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In this work, we study the possibility that dark matter fields transform in the ð1; 0Þ ⊕ ð0; 1Þ
representation of the homogeneous Lorentz group. In an effective theory approach, we study the
lowest-dimension interacting terms of dark matter with standard model fields, assuming that dark matter
fields transform as singlets under the standard model gauge group. There are three dimension-four
operators, two of them yielding a Higgs portal to dark matter. The third operator couples the photon and Z0

fields to the higher multipoles of dark matter, yielding a spin portal to dark matter. For low mass dark matter
(D), the decays Z0 → D̄D andH → D̄D are kinematically allowed and contribute to the invisible widths of
the Z0 and H bosons. We use experimental results on these invisible widths to constrain the values of the
low-energy constants gt (for the spin portal) and gs, gp (for the Higgs portal) for this mass region. We
calculate the dark matter relic density in our formalism and, using the above constraints, we find that
consistency with the experimental value requires dark matter to have a massM > 43 GeV in the case of the
spin portal andM > 62 GeV for the Higgs portal. For higher mass dark matter (M > MH=2), we calculate
the velocity averaged cross section for the annihilation of dark matter into b̄b and τþτ− and compare with
the upper bounds recently reported by Fermi-LAT and DES Collaborations, finding that both portals yield
results consistent with the reported upper bounds. Finally, we study direct detection by elastic scattering on
nuclei. The Higgs portal yields results consistent with the upper bounds reported recently by the XENON
Collaboration. The spin portal can also accommodate this data but requires higher values of the dark matter
mass or smaller values of the corresponding coupling.
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I. INTRODUCTION

The elucidation of the nature of dark matter is one of the
most important problems in high energy physics [1]. Dark
matter gravitational effects were noticed during the first
half of the last century [2], and recent precise measure-
ments of the cosmic background radiation conclude that it
accounts for around 26% [3] of the matter-energy content
of the universe. In spite of this, an identification of dark
matter properties is still lacking and a lot of experimental
effort is presently being pursued in order to directly or

indirectly detect dark matter particles, based mainly in
the WIMP paradigm [4]. The latter is based on the fact that
the proper description of the measured dark matter relic
density, Ωexp

DMh
2 ¼ 0.1186� 0.0020 [3,5], requires dark

matter to have annihilation cross sections into standard
model particles of the order of those produced by the weak
interactions.
From the particle physics side, dark matter is a challeng-

ing problem since there is no particle in the standard model
which can be identifiedwith darkmatter and, although some
extensions of the standard model such as supersymmetric
models or extra-dimension models have candidates to dark
matter, no signal for these particles has been found in the
exhaustive search for signals of physics beyond the standard
model or direct search for dark matter signals carried out at
the LHC during the past few years [6–8].
The problem has also been considered in a model

independent way using effective field theories, where the
low energy effects of the unknown theory at high energies
are considered in a systematic expansion, based on general
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principles. Effective theories for scalar, spin 1=2 fermion
and vector dark matter have been proposed [9–23], and
several experimental direct searches are motivated by these
formalisms [24–31].
The standard model contains spin 1=2 fermions (quarks

and leptons), spin 1 bosons (gauge bosons) and a spin 0
boson (the Higgs particle) with the corresponding fields
transforming in the ð1

2
; 0Þ ⊕ ð0; 1

2
Þ, ð1

2
; 1
2
Þ and (0,0) repre-

sentations of the homogeneous Lorentz group (HLG),
respectively, and it is natural that effective theories so far
formulated for darkmatter consider darkmatter transforming
in these representations, although some phenomenological
work has been done for spin 3=2 dark matter fields trans-
forming in the Rarita-Schwinger representation [32–35].
Recently, the quantum field theory of spin one massive

particles transforming in the ð1; 0Þ ⊕ ð0; 1Þ representation of
theHLG(spin-onematter fields),was studied in detail in [36],
with the field being described by a six-component “spinor,”
analogous to the four-component Dirac spinor describing
spin 1=2 fermions. It was shown there that a consistent
quantum field theory of spin-one matter fields requires a
constrained dynamics formalism but the constraints are
second class and can be solved along Dirac conventional
method [37]. In order to solve the constraints, however, we
need to know the algebraic structure of a covariant basis for
the operators acting in the ð1; 0Þ ⊕ ð0; 1Þ representation
space, which was previously worked out in [38]. This basis
naturally contains a chirality operator, χ, and spin-one matter
fields can be decomposed into chiral components trans-
forming in the (1,0) (right) and (0,1) (left) representations.
However, the kinetic term in the free Lagrangian is not
invariant under independent chiral transformations, therefore
spin-one matter fields cannot have linearly realized chiral
gauge interactions, hence they cannot haveweak interactions.
Nonetheless, it is possible to have vectorlike interactions like
Uð1ÞY or SUð3Þc standard model interactions. In addition,
spin-one matter fields can have naively renormalizable self-
interactions classified also in [36].
In this work, we study the possibility of a ð1; 0Þ ⊕ ð0; 1Þ

spacetime structure for darkmatter fields.Clearly, darkmatter
with standardmodel chargeswouldgive sizable contributions
to precision measurements of standard model observables;
thus, we assume in this work that darkmatter fields transform
as singlets of the standard model gauge group.
The paper is organized as follows. In the next section, we

briefly review the elements of the quantum field theory of
spin one matter fields. In Sec. III, we discuss the leading
terms in the effective field theory. In Sec. IV, we study the
low mass dark matter case, calculate the decay width for
Z0 → D̄D andH → D̄D and find the constraints on the low
energy constants from the Z0 and Higgs invisible widths.
Section V contains an analysis of the dark matter relic
density in this formalism, when these constraints are taken
into account. The possibility of a higher dark matter mass is
explored in the following sections. Section VI is devoted to

calculate the velocity averaged annihilation of dark matter
into b̄b and τþτ− in Milky Way dwarf spheroidal satellite
galaxies and to compare with available data from a recent
FermiLAT-DES joint analysis. The direct detection of dark
matter is considered in Sec. VII, where we calculate the
observable σp and compare with the most stringent upper
bounds reported recently by the XENON1T Collaboration.
Finally, we give our conclusions in Sec. VIII and close with
an Appendix with the required trace calculations for
operators in the ð1; 0Þ ⊕ ð0; 1Þ representation space.

II. QUANTUM FIELD THEORY FOR SPIN-ONE
MATTER FIELDS: BRIEF REVIEW

In the standard model, matter is described by Dirac
fermions which transform in the ð1=2; 0Þ ⊕ ð0; 1=2Þ rep-
resentation of the HLG. Spin-one matter fields are the
generalization of Dirac construction to j ¼ 1, i.e., fields
transforming in the ð1; 0Þ ⊕ ð0; 1Þ representation. The
basic object is a six-component “spinor” ψðxÞ and the
corresponding quantum field theory was studied in [36],
taking advantage of the general construction of a covariant
basis for ðj; 0Þ ⊕ ð0; jÞ representation space introduced in
[38]. For j ¼ 1, the covariant basis is given by the set of
6 × 6 matrices f1; χ; Sμν; χSμν;Mμν; Cμναβg where χ is the
chirality operator, Sμν stands for a symmetric traceless
(Sμμ ¼ 0) matrix tensor transforming in the (1,1) repre-
sentation of the HLG, Mμν are the HLG generators and
Cμναβ is a matrix tensor transforming in the ð2; 0Þ ⊕ ð0; 2Þ
representation of the HLG.
The spin-one matter field is written as

ψðxÞ ¼
X
λ

Z
d3pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ32E

p ½aλðpÞUðp; λÞe−ip:x

þ b†λðpÞVðp; λÞeip:x�; ð1Þ
whereUðp; λÞ (Vðp; λÞ) stands for the particle (antiparticle)
solution with polarization λ, respectively. In contrast with
the Dirac case, spin-one matter particle and antiparticle
have the same parity. These solutions satisfy

X
λ

Uðp; λÞŪðp; λÞ ¼ SðpÞ þM2

2M2
;

X
λ

Vðp; λÞV̄ðp; λÞ ¼ SðpÞ þM2

2M2
; ð2Þ

where SðpÞ≡ Sμνpμpν.
The free Lagrangian for spin-one matter fields is given

by

L ¼ 1

2
∂μψ̄ðxÞðgμν þ SμνÞ∂νψðxÞ −M2ψ̄ðxÞψðxÞ; ð3Þ

where ψ̄ðxÞ≡ ðψðxÞÞ†S00. The Sμν operators satisfy the
following anticommutation relations
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fSμν; Sαβg ¼ 4

3

�
gμαgνβ þ gναgμβ −

1

2
gμνgαβ

�

−
1

6
ðCμανβ þ CμβναÞ: ð4Þ

Further algebraic relations of the operators in the covariant
basis and the connection with the traces needed for the
calculations in this work are deferred to an Appendix. The
propagator for spin-one matter particles is given by

iπðpÞ ¼ i
SðpÞ − p2 þ 2M2

2M2ðp2 −M2 þ iεÞ : ð5Þ

An important outcome of this formalism is that the free-
field Lagrangian can be decomposed in terms of the chiral
components as

L ¼ 1

2
∂μψR∂μψL þ 1

2
∂μψRSμν∂νψR −M2ψRψL þ R ↔ L;

ð6Þ
where

ψR ¼ 1

2
ð1þ χÞψ ; ψL ¼ 1

2
ð1 − χÞψ : ð7Þ

The right (left) field ψR (ψL) transforms in (1,0) ((0,1))
representation of the HLG. Notice that in the massless case,
the kinetic term couples right and left components; hence, it
is not invariant under independent chiral transformations.
Therefore, spin-one matter fields cannot have chiral gauge
interactions, although they admit vector gauge interactions.
Concerning the standard model interactions, spin-one
matter fields can have only Uð1ÞY or SUð3ÞC gauge
interactions but not SUð2ÞL interactions, or simply be
standard model singlets. This result motivate us to explore
the possibility that dark matter be described by spin-one
matter fields and we start with the simplest and most likely
possibility: spin-one dark matter fields transforming as
singlets under the standard model gauge group.

III. DARK MATTER AS SPIN-ONE MATTER
FIELDS: EFFECTIVE THEORY

If we consider dark matter as spin-one matter fields
(spin-one dark matter fields in the following) transforming
as singlets under the standard model group, dark matter
does not feel the standard model charges. On the other side,
if we have more than one dark matter field, dark matter can
have gauge interactions with its own (vectorlike) dark
gauge group. In the following, we will assume a simple
Uð1ÞD structure for the dark gauge group, but the gener-
alization of our results to SUðNÞD is straightforward. We
remark that the only effect of this dark gauge structure in
this work is to provide to dark matter particles with dark
charges distinguishing particles from antiparticles and

preventing the direct decay of a dark matter particle into
standard model ones.
At high energies, the standard model and dark sectors

couple in a yet unknown way but the low energy effects of
such theory can be classified in an expansion in derivatives
of the fields. Each term in this expansion has a low energy
constant and the importance at low energies of each term
depends on the dimension of the corresponding operator, in
such a way that the most important effects are given by the
lowest-dimension operators.
The Lagrangian must be a complete scalar operator and

if dark matter fields are standard model singlets (and
standard model fields are singlets of the dark gauge group)
the only possibility to have a scalar interacting Lagrangian
is that it be composed of products of singlet operators on
both sides. The construction of the lowest-dimension
interacting operators in this case, requires to classify the
singlet operators in both sectors. The most general form of
this interaction is

Lint ¼
X
n

1

Λn−4OSMODM ð8Þ

where Λ is an energy scale compensating the dimension n
of the product of the standard model singlet operators OSM
constructed with standard model fields and ODM made of
spin-one dark matter fields.
It is easy to convince oneself that the lowest-dimension

standard model singlet operators are ϕ̃ϕ and Bμν, where ϕ
stands for the standard model Higgs doublet and Bμν

denotes the Uð1ÞY stress tensor. Indeed, ϕ̃ϕ is simply
the singlet of the 2 ⊗ 2 product of SUð2ÞL (and also a
singlet under SUð3Þ and Uð1ÞY), while in general under
SUðNÞ gauge transformations UðxÞ, the stress (matrix)
tensor operator transforms as

Fμν → UðxÞFμνU−1ðxÞ; ð9Þ
being strictly invariant only in the Uð1Þ case; thus, in the
standard model, the Uð1ÞY stress tensor Bμν is a singlet
under the standard model gauge group. Singlet operators
made of fermion fields or other combinations can also be
constructed but they are higher dimension.
For spin-one matter fields with a dark gauge group

Uð1ÞD, the lowest-dimension operators transforming as
standard model and dark gauge group singlets are of the
form ψ̄Oψ where O is one of the 36 matrix operators in the
covariant basis f1; χ; Sμν; χSμν;Mμν; Cμναβg. These opera-
tors are dimension two and, using the symmetry properties
of Sμν and Cμναβ, it is easy to show that the leading
interacting terms in the effective theory are given by

Lint ¼ ψ̄ðgs1þ igpχÞψϕ̃ϕþ gtψ̄MμνψBμν; ð10Þ
with low-energy constants gs, gp and gt. There is an
effective Higgs portal to dark matter interactions with
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standard model particles given by the first two terms, the
second one violating parity. The third term is an effective
interaction coupling dark matter to the photon and the Z0

boson. Notice that this interaction does not involve the
weak charges (operators are standard model singlets), but
proceeds through the coupling of the photon and Z0 fields
to the higher multipoles (magnetic dipole moment and
electric quadrupole moment) of the dark matter; thus, we
call it the spin portal to dark matter. Since the magnetic
moment of a ð1; 0Þ ⊕ ð0; 1Þ field depends on its massM as
μ ≈ gt=M while the electric quadrupole goes as QE ≈
gt=M2 [39], the spin portal yields dark matter–standard
model interactions suppressed at least as k=M with k
denoting the gauge boson (photon or Z0) momentum. In
addition to the interactions in Eq. (10), we have the
dimension-four self-interactions described in [36] which
are not relevant for the purposes of this paper.
In unitary gauge for the standard model fields, after

spontaneous symmetry breaking and diagonalizing the
gauge boson sector, we get the following Lagrangian

Lint ¼
1

2
ψ̄ðgs1þ igpχÞψðH þ vÞ2 þ gt cos θWψ̄MμνψFμν

− gt sin θWψ̄MμνψZμν; ð11Þ

where H stands for the Higgs field, v denotes the Higgs
vacuum expectation value and Fμν, Zμν are the electro-
magnetic and Z0 stress tensors, respectively. The Feynman
rules arising from the Lagrangian in Eq. (11) are given
in Fig. 1.

IV. LIGHT DARK MATTER: Z0 → D̄D
AND H → D̄D DECAYS

The Lagrangian in Eq. (11) induces transitions between
the standard model and dark sectors. Annihilation of dark
matter into standard model particles such as D̄D → f̄f, γγ,
WþW−, Z0Z0, HH, Z0γ, Hγ, Z0H are induced by these
interactions under appropriate kinematical conditions.
Also, for light dark matter, the decays Z0 → D̄D and

H → D̄D are kinematically allowed and contribute to the
invisible Z0 and H widths, respectively.
A straightforward calculation yields the following invari-

ant amplitude for the Z0ðk; ϵÞ → Dðp1ÞD̄ðp2Þ decay
−iM ¼ 2gtSWŪðp1; λ1ÞMμνkνVðp2; λ2ÞÞϵμðkÞ; ð12Þ

where SW ¼ sin θW . The calculation of the average squared
amplitude can be reduced to a trace of products of operators
in the covariant basis of ð1; 0Þ ⊕ ð0; 1Þ representation
space, in a procedure similar to conventional calculations
with Dirac fermions. We obtain

jM̄j2 ¼ 4

3
g2t S2WTr

�
Sðp1Þ þM2

2M2
Mμν Sðp2Þ þM2

2M2
Mαβ

�
kνkβ

×

�
−gμα þ

kμkα
M2

Z

�
: ð13Þ

The trace-ology of matrices in ð1; 0Þ ⊕ ð0; 1Þ space is
deferred to an Appendix. Using results in the Appendix, we
obtain the corresponding decay width as

ΓðZ0 → D̄DÞ ¼ g2t S2W
24πM4

ðM2
Z − 4M2Þ3=2ðM2

Z þ 2M2Þ:
ð14Þ

The invisible width Γinv
expðZÞ ¼ 499.0� 1.5 MeV reported

by the Particle Data Group [5], includes the decay to νν̄. We
calculate this decay as

ΓðZ0 → ν̄νÞ≡X
i

ΓðZ0 → ν̄iνiÞ

¼
X
i;α

U2
iα

M2
Z

24πv2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

Z − 4m2
νi

q

¼ M3
Z

8πv2
¼

ffiffiffi
2

p
GFM3

Z

8π
; ð15Þ

where in the last step we neglected the neutrino masses and
used the unitarity of the PMNS matrix elements. The
Particle Data Group report the value MZ ¼ 91.1876�
0.0021 GeV while the μ − Lan Collaboration reported

FIG. 1. Feynman rules from the leading terms in the effective theory.
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the most precise measurement of the Fermi constant as
GF ¼ 1.1663788ð6Þ × 10−5 GeV−2 [40]. Using these val-
ues, we get

ΓðZ0 → ν̄νÞ ¼ 497.64� 0.03 MeV: ð16Þ
Subtracting this quantity from the PDG reported value for
the invisible width, we get the constraint ΓðZ → D̄DÞ <
Γinv
Z ≡ Γinv

expðZÞ − ΓðZ → ν̄νÞ ¼ 1.4 � 1.5 MeV. This
width depends on the coupling gt and the dark matter
mass M, hence the invisible Z0 width constrain these
parameters to the region shown in Fig. 2.
Similar calculations for the H → D̄D decay yield the

following decay width

ΓðH → D̄DÞ ¼ v2

32πM2
HM

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

H − 4M2

q
× ½g2sðM2

HðM2
H − 4M2Þ þ 6M4Þ

þ g2pM2
HðM2

H − 4M2Þ�: ð17Þ
The H → D̄D width depends on the unknown gs, gp
couplings and on the dark matter mass. This channel
contributes to the invisible Higgs width which has been
recently reported in [5,41] as Γinv

H ¼ 1.14� 0.04 MeV. In
this case, the contribution of the νν̄ channel is negligible.
The constraints on gs, gp arising from the ΓðH → D̄DÞ <
Γinv
H condition are also shown in Fig. 2. The solid lines

correspond to the central values and the shadow regions to
the one sigma regions. We conclude from this plot that the
coupling of the spin portal gt in general can be larger than
those of the Higgs portal gs or gp, by at least one order of
magnitude.

V. DARK MATTER RELIC DENSITY

A. Boltzman equation

The evolution of the dark matter comoving number
density nDðTÞ is described by the Boltzmann equation [42]

dY
dx

¼ −
λðxÞ
x2

ðY2 − Y2
eqÞ; ð18Þ

where x ¼ M=T, YðxÞ ¼ nDðxÞ=T3 and

λðxÞ≡M3hσvri
HðMÞ : ð19Þ

Here, HðMÞ ¼ M2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π3GNg�ðMÞ

90

q
stands for the Hubble

parameter at the dark mass scale, M, with GN ¼
6.70861ð31Þ × 10−39 GeV−2 denoting the Newton gravi-
tational constant [5], g�ðMÞ standing for the relativistic
effective degrees of freedom at T ¼ M in the thermal
bath and

YeqðxÞ ¼
neqD
T3

¼ gD
T3

Z
d3p
ð2πÞ3

1

e
E
T − 1

¼ 3

2π2

Z
∞

x

u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − x2

p
du

eu − 1

≈
3

2π2

Z
∞

x
e−uu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − x2

p
du: ð20Þ

The thermal average hσvri includes all channels for the
annihilation Dðp1ÞD̄ðp2Þ → Xðp3ÞYðp4Þ of dark matter
into standard model particles X, Y in the thermal bath, and
it is given by

hσvri ¼
1

neqD n
eq
D̄

Z
gDd3p1

ð2πÞ2 e−E1=T

Z
gD̄d

3p2

ð2πÞ2 e−E2=Tσvr;

ð21Þ
where gD (gD̄) denotes the number of internal d.o.f of the
dark matter particle (antiparticle), vr stands for the dark
matter particle-antiparticle relative velocity and σ is the
conventional cross section for the Dðp1ÞD̄ðp2Þ →
Xðp3ÞYðp4Þ process.
A qualitative analysis of the solution of Eq. (18) assum-

ing the freeze-out of dark matter at some temperature,
which would explain dark matter relic density, shows that
dark matter must be nonrelativistic at the time of its
decoupling from the cosmic plasma [42]. This is consistent
with data on dark matter relic density extracted from
precision measurement of the cosmic background radiation

]3,5 ]. In this case, it is a good approximation to perform a
nonrelativistic expansion of hσvri keeping only the leading
terms in the expansion in powers of vr ≪ 1. This expansion
requires the calculation of the flux for dark matter particles
in the thermal bath, which can be written as [43,44]

FIG. 2. Parameter space for gt, gs and gp consistent
ΓðZ → D̄DÞ < Γinv

Z ¼ 1.4� 1.5 MeV and ΓðH → D̄DÞ <
Γinv
H ¼ 1.14� 0.04 MeV for M < MZ=2. Solid lines correspond

to the central values of the invisible decay widths.
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F ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp1 · p2Þ2 −M4

q
¼ 2ðs −M2Þvr; ð22Þ

where vr is related to s as

s ¼ 2M2

�
1þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2r
p �

¼ 4M2 þM2v2r þ � � � : ð23Þ

In the last step, we performed the nonrelativistic expansion
for vr ≪ 1. The cross section σ is a function of s thus using
Eq. (22) the leading terms in the expansion are

σvr ¼ aþ bv2r ; ð24Þ
and performing the thermal average, we obtain

hσvri ¼ aþ 6b
x
: ð25Þ

For nonrelativistic and light dark matter, the kinemati-
cally allowed channels are D̄D → f̄f for fermions with

mf < M and D̄D → γγ. In the following subsection, we
calculate the corresponding cross sections in our formal-
ism, perform the nonrelativistic expansion and work out the
predictions for the a, b coefficients.

B. Annihilation of dark matter
into a fermion-antifermion pair

There are three contributions to the process
Dðp1ÞD̄ðp2Þ → fðp3Þf̄ðp4Þ shown in Fig. 3.
The corresponding amplitudes are given by

−iMH ¼ i
mf

s −M2
H
ūðp3Þvðp4ÞV̄ðp2ÞðgsI þ igpχÞUðp1Þ;

−iMγ ¼ −
4QfgtMWSWCW

vs
ūðp3Þγμvðp4ÞV̄ðp2ÞMμβðp1 þ p2ÞβUðp1Þ;

−iMZ ¼ gtMZSW
vðs −M2

ZÞ
ūðp3ÞγμðAf þ Bfγ5Þvðp4ÞV̄ðp2ÞMμβðp1 þ p2ÞβUðp1Þ: ð26Þ

Here, CW ¼ cos θW ,Qf stands for the fermion charge in units of the proton charge e, while the Af, Bf factors are related to
the corresponding fermion weak isospin Tf

3 as

Af ¼ 2Tf
3 − 4QfS2W; Bf ¼ −2Tf

3 : ð27Þ
A straightforward calculation yields the following average squared amplitude in terms of the Mandelstam variables:

jMf̄fj2 ¼ −
g2t M2

ZS
2
W

9M4v2ðs −M2
ZÞ2

½4M2ðA2
f þ B2

fÞm4
fð4M2 − sÞ þ 4m2

fð4M2 − sÞðA2
fM

2ð2M2 þ s − t − uÞ

þ B2
fð2M4 −M2ðsþ tþ uÞ − s2ÞÞ þ ðA2

f þ B2
fÞð16M8 − 4M6ðsþ 4ðtþ uÞÞ þ 4M4ðtþ uÞðsþ tþ uÞ

þM2ð4s3 − 2sðt2 þ u2ÞÞ þ s2ððt − uÞ2 − s2ÞÞ� þ 8AfCWQfg2t MWMZS2W
9M4sv2ðs −M2

ZÞ
½4M2m2

fð4M2 − sÞð2M2 þ s − t − uÞ

þ 4m4
fð4M4 −M2sÞ þ 16M8 − 4M6ðsþ 4ðtþ uÞÞ þ 4M4ðtþ uÞðsþ tþ uÞ þM2ð4s3 − 2sðt2 þ u2ÞÞ

þ s2ððt − uÞ2 − s2Þ� þ 4Afm2
fgsgtMZSW

9M4vðs −M2
HÞðs −M2

ZÞ
sð2M2 − sÞðt − uÞ − 16CWm2

fQfgsgtMWSW
9M4vðs −m2

HÞ
ð2M2 − sÞðt − uÞ

−
16C2

WQ
2
fg

2
t M2

WS
2
W

9M4s2v2
½4M2m2

fð4M2 − sÞð2M2 þ s − t − uÞ þ 4m4
fð4M4 −M2sÞ

þ 16M8 − 4M6ðsþ 4ðtþ uÞÞ þ 4M4ðtþ uÞðsþ tþ uÞ þM2ð4s3 − 2sðt2 þ u2ÞÞ þ s2ððt − uÞ2 − s2Þ�

þ m2
f

9M4ðs −M2
HÞ2

ðs − 4m2
fÞ½g2psðs − 4M2Þ þ g2sð6M4 − 4M2sþ s2Þ�: ð28Þ

Integrating the phase space, we obtain the following cross section for D̄D → f̄f, where we can easily identify the individual
contributions from the H, Z0, and γ exchange as well as the Z0 − γ interference:

FIG. 3. Feynman diagrams for D̄D → f̄f.
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σf̄fðsÞ ¼
1

72πM4
ffiffiffi
s

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

f

q
F

�
m2

fðs − 4m2
fÞðg2psðs − 4M2Þ þ g2sð6M4 − 4M2sþ s2ÞÞ

ðs −M2
HÞ2

þ 2g2t M2
ZS

2
Wsðs − 4M2Þð2M2 þ sÞð2ðA2

f − 2B2
fÞm2

f þ sðA2
f þ B2

fÞÞ
3v2ðs −M2

ZÞ2

þ 32C2
WQ

2
fg

2
t M2

WS
2
Wðs − 4M2Þð2M2 þ sÞð2m2

f þ sÞ
3v2s

−
16AfCWQfg2t MWMZS2Wðs − 4M2Þð2M2 þ sÞð2m2

f þ sÞ
3v2ðs −M2

ZÞ
�
: ð29Þ

Notice that the H − Z and H − γ interferences vanish after integration of phase space.

C. Dark matter annihilation into two photons

This process is induced by the t and u channel dark matter exchange shown in Fig. 4. The corresponding amplitudes are
given by

−iMt ¼ i
2g2t C2

W

M2
V̄ðp2; λ2ÞMαβ

Sðp1 − p3Þ − tþ 2M2

t −M2
MμνUðp1; λ1Þpα

4η
βðp4Þpμ

3ϵ
νðp3Þ; ð30Þ

−iMu ¼ i
2g2t C2

W

M2
V̄ðp2; λ2ÞMμν

Sðp1 − p4Þ − uþ 2M2

u −M2
MαβUðp1; λ1Þpα

4η
βðp4Þpμ

3ϵ
νðp3Þ: ð31Þ

The average squared amplitude is given by

jMγγj2 ¼
�
2g2t C2

W

3M2

�
2

Tr

�
Sðp2Þ þM2

2M2
Tαβμν

Sðp1Þ þM2

2M2
T̄σ

β
ρ
ν

�
pμ
3p

ρ
3p

α
4p

σ
4; ð32Þ

where

Tαβμν ¼ Mαβ
Sðp1 − p3Þ − tþ 2M2

t −M2
Mμν þMμν

Sðp1 − p4Þ − uþ 2M2

u −M2
Mαβ; ð33Þ

T̄αβμν ¼ Mμν
Sðp1 − p3Þ − tþ 2M2

t −M2
Mαβ þMαβ

Sðp1 − p4Þ − uþ 2M2

u −M2
Mμν: ð34Þ

A straightforward calculation using the algebraic relations in the Appendix yields

jMγγj2 ¼
2C4

Wg
4
t

9M8ðt −M2Þ2ðu −M2Þ2 ½6ðtuÞ
4 þ 2ðtuÞ3ð−13M4 þ 11M2sþ 2s2Þ þ ðtuÞ2ð42M8 − 76M6sþ 33M4s2

þ 4M2s3 þ 2s4Þ þ 2M2tuð−15M10 þ 43M8s − 44M6s2 þ 17M4s3 − 6M2s4 þ 2s5Þ
þM4ð8M12 − 32M10sþ 51M8s2 − 40M6s3 þ 25M4s4 − 12M2s5 þ 2s6Þ�: ð35Þ

Integrating the final state phase space, we get the following cross section:

σγγðsÞ ¼
1

F
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4M2

s

q C4
Wg

4
t

540πM8

�
120M4ð4M4 − 3M2s − 2s2Þtanh−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4M2

s

r

þ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4M2

s

r
ð−10M6 þ 228M4s − 99M2s2 þ 43s3Þ

�
: ð36Þ
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D. Dark matter relic density

Expanding the D̄D → f̄f and D̄D → γγ cross sections, we get

σvr ≡ σγγvr þ
X
f

σf̄fvr ¼ aþ bv2r ; ð37Þ

where the sum runs over all the kinematically allowed fermion states (mf < M) and

a ¼ 29C4
Wg

4
t

18πM2
þ
X
f

Nfg2sm2
fðM2 −m2

fÞ
3
2

12πM3ðM2
H − 4M2Þ2 ;

b ¼ 365C4
Wg

4
t

216πM2
þ
X
f

Nf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −m2

f

q
864πM5

�
96M4g2t M2

ZS
2
WððA2

f − 2B2
fÞm2

f þ 2M2ðA2
f þ B2

fÞÞ
v2ðM2

Z − 4M2Þ2

þ 192AfM2CWQfg2t MWMZS2Wðm2
f þ 2M2Þ

v2ðM2
Z − 4M2Þ þ 96C2

WQ
2
fg

2
t M2

WS
2
Wðm2

f þ 2M2Þ
v2

−
6M2m2

fð8g2pð4M2 −M2
HÞðM2 −m2

fÞ þ g2sð−8m2
fðM2 −M2

HÞ − 11M2M2
H þ 20M4ÞÞ

ðM2
H − 4M2Þ3

−
9M2m2

fg
2
sð4M2 − 5m2

fÞ
ðM2

H − 4M2Þ2
�
; ð38Þ

with Nf ¼ 3 for quarks and Nf ¼ 1 for leptons.
In Fig. 5, we show the Higgs and spin portal contribu-

tions to hσvri as a function of the couplings for different
values of the dark matter mass. Using Eqs. (25), (38), we
numerically solve the Boltzman equation (18) for different
values the couplings gt, gs and gp, matching the solution
YðxÞ with the equilibrium solution YeqðxÞ in Eq. (20) at
high temperatures, i.e., in the relativistic regime x ≪ 1. The
solutions are shown in Fig. 6. Clearly, at some xf, the
solution YðxÞ departs from the equilibrium solution YeqðxÞ
and dark matter decouples from the cosmic plasma in the
nonrelativistic regime, x ≫ 1.
In order to find the dark matter relic density, we need to

calculate Y for the present temperature T0. This can be done
from the numeric solution to Boltzman equation for
specific values of the couplings and M scanning the
parameter space consistent with the measured relic density.
It is, however, more illustrative to follow the semianalytic
procedure that takes advance of the freeze-out mechanism.

For x > xf we have YðxÞ ≫ YeqðxÞ and we can find an
approximate solution neglecting YeqðxÞ in the right-hand
side of Eq. (18) and integrating from Tf to a given
temperature T, which for our purposes we take as the
present temperature T0, to obtain

1

Yðx0Þ
¼ 1

YðxfÞ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
90

8π3GN

s
M

Z
x0

xf

hσvriffiffiffiffiffiffiffiffiffiffiffi
g�ðxÞ

p
x2

dx: ð39Þ

The relic dark matter density is given by

FIG. 4. Feynman diagrams for D̄D → γγ.

FIG. 5. Individual contributions of the spin portal (gt ¼ g,
gs ¼ gp ¼ 0) and the Higgs portal (gt ¼ 0, gs ¼ gp ¼ g) to
hσvri. Similar results are obtained in the second case when
varying independently gs or gp.
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ΩDM ¼ ρDMðx0Þ
ρc

¼ ðnDðx0Þ þ nD̄ðx0ÞÞM
ρc

¼ 2nDðx0ÞM
ρc

¼ 2MYðx0ÞT3
0

ρc
; ð40Þ

where we used nD̄ ¼ nD and ρc ¼ 3H2
0

8πGN
¼ 1.05371ð5Þ ×

10−5h2 GeV=cm3 ¼ 8.09619ð38Þ × 10−47h2 GeV4 is the
critical density [5]. Neglecting the term YðxfÞ−1 in
Eq. (39) which turns out to be small compared with the
second term we get,

ΩDMh2 ¼
2T3

0h
2

ρc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π3GN

90

r �Z
x0

xf

hσvriffiffiffiffiffiffiffiffiffiffiffi
g�ðxÞ

p
x2

dx

�
−1

¼ 4.337 × 10−11 GeV−2
�Z

x0

xf

hσvriffiffiffiffiffiffiffiffiffiffiffi
g�ðxÞ

p
x2

dx

�
−1
;

ð41Þ

where we used T0 ¼ 2.7255ð6Þ K ¼ 2.34865ð52Þ ×
10−13 GeV [5]. Notice that the right-hand side of this
equation depends on the couplings and M. For a given M
we can find the values of the couplings consistent with the
measured value of the relic density. In our calculations, we
use the complete function g�ðxÞ, but our results are quite
similar if we use the average over the range of energies
considered, ḡ� ¼ 33.
The value of xf can be found from the condition that the

annihilation rate equals the expansion rate of the universe

neqðxfÞhσvriðxfÞ ¼ HðxfÞ; ð42Þ

which using the nonrelativistic form for neqðxÞ and Eq. (25)
leads to

�
aþ 6b

xf

� ffiffiffiffiffi
xf

p
e−xf ¼ ð2πÞ3

3M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNg�ðxfÞ

90

r
: ð43Þ

For the spin portal, the value of xf depends also on gt and
M, so we have two conditions, Eqs. (41), (43), for the three
variables xf, gt, M which are solved numerically to obtain
the set of values gtðMÞ consistent with the measured dark
matter relic density. We checked also that these solutions
are consistent with the approximations used, i.e., that
decoupling occurs when dark matter is nonrelativistic.
The values of xf corresponding to gtðMÞ lie in the range
23.8 < xf < 27.9, thus xf ≫ 1. The set of values gtðMÞ so
obtained, is shown in Fig. 7. Finally, we directly calculate
YðxÞ from the numeric general solution of the Boltzman
equation for the set of values gtðMÞ, matching the solution
with YeqðxÞ for x ≪ xf, finding indeed that 1=YðxfÞ is
small compared to 1=Yðx0Þ in Eq. (39). A similar procedure
is used for the two couplings of the Higgs portal.
In the case of the Higgs portal, we show results for gp ¼

0 varying gs and gs ¼ 0 varying gp, but similar results are
obtained varying both couplings simultaneously. It is clear
from Fig. 7 that, for the spin portal, the consistency of
the measured relic density with the constraints from data on
the Z0 invisible width requires a dark matter mass
M ≥ 43 GeV. Similarly, for the Higgs portal, the consis-
tency of the measured relic density with the constraints
imposed by the H0 invisible width requires a dark matter
mass M ≥ 62 GeV.

FIG. 6. Solution of the Boltzman equation for the spin portal (left) and Higgs portal (right). Similar results are obtained in the later case
when varying independently gs and gp. The solid line corresponds to YeqðxÞ.
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VI. DARK MATTER WITH A HIGHER MASS:
ANNIHILATION INTO FERMIONS AND

FERMILAT-DES DATA

For dark matter with a mass M > MZ=2 the decay Z0 →
D̄D is kinematically forbidden andwe lose the corresponding
constraint on the coupling gt. Similarly for M > MH=2 the
couplings gs, gp are not constrained by the Higgs invisible
width. However, there are regions in our universe with high
concentrations of dark matter which can be used for its
indirect detection by measuring the corresponding annihila-
tion products. In particular, Milky Way dwarf spheroidal

satellite galaxies (dSphs) are known to have high dark matter
densities and due to their proximity and apparent absence of
nonthermal processes are appropriate for this purpose.
Recently, the Dark Energy Survey (DES) Collaboration
identified eight new candidates for dSphs and in a joint
search of gamma ray signals with the Fermi Large Area
Telescope (FermiLAT) from dSphs, put stringent bounds on
the velocity averaged cross sections for the annihilation of
dark matter into τþτ− and b̄b in these systems [45].
In our formalism, the cross section for the annihilation of

dark matter into τþτ− and b̄b is given in Eq. (29) with

FIG. 7. Values of the couplings consistent with the measured dark matter relic density, Ωexp
DMh

2 ¼ 0.1186� 0.0020 (solid line), as a
function of M. The shadowed region in the left panel corresponds to the values consistent with the Z0 invisible width,
ΓðZ0 → D̄DÞ < Γinv

Z ¼ 1.4� 1.5 MeV, for the spin portal. These constraints exclude masses below 43 GeV for the spin portal.
The shadowed region in the right panel are the values consistent with the constraint ΓðH → D̄DÞ < Γinv

H ¼ 1.14� 0.04 MeV for the
spin portal. Masses below 62 GeV are excluded for this portal.

FIG. 8. Velocity averaged cross section for dark matter annihilation into τþτ− (left) and b̄b (right) and comparison with Fermilat-DES
upper bounds, for different values of gs (Higgs portal). The spin portal yields contributions even smaller and are consistent with these
upper bounds.
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Aτ ¼ −1þ 4S2W , Bτ ¼ 1 and Ab ¼ −1þ 4
3
S2W , Bb ¼ 1.

Since dark matter in the Milky Way halo is still non-
relativistic we take advantage of the nonrelativistic expan-
sion in Eqs. (37), (38) to obtain

hσvriτþτ− ¼ g2sm2
τðM2 −m2

τÞ32
12πM3ðM2

H − 4M2 − iΓHMHÞ2
þOðhv2riÞ;

hσvrib̄b ¼
3g2sm2

bðM2 −m2
bÞ

3
2

12πM3ðM2
H − 4M2 − iΓHMHÞ2

þOðhv2riÞ:

ð44Þ
In this case, the leading contribution is given by the Higgs
portal and the spin portal contributes to the next order in v2r .
In Fig. 8, we show the predictions of the Higgs portal for
the τþτ− and b̄b channels. Clearly, these results are
consistent with the upper bounds obtained by FermiLAT-
DES. The spin portal yields even smaller values for the
average cross section and it is also consistent with these
upper bounds.

VII. DIRECT DETECTION OF DARK MATTER

The large dark matter flux on Earth inferred from the
measured dark matter density in our galaxy opened the
possibility of direct detection of dark matter from its
scattering by nuclei [46] and a lot of experimental effort
has been done during the past few years using different
techniques for the detection of the corresponding nuclei
recoil kinetic energy T (for a recent review see [47]).
The rate of interactions (counts per day per kilogram the

nuclear kinetic energy recoil range dT) of a DM particle of
massMwith a nucleus ofmassMA in the detector is given by

dR
dT

¼ ρ

MMA

Z
jvjfðvÞ dσ

dT
ðT; vÞd3v; ð45Þ

where ρ stands for the local dark matter number density,
dσ
dT ðT; vÞ is the darkmatter-nucleus differential cross section,
fðvÞ denotes the local distribution of dark matter velocities
on Earth. The integral goes from vminðTÞ, the minimal
velocity of an incoming dark matter to produce a nuclear
recoil energy T to vesc ¼ 557 km= sec, the escape velocity
for a dark matter particle in our galaxy (the maximum
velocity a dark matter particle bounded in the halo of our
galaxy can have).
The rate of interactions is measured in the labora-

tory (LAB) system, thus we will calculate all the in-
volved quantities in this reference frame. A straightforward
calculation of the differential cross section for the
Dðp1ÞNAðp2Þ → Dðp3ÞNAðp4Þ in the LAB system where
p1 ¼ ðE1;p1Þ, p2 ¼ ðMA; 0Þ, p3 ¼ ðE3;p3Þ, p4 ¼ ðMA þ
T;pAÞ yields

dσ
dT

ðT; vÞ ¼ jM̄ðs; t; uÞj2
32πMAp2

1

: ð46Þ

The Mandelstam variables in the LAB frame are given by

s ¼ ðE1 þMAÞ2 − p2
1 ¼ ðM þMAÞ2 þMMAv2 þOðv4Þ;

ð47Þ

t ¼ T2 − jpAj2 ¼ −2MAT; ð48Þ

u ¼ 2M2 þ 2M2
A − s − t ¼ ðM −MAÞ2 þ 2MAT

−MMAv2 þOðv4Þ; ð49Þ

where we wrote the incoming momentum as p1 ¼ Mv.
Notice that the average squared amplitude depends only on
the nuclear recoil energy and the incoming dark matter
velocity. For a given incoming momentum p1, the nuclear
recoil energy is given by

T ¼ 2MAM2v2cos2θ
ðE1 þMAÞ2 −M2v2cos2θ

¼ 2MAM2v2cos2θ
ðMþMAÞ2

þOðv4Þ;

ð50Þ

where θ stands for the nuclear recoil angle measured with
respect to the direction of the incoming dark matter particle.
The minimal velocity required to produce an energy recoil
T is obtained when the DM particle transfers the maximum
momentum to the nucleus (θ ¼ 0) and it is given by

v2minðTÞ ¼
ðM þMAÞ2
2MAM2

T ¼ MA

2μ2A
T; ð51Þ

where μA stands for the dark matter—nucleus reduced
mass.
The calculation of the invariant amplitudeM requires to

work out the effective theory for the nucleus dark matter
interactions. The starting point is the fundamental theory
for the interactions of dark mater with standard model
particles. Then, an effective theory for the interactions of
dark matter with nucleons can be built, and finally, the
effective theory for interactions with nuclei is constructed.
An important point is that for low momentum transfer
processes, the finite size of the nucleus must be incorpo-
rated. At the end, taking into account the finite size of the
nucleus, the amplitude can be written as

M ¼ M0FSIðq2Þ; ð52Þ

where M0 is calculated with the effective theory at the
nuclear level and FSIðq2Þ is the nucleus form factor, in such
a way that

dσ
dT

ðT; vÞ ¼ jM̄0ðs; t; uÞj2
32πMAM2v2

F2
SIðtÞ: ð53Þ

In general, the differential cross section is given by
Eq. (53). However, experimental results are reported in
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terms of the total D − NA cross section at zero momentum
transfer. This comes about because the D − NA scattering
takes place at low momentum transfer, which in the LAB
frame means low T and the total cross section at zero
momentum transfer is a good starting point for the
description of the process. Indeed, for example, in the
XENON1T experiment, the detector is sensitive to
T ∈ ½3; 50� KeV. On the other side, the velocity of DM
particles on Earth are in the range jvj ∈ ½0; vesc� with
vesc=c ¼ 1.85 × 10−3 and an average velocity v0=c ¼
0.73 × 10−3.
It is conventionally assumed also that the interactions of

standard model particles with dark matter are exchanged by
a massive particle. In this case, in the effective theory, the
leading term is a four-point interaction with an effective
coupling suppressed as the mass of the exchanged particle
and the same happens at the nuclear level. Said in other
words, the average squared amplitude jM̄0ðs; t; uÞj2 ≡
gðT; v2Þ is a regular function of T and can be expanded as

gðT; v2Þ ¼ g0ðv2Þ þ g1ðv2ÞT þ � � � ð54Þ

and since the process takes place at low T, we can keep only
the leading term in this expansion and the leading term in
the expansion of the form factor. In this simplified scenario,

dσ
dT

ðT; vÞ ≈ g0ðv2Þ
32πMAM2v2

F2ð0Þ: ð55Þ

Notice that strictly speaking this is the differential cross
section at zero momentum transfer. This quantity can be
related to the total cross section integrating on T (this is not
required by the experiment but it is convenient for
comparison purposes of the different experimental set
up) from 0 to Tmax ¼ 2μ2Av

2=MA. We obtain

σðvÞ ≈ g0ðv2Þ
32πMAM2v2

2μ2Av
2

MA
≈

μ2Ag0ð0Þ
16πM2

AM
2
≡ σSI; ð56Þ

where in the last step we expanded also in g0ðv2Þ around
v2 ¼ 0 and kept only the leading term. In terms of the static
quantity σSI, we can write the actual differential cross
section in Eq. (53) to leading order in T (in the dynamics)
as

dσ
dT

ðT; vÞ ¼ MA

2μ2Av
2
σSIF2

SIðTÞ; ð57Þ

where σSI is the D − NA total cross section at zero
momentum transfer. This framework, which up to this
point takes into account only the point interactions of dark
matter with the nucleus, is then generalized to consider the
possibility of spin-dependent interactions (motivated
mainly by the axial coupling of the neutralino, see [48])
and the differential cross section is parametrized as

dσ
dT

ðT; vÞ ¼ MA

2μ2Av
2
½σSIF2

SIðTÞ þ σSDF2
SDðTÞ�; ð58Þ

where the possibility of a different response function for the
spin-dependent interactions is considered through the
corresponding form factor F2

SDðTÞ. In our case, we have
dominant spin-independent interactions, and we will focus
on them in the following.
The most recent data on direct dark matter detection are

given by XENON1T [49], who assume isospin conserving
dark matter-nucleus interactions and report the following
observable [50]

σp ¼ μ2p
A2μ2A

σSI; ð59Þ

where μp stands for the dark matter-proton reduced mass.
In our formalism, dark matter-nucleus interactions are
mediated by H, Z0 and γ and are not isospin conserving.
Furthermore, the exchange of massive particles like H and
Z produce four-point dark matter-nucleus interactions for
small momentum transfer and follows the treatment
reviewed above, but the exchange of photons, whose
propagator has a pole at q2 ¼ 0, departs from this picture
and we must modify the above relations accordingly in
order to calculate properly the observable reported by
XENON1T, which does not correspond with the zero-
momentum dark matter-proton cross section if interactions
are not isospin invariant. For this purpose, we rewrite the
D − NA differential cross section in Eq. (53) as

dσ
dT

ðT; vÞ ¼ ξ

v2
gðT; v2ÞF2

SIðTÞ; ð60Þ

where ξ ¼ ð32πMAM2Þ−1 but now gðT; v2Þ is not a regular
function of T due to the poles of the exchanged massless
particle. In this case, it is not possible to perform an
expansion around T ¼ 0, but experiments start detecting
nuclear recoil at a given T ¼ Tmin anyway and we can
expand around this value of T

dσ
dT

ðT; vÞ ¼ ξ

v2
½gðTmin; v2Þ þ g0ðTmin; v2ÞðT − TminÞ�

× ½F2ðTminÞ þ ðF2Þ0ðTminÞðT − TminÞ�

¼ ξ

v2
gðTmin; v2ÞF2

SIðTminÞ þOðT − TminÞ: ð61Þ

Integrating now from Tmin to Tmax ¼ 2μ2Av
2=MA and

keeping only the leading term, we get

σA ¼ ξ

v2
gðTmin; v2ÞF2

SIðTminÞðTmax − TminÞ: ð62Þ

This is the total dark matter-nucleus cross section at the
fixed momentum transfer q2 ¼ −2MATmin. The differential
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cross section can be rewritten in terms of this static quantity
and takes the form in Eq. (57) but now

σSI ¼
σA

F2
SIðTminÞ

Tmax

Tmax − Tmin
¼ μ2A

16πM2
AM

2
gðTmin; v2Þ:

ð63Þ

As it will be shown below, in our formalism the average
squared amplitude has the following form

gðT; v2Þ ¼ a0 þ
�
b0
T

þ c0

�
v2 þOðT; v4Þ: ð64Þ

The observable σp reported by XENON is then given by

σp ¼
1

16πA4ðMþMpÞ2
�
a0 þ

�
b0
Tmin

þ c0

�
v2 þOðT;v4Þ

�
:

ð65Þ

In principle, the leading contribution is given by a0 since v2

is small. However, the photon contribution produces the
Oðv2Þ term b0v2=T, which is enhanced by the photon pole
and could give sizable contributions, thus we keep this term
in the calculations. In comparison, the contributions from
the c0 term are clearly small and we neglect it in the
following. Under these considerations we get

σp ¼ 1

16πA4ðM þMpÞ2
�
a0 þ

b0v2

Tmin

�
: ð66Þ

The calculation of the D − NA differential cross section
requires to work out the effective interactions of H, γ and
Z0 with nuclei, which in turn requires to work out first the
effective theory for the interactions with nucleons. At the
nucleon level, the corresponding effective Lagrangian is
given by [51]

LN
eff ¼

X
N¼p;n

�
gHNNHN̄N − eN̄QNγ

μNAμ

−
MZ

2v
N̄γμðAN þ BNγ

5ÞNZμ

�
; ð67Þ

where Qp ¼ 1, Qn ¼ 0 and

gHNN ¼ −
�
7
X
u;d;s

fðNÞ
Tq þ 2

�
mN

9v
; ð68Þ

Ap ¼ 2Au þ Ad ¼ 1 − 4sin2θW; ð69Þ

An ¼ Au þ 2Ad ¼ −1; ð70Þ

and

BN ¼ −ΔðNÞ
u þ ΔðNÞ

d þ ΔðNÞ
s ; ð71Þ

Bp ¼ −ΔðpÞ
u þ ΔðpÞ

d þ ΔðpÞ
s ; ð72Þ

Bn ¼ −ΔðpÞ
d þ ΔðpÞ

u þ ΔðpÞ
s : ð73Þ

In our calculations, we use the specific values given in
Table I.
At the nuclear level, the effective lagrangian has a similar

form

LA
eff ¼ gHNANA

HN̄ANA − ZeN̄Aγ
μNAAμ

−
MZ

2v
N̄Aγ

μðAA þ BAγ
5ÞNAZμ; ð74Þ

with

gHNANA
¼ ZgHpp þ ðA − ZÞgHnn;

AA ¼ ZAp þ ðA − ZÞAn;

BA ¼ ZBp þ ðA − ZÞBn; ð75Þ

where Z stands for the atomic number and A denotes the
total number of nucleons inside the nucleus.
The invariant amplitude for Dðp1ÞNAðp2Þ →

Dðp3ÞNAðp4Þ is induced by t-channel exchange of H, γ
and Z0. The corresponding contributions are given by

−iMH ¼ i
gDNAH

t−m2
H
Ūðp3ÞðgsIþ igpχÞUðp1ÞN̄Aðp4ÞNAðp2Þ;

ð76Þ

−iMγ ¼ −
gDNAγ

t
Ūðp3ÞMαβðp1 − p3ÞβUðp1ÞN̄A

× ðp4ÞγαNAðp2Þ; ð77Þ

−iMZ ¼ gDNAZ

t −M2
Z
Ūðp3ÞMαβðp1 − p3ÞβUðp1ÞN̄A

× ðp4ÞγαðAA þ BAγ5ÞNAðp2Þ; ð78Þ

where

gDNAH ¼ −vgHNANA
; ð79Þ

gDNAγ ¼ 2Zegt cos θW; ð80Þ

TABLE I. Values for the coefficients fðpÞTq , fðnÞTq and ΔðpÞ
q

extracted from Ref. [52].

fðpÞTq fðnÞTq ΔðpÞ
q

u 0.023 0.019 0.77
d 0.034 0.041 −0.40
s 0.14 0.14 −0.12
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gDNAZ ¼ MZgt sin θW
v

: ð81Þ

The leading contributions are spin-independent and come from the Higgs and photon exchange, and from the weak vector
current in the Z0 exchange. The leading spin-dependent terms come from the axial current. We perform a covariant
calculation of the squared amplitude and identify the leading spin-independent contributions, spin-dependent terms are
suppressed by powers of v2 in our formalism. The average squared amplitude is

jM̄j2 ¼ g2DNAH

6M4ðt −m2
HÞ2

ð4M2
A − tÞððg2p þ g2sÞtðt − 4M2Þ þ 6g2sM4Þ þ g2DNAγ

3M4t
½−2M4

AðM2 − tÞ þM2
Að4M4 þ 4M2ðsþ tÞ

− 2tð2sþ tÞÞ − 2M6 þ 2M4ð2sþ 3tÞ −M2ð2s2 þ 6stþ t2Þ þ 2stðsþ tÞ�

þ g2DNAZ

3M4ðt −M2
ZÞ2

½ðA2
A þ B2

AÞð2M4
Aðt −M2Þ − 2M6 þ 2M4ð2sþ 3tÞ −M2ð2s2 þ 6stþ t2Þ þ 2stðsþ tÞÞ

þM2
AðA2

Að4M4 þ 4M2ðsþ tÞ − 2tð2sþ tÞÞ − 4B2
Að3M4 −M2sþ stÞÞ�t

−
�
gDNAHgDNAγ

t −m2
H

��
2gsMA

3M4

�
ð2M2 − tÞðs − uÞ þ gDNAHgDNAZ

ðt −m2
HÞðt −M2

ZÞ
�
2AAgsMA

3M4

�
ð2M2 − tÞðs − uÞt

−
2AA

3M4

gDNAγgDNAZ

ðt −M2
ZÞ

½−2M4
AðM2 − tÞ þM2

Að4M4 þ 4M2ðsþ tÞ − 2tð2sþ tÞÞ − 2M6 þ 2M4ð2sþ 3tÞ

−M2ð2s2 þ 6stþ t2Þ þ 2stðsþ tÞ�: ð82Þ

Expanding the average squared amplitude and keeping the leading terms in v2 and T we get

jM̄j2 ¼ 4g2sg2DNAH
M2

A

m4
H

þ 2g2DNAγ

3M2
ðM2 − 2MMA þ 3M2

AÞ þ
16gsgDNAγgDNAHM

2
A

3Mm2
H

þ
�
4g2DNAγ

MA

3T
−
16AAgDNAγgDNAZM

2
A

3M2
Z

þ 8gsgDNAγgDNAHM
2
A

3Mm2
H

−
2g2DNAγ

MA

3M2
ðM − 4MAÞ

�
v2: ð83Þ

Notice that all terms in this equation contribute to the spin-independent cross section. Leading contributions to the spin-
dependent cross section starts at order v4. This is a consequence of the coupling of the Z0 to the higher multipoles of the
dark matter instead of the weak charges (they are standard model singlets). Here, we identify the coefficients in Eq. (64)
as

a0 ¼
4g2sg2DNAH

M2
A

m4
H

þ 2g2DNAγ

3M2
ðM2 − 2MMA þ 3M2

AÞ þ
16gsgDNAγgDNAHM

2
A

3Mm2
H

; ð84Þ

b0 ¼
4g2DNAγ

MA

3
; ð85Þ

c0 ¼ −
16AAgDNAγgDNAZM

2
A

3M2
Z

þ 8gsgDNAγgDNAHM
2
A

3Mm2
H

−
2g2DNAγ

MA

3M2
ðM − 4MAÞ: ð86Þ

In Fig. 9, we show our results for the observable σp in
Eq. (66) as a function of the dark matter mass M for
different values of the couplings gt and gs. In these plots,
we consider A ¼ 131, Z ¼ 54 and Tmin ¼ 3 KeV as
appropriate for XENON experiment and compare with
the recently published XENON1T results [49]. For the spin
portal (gs ¼ 0) the leading contributions are due to the

photon exchange and are dominated by the photon pole.
From these plots we conclude that dark matter with a
ð1; 0Þ ⊕ ð0; 1Þ spacetime structure is consistent with XEN-
ON1T measurements of σp, for both spin and Higgs
portals, although the spin portal coupling must be small
(gt ≈ 10−4) if the dark matter mass is of the order of a few
hundreds GeV.
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VIII. CONCLUSIONS

Effective theories for the interaction of dark matter with
standard model particles has been done mainly assuming
spacetime structures for dark matter similar to those of the
standard model fields, i.e., dark matter fields transforming
in the (0,0), ð1

2
; 0Þ ⊕ ð0; 1

2
Þ or ð1

2
; 1
2
Þ representations of the

homogeneous Lorentz group.
In this work, we study the possibility of a ð1; 0Þ ⊕ ð0; 1Þ

spacetime structure for dark matter fields. Assuming
that dark matter fields are standard model singlets, we
find three lowest order terms which are dimension four in
the corresponding effective theory. Two of them couple the
Higgs to dark matter yielding a Higgs portal and the third
one couples the photon and Z0 fields to higher multipoles
of the spin-one dark matter fields, yielding a spin portal to
dark matter.
We study the phenomenology derived from our pro-

posal starting with the possibility of light dark matter
(M < MZ=2 or MH=2), in which case the H → D̄D or
Z0 → D̄D are kinematically permitted and contribute to the
Higgs and Z0 invisible decay widths. We use experimental
results on these widths to put upper limits to the corre-
sponding low energy constants. In general, for light dark
matter mass we find stringent constraints for the couplings
of the Higgs portal: gs, gp ≤ 10−3 and less stringent
constraints on the spin portal coupling gt.
For dark matter mass in this region, nonrelativistic dark

matter can annihilate into a photon pair or into a fermion-
antifermion pair if M > mf. We calculate these processes
in our formalism and use them to calculate the correspond-
ing dark matter relic density for both the Higgs and the
spin portal. For the spin portal, taking into account the
constraints from the Z0 invisible width, we find that a
proper description of the measured dark matter relic density

imposes the lower bound M > 43 GeV for dark matter
with a ð1; 0Þ ⊕ ð0; 1Þ spacetime structure. For the Higgs
portal, similar considerations yields the lower bound
M > 62 GeV.
For higher dark matter mass (M > MH=2), the Z0 →

D̄D and H → D̄D decays are kinematically forbidden and
we lose the corresponding constraints on the low energy
couplings gt, gs, gp. In order to test our proposal in this
energy region, we calculate the velocity averaged cross
section for the annihilation of dark matter into τþτ− and b̄b
in Milky Way dwarf spheroid satellite galaxies and com-
pare with recent upper bounds from a joint analysis by DES
and FermiLAT Collaborations, finding that both portals
yield results consistent with these upper bounds.
Another very active source of experimental information

is given by direct detection experiments. In this case, it is
usually assumed that dark matter-nucleus interaction is
described by a four-point interaction, which is appropriate
when this interaction is exchanged by a heavy particle. We
elaborate on this picture to account for the exchange of
photons (whose contributions are suppressed anyway
because it couples to the higher multipoles of the dark
matter) and calculate the observable σp reported recently by
the XENON Collaboration. The Higgs portal yields results
consistent with the upper bounds reported by XENON1T.
In the case of the spin portal, consistency with XENON1T
results requires small values of the spin portal coupling or
large values of the dark matter mass.
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FIG. 9. Observable σp as a function of the dark matter mass for the Higgs (gt ¼ 0, left panel) and spin (gs ¼ 0, right panel) portals,
compared with the XENON1T upper bounds [49].
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APPENDIX: TRACEOLOGY FOR ð1;0Þ ⊕ ð0;1Þ
In this Appendix, we collect the trace relations necessary

for the calculations in this work. The covariant basis for the
ð1; 0Þ ⊕ ð0; 1Þ representation space is given by the set of
6 × 6 matrices f1; χ; Sμν; χSμν;Mμν; Cμναβg where 1 is the
identity matrix. The first principles construction of these
matrices can be found in [38] and their explicit form
depends on the basis chosen for the states in the ð1; 0Þ ⊕
ð0; 1Þ representation. All the calculations in this work are
representation independent and rely only on their algebraic
properties. The starting point are first principles construc-
tion of the rest-frame parity operator (Π), the Lorentz
generators Ji ¼ 1

2
ϵijkMjk and Ki ¼ M0i and the chirality

operator χ entering the projectors on the chiral subspaces
(1,0) and (0,1) which satisfy

fχ;Πg ¼ 0; ½χ;Mμν� ¼ 0; χ2 ¼ 1: ðA1Þ

The Sμν tensor is the covariant version of the rest-frame
parity operator (Π) such that S00 ¼ Π and other compo-
nents can be written as

Sμν ¼ Πðgμν − iðg0μM0ν þ g0νM0μÞ − fM0μ;M0νgÞ: ðA2Þ

This is a symmetric traceless (Sμμ ¼ 0) tensor with nine
independent components. As a consequence of Eqs. (A1),
we get

fχ; Sμνg ¼ 0: ðA3Þ

The C tensor is given by

Cμναβ ¼ 4fMμν;Mαβg þ 2fMμα;Mνβg − 2fMμβ;Mναg
− 8ðgμαgνβ − gμβgναÞ; ðA4Þ

with the symmetry properties Cμναβ ¼ −Cνμαβ ¼ −Cμνβα;
Cμναβ ¼ Cαβμν. It satisfies the Bianchi identity Cμαβν þ
Cμβνα þ Cμναβ ¼ 0 and the contraction of any pair of
indices vanishes Cναβ

ν ¼ 0. These constraints leave only
10 independent components. Clearly it satisfies
½χ; Cμναβ� ¼ 0.
The covariant basis is orthogonal with respect to the

scalar product defined as hAjBi ¼ TrðABÞ, thus these
matrices satisfy the following relations

TrðχÞ ¼ TrðSÞ ¼ TrðMÞ ¼ TrðχSÞ ¼ TrðCÞ ¼ 0;

TrðχMÞ ¼ TrðχCÞ ¼ TrðMSÞ ¼ TrðMχSÞ
¼ TrðMCÞ ¼ TrðSχSÞ ¼ TrðSCÞ ¼ TrðχSCÞ ¼ 0;

ðA5Þ

where we suppressed the Lorentz indices.

Calculations in this work requires traces of products of
the Sμν tensor and other elements in the covariant basis. Let
us consider first

TrðSMMÞ ¼ Trðχ2SMMÞ ¼ −TrðχSχMMÞ
¼ −TrðχSMMχÞ ¼ −TrðSMMÞ
⇒ TrðSMMÞ ¼ 0; ðA6Þ

where we used Eqs. (A1), (A3) and the cyclic property of a
trace. Since χ commutes also with C, this procedure can be
used to show that in general if we have a term with an odd
numbers of S tensors the trace of this term will vanish

Trðterm with an odd of S’sÞ ¼ 0: ðA7Þ

The trace of terms with an even number of S factors can
always be reduced to a linear combination of terms with the
trace of the product of two S or two M factors using the
following (anti)commutation relations

½Mμν;Mαβ� ¼ −iðgμαMνβ − gναMμβ − gμβMνα þ gνβMμαÞ;
ðA8Þ

fMμν;Mαβg ¼ 4

3
ðgμαgνβ − gμβgναÞ − 4

3
iεμναβχ þ 1

6
Cμναβ;

ðA9Þ

½Mμν; Sαβ� ¼ −iðgμαSνβ − gναSμβ þ gμβSνα − gνβSμαÞ;
ðA10Þ

fMμν; Sαβg ¼ εμνσβχSασ þ εμνσαχSβσ;

ðA11Þ

½Sμν; Sαβ� ¼ −iðgμαMνβ þ gναMμβ þ gνβMμα þ gμβMναÞ;
ðA12Þ

fSμν; Sαβg ¼ 4

3

�
gμαgνβ þ gναgμβ −

1

2
gμνgαβ

�

−
1

6
ðCμανβ þ CμβναÞ: ðA13Þ

The simplest case appears in the calculation of H → D̄D

TrðSμνSαβÞ ¼ Tr

�
1

2
½Sμν; Sαβ� þ 1

2
fSμν; Sαβg

�

¼ 4

�
gμαgνβ þ gμβgνα −

1

2
gμνgαβ

�
≡ 4Tμναβ: ðA14Þ

Similarly, the calculation of Z0 → D̄D requieres
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TrðMμνMαβÞ ¼ Tr

�
1

2
½Mμν;Mαβ� þ 1

2
fMμν;Mαβg

�
¼ 4ðgμαgνβ − gμβgναÞ≡ 4Gμναβ: ðA15Þ

The first example of the reduction mentioned above is faced in the calculation of Z0 → D̄D which also requires to calculate

TrðSμνSαβMρσÞ ¼ Tr

�
1

2
fSμν; SαβgMρσ þ 1

2
½Sμν; Sαβ�Mρσ

�

¼ −i
2
TrððgμαMνβ þ gναMμβ þ gνβMμα þ gμβMναÞMρσÞ

¼ −2iðgμαGνβρσ þ gναGμβρσ þ gνβGμαρσ þ gμβGναρσÞ; ðA16Þ

and

TrðSαβMμνSρσMγδÞ ¼ Tr

��
1

2
½Sαβ;Mμν� þ 1

2
fSαβ;Mμνg

��
1

2
½Sρσ;Mγδ�þ 1

2
fSρσ;Mγδg

��

¼ Tr

��
i
2
ðgμαSνβ − gναSμβ þ gμβSνα− gνβSμαÞ− εμντβχSατ − εμνταχSβτ

�

×
�
i
2
ðgγρSδσ − gδρSγσ þ gγσSδρ − gδσSγρÞ− εγδλσχSρλ − εγδλρχSσλ

��
¼−gμαgγρTνβδσ þ gμαgδρTνβγσ − gμαgγσTνβδρþ gμαgδσTνβγρþ gναgγρTμβδσ − gναgδρTμβγσ þ gναgγσTμβδρ

− gναgδσTμβγρ− gμβgγρTναδσ þ gμβgδρTναγσ − gμβgγσTναδρþ gμβgδσTναγρþ gνβgγρTμαδσ − gνβgδρTμαγσ

þ gνβgγσTμαδρ− gνβgδσTμαγρ− 4ðεμντβεγδλσTα
τ
ρ
λþ εμντβεγδλρTα

τ
σ
λþ εμνταεγδλσTβ

τ
ρ
λþ εμνταεγδλρTβ

τ
σ
λÞ:

ðA17Þ

Similarly it can be shown that

TrðMμνMαβMρσÞ ¼ −2iðgμαGνβρσ − gναGμβρσ

− gμβGναρσ þ gνβGμαρσÞ; ðA18Þ

TrðχSγδSαβMμνÞ ¼ −2ðεμνσβTγδα
σ þ εμνσαTγδβ

σÞ; ðA19Þ

TrðχMμνMαβÞ ¼ −4iεμναβ: ðA20Þ

The calculation of the trace of terms involving six or
eight S or M factors (with an even number of S factors)
needed in this paper are reduced in a similar way.
There is a simpler way to obtain these results however,

which is specially useful for terms with six or more factors.
Since the result rests only on the algebraic properties in
Eqs. (A8), (A9), (A10), (A11), (A12), (A13), we can use
any representation of these operators for the calculation of
the trace. In this concern, the use of the representation
where the internal matrix indices transform as Lorentz
indices is convenient, since in this case the calculation of
the trace reduces to contractions of Lorentz indices which

can be easily done using conventional algebraic manipu-
lation codes like FEYNCALC. In this representation, each
internal matrix index a is replaced by a pair of antisym-
metric Lorentz indices αβ [39]. The explicit form of the
operators in the covariant basis is given by

ð1Þαβγδ ¼
1

2
ðgαγgβδ − gαδgβγÞ; ðA21Þ

ðχÞαβγδ ¼
i
2
εαβγδ; ðA22Þ

ðMμνÞαβγδ ¼ −iðgμγ1αβνδ þ gμδ1αβγν − gγν1αβμδ − gδν1αβγμÞ;
ðA23Þ

ðSμνÞαβγδ ¼ gμν1αβγδ − gμγ1αβνδ − gμδ1αβγν − gγν1αβμδ

− gδν1αβγμ: ðA24Þ

The explicit form of Cμναβ can be constructed from
Eq. (A4) and the above relations.
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