavy Majorana neutrino mass
mechanisms are indistinguishable in this way without
additional hypothesis. This fact becomes especially com-
prehensible in terms of the so-called interpolating formula
(IntF) [1] merging the light and heavy neutrino mass ranges
in the NMEs and allowing a transparent physical inter-
pretation of the above fact. The IntF is a simple analytical
formula representing with an accuracy of 30% or better the
NME as a function of the Majorana neutrino mass. This
accuracy is sufficient for practical purposes, taking into
account the limited accuracy of the available nuclear
structure approaches to the NME calculations. In what
follows, we will show that that the IntF is valid for all these
nuclear structure approaches with the above-indicated
accuracy and elucidate some of its other useful properties.
On the particle physics side, we adopt a generic scenario
with Majorana neutrinos of arbitrary value masses and
consider their contribution to Oyff decay via mass mecha-
nism mediated by both left- and right-handed weak
currents. Then, for the sake of concreteness, we consider
the neutrino mass mechanism within the left-right sym-
metric models (LRSMs) [2,3] and extend our analysis
toward some more particular scenarios.

Published by the American Physical Society


https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.98.015003&domain=pdf&date_stamp=2018-07-03
https://doi.org/10.1103/PhysRevD.98.015003
https://doi.org/10.1103/PhysRevD.98.015003
https://doi.org/10.1103/PhysRevD.98.015003
https://doi.org/10.1103/PhysRevD.98.015003
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

A. BABIC er al.

PHYS. REV. D 98, 015003 (2018)

II. NEUTRINO MASS MECHANISM
OF 088 DECAY

We start with a generic Majorana neutrino mass mecha-
nism of Oyff decay induced by the low-energy effective
Lagrangian

v G
V2
with the left-/right-handed hadronic J; /x and leptonic j /g
currents. As usual, Gz = G cos ¢, where Gy and 0 are
Fermi constant and the Cabbibo angle, respectively. The
dimensionless parameter A depends on the underlying high-
scale model. In the particular case of the left-right sym-
metric (LRS) models, based on the SU(2), ® SU(2); ®
U(1)g_; gauge group [2,3], the Lagrangian (1) appears at
low energies after integrating out WiR massive gauge
bosons. In this model,

A= (My, [My,)?, (2)
where My, and My, (My, < My, ) are masses of W; and

Wr gauge bosons, respectively. The current constraint on
the mass of Wr My, > 2.9 TeV [4] sets the limit

70}, + Ajfdk, + Hel (1)

2<% 1074, (3)

The upper limit 1=7.7x10™* we use everywhere
in the present paper as a reference value for this parameter.
Since we focus on the mass mechanism, we discard in
Eq. (1) the j, g/ terms irrelevant in this case (for a
review see, for instance, Ref. [5]). In Eq. (1), the explicit
form of the left- and right-handed hadronic currents J z g in
nuclei can be found, e.g., in Ref. [6]. The leptonic currents
are given by

P = ) P 5 /
JL =€y’ Ver s Jr = €RY Vep-

The v/,; and v/, are the weak eigenstate electron neutrinos,
which are expressed as superpositions of the light and
heavy Majorana mass eigenstate neutrinos v; and N as

(T = Gongmp(

Z T2 m; M/Ov

Z U2 m M0 (m

)+ Z VEM ML (M)

3
l/i,L = ZUejl/j —l—iSekNg,

Jj=1 k=1
ER_ZTL]]+ZVka’ (4)

where the unitary matrix

() e

is the generalization of the Pontecorvo-Maki-Nakagawa-
Sakata (PMNS) matrix, which diagonalizes the general
(3 4+ n) x (3 4+ n) neutrino mass matrix

M = (ML MD) (6)

ML Mg

.N'Q). Here, M, » and
M p, are Majorana and Dirac mass terms, respectively. After
diagonalization, one should end up with three light v; (i =
1,2,3) and n heavy Ny(k =1,...,n) Majorana neutrino
mass eigenstates with the masses m; and M, respectively.
In the LRS models, n = 3. The smallness of m; can be
guaranteed by the seesaw-I condition Mp > M. As is
well known, this leads to very heavy states N, with masses
M, > 1 TeV being beyond the experimental reach. In the
scenarios with n > 3, the inverse seesaw mechanism can be
implemented. In this case among N, accompanying the
light v; states, there can appear moderately heavy or even
light Majorana states. Actually, their masses can be of
arbitrary value. This is the case of our particular interest,
for which we designed the above-mentioned interpolating
formula.

Assuming the dominance of the mass mechanism, we
write down the Ovff-decay half-life

: - / / / 1C
in the basis (V,r, V..V, Nigs -

2

)+ Z S2MM (M| + 22

) )

The proton mass is denoted by m,, and g, is the unquenched value of axial-vector coupling constant (g, = 1.269).
The phase-space factor G% is tabulated for various Oyff-decaying nuclei in Ref. [7]. The NMEs M'% as functions of

neutrino mass m, (m, = m; or M) are given by [1]

1 R _
M?Z,RR("%) = P Z / dxd3yd p x P (x-y)

pMe 271'29% —

(OF 1 (X)) (11|, (9)10]) (8)
Vpr+ mi(/pF+ mE +E, Bty
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Here, R and m, are the nuclear radius and the mass of
electron, respectively. We use as usual R = roA!/? with
ro = 1.2 fm. Initial and final nuclear ground states with
energies E; and Ep are denoted by [0/) and [0}),
respectively. The summation runs over intermediate nuclear
states |n) with energies E,. The weak one-body nuclear
charged current J; » [1,6] depends on the effective value
of axial-vector coupling constant getf of the nucleon, which
is renormalized to a smaller, the so-called quenched
value, ¢t [8].

III. INTERPOLATING FORMULA FOR
THE 0¢f-DECAY HALF-LIFE

For the Majorana neutrino exchange mechanism in the
literature, there are usually two limiting cases considered:
light m; < pg and heavy M; > pr neutrinos, where pg ~
200 MeV is the Fermi momentum. For these limiting cases,
the half-life formula (8) is reduced to

Ov 1-1 — Ov 4 |’71/|2|MII/OD 27 fOI‘ ml' < pF’
[T72] G x 21 Ag100|2 )
InnPIMR¥|?, for My > py,
with
|’7”|2 ¢= ej mj +’12 ZTeJ mj
2
ej mj
1
2 L2 R |2
- + L
|’7N| m%, (|’7N| |’7N‘ )m?,
_ 2 2
-] <A Yvag o

Here, the NMEs M% and M are derived from the NME
M in Eq. (8) in the following way:

1

MO, = 0) =, (11)
p''te
10y 1 /Oy

In the case of a neutrino spectrum with mass states N
of an arbitrary mass value, one has to apply Eq. (8) for the
NME calculations, resulting in a complicated function of
the neutrino mass. This is a real hassle for use in practice.
Fortunately, there is a very good approximate analytical
representation for Eq. (8) proposed in Ref. [I] (and
references therein) and having a remarkably simple form,

0 0
M/LZRR( ) M/V<p2>+m12/ (13)
This is what we call the “interpolating formula” since it
interpolates two limiting cases (11) and (12) and is valid to
a good accuracy for an arbitrary value of m,. Equation (13)

contains the parameter
(14)

with the dimension of (mass)?. The form of Eq. (13)
suggests the interpretation of (p?) as the mean square
momentum of the virtual neutrino propagating between
two f-decaying nucleons. Therefore, it is expected to be of
the order of pZ ~ (200 MeV)?2. The current values of the
matrix elements M’ and MY calculated within different
nuclear structure approaches can be found in Tables 6 and 7

of Ref. [8]. The value of corresponding parameter \/(p?)
is given for various isotopes together with its averaged

value /(p?), with variance ¢ in Table I. The unquenched
value of axial-vector coupling constant is assumed:

¢ = g, = 1.25-1.27. We see that the value of +/(p?)
depends noticeably on the chosen nuclear structure method
and considered choice of the two-nucleon short-range

correlation function. The values of /(p?), are displayed
for different nuclear structure approaches and types of two-
nucleon short-range correlations (src) in Fig. 1. The largest

value of the parameter \/(p?), ~ 200 MeV is found for
the quasiparticle random phase approximation (QRPA)
with isospin restoration and CD-Bonn two-nucleon src.
Surprisingly, within all the considered nuclear structure
approaches, the variance o is very small, being of the order
of 3%-10%; i.e., the value of (p?) is practically the same
for all isotopes of experimental interest and can be replaced
with averaged value (p?),. In the Appendix, we discuss this
finding from the view point of the analytical properties of
the NME in Eq. (8) as a function in the complex plane
of m,. The above conclusion is also supported by the
statistical treatment of M* and M¥ NMEs performed
in Ref. [9].

Using the parameter (p?), in the interpolating for-
mula (13), we can write to a good accuracy the Ovpp-
decay half-life for the Majorana neutrino exchange
mechanism as

[Tﬁ%]‘ = mnCun (15)
where

Cov = galM* P G™ (16)
and
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TABLE 1. The values of the parameter \/(p?) of the interpolating formula (13), (14) for a given isotope and their average value

(p*), used in Eq. (17) with the variance o (in parentheses) calculated within different nuclear structure approaches: interacting shell
model (ISM) [Strasbourg-Madrid (StMa) [10] and Central Michigan University (CMU) [11] groups], interacting boson model (IBM)
[12], quasiparticle random phase approximation [Tuebingen-Bratislava-Caltech (TBC) [13,14] and Jyviskyla (Jy) [15] groups],
projected Hartree-Fock Bogoliubov approach (PHFB) [16], and covariant density functional theory (CDFT) [17]. The Argonne,
CD-Bonn, and UCOM two-nucleon short-range correlations (src) are taken into account. The nonquenched value of weak axial-vector

coupling g, is assumed.

V{(p?) MeV)

VAP, (o)

Method Ja src BCa "%Ge %Se %zr Mo !"pd 6Cd !2%Sn 28Te 30Te 13¥Xe Nd = (MeV)
ISM-StMa  1.25 UCOM 178 150 149 160 161 159 160(10)
ISM-CMU  1.27 Argonne 178 134 138 153 159 170 155(17)

CD-Bonn 203 165 162 177 184 197 181(17)
IBM 1.27 Argonne 113 103 103 129 136 135 130 109 109 109 107 155 120(17)
QRPA-TBC 1.27 Argonne 189 163 164 180 174 166 157 186 178 180 183 175(11)

CD-Bonn 231 193 194 211 204 194 182 214 207 209 211 205(13)
QRPA-Jy 1.26 CD-Bonn 191 192 217 207 187 177 202 196 201 175 194(13)
PHFB 1.25 Argonne 130 127 124 131 132 121 128(4)

CD-Bonn 150 145 143 150 150 139 146(5)
CDFT 1.25 Argonne 122 129 131 129 131 133 138 138 137 138 132(5)

m; M, 2 heavy neutrino mass mechanisms, which .is practically
+ z S + M2 independent of the isotope under consideration.
2 M 2
2 m; )a My IV. LIGHT VS HEAVY NEUTRINO MASS
4 Z T + Z Ve .t M2 (17) MECHANISMS

for arbitrary mass M. The sum runs over j = 1, 2, 3 and
k=1,...,n. The values of parameter C,y are given for
various isotopes in Table II. The interpolating formula in
Eq. (15) reproduces the “exact” QRPA result with rather
good accuracy except for the transition region where its
deviation, as seen from Fig. 8, amounts to 20%—25%. The
parameter 7, is a general LNV parameter for the light and

From the conclusion of the previous section and Eq. (17),
it follows that, contrary to the previous expectations in the
literature (see, for instance, Refs. [18,19]), the dominance
of light or heavy neutrino mechanisms of Ovff decay cannot
be recognized just by observation of this process with
different isotopes. An additional theoretical or experimental
input about neutrino masses and mixing is needed to shed
light on the particular role of each of these mechanisms.

Letus give a couple of examples of model inputs allowing
us to distinguish the two above-mentioned mechanisms.

For a scenario with three SM singlet neutrinos v, , .¢,

250 T T T T T T T
' ] the 6 x 6 mixing matrix ¢/ in Eq. (5) is completely
2005 % 1 parametrized with 15 angles, 10 Dirac and 5 Majorana
[ % % ] CP-violating phases. Let consider some viable structures of
i~ [ i ] this mixing matrix.
2 1s0p @ 1
= % T 3 1
T 00l ] A. Uncoupled light and heavy neutrino sectors
' m UCOM src In the particular case of
sof @ Argonne src ]
[ ) U 0 0
® CD-Bonn src U= s (18)
0 L 1 1 1 L L L L 0 VO
ISM ISM IBM QRPA QRPA PHFB CDFT
StMa - CMU TBC Jy there is no mixing between heavy and light neutrino
FIG. 1. The average value +/(p?), over the set of the sectors. Then, we have

considered isotopes with variance o calculated within different
nuclear structure approaches. The notations are the same as in
Table I.
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TABLEII.

The value of the parameter C, in Eq. (16) for the isotopes of experimental interest. The calculated light neutrino exchange

NME M'% within the interacting shell model (ISM) [Strasbourg-Madrid (StMa) [10] and Central Michigan University (CMU) [11]
groups], interacting boson model (IBM) [12], QRPA [Tuebingen-Bratislava-Caltech (TBC) [13,14] and Jyviskyla (Jy) [15] groups],
projected Hartree-Fock Bogoliubov approach (PHFB) [16], and covariant density functional theory (CDFT) [17] are considered. The
Argonne, CD-Bonn, and UCOM two-nucleon short-range correlations (src) are taken into account. The nonquenched value of the weak

axial-vector coupling g, is assumed.

Coy (107" yrs™h

Method da src ®Ca  TGe 8Se %zZr Mo '"opd !'Cd %%Sn  2Te 30Te 13%Xe 1Nd
ISM-StMa 1.25 UCOM 438 456 173 15.1 244 171
ISM-CMU 1.27  Argonne 4.12 696 26.8 9.38 11.8  10.0
CD-Bonn  4.98 7.81 30.3 10.8 13.7  11.7
IBM 1.27  Argonne 19.7 134 367 427 73.5 205 41.6 239 256 505 352 27.0
QRPA-TBC 1.27  Argonne 1.88 163  56.7 395 120. 41.4 70.7 154 3.17 558 18.0
CD-Bonn 224 19.0 66.4  46.8 141. 48.9 81.6 19.9 393 704 229
QRPA-Jy 1.26 CD-Bonn 16.5 35,6 S5l1.1 61.0 51.6 764  64.0 359 573 31.1
PHFB 1.25  Argonne 40.5 132. 59.6 2.18 504 23.7
CD-Bonn 44.6  143. 64.7 239 550 25.6
CDFT 1.25  Argonne 473 224  74.0 216. 173. 128. 423 88.2 68.0 113.
3 3 In the case of the constant ratios {, = m;/M; in
Mgy = Z o | Z Uzjm . (20) Ea (22), t'he effectwfe Majorana neutrino mass My is
—1 + m P )a = shown in Fig. 3. Contribution of M z; becomes comparable
to mgs as soon as ¢, = 107", which corresponds to
. s, 1 M;~10" eV =10* TeV, with 2=7.7x10"* being
Mﬁﬁ—ﬂ a2 AP Do Uk d again. Notice th behavior of th
1+ M /< 2y £ 7k ppy assumed again. Notice the reverse behavior of the mass
B hierarchies: normal hierarchy no longer exhibits a region
(21)  unbounded from below, while inverted hierarchy does.

In this scenario, U, can be identified with the PMNS
mixing matrix U. Thus, we assume U, = U. The mixing
matrix V( for the heavy neutrinos is unknown, but it is
similar to U in the light neutrino sector; then, V= U is
frequently assumed. For sake of simplicity, we consider
two different cases for the heavy neutrino masses:

mi/é’r
M. =
l {gp/mi

constant ratios
(22)
constant products.

In the case of the constant products £, = m;M;, we have
for the LNV parameter in Eq. (19)

1 (P*)a\?
2 1 /12 a 2 = 2,2 .
UnY m2< + < Z, Mg = KN

Thus, in this scenario, the presence of heavy neutrinos leads
to a vertical shift of the standard plot in Fig. 2 by a constant
factor k. As a result, the Oypp-decay experimental upper
bound on mys is significantly less stringent, if ¢, <
A(p?), ~24 MeV?. In our estimation, we used the upper-

bound value in (3), i.e., A =7.7x 1074, and /(p?), =
175 MeV calculated within the QRPA by assuming
Argonne potential and g4 = 1.27 (see Table II).

(23)

B. Seesaw-mixed light and heavy neutrino sectors

Assuming for simplicity the flavor universal mixing
between the active and sterile neutrino sectors, the seesaw
mixing matrix / takes the form

1 .
— NH
— IH
0.1
2
r 0.01+
g
0.001F
10*4 L L LG ot L
107 0.001 0.01 0.1 1

my [eV]

FIG. 2. The effective Majorana neutrino mass m; as a function
of the lightest neutrino mass for the normal (blue) and inverted
(red) hierarchy of neutrino masses. The best-fit values of neutrino
oscillation parameters from the global analysis of neutrino
oscillation data [20] are considered. NH and IH stand for the
normal and inverted hierarchy of neutrino masses, respectively.
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1

NH

— IH
0.1}
>
L
= 0.01+
X
]
0.001}
1074 - | . .
10™ 0.001 0.01 0.1 1

mg [eV]

FIG. 3. Scenario IVA with m;/M; = const. The effective
Majorana neutrino mass Mgﬂ as a function of the lightest neutrino
mass my for the normal (blue) and inverted (red) hierarchy of
neutrino masses. The same notation as in Fig. 2 is used.

”:(2163' 2

Here, ¢ = % where my, is the typical scale of the charged

leptons masses and my Ny is the LNV scale of the order of
the Majorana masses M; of the heavy neutrinos. As in the
previous scenario, U, can be identified with the PMNS U
matrix. Thus, we assume U, = U. For V, the analog of U,
in the heavy neutrino sector, we find from the unitarity
conditions

1
—— NH
— IH
0.1}
>
L
= 0.01F
<X
=
0.001}
107 . .
10 0.001 0.01 0.1 1

my [eV]

FIG. 4. Scenario IV B. The effective Majorana neutrino mass
M;j"’ﬁ in Eq. (29) with mp =5 MeV as a function of the lightest

neutrino mass m for the normal (blue) and inverted (red) hierarchy
of neutrino masses. The same notation as in Fig. 2 is used.

Vo =Uj (25)
and
UoUy = (1= )1,
VoV = (1 =1, (26)

It is assumed that a small violation of the unitarity of U,
and V|, matrices is beyond the current accuracy of phe-
nomenological determination of elements of the PMNS
matrix. The matrix V|, takes the form

—ia —i6\ ,—ia —i6\ ,—ia
Crpcize™ ™ (=810C03 — Cpp813853€70)e ™M (512803 — Ca813¢3€ 70 )e T
7t — —ia —i8\ ,—ia —i5\ ,—ia
Vo=U"= | sppcize™  (c1p03 — S1251353€70)e™" @ (=c12823 — $12813C03e770)e ™™ | (27)
i5
si3e€’ 13523 C13C23

We note that each element of the first row is multiplied
by the same phase factor e~**. Analogously, the second
row is multiplied by e~*®. Therefore, the Majorana phases
a; , do not affect the heavy neutrino LNV parameter Mgﬂ
in this case. On the contrary, the Dirac phase §, which does
not affect the light neutrino LNV parameter myg;, will
impact the value of M g/}. The seesaw structure of (24)
implies m; ~ m3 /m; yy and M; =~ my yy. For a product of
light and heavy neutrino masses, let us assume m;M; ~ m?3,.
If the LNV scale is significantly larger than (p?),,, we find

1
’75N ) (m/zs/} + (ME/;)Z) (28)

with

(29)

2
p’)
MR — l< a
W

3
Z(U@Zi’”j :
=1

We note that for mj ~5 MeV the coefficient A(p?),/m?,
entering M E/; in Eq. (29) is close to unity and it might be
that contributions from the light and heavy neutrinos to 7,y
are comparable. However, M /'§/, is not proportional to mg as
off-diagonal elements of matrices U, and (U") are differ-
ent. Therefore, a detailed analysis is needed to establish a
useful constraint on the Yukawa potential associated with
neutrinos. In Fig. 4, we show M’ ;)?ﬁ as function of the lightest
neutrino mass both for normal and inverted hierarchy by
assuming mp =~ 5 MeV (and 1 = 7.7 x 107%).

Within the seesaw structure, one can also assume
m; ~{>M,. Then, we find

M, =20 (30)

3 2
UT 2 <p >a .
;( O)e]

m;

For (2 = 1077 and 4 = 7.7 x 107*, the effective mass Mgﬂ
in Eq. (30) is plotted in Fig. 5. We see again that for a

015003-6
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1

0.1+

=
L

< 0.01
&
=

0.001

10—4 4 1 L I
10 0.001 0.01 0.1 1
mg [eV]

FIG. 5. The same as in Fig. 4, but for M ;fﬂ defined according to
Eq. (30) with ¢ = 10~!7. The same notation as in Fig. 2 is used.

chosen set of parameters the value of M;ﬁﬁ can be compa-
rable with myy (see Fig. 2).

In Table III, we show upper bounds on 7,y in Eq. (28)
derived from the current Oyff-decay experiments. As
seen, the most stringent bound comes out from the '*6Xe
Oupp-decay experiment, Ref. [21]. For this bound, we
analyzed the separate contributions of the light and heavy
neutrinos to Oyff decay. Figure 6 displays the corre-
sponding results in the plane of the parameters mp and
mq (m; =~ m?%/M; is assumed) for the cases of the normal
(upper panel) and inverted hierarchy (lower panel) of
neutrino masses. We see that in the considered scenario
for normal (inverted) hierarchy the values mp < 1.4 MeV
(mp <29 MeV) are already excluded by the existing
experimental data on Ouvff decay. We also see that in
the case of normal (inverted) neutrino mass hierarchy
the heavy neutrino exchange mechanism cannot
dominate over the light one in the region my > 0.08 eV
(mg > 0.065 eV). The constraint from the Ovpp-decay
experiment implies that the limit on the mass of lightest
heavy neutrino is M5 > 38 TeV and M, > 171 TeV in
the cases of normal and inverted hierarchy, respectively.

TABLE III.

mp [MeV]

>
(0]
=)
a
3
e o
'Excluded (90% C.L)
0 ; : " !
0.00 0.02 0.04 0.06 0.08 0.10
my [eV]

FIG. 6. Scenario IV B with the mass relation m; ~ m3,/M;. The
comparison of the light m4; and heavy Mgﬁ neutrino contribu-

tions to Ovp3f decay for the normal (inverted) hierarchy is shown
in the upper (lower) panel.

Figure 7 shows results of an analysis similar to the above-
discussed one, but for the £ = m; /M, scenario. In this case,
the heavy neutrino mechanism cannot dominate in practi-
cally the same domain of m, as previously. It is concluded
that in the case of normal (inverted) hierarchy < 1.75 x
1078 (¢ < 1.65 x 107%). We note that within the considered
seesaw scenario within the LRSM the effective Majorana
neutrino mass mg; cannot be identified with the first element
of the Dirac-Majorana mass (see Appendix B) (M;),,,
which contains the additional term ¢?M, in magnitude

Upper bounds on the effective lepton number—violating parameter 7,y imposed by the current constraints on the Ovf3f-

decay half-life T?;;ex" (the first row). The values in the second and the third rows were obtained using the largest and lowest values of

C,y for a given isotope from Table II, respectively.

48Ca 7GGe 8256 IOOMO 1 16Cd 13()I~e 136Xe
T‘;;;xp (yrs) 2.0 x 107 [22] 53 x 10% [23] 2.5x 107 [24] 1.1 x 10** [25] 1.7 x 10 [26] 4.0 x 10** [27] 1.07 x 10 [21]
Moy % 109 10.3 0.290 2.32 0.724 2.14 0.532 0.117

338 0.643 4.81 1.22 3.76 1.455 0.306
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2.0 v v e e e e e
I 'Excluded (90% C.L.).

LSpece-- TREREE .

1L0F £ R

%108

%108

0.00 002 004 006 008 010
my [eV]

FIG. 7. The same as in Fig. 6, but with the mass relation
& =m/M,.

comparable with m;. The corresponding term in mg; has
been neglected as it is suppressed by properties of the
neutrino propagator for large neutrino mass. For the same
reason, M, cannot be identified with (My),,.

V. CONCLUSIONS

In summary, we have shown that the ratio of nuclear
matrix elements for the light and heavy neutrino mass
mechanisms exhibits practically no dependence on the
isotope for all favored nuclear structure methods. This
quantity, when properly scaled, can be identified with the
squared average neutrino momentum (p?) of the interpo-
lating formula including light and heavy neutrino exchange
mechanisms. The universality of the averaged value of (p?)
for a set of isotopes allows the determination of a new LNV
parameter 7y, which is a sum of squared LNV parameters
myg and M gﬁ characterizing the light and heavy neutrino
exchange mechanisms, respectively. Thus, the observation
of Ovpp decay on two and more nuclear isotopes will allow
one to deduce information about the size of 7,y but not
about the relative contribution of the light or heavy
neutrino-exchange mechanism to the decay rate. An addi-
tional theoretical or experimental input about neutrino

masses and mixing is needed to shed light on the particular
role of each of these mechanisms. For an example, we
considered a simplified seesaw-type 6 x 6 neutrino mixing
matrix (24), which implies that the 3 x 3 mixing matrix of
heavy neutrinos is the Hermitian conjugate of the 3 x 3
PMNS mixing matrix of light neutrinos. Assuming several
viable seesaw relations among the light m; and heavy M,
neutrino masses (i = 1, 2, and 3), useful constraints on the
parameters, in particular Dirac neutrino mass mp, entering
these relations have been obtained from the experimental
lower bounds on the Ovff-decay half-life. The region of
dominance of heavy over light neutrino exchange mech-
anisms for the considered scenarios has been identified.
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APPENDIX A: ANALYTICAL PROPERTIES
OF THE NMES AND THE
INTERPOLATING FORMULA

Here, we give some comments on the possible improve-
ment of our interpolating formula in Eq. (13), which we call
the “monopole” approximation. Numerically, the latter is
already a very good approximation to the exact NMEs given
by Eq. (8) and calculated in the framework of any specific
nuclear structure approach. However, in certain cases, one
may need an approximate formula having not only a good
numerical precision but also the analytical properties in the
complex plane of m,, the same or maximally close to the exact
NME defined in expression (8).

Obviously, the monopole approximation (13) has two
imaginary poles in the complex plane of m,, while they are
absent in the exact expression (8). Below, we describe a class
of approximations with the analytic properties of the exact
NME (8).

Let us rewrite Eq. (8) in the form

4r [ »(p)
MOy — 2d ,
LL,RR(mu) (27)° A p pEp(Ep T A)
where A = E, — (E;— E)/2> 0, E, = \/p* + mZ,

o(p) = / dxdye™*Vg(x,y),

(A1)

(A2)
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and
1 4zR .
p(x,y) = =Y (OFT (X)) (nl ] (¥)]0F ).
myme gz “

(A3)

The function ¢(x,y) describes a distribution of currents
inside the nucleus. In Eq. (A1), the neutrino mass enters the
denominator of the integrand.

Analytic properties of functions defined in terms of a
contour integral are fixed by the Landau rules [28,29].

The singular points of the first kind are associated with
singular behavior of the integrand at the end points of the
integration contour. In the case of Eq. (Al), these singu-
larities could occur provided that y(p) = E,(E, + A) =0
for p = 0 or co. This equation can be fulfilled for p =0
only to give m = 0 and m = +A. The points m = £A are
located on the different sheets of the Riemann surface of
M7 pr(my,). It is clear that model-dependent features of
the nuclear structure entering ¢(x,y) do not affect the end
point singularities.

Singular points of the second kind are associated with the
pinch singularities of the integrand. To find them, the
equations y(p)/¢(p) =0 and (x(p)/¢(p))" = 0, which
localize high-order poles of the integrand in the complex p
plane, are to be solved. These singularities depend on
@(x,y) and thereby on the nuclear structure model.

Analytic properties of M} . (m,) as a function of A are
particularly simple. Changing the variable in Eq. (A4) to
p = msinh 6, we arrive at the dispersion integral

drm [ ¢(msinh 0)
MY = h20do———~, (A4
LL,RR(mv) (2”)3/0 sin coshf — ¢ (A4)
where & = —A/m,,. This equation shows that M} . is an

analytic function in the complex & plane with the cut (1, +o0)
corresponding to the cut (—A, 0) in m,. Provided ¢(p) is an
analytic function for |p| < co and the integral (A4) con-
verges, M .»(m) turns out to be an analytic function in the
complex m,, plane with the cut (—A, 0). On the second sheet
of the Riemann surface, one finds a branch point m = +A.

As we discussed before, the monopole parametrization
(13) is numerically very accurate. This parametrization
corresponds to an approximation of the spectral function
with the delta function: ¢, (p) ~ 6(p*> — (p?)). Then, for the
formula with the correct analytical properties, which we are
going to construct here, we chose the spectral function in a
form close to the ¢, (p) to guarantee its numerical accuracy
comparable with the monopole parametrization. We may
choose

H(p) = exp (_pzpz) sinh(p”ppy)

(A5)
2 P*Ppo

with the free parameters, p and p, ~ (p?)!/?, which can be
fixed by normalization to the exact values at zero and at

1.3

1.2

1.1

1.0

Interpolation/Exact

0.9

16-1 2 345 160 2 345 161 2 345 162 2 345 163
m [MeV]

FIG. 8. Ratio between the interpolation formulas and the exact
calculation for 7°Ge vs neutrino mass. The curve M is for the
monopole interpolation (13), and the curve A shows the ratio for
the analytic interpolation formula.

infinity. The function ¢(p) for p = p, is close to the
maximum, and the value of 1/p determines the width of
momentum distribution. This spectral function is analytic for
|p| < o0, and it generates model-independent end point
singularities only. The corresponding interpolating formula
appears to be an analytic function in the complex m, plane
with the cut (—A, 0). The cut position is model independent.
The discontinuity depends on ¢(p) and is model dependent.
A particularly strong effect on the behavior of analytic
functions in a fixed domain comes from nearest singularities.
Taking into account that A ~ 10 MeV, an improved descrip-
tion of the neutrino mass dependence can be expected around
zero neutrino mass in the circle with a radius of a few tens
of MeV. This scale is smaller than the characteristic momen-
tum transfer p, ~ 200 MeV. Reasonable accuracy is also
expected for the large m, domain, provided the spectral
function (AS5) approximates closely the monopole spectral
function found to be successful phenomenologically.

The ratio between the interpolating formula of Eq. (13)
and the exact calculation for "%Ge is shown in Fig. 8. The
result is compared to the interpolating formula of the
spectral function (AS) with p =5 fm and py = 0.84/fm.
For low neutrino masses up to about 40 MeV, the analytic
interpolation formula approximates the exact result with
better accuracy. For higher masses, the nuclear structure at
about 200 MeV becomes important, which could reflect a
contribution of the model-dependent pinch singularities
that we do not consider.

APPENDIX B: DIRAC-MAJORANA NEUTRINO
MASS TERM WITHIN SEESAW IN LRSM

In this Appendix, the Dirac-Majorana neutrino mass
term associated with the seesaw mass mechanism within
the LRSM and particular case of neutrino mixing given in
Eq. (24) is presented. We have
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1 - ML MD I/L
LD“‘M__E(VILC le)(ME MR)(U;QC + H.c.

3
=

Z(mi’/_i’/i + M;N;N;).

1
22 (BD)

Here, v = (V1. V. V)" and v = (Vg Vg, Vig) " are
three-component columns of the active left-handed v/,
and sterile right-handed v/, (@ = e, u, 7) flavor-neutrino
fields, respectively. The elements of the 6 x 6 Dirac-

Majorana mass matrix M are calculated as follows:

M= <ML MD>
MY My

U T\*/m O U TN\
= ¢ ¢ . (B2)
-1 Ut 0 M)\ -=¢1 U
Here, m and M stand for diagonal 3 x 3 mass matrices m =
diag(m,, m,, ms) and M = diag(M,, M,, M3), respectively.
By assuming the seesaw relation m; ~ {*M; (i =1, 2, 3)
between light and heavy neutrino masses, the elements of M
expressed in terms of three mixing angles 6, 8,3, and 6,5;
three CP phases a;, a,, and J; six neutrino masses; and the
seesaw parameter ¢ are given by
(ML)ee = CZMI + C%ZC%'}»e_izalml
+ 53, ¢l e 2% m, + 53,6 0ms,
(Mp),, = —ciac13(s12623 + C12813823€"%) e my
+ s12¢13(C12623 = S12513823¢ ™) e my

+ s13¢13523€"%m3,

(M),, = c1pc13(812823 — C12813Co3€ ) e 2% m,
— S1pC13(C1823 + S1as13C3e” ) e 202 m,
+ s13¢13¢03€0m3,

(ML)MI = (SIZCZB + 012S13S23€_i5)2e_i2"1m1
+ (CI2C23 - 512513S23e_55)26_i2a2m2
+ c13833m3 + M,

(M) e = (=$12823 + c1813023¢777)

—id\ ,—i2a
X (812023 + €128135237)e ™ "M m,y
C12823 T §12813C23€
—id\ ,—i2a
X (€12€23 = $12813523¢7%)e ™" my,
2
+ C13823C23M3,
_ —i5\2 —i2a
(M), = (512823 — C12813c3€7"°) e ™" m
+ (12523 + S12813C3€77%) e ™22 my

2 0 ’
+ c3¢53m3 + (M,

(Mp),, = {[=cracize™™™my + cppci3e™ My,

(Mp),, = {[=s12c13¢7"2my + s1pc 3¢ M ],

(Mp),. = {[=s13€m5 + s13¢7°M,],

(MD)ue = {[(s12¢23 + c128138523¢ %) e m,
— (s12¢23 + C12813523€ )€™ M),

(Mp), = C[=(€12¢23 = s12513523¢ ™) e 2m,

+ (12623 — $12813523€" ) "2 M),
(MD)[,{T = {[—c13803m3 + €13523M5],
(Mp).e = {[~(512523 = c1o813¢03¢ ™) e my
+ ($12823 — C12813623€ )™ M3],
(Mp)y, = Cl(c12823 + spas13¢03¢ ™) ey
— (12823 + S12513C23€") e ™ M3,

(Mp),, = {[—ci3co3ms + ci3¢3M3), (B4)

(Mg),, = C*my + 2yche™ M,

+ (512023 + C12813523€")%e*M M,

+ (512823 — C12813C23€™) 2N M5,
(MR)ey = s12012C%3ei(a1+“2)M1

- (512C23 + C12S13S23ei‘3)

X (C1pCp3 — 512813523 ) el @+ @) M,

— (812823 — C12513C3€")

X <C12323 + 512S13623ei‘s)gi(01+a2)M3’
(MR)er = C12513C13e_55ei“1M1

- C13(S12S23023 + C12S13S%3ei5)eia1M2

+ c13(812823C23 — C12513¢33€) e M3,
(Mg),, = CPmy + s}ychye®e M,

+ (c12C03 — $12813523€)%e?2 M,

+ (12823 + S12513C23€")? 22 M5,
(MR);” = S12S13C13e_i53ia2M1

+ ci3(Ciasnca — s181355;¢7) e M,

— 13(C12823C3 + $12813¢%6) e M,
(Mg),, = s33¢7 M| + c2353.M,

+ c%3c%3M3 + ms. (B5)

We note that, due to the seesaw relation m; ~ ézM ;> terms
¢m; and *m; entering elements of matrices M, and My,

respectively, can be safely neglected, unlike terms (?M;
appearing in the diagonal elements of the M; matrix.
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