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In this work, we study the possibility that dark matter fields transform in the (1,0) & (0,1)
representation of the homogeneous Lorentz group. In an effective theory approach, we study the
lowest-dimension interacting terms of dark matter with standard model fields, assuming that dark matter
fields transform as singlets under the standard model gauge group. There are three dimension-four
operators, two of them yielding a Higgs portal to dark matter. The third operator couples the photon and Z°
fields to the higher multipoles of dark matter, yielding a spin portal to dark matter. For low mass dark matter
(D), the decays Z° — DD and H — DD are kinematically allowed and contribute to the invisible widths of
the Z° and H bosons. We use experimental results on these invisible widths to constrain the values of the
low-energy constants g, (for the spin portal) and gy, g, (for the Higgs portal) for this mass region. We
calculate the dark matter relic density in our formalism and, using the above constraints, we find that
consistency with the experimental value requires dark matter to have a mass M > 43 GeV in the case of the
spin portal and M > 62 GeV for the Higgs portal. For higher mass dark matter (M > My /2), we calculate
the velocity averaged cross section for the annihilation of dark matter into bb and "7~ and compare with
the upper bounds recently reported by Fermi-LAT and DES Collaborations, finding that both portals yield
results consistent with the reported upper bounds. Finally, we study direct detection by elastic scattering on
nuclei. The Higgs portal yields results consistent with the upper bounds reported recently by the XENON
Collaboration. The spin portal can also accommodate this data but requires higher values of the dark matter

mass or smaller values of the corresponding coupling.
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I. INTRODUCTION

The elucidation of the nature of dark matter is one of the
most important problems in high energy physics [1]. Dark
matter gravitational effects were noticed during the first
half of the last century [2], and recent precise measure-
ments of the cosmic background radiation conclude that it
accounts for around 26% [3] of the matter-energy content
of the universe. In spite of this, an identification of dark
matter properties is still lacking and a lot of experimental
effort is presently being pursued in order to directly or
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indirectly detect dark matter particles, based mainly in
the WIMP paradigm [4]. The latter is based on the fact that
the proper description of the measured dark matter relic
density, Qpyih* =0.1186 +0.0020 [3,5], requires dark
matter to have annihilation cross sections into standard
model particles of the order of those produced by the weak
interactions.

From the particle physics side, dark matter is a challeng-
ing problem since there is no particle in the standard model
which can be identified with dark matter and, although some
extensions of the standard model such as supersymmetric
models or extra-dimension models have candidates to dark
matter, no signal for these particles has been found in the
exhaustive search for signals of physics beyond the standard
model or direct search for dark matter signals carried out at
the LHC during the past few years [6-8].

The problem has also been considered in a model
independent way using effective field theories, where the
low energy effects of the unknown theory at high energies
are considered in a systematic expansion, based on general
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principles. Effective theories for scalar, spin 1/2 fermion
and vector dark matter have been proposed [9-23], and
several experimental direct searches are motivated by these
formalisms [24-31].

The standard model contains spin 1/2 fermions (quarks
and leptons), spin 1 bosons (gauge bosons) and a spin 0
boson (the Higgs particle) with the corresponding fields
transforming in the (3,0) & (0.1), (3.3) and (0,0) repre-
sentations of the homogeneous Lorentz group (HLG),
respectively, and it is natural that effective theories so far
formulated for dark matter consider dark matter transforming
in these representations, although some phenomenological
work has been done for spin 3/2 dark matter fields trans-
forming in the Rarita-Schwinger representation [32-35].

Recently, the quantum field theory of spin one massive
particles transforming in the (1, 0) @ (0, 1) representation of
the HLG (spin-one matter fields), was studied in detail in [36],
with the field being described by a six-component ““spinor,”
analogous to the four-component Dirac spinor describing
spin 1/2 fermions. It was shown there that a consistent
quantum field theory of spin-one matter fields requires a
constrained dynamics formalism but the constraints are
second class and can be solved along Dirac conventional
method [37]. In order to solve the constraints, however, we
need to know the algebraic structure of a covariant basis for
the operators acting in the (1,0) @ (0, 1) representation
space, which was previously worked out in [38]. This basis
naturally contains a chirality operator, y, and spin-one matter
fields can be decomposed into chiral components trans-
forming in the (1,0) (right) and (0,1) (left) representations.
However, the kinetic term in the free Lagrangian is not
invariant under independent chiral transformations, therefore
spin-one matter fields cannot have linearly realized chiral
gauge interactions, hence they cannot have weak interactions.
Nonetheless, it is possible to have vectorlike interactions like
U(1)y or SU(3), standard model interactions. In addition,
spin-one matter fields can have naively renormalizable self-
interactions classified also in [36].

In this work, we study the possibility of a (1,0) & (0, 1)
spacetime structure for dark matter fields. Clearly, dark matter
with standard model charges would give sizable contributions
to precision measurements of standard model observables;
thus, we assume in this work that dark matter fields transform
as singlets of the standard model gauge group.

The paper is organized as follows. In the next section, we
briefly review the elements of the quantum field theory of
spin one matter fields. In Sec. III, we discuss the leading
terms in the effective field theory. In Sec. IV, we study the
low mass dark matter case, calculate the decay width for
7Z° - DD and H — DD and find the constraints on the low
energy constants from the Z° and Higgs invisible widths.
Section V contains an analysis of the dark matter relic
density in this formalism, when these constraints are taken
into account. The possibility of a higher dark matter mass is
explored in the following sections. Section VI is devoted to

calculate the velocity averaged annihilation of dark matter
into bb and z+7~ in Milky Way dwarf spheroidal satellite
galaxies and to compare with available data from a recent
FermiLAT-DES joint analysis. The direct detection of dark
matter is considered in Sec. VII, where we calculate the
observable ¢, and compare with the most stringent upper
bounds reported recently by the XENONIT Collaboration.
Finally, we give our conclusions in Sec. VIII and close with
an Appendix with the required trace calculations for
operators in the (1,0) @ (0, 1) representation space.

II. QUANTUM FIELD THEORY FOR SPIN-ONE
MATTER FIELDS: BRIEF REVIEW

In the standard model, matter is described by Dirac
fermions which transform in the (1/2,0) & (0,1/2) rep-
resentation of the HLG. Spin-one matter fields are the
generalization of Dirac construction to j = 1, i.e., fields
transforming in the (1,0) é@ (0,1) representation. The
basic object is a six-component “spinor” w(x) and the
corresponding quantum field theory was studied in [36],
taking advantage of the general construction of a covariant
basis for (j,0) @ (0, j) representation space introduced in
[38]. For j = 1, the covariant basis is given by the set of
6 x 6 matrices {1, y, S*, yS*, M, C*%} where y is the
chirality operator, $** stands for a symmetric traceless
(8", = 0) matrix tensor transforming in the (1,1) repre-
sentation of the HLG, M** are the HLG generators and
C* is a matrix tensor transforming in the (2, 0) & (0,2)
representation of the HLG.

The spin-one matter field is written as

) =3 / \/%ﬁ[w@w(ni)e""’"‘
+ b} (p)V(p.A)en), (1)

where U(p, 4) (V(p, 1)) stands for the particle (antiparticle)
solution with polarization A, respectively. In contrast with
the Dirac case, spin-one matter particle and antiparticle
have the same parity. These solutions satisfy

STV 0.2 =L
SV (p.a) =SB @)
A

where S(p) = $*p,p,.
The free Lagrangian for spin-one matter fields is given
by

L= 3 05(x) g+ S,y () ~ MBIy (). ()

where (x) = (y(x))"S®. The S* operators satisfy the
following anticommutation relations
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(957} =3 (gﬂ“g”ﬁ + g g - %gﬂ”gaﬁ)
1

G (Clwwﬁ + Cﬂﬂm)' (4)

Further algebraic relations of the operators in the covariant
basis and the connection with the traces needed for the
calculations in this work are deferred to an Appendix. The
propagator for spin-one matter particles is given by

; S(p) — p* +2M?
2M?*(p* — M? + ie)’

in(p) = (5)

An important outcome of this formalism is that the free-
field Lagrangian can be decomposed in terms of the chiral
components as

1 1
L= EaﬂﬂaﬂWL + EaﬂwsﬂuauWR - MZWWL +R < L,
(6)

where

1

YL 25(1 -2 (7)
The right (left) field wy (y;) transforms in (1,0) ((0,1))
representation of the HLG. Notice that in the massless case,
the kinetic term couples right and left components; hence, it
is not invariant under independent chiral transformations.
Therefore, spin-one matter fields cannot have chiral gauge
interactions, although they admit vector gauge interactions.
Concerning the standard model interactions, spin-one
matter fields can have only U(1), or SU(3). gauge
interactions but not SU(2), interactions, or simply be
standard model singlets. This result motivate us to explore
the possibility that dark matter be described by spin-one
matter fields and we start with the simplest and most likely
possibility: spin-one dark matter fields transforming as
singlets under the standard model gauge group.

(1 +x)w,

N[ =

YR =

III. DARK MATTER AS SPIN-ONE MATTER
FIELDS: EFFECTIVE THEORY

If we consider dark matter as spin-one matter fields
(spin-one dark matter fields in the following) transforming
as singlets under the standard model group, dark matter
does not feel the standard model charges. On the other side,
if we have more than one dark matter field, dark matter can
have gauge interactions with its own (vectorlike) dark
gauge group. In the following, we will assume a simple
U(1), structure for the dark gauge group, but the gener-
alization of our results to SU(N), is straightforward. We
remark that the only effect of this dark gauge structure in
this work is to provide to dark matter particles with dark
charges distinguishing particles from antiparticles and

preventing the direct decay of a dark matter particle into
standard model ones.

At high energies, the standard model and dark sectors
couple in a yet unknown way but the low energy effects of
such theory can be classified in an expansion in derivatives
of the fields. Each term in this expansion has a low energy
constant and the importance at low energies of each term
depends on the dimension of the corresponding operator, in
such a way that the most important effects are given by the
lowest-dimension operators.

The Lagrangian must be a complete scalar operator and
if dark matter fields are standard model singlets (and
standard model fields are singlets of the dark gauge group)
the only possibility to have a scalar interacting Lagrangian
is that it be composed of products of singlet operators on
both sides. The construction of the lowest-dimension
interacting operators in this case, requires to classify the
singlet operators in both sectors. The most general form of
this interaction is

1
Lin =D 55 OsmOpw (®)
n

where A is an energy scale compensating the dimension n
of the product of the standard model singlet operators Ogy
constructed with standard model fields and Opy; made of
spin-one dark matter fields.

It is easy to convince oneself that the lowest-dimension
standard model singlet operators are ¢¢ and B s Where ¢

stands for the standard model Higgs doublet and B,

denotes the U(1), stress tensor. Indeed, ¢¢p is simply
the singlet of the 2 ® 2 product of SU(2), (and also a
singlet under SU(3) and U(1),), while in general under
SU(N) gauge transformations U(x), the stress (matrix)
tensor operator transforms as

F* = U(x)F*U~ (x), 9)

being strictly invariant only in the U(1) case; thus, in the
standard model, the U(1)y stress tensor B,, is a singlet
under the standard model gauge group. Singlet operators
made of fermion fields or other combinations can also be
constructed but they are higher dimension.

For spin-one matter fields with a dark gauge group
U(1)p, the lowest-dimension operators transforming as
standard model and dark gauge group singlets are of the
form Oy where O is one of the 36 matrix operators in the
covariant basis {1,y, S, yS*, M*, C#*®}. These opera-
tors are dimension two and, using the symmetry properties
of $# and C* it is easy to show that the leading
interacting terms in the effective theory are given by

Line = W(g1 + igpx)wde + g M, wB*,  (10)

with low-energy constants g, g, and g,. There is an
effective Higgs portal to dark matter interactions with

015001-3



H. HERNANDEZ-ARELLANO et al.

PHYS. REV. D 98, 015001 (2018)

: =1i(gs +igpX)
k,p v
4 = 2g; cos Ow M*"k,
FIG. 1.

standard model particles given by the first two terms, the
second one violating parity. The third term is an effective
interaction coupling dark matter to the photon and the Z°
boson. Notice that this interaction does not involve the
weak charges (operators are standard model singlets), but
proceeds through the coupling of the photon and Z° fields
to the higher multipoles (magnetic dipole moment and
electric quadrupole moment) of the dark matter; thus, we
call it the spin portal to dark matter. Since the magnetic
moment of a (1,0) @ (0, 1) field depends on its mass M as
u~g,/M while the electric quadrupole goes as Qp ~
g:/M? [39], the spin portal yields dark matter—standard
model interactions suppressed at least as k/M with k
denoting the gauge boson (photon or Z°) momentum. In
addition to the interactions in Eq. (10), we have the
dimension-four self-interactions described in [36] which
are not relevant for the purposes of this paper.

In unitary gauge for the standard model fields, after
spontaneous symmetry breaking and diagonalizing the
gauge boson sector, we get the following Lagrangian

1_ . _
Lin = 3991 + igpx)y (H + v)? + g, cos Oy M,y F*

— 9 sin HWV_/M/WWZ”D’ (l 1)

where H stands for the Higgs field, v denotes the Higgs
vacuum expectation value and F*, Z*¥ are the electro-
magnetic and Z° stress tensors, respectively. The Feynman
rules arising from the Lagrangian in Eq. (11) are given
in Fig. 1.

IV. LIGHT DARK MATTER: Z" - DD
AND H — DD DECAYS

The Lagrangian in Eq. (11) induces transitions between
the standard model and dark sectors. Annihilation of dark
matter into standard model particles such as DD — ff, vy,
wWrw-, z°2°, HH, 7%, Hy, Z°H are induced by these
interactions under appropriate kinematical conditions.
Also, for light dark matter, the decays 7% - DD and

= —2g¢ sin Ow M""k,,

Feynman rules from the leading terms in the effective theory.

H — DD are kinematically allowed and contribute to the
invisible Z° and H widths, respectively.

A straightforward calculation yields the following invari-
ant amplitude for the Z°(k,e) — D(p,)D(p,) decay

—iM = 2g,SyU(p1. 2 )M*k,V(py. 20))e, (k). (12)

where Sy, = sin 6y,. The calculation of the average squared
amplitude can be reduced to a trace of products of operators
in the covariant basis of (1,0) @ (0, 1) representation
space, in a procedure similar to conventional calculations
with Dirac fermions. We obtain

- 4 S(p) +M*  S(py) + M*
IMJ* = ggzZS%vTr{ 12M2 M* ;Mz M k,kg
k, k
X | =G —|—”—a>. (13)
< oM

The trace-ology of matrices in (1,0) @ (0,1) space is
deferred to an Appendix. Using results in the Appendix, we
obtain the corresponding decay width as

9t S

Py (M% — 4M?)32(M% + 2M?).

I'(z° - DD) =

(14)

The invisible width I'iyy,(Z) = 499.0 £+ 1.5 MeV reported
by the Particle Data Group [5], includes the decay to vv. We
calculate this decay as

[(Z° - ) = ZF(ZO - v;)

M2
Us, yPa /M% - 4mfl_

oy VaG
8rv? 8z

(15)

where in the last step we neglected the neutrino masses and
used the unitarity of the PMNS matrix elements. The
Particle Data Group report the value M, =91.1876 £
0.0021 GeV while the p—Lan Collaboration reported
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the most precise measurement of the Fermi constant as
Gr = 1.1663788(6) x 107 GeV~2 [40]. Using these val-
ues, we get

I(Z° - ) = 497.64 + 0.03 MeV. (16)

Subtracting this quantity from the PDG reported value for
the invisible width, we get the constraint ['(Z - DD) <
riv = FL‘,‘(%(Z) -T(Z - wv) = 14 £ 1.5 MeV. This
width depends on the coupling g, and the dark matter
mass M, hence the invisible Z° width constrain these
parameters to the region shown in Fig. 2.

Similar calculations for the H — DD decay yield the
following decay width

1}2
3 mt Y My — 4M?
H

x g3 (M (M3, — 4M?) + 6M*)
+ gy My (My; — 4M?)). (17)

I'(H — DD)

The H — DD width depends on the unknown g, g,
couplings and on the dark matter mass. This channel
contributes to the invisible Higgs width which has been
recently reported in [5,41] as F}g" =1.14 +0.04 MeV. In
this case, the contribution of the v channel is negligible.
The constraints on g, g, arising from the I'(H — DD) <
'™ condition are also shown in Fig. 2. The solid lines
correspond to the central values and the shadow regions to
the one sigma regions. We conclude from this plot that the
coupling of the spin portal g, in general can be larger than
those of the Higgs portal g, or g, by at least one order of
magnitude.

10° -
Ry, consistent with I'(Z — DD) < I'z"
gp, with g_=0, consistent with I'(H — DD) < I
1
10 Egs, with g =0, consistent with I'(H — DD) < T4
ﬁg;gs, consistent with '(H — DD) < T'#"
107
o 107
—Q.
o
10"
10°
10°

0 5 10 15 20 25 30 35 40 45
M (GeV)

FIG. 2. Parameter space for g, g, and g, consistent
[(Z—-DD) <Ty"=144+15MeV and I'(H— DD) <
rinv = 1.14 £ 0. 04 MeV for M < M, /2. Solid lines correspond
to the central values of the invisible decay widths.

V. DARK MATTER RELIC DENSITY

A. Boltzman equation

The evolution of the dark matter comoving number
density np(T) is described by the Boltzmann equation [42]

e ] (19
where x = M/T, Y(x) = np(x)/T? and

M3{ov,)

) =" (19)

Here, H(M) = M? % stands for the Hubble

parameter at the dark mass scale, M, with Gy =
6.70861(31) x 1073 GeV~? denoting the Newton gravi-
tational constant [5], ¢*(M) standing for the relativistic
effective degrees of freedom at 7= M in the thermal
bath and

% _”?_QD dp 1
WO =75=5 | Gardo
_i/mu\/MZ—xzdu
272 e —1
2— " e uu? — Xdu. (20)
Y3

The thermal average (ov,) includes all channels for the
annihilation D(p;)D(p,) = X(p3)Y(p4) of dark matter
into standard model particles X, Y in the thermal bath, and
it is given by

3
1 /ng Pi -k, /T/%’?e—Ez/Tov,,

npn ;1 (2r)?

<Gvr> =
(21)

where gp (gp) denotes the number of internal d.o.f of the
dark matter particle (antiparticle), v, stands for the dark
matter particle-antiparticle relative velocity and o is the
conventional cross section for the D(p,)D(p,) —
X(p3)Y(p4) process.

A qualitative analysis of the solution of Eq. (18) assum-
ing the freeze-out of dark matter at some temperature,
which would explain dark matter relic density, shows that
dark matter must be nonrelativistic at the time of its
decoupling from the cosmic plasma [42]. This is consistent
with data on dark matter relic density extracted from
precision measurement of the cosmic background radiation
3,5]]. In this case, it is a good approximation to perform a
nonrelativistic expansion of (cv,) keeping only the leading
terms in the expansion in powers of v, < 1. This expansion
requires the calculation of the flux for dark matter particles
in the thermal bath, which can be written as [43,44]
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F=4,/(p1-p2)* =M* =2(s = M*)v,, (22) I Zy
where v, is related to s as

s:2M2(1+

1 _ _
ﬁ) =4M?* + M?v? + - - -. (23) FIG. 3. Feynman diagrams for DD — ff.
- Ur

In the last step, we performed the nonrelativistic expansion my < M and DD — yy. In the following subsection, we
for v, < 1. The cross section o is a function of s thus using  ajcylate the corresponding cross sections in our formal-
Eq. (22) the leading terms in the expansion are ism, perform the nonrelativistic expansion and work out the

ov. = a -+ bv? (24) predictions for the a, b coefficients.
and performing the thermal average, we obtain B. Annihilation of dark matter
6b into a fermion-antifermion pair
{ovy) = a+ X (25) There are three contributions to the process

D(p)D(p>) = f(p3)f(ps) shown in Fig. 3.

For nonrelativistic and light dark matter, the kinemati- The corresponding amplitudes are given by

cally allowed channels are DD — ff for fermions with
|

—iMy = i— L a(p3)v(pa) V(p2)(g,] + igor)U(p1),
s — My
40:9,MySwCy _ _
ity = = IR () V(2 My + P2 U (),
M,Sw _
—iMy = IE2W G )y (As + Byys)v(ps)V(pa)Ms(py + p2)BU(p). (26)
v(s —M3)

Here, Cy, = cos Oy, O stands for the fermion charge in units of the proton charge e, while the A;, B factors are related to
the corresponding fermion weak isospin TJ; as

Ap =2T} - 40,8}, By =-2T%. (27)

A straightforward calculation yields the following average squared amplitude in terms of the Mandelstam variables:

giM3 Sy
IM*v* (s — M3%)?
+ Bi2M* = M?(s + t + u) = 5%)) + (A7 4 B7)(16M® — 4MO(s + 4(1 + u)) + 4M* (1 + u) (s + 1 + u)
8A;CyQrgiMyM4S3,
IM*sv? (s — M%)
+Am(4M* — M?s) + 16M° — AMO (s + 4(t + u)) +4M* (1 + u) (s + 1 + u) + M?(4s* = 25(2* + u?))
1 6Cij2£ Qr959:My Sw
IM*v(s — m?)

Myl = - [4M? (A% + B2 )ym}(4M?* — s) + 4m3(4M* — s)(AIM>(2M? + 5 — t — u)

+ M?*(4s3 = 2s(2 + u?)) + s2((t —u)® = 5%))] + [4MPm7(AM? — 5)(2M? 45 — 1 — u)

4Afm]2fgsgtM 78w
IM*v(s — M%) (s — M%)

+82((t—u)* = s?)] + s(2M? - 5)(t — u) — (2M? — 5)(t — u)

16C%,0%9?M%,S2,
- 9MQS202 [AM2m3(4M2 = $)(2M2 + 5 — t — 1) + 4mb(4M* — M)
+ 16M8 —4MO(s +4(t +u)) +4M*(t + u)(s + t + u) + M?*(4s> — 25(2 + u?)) + s> ((t — u)* — s?)]
2
m
f
+ oM (s — M) (s —4m3)[gys(s — 4M?) 4 g5 (6M* — 4AM?s + 57)]. (28)

Integrating the phase space, we obtain the following cross section for DD — f f, where we can easily identify the individual
contributions from the H, Z°, and y exchange as well as the 70 — y interference:
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1 /S 4m} m3(s — 4m7)(gps(s — 4M?) + gg(6M* — 4AM?s + 57))
ops(s) = 7 YAV
2aMY)s  F (s — M2)
N 2giM5SGys(s — 4M?) (2M? + 5)(2(A} — 2B} )m} + s(A7 + B}))
302(s — M%)?
32C5, 079 M3, S5y (s — 4M?) (2M? + 5)(2m7 + 5)
* 3v%s
16A,Cy Q gt My M S5, (s — 4M?)(2M* + s)(Zm} +5)
302 (s — M%)

. (29)

Notice that the H — Z and H — y interferences vanish after integration of phase space.

C. Dark matter annihilation into two photons

This process is induced by the f and u channel dark matter exchange shown in Fig. 4. The corresponding amplitudes are
given by

. 297C3, S(p; — p3) —t +2M? "

ity = PTG, i, PP 2 ) b (i) e (). (30)
. 2g2C3, S(py = pa) —u +2M?
—iM, = 125 (), S MopU(p1, 40) pin’ (pa) e’ (p3)- (31)

u— M>

The average squared amplitude is given by

SV 29/C \ . [S(p2) + M? S(p) +M* - 4, ) 4o
‘MW|2 = ( 3;‘42W Tr M2 T oy M2 Trrﬂp psP5P4Ps, (32)
where
S(p1 — p3) —t+2M? S(p1 = py) —u+2M°
Topw = My Y M, +M,, Py M, (33)
. S(p1 —p3) —t+2M? S(p1 = pa) —u+2M>
Ta/;’;w = M;w t— M Myp + Ma/i u— M> Mﬂl/’ (34)
A straightforward calculation using the algebraic relations in the Appendix yields
TP 2Cy g
M, |* = 6(tu)* + 2(tu)3(—13M* + 11M%s + 25%) + (tu)*(42M® — T6MSs + 33M*s*
rr

M (t — M?)?(u — M?)?
+AM?s3 + 25%) + 2M*tu(—15M'0 + 43M8s — 44MOs* + 1TM*s3 — 6M?s* + 257)
+ M*(8M'2 — 32M "5 + S1MBs? — 40MOs® + 25M*s* — 12M2s° + 259)]. (35)

Integrating the final state phase space, we get the following cross section:

4M>
[120M4(4M4 —3M?*s — 2s%)tanh™'y /1 — ——
S

1 Cyg!

o s) = F /| _ e 540nM*
4M2 6 4 22 3
454/ 1 = ———(—10M® + 228M*s — 99M?2s® + 43s53) |. (36)
S
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D. Dark matter relic density

Expanding the DD — ff and DD — yy cross sections, we get

ov, =0,,0, + Zq;fvr =a+ bv;, (37)
/

where the sum runs over all the kinematically allowed fermion states (m; < M) and

_ 29Cygi 3 Ny gimy(M? = m3)?

TS T 2 2B (MG, - aMP)

B 365Cy, gt

2162 M? 864z M>

f

1924, M>Cy Qg My M 7S5, (m7 + 2M?)

s Ny M? = m3 (96M4g,2M%S%V((A]% — 2B%)m? + 2M*(A} + B3))

v2 (M2 — 4AM?)?
N 96C5, 0797 M7, S5, (m + 2M?)

v2(M% — 4M?)

1}2

~ 6M?m3 (8¢, (4M?* — Mp;)(M? — m3) 4 g3 (—=8m7(M?* — M) — 11M> M}, + 20M*))

(M,

9M2m;~g§(4M2 - Sm;)
(ML - 4MP)? ’

with Ny =3 for quarks and N, =1 for leptons.

In Fig. 5, we show the Higgs and spin portal contribu-
tions to (ov,) as a function of the couplings for different
values of the dark matter mass. Using Egs. (25), (38), we
numerically solve the Boltzman equation (18) for different
values the couplings g, g, and g,, matching the solution
Y(x) with the equilibrium solution Y¢,(x) in Eq. (20) at
high temperatures, i.e., in the relativistic regime x < 1. The
solutions are shown in Fig. 6. Clearly, at some x;, the
solution Y (x) departs from the equilibrium solution Y (x)
and dark matter decouples from the cosmic plasma in the
nonrelativistic regime, x > 1.

In order to find the dark matter relic density, we need to
calculate Y for the present temperature 7'y. This can be done
from the numeric solution to Boltzman equation for
specific values of the couplings and M scanning the
parameter space consistent with the measured relic density.
It is, however, more illustrative to follow the semianalytic
procedure that takes advance of the freeze-out mechanism.

D(p1) v(ps; €) D(p1) v(ps, )
Y Y
D(p2) D(p2)
—p— N\ —— )
v (pa,m) v (paym)

FIG. 4. Feynman diagrams for DD — yy.

—4M?)?

(38)

|
For x > x; we have Y(x) > Y, (x) and we can find an
approximate solution neglecting Y ,(x) in the right-hand
side of Eq. (18) and integrating from 7, to a given
temperature 7', which for our purposes we take as the
present temperature 7'y, to obtain

1 o 1 90 Xo <(71]r> .
Y<x0>_Y<xf>+@ML Vo &)

The relic dark matter density is given by

o

[

=

n

o
&

>

e T R R

& 10%F  Laemm Tl (0Vr), 0¢=0, Us=gp=0, M=45 GeV
o et ), 9¢=9, 9s=gp=0, M=45 Ge
/: 4 §:t

E e eeaaa {ovr), 9¢=0, gs=gp=9, M=45 GeV
0712

..... = (0Vp), 9¢=9, 95=Gp=0, M=10 GeV

........ (ovr), g¢=0, 95=9p=9, M=10 GeV

0.0 02 04 06 08 10.

FIG. 5. Individual contributions of the spin portal (g, = g,
gs = g, =0) and the Higgs portal (g9, =0, g, =g, =9) to
(ov,). Similar results are obtained in the second case when
varying independently g, or g,.
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K -1
107 - : 3 107
;gs=gp=0 fgt=0
3 E 29s=%
107 i 10°
1 1 1
5 E " 3 5 ]
10 3 aann 1 10 3
g I—v. . ® o 3 —v.®
-7 ] - Dtaaa s — 7 1 y
1074 * Y, M=30GeV, g=10" 00000 4 1074 + Y, M=30Gev, g=10"
1 & Y(x), M=40 GeV, g= =10" ] i . Y(x), M=40 GeV, gs=10"‘ E
3 * 3 E
] ¢ Y&, M=30Gev,g=10" o — !+ Y, M=30Gev, g =10° |
9 7 9 7 ]
1074 o Y(x), M=40GeV, g=10" — 1071 o Y(x), M=40 GeV, g =10° 3
_; *Y(x), M=30 GeV, g|=10-2 1 1 + Y(x), M=30 GeV, gs=10,z !
4] Y00 MeA0GeY, g=10" E ] * Y, M=40Gev, g =10” E
10 —————r . 10 e —
10° 10’ 10 10° 10’ 10°
x=MIT x=M/T

FIG. 6. Solution of the Boltzman equation for the spin portal (left) and Higgs portal (right). Similar results are obtained in the later case
when varying independently g, and g,. The solid line corresponds to Y¢q(x).

O — Pomxo) _ (np(xo) +np(xo))M
DM = =
Pe Pe
_ 2np(x0)M _ 2MY(x)T} ’ (40)
Pe Pe
where we used np = np and p. = = 1.05371(5) x

10754 GeV/cm® = 8.09619(38) x 10‘47h2 GeV* is the
critical density [5]. Neglecting the term Y (xf)‘1 in
Eq. (39) which turns out to be small compared with the
second term we get,

Qi = 2T3h*  [873Gy [ [0 <ovr> dx -1
Pe 90 \/ g* x?
-1
— 4337 x 10711 Gev2< 6r>2dx>
vV 9. (x)x
(41)
where we used T, =2.7255(6) K = 2.34865(52) x

10713 GeV [5]. Notice that the right-hand side of this
equation depends on the couplings and M. For a given M
we can find the values of the couplings consistent with the
measured value of the relic density. In our calculations, we
use the complete function g, (x), but our results are quite
similar if we use the average over the range of energies
considered, g, = 33.

The value of x; can be found from the condition that the
annihilation rate equals the expansion rate of the universe

neq(xr)(00,) (xp) = H(xy), (42)

which using the nonrelativistic form for n4(x) and Eq. (25)
leads to

Gng* (xf)

( )\/~€_xf - (2713 90

(43)

For the spin portal, the value of x; depends also on g, and
M, so we have two conditions, Eqs. (41), (43), for the three
variables x, g;, M which are solved numerically to obtain
the set of values g,(M) consistent with the measured dark
matter relic density. We checked also that these solutions
are consistent with the approximations used, i.e., that
decoupling occurs when dark matter is nonrelativistic.
The values of x; corresponding to g,(M) lie in the range
23.8 < x; < 27.9, thus x; > 1. The set of values g,(M) so
obtained, is shown in Fig. 7. Finally, we directly calculate
Y(x) from the numeric general solution of the Boltzman
equation for the set of values g,(M), matching the solution
with Y, (x) for x < x;, finding indeed that 1/Y(x;) is
small compared to 1/Y(x,) in Eq. (39). A similar procedure
is used for the two couplings of the Higgs portal.

In the case of the Higgs portal, we show results for g, =
0 varying g, and g, = 0 varying g,,, but similar results are
obtained varying both couplings simultaneously. It is clear
from Fig. 7 that, for the spin portal, the consistency of
the measured relic density with the constraints from data on
the Z° invisible width requires a dark matter mass
M > 43 GeV. Similarly, for the Higgs portal, the consis-
tency of the measured relic density with the constraints
imposed by the H° invisible width requires a dark matter
mass M > 62 GeV.
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FIG. 7. Values of the couplings consistent with the measured dark matter relic density, Q34> = 0.1186 4 0.0020 (solid line), as a
function of M. The shadowed region in the left panel corresponds to the values consistent with the Z° invisible width,
['(Z° - DD) <T%¥ = 1.4 £ 1.5 MeV, for the spin portal. These constraints exclude masses below 43 GeV for the spin portal.
The shadowed region in the right panel are the values consistent with the constraint I'(H — DD) < TV = 1.14 + 0.04 MeV for the
spin portal. Masses below 62 GeV are excluded for this portal.

VI. DARK MATTER WITH A HIGHER MASS: satellite galaxies (dSphs) are known to have high dark matter
ANNIHILATION INTO FERMIONS AND densities and due to their proximity and apparent absence of
FERMILAT-DES DATA nonthermal processes are appropriate for this purpose.

Recently, the Dark Energy Survey (DES) Collaboration
identified eight new candidates for dSphs and in a joint
search of gamma ray signals with the Fermi Large Area
Telescope (FermiLAT) from dSphs, put stringent bounds on
the velocity averaged cross sections for the annihilation of
dark matter into 7tz and bb in these systems [45].

In our formalism, the cross section for the annihilation of
dark matter into 7"z~ and bb is given in Eq. (29) with

For dark matter with a mass M > M /2 the decay Z° —
DD is kinematically forbidden and we lose the corresponding
constraint on the coupling g,. Similarly for M > M /2 the
couplings g;, g, are not constrained by the Higgs invisible
width. However, there are regions in our universe with high
concentrations of dark matter which can be used for its
indirect detection by measuring the corresponding annihila-
tion products. In particular, Milky Way dwarf spheroidal

10.22: M | T MR | T AR | T T E 10-22 MR | M T MR | T A | T rorTrTT
1 1 ;
104 {  10™4 _DES
3 3 0 | =1 E@\\LP’TS s 3
1 1 1= e mown &P
107 { 07 1-
5 1 i - '; g, =10 b
CH 3 3 E 3
“ 107 4 210%4 4
S 3 i = 3
5 1 18 1 1
~ 10-301; _! ~ 10-30]; ]
: ; : :
10‘”1; 1 10'”1; 3
1 1 1
103 10 K
10* 10’ 10? 10° 10*
M (GeV) M (GeV)

FIG. 8. Velocity averaged cross section for dark matter annihilation into z+ ¢~ (left) and bb (right) and comparison with Fermilat-DES
upper bounds, for different values of g, (Higgs portal). The spin portal yields contributions even smaller and are consistent with these
upper bounds.
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A, =-1+48%, B.=1 and A, =-1+4%5}, B, =1.
Since dark matter in the Milky Way halo is still non-
relativistic we take advantage of the nonrelativistic expan-
sion in Egs. (37), (38) to obtain

(M = )’

_ 2
V) e = e v, — i = i, T O
o 3gsmb( mi)% 2
(o0, )5y = b (M3, — AV iFHMH)2+0(<U,>).
(44)

In this case, the leading contribution is given by the Higgs
portal and the spin portal contributes to the next order in v2.
In Fig. 8, we show the predictions of the Higgs portal for
the 77~ and bb channels. Clearly, these results are
consistent with the upper bounds obtained by FermiLLAT-
DES. The spin portal yields even smaller values for the
average cross section and it is also consistent with these

upper bounds.

VIL. DIRECT DETECTION OF DARK MATTER

The large dark matter flux on Earth inferred from the
measured dark matter density in our galaxy opened the
possibility of direct detection of dark matter from its
scattering by nuclei [46] and a lot of experimental effort
has been done during the past few years using different
techniques for the detection of the corresponding nuclei
recoil kinetic energy 7 (for a recent review see [47]).

The rate of interactions (counts per day per kilogram the
nuclear kinetic energy recoil range dT') of a DM particle of
mass M with anucleus of mass M 4 in the detector is given by

dT MM / v/ v) dT 7TV (45)
where p stands for the local dark matter number density,
j—; (T, v) is the dark matter-nucleus differential cross section,
f(v) denotes the local distribution of dark matter velocities
on Earth. The integral goes from v, (7T), the minimal
velocity of an incoming dark matter to produce a nuclear
recoil energy 7 to v.,. = 557 km/ sec, the escape velocity
for a dark matter particle in our galaxy (the maximum
velocity a dark matter particle bounded in the halo of our
galaxy can have).

The rate of interactions is measured in the labora-
tory (LAB) system, thus we will calculate all the in-
volved quantities in this reference frame. A straightforward
calculation of the differential cross section for the
D(p1)N4(p2) = D(p3)N4(p4) in the LAB system where

p1=(E1,P1)s P2 = (M4, 0), p3 = (E3,p3), ps = (My +
T,p,) yields
do |M(s,t,u)|?
——(T.V) = 5. (46)
dT 327M ,p?

The Mandelstam variables in the LAB frame are given by

s=(E; +My)? —p? = (M + My)? + MM ,v* + O(v*),

(47)

t=T~|pal* = -2M,T, (48)
u=2M*+2M; —s—t=(M—-M,)?+2M,T

— MM v? + O(V4), (49)

where we wrote the incoming momentum as p; = Mv.
Notice that the average squared amplitude depends only on
the nuclear recoil energy and the incoming dark matter
velocity. For a given incoming momentum p, the nuclear
recoil energy is given by

- 2M ,M?v?cos’6 B
"~ (E; +My)?* — M?>V?cos’0

2M 4, M?*v*cos*6
(M +M,)*

+ OV,
(50)

where 6 stands for the nuclear recoil angle measured with
respect to the direction of the incoming dark matter particle.
The minimal velocity required to produce an energy recoil
T is obtained when the DM particle transfers the maximum
momentum to the nucleus (8 = 0) and it is given by

2
:LH‘@ T—MAT (51)
where p, stands for the dark matter—nucleus reduced
mass.

The calculation of the invariant amplitude M requires to
work out the effective theory for the nucleus dark matter
interactions. The starting point is the fundamental theory
for the interactions of dark mater with standard model
particles. Then, an effective theory for the interactions of
dark matter with nucleons can be built, and finally, the
effective theory for interactions with nuclei is constructed.
An important point is that for low momentum transfer
processes, the finite size of the nucleus must be incorpo-
rated. At the end, taking into account the finite size of the
nucleus, the amplitude can be written as

M = M0F31(qz>7 (52)

where M, is calculated with the effective theory at the
nuclear level and Fg;(g?) is the nucleus form factor, in such
a way that

do |M0(S,t, l/t)|2 )

LTy = F2.(1). 53
ar oY) 3272M M2V s1(7) (53)

In general, the differential cross section is given by
Eq. (53). However, experimental results are reported in
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terms of the total D — N, cross section at zero momentum
transfer. This comes about because the D — N, scattering
takes place at low momentum transfer, which in the LAB
frame means low 7 and the total cross section at zero
momentum transfer is a good starting point for the
description of the process. Indeed, for example, in the
XENONIT experiment, the detector is sensitive to
T € [3,50] KeV. On the other side, the velocity of DM
particles on Earth are in the range |v| € [0, v] with
Vese/C = 1.85x 107 and an average velocity vy/c =
0.73 x 1073,

It is conventionally assumed also that the interactions of
standard model particles with dark matter are exchanged by
a massive particle. In this case, in the effective theory, the
leading term is a four-point interaction with an effective
coupling suppressed as the mass of the exchanged particle
and the same happens at the nuclear level. Said in other
words, the average squared amplitude |M(s, 7, u)|* =
g(T, v?) is a regular function of 7 and can be expanded as

9(T.v?) = go(v*) + 91 (V)T + - (54)

and since the process takes place at low T, we can keep only
the leading term in this expansion and the leading term in
the expansion of the form factor. In this simplified scenario,

do QO(VQ)

—(T,V) n—2——
dT( ) 327M s M*V?

F%(0). (55)
Notice that strictly speaking this is the differential cross
section at zero momentum transfer. This quantity can be
related to the total cross section integrating on 7 (this is not
required by the experiment but it is convenient for
comparison purposes of the different experimental set
up) from 0 to T,y = 245> /M 4. We obtain

9(V*)  2u3v*  1390(0)
U(V) ~ 0 o) A ~ A 02 ) =0gy, (56)
32aM Mv- M, 1671'MAM

where in the last step we expanded also in g,(v?) around
v? = 0 and kept only the leading term. In terms of the static
quantity og;, we can write the actual differential cross
section in Eq. (53) to leading order in 7 (in the dynamics)
as

do M,
ﬁ(T’ V) = WGSIF@(T)’ (57)

where og; is the D — N, total cross section at zero
momentum transfer. This framework, which up to this
point takes into account only the point interactions of dark
matter with the nucleus, is then generalized to consider the
possibility of spin-dependent interactions (motivated
mainly by the axial coupling of the neutralino, see [48])
and the differential cross section is parametrized as

do M
() = ﬁ o5 F5(T) + ospFsp(T)]. (58)
where the possibility of a different response function for the
spin-dependent interactions is considered through the
corresponding form factor F3,, (7). In our case, we have
dominant spin-independent interactions, and we will focus
on them in the following.

The most recent data on direct dark matter detection are
given by XENONIT [49], who assume isospin conserving
dark matter-nucleus interactions and report the following
observable [50]

s (59)

p

0, = —F—>0

P 2 2 OSI»
Apy

where p,, stands for the dark matter-proton reduced mass.
In our formalism, dark matter-nucleus interactions are
mediated by H, Z° and y and are not isospin conserving.
Furthermore, the exchange of massive particles like H and
Z produce four-point dark matter-nucleus interactions for
small momentum transfer and follows the treatment
reviewed above, but the exchange of photons, whose
propagator has a pole at g*> = 0, departs from this picture
and we must modify the above relations accordingly in
order to calculate properly the observable reported by
XENONIT, which does not correspond with the zero-
momentum dark matter-proton cross section if interactions
are not isospin invariant. For this purpose, we rewrite the
D — N, differential cross section in Eq. (53) as

& (T3 = ST )Ry (T), (60)

where & = (322M 4M?)~! but now ¢(T,v?) is not a regular
function of 7 due to the poles of the exchanged massless
particle. In this case, it is not possible to perform an
expansion around 7 = 0, but experiments start detecting

nuclear recoil at a given T = T,;, anyway and we can
expand around this value of T

@ (T7 V) = V_i [g(Tminv Vz) + .d(Tminv Vz)(T - Tmin)}

dar
X [Fz(Tmin> + (Fz)/(Tmin)(T - Trnin)]

¢
= ?g(Tminv Vz)F%I(Tmin) + O(T - Tmin)' (61)

Integrating now from T, to T . =
keeping only the leading term, we get

¢
Op = ?g(Tmin’ VZ)F?S'I(Tmin)(Tmax

2uiv? /M, and

- Tmin)- (62)

This is the total dark matter-nucleus cross section at the
fixed momentum transfer > = —2M T ;. The differential
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cross section can be rewritten in terms of this static quantity
and takes the form in Eq. (57) but now

2
04 Tmax _ Ha

= — g(T . ’VZ).
F %1 (Tmin) Tnax — Tmin 16717MiM 2 min

(63)

05|

As it will be shown below, in our formalism the average
squared amplitude has the following form

(T, v?) = ay + <b—TO + co) v+ O(T,v*).  (64)

The observable ¢, reported by XENON is then given by

! E [ao + <Tb° + c0> V2 4+ O(T, v4)] .

o = TenA*(M + M,

min

(65)
In principle, the leading contribution is given by aj since v
is small. However, the photon contribution produces the
O(v?) term byv?/T, which is enhanced by the photon pole
and could give sizable contributions, thus we keep this term
in the calculations. In comparison, the contributions from
the ¢y term are clearly small and we neglect it in the
following. Under these considerations we get

! LG (66)
o, = a .
P 167A M + M) | T

The calculation of the D — N4 differential cross section
requires to work out the effective interactions of H, y and
79 with nuclei, which in turn requires to work out first the
effective theory for the interactions with nucleons. At the
nucleon level, the corresponding effective Lagrangian is
given by [51]

£é\’ff = Z (gHNNHNN - ENQN]/”NA”
N=p.n

M,

where 0, =1, 0, =0 and

m
9HNN = — <7Zf(rl\;) + 2) 9—N» (68)
u,d,s v
A[) = 2Au +Ad =1- 4sin2(9W, (69)
A, =A,+24,=-1, (70)

and

By =AY + AV 4 AV, (71)
B, =-AY + A7 4+ AP, (72)
B, =—-AY 4 AP 4 Al (73)

In our calculations, we use the specific values given in
Table I.

At the nuclear level, the effective lagrangian has a similar
form

L = gun v, HNAN s — ZeN YN 4A,

M, -
- Z_UZNAVM(AA + Bay°’)NAZ,, (74)
with

9NN, = Z9upp + (A = Z)Grnns
Ay =ZA,+ (A= 2)A,,
By =ZB,+ (A-Z)B,. (75)

where Z stands for the atomic number and A denotes the
total number of nucleons inside the nucleus.

The invariant amplitude for D(p;)N4(p,) —
D(p3)N4(py4) is induced by t-channel exchange of H, y
and Z°. The corresponding contributions are given by

: IDN,H + . .
—iMy = ltfjjjg U(p3) (951 +igpx)U(p1)Na(pa)Na(p2).

H
(76)
. IDNy 7 -
—iMy = ==L U (p3) Moy (P = p3)'U(p1)Na
X (Pa)7*Na(p2), (77)
. g = -
—iMy = LAZQ U(p3)Mqs(p1 — p3)U(p1)N4
t— M’
X (P4)r*(As + Bays)Na(p2), (78)
where
9pN,H — —VJHN,N,» (79)
Goiyy = 2Zeg; cos Oy, (80)

TABLE 1. Values for the coefficients f(TZ), f(T"q) and AY)
extracted from Ref. [52].

11 fry Ay
u 0.023 0.019 0.77
d 0.034 0.041 -0.40
s 0.14 0.14 -0.12
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MZgl‘ sin QW

(81)

9DN,Z = v
The leading contributions are spin-independent and come from the Higgs and photon exchange, and from the weak vector
current in the Z° exchange. The leading spin-dependent terms come from the axial current. We perform a covariant
calculation of the squared amplitude and identify the leading spin-independent contributions, spin-dependent terms are
suppressed by powers of v> in our formalism. The average squared amplitude is

2 2
- 9N H 9pn
MP = "7 (AM? — 1) (65 + g2)t(t — 4AMP) + 62 M*) + =" [2M4 (M? — t) + M2 (4M* + 4M? (s + ¢
P = Gaits oy (MR = (G5 gh)e(s = 4M%) + 6g3M*) - SR [OMA(ME = 1) MM - 4D (s + 1)
—21(2s + 1)) = 2M® + 2M* (25 + 3t) — M?(2s* + 65t + 12) + 2st(s + 1)]
2
b IDNZ a2 4 B2Y (M (1 — MP) — 2MS + 2M* (25 + 31) — MP(25% + 65t + £2) + 2st(s + 1))

3MA (1 — M2)?
+ MA(AZ(AM* + 4AM2(s + 1) — 2t(25 + 1)) — 4B% (3M* — M?s + s1))]t

9N, HIDN .y \ [29sM 4 ) 2A,9,M 5
- 2M* —t)(s —
< t—nt, )(3M4>( Js—u)+ M

9DN,HIDN ,Z
(t = mp)(t = M3)

)(2M2 —1)(s —u)t

_ 2A4 9N,y Y9DN,Z
3M* (t— M%)

— M?*(25? + 65t + 1*) + 2s1(s + 1)]. (82)

[—2M4(M?* = 1) + M%(4M* + 4M> (s + 1) — 21(25 + 1)) — 2M® + 2M*(25 + 31)

Expanding the average squared amplitude and keeping the leading terms in v> and 7 we get

- 49?9%)N HM,%x 292DN 16959pn,, 90N, 8M3
M2: A AV (M2 —O2MM 3M2 s AY A A
M mj) e | A+ 3M)+ 3Mm,
4g%)NAyMA 16AA9DNAygDNAZM,24 SgsgDNAygDNAHMi 29%)NA;/MA )
- - (M —4M,) v (83)
3T 3M2 3Mm?, 3M> 4

Notice that all terms in this equation contribute to the spin-independent cross section. Leading contributions to the spin-
dependent cross section starts at order v*. This is a consequence of the coupling of the Z° to the higher multipoles of the
dark matter instead of the weak charges (they are standard model singlets). Here, we identify the coefficients in Eq. (64)
as

49?9%)NAHM/24 2.92DNA;/ 169,9pn,,9pN8,5M. 3
= M?* —2MM , + 3M?3) 4 ——Z2RarZ0Ta T A 84
@0 m?, e ¢ A 3M3) 3Mnt, (84)
4g5 M
)= 91)N3Ay A ’ (85)
16A M3 8 M2 295y M
Co = — A9DN,y9IDN,zM 4 9s9DN .y IDN,HM 4 9N,y MA (M _ 4MA). (86)

3M2 3Mm3, 3M?

In Fig. 9, we show our results for the observable ¢, in
Eq. (66) as a function of the dark matter mass M for
different values of the couplings g, and g,. In these plots,
we consider A =131, Z=54 and T,;, =3 KeV as
appropriate for XENON experiment and compare with
the recently published XENONIT results [49]. For the spin
portal (g, = 0) the leading contributions are due to the

l
photon exchange and are dominated by the photon pole.
From these plots we conclude that dark matter with a
(1,0) @ (0, 1) spacetime structure is consistent with XEN-
ONIT measurements of o,, for both spin and Higgs
portals, although the spin portal coupling must be small
(g, = 107*) if the dark matter mass is of the order of a few
hundreds GeV.
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FIG. 9. Observable 6, as a function of the dark matter mass for the Higgs (g, = 0, left panel) and spin (g, = 0, right panel) portals,

compared with the XENONIT upper bounds [49].

VIII. CONCLUSIONS

Effective theories for the interaction of dark matter with
standard model particles has been done mainly assuming
spacetime structures for dark matter similar to those of the
standard model fields, i.e., dark matter fields transforming
in the (0,0), (3,0) @ (0.1) or (}.3) representations of the
homogeneous Lorentz group.

In this work, we study the possibility of a (1,0) & (0, 1)
spacetime structure for dark matter fields. Assuming
that dark matter fields are standard model singlets, we
find three lowest order terms which are dimension four in
the corresponding effective theory. Two of them couple the
Higgs to dark matter yielding a Higgs portal and the third
one couples the photon and Z° fields to higher multipoles
of the spin-one dark matter fields, yielding a spin portal to
dark matter.

We study the phenomenology derived from our pro-
posal starting with the possibility of light dark matter
(M < My/2 or My/2), in which case the H — DD or
7" — DD are kinematically permitted and contribute to the
Higgs and Z° invisible decay widths. We use experimental
results on these widths to put upper limits to the corre-
sponding low energy constants. In general, for light dark
matter mass we find stringent constraints for the couplings
of the Higgs portal: g, g, < 107 and less stringent
constraints on the spin portal coupling g,.

For dark matter mass in this region, nonrelativistic dark
matter can annihilate into a photon pair or into a fermion-
antifermion pair if M > m;. We calculate these processes
in our formalism and use them to calculate the correspond-
ing dark matter relic density for both the Higgs and the
spin portal. For the spin portal, taking into account the
constraints from the Z° invisible width, we find that a
proper description of the measured dark matter relic density

imposes the lower bound M > 43 GeV for dark matter
with a (1,0) @ (0, 1) spacetime structure. For the Higgs
portal, similar considerations yields the lower bound
M > 62 GeV.

For higher dark matter mass (M > My /2), the Z° —
DD and H — DD decays are kinematically forbidden and
we lose the corresponding constraints on the low energy
couplings g, gy, g,- In order to test our proposal in this
energy region, we calculate the velocity averaged cross
section for the annihilation of dark matter into z+z~ and bb
in Milky Way dwarf spheroid satellite galaxies and com-
pare with recent upper bounds from a joint analysis by DES
and FermiLLAT Collaborations, finding that both portals
yield results consistent with these upper bounds.

Another very active source of experimental information
is given by direct detection experiments. In this case, it is
usually assumed that dark matter-nucleus interaction is
described by a four-point interaction, which is appropriate
when this interaction is exchanged by a heavy particle. We
elaborate on this picture to account for the exchange of
photons (whose contributions are suppressed anyway
because it couples to the higher multipoles of the dark
matter) and calculate the observable ¢, reported recently by
the XENON Collaboration. The Higgs portal yields results
consistent with the upper bounds reported by XENONIT.
In the case of the spin portal, consistency with XENONI1T
results requires small values of the spin portal coupling or
large values of the dark matter mass.
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APPENDIX: TRACEOLOGY FOR (1,0) & (0.1)

In this Appendix, we collect the trace relations necessary
for the calculations in this work. The covariant basis for the
(1,0) & (0, 1) representation space is given by the set of
6 x 6 matrices {1, y, S*, yS*, M, C**} where 1 is the
identity matrix. The first principles construction of these
matrices can be found in [38] and their explicit form
depends on the basis chosen for the states in the (1,0) @
(0, 1) representation. All the calculations in this work are
representation independent and rely only on their algebraic
properties. The starting point are first principles construc-
tion of the rest-frame parity operator (II), the Lorentz
generators J' = 1e*M/* and K' = M" and the chirality
operator y entering the projectors on the chiral subspaces
(1,0) and (0,1) which satisfy
(A1)

{y,11} =0, =1

. M) =0,
The S* tensor is the covariant version of the rest-frame
parity operator (IT) such that S = IT and other compo-
nents can be written as

= TI(g = (MO + M%) = (0% 1)), (A2)
This is a symmetric traceless (S, = 0) tensor with nine
independent components. As a consequence of Eqs. (A1),
we get

{x.$"} =0. (A3)

The C tensor is given by

Chvap — 4{M””,Maﬁ} 4 2{Mﬂa,Ml//J} _ Z{M"ﬁ,MW}
—8(g“g’ — 9" g"). (A4)

with the symmetry properties CH% = —C% = —Crba,
Ccreb — coPrv Tt satisfies the Bianchi identity CF +
CcHva . cmel — (0 and the contraction of any pair of

indices vanishes C*% =

10  independent
b(’ Cﬂzza/}] =0.

The covariant basis is orthogonal with respect to the
scalar product defined as (A|B) = Tr(AB), thus these
matrices satisfy the following relations

= 0. These constraints leave only
components. Clearly it satisfies

Tr(y) = Tr(S) = Tr(M) = Tr(yS) = Tr(C) = 0,
Tr(yM) = Tr(yC) = Tr(MS) = Tr(MyS)
= Tr(MC) = Tr(SyS) = Tr(SC) = Tr(ySC) = 0,
(A3)

where we suppressed the Lorentz indices.

Calculations in this work requires traces of products of
the S#¥ tensor and other elements in the covariant basis. Let
us consider first

Tr(SMM) = Tr(y*SMM) = —Tr(ySyMM)

— —Tr(ySMMy) = —Tr(SMM)

= Tr(SMM) =0, (A6)
where we used Egs. (A1), (A3) and the cyclic property of a
trace. Since y commutes also with C, this procedure can be
used to show that in general if we have a term with an odd
numbers of S tensors the trace of this term will vanish
Tr(term with an odd of S’s) = 0. (A7)
The trace of terms with an even number of S factors can
always be reduced to a linear combination of terms with the
trace of the product of two § or two M factors using the
following (anti)commutation relations

[M’“’, Ma/i] — _i(gﬂaMUﬁ — gvaM/l/f — gﬂﬂMW + gvﬂM/m),
(A8)
4 . 4 |
{1‘4;41/7 M(l/)’} — g (g;mgu/ _ g;/[)’gwl) _ 3 lglw(l/ + = g C;wa[)’
(A9)
[1‘4;4117 S(lﬁ] — _i(gyasu/i _ gzzasy[i + gﬂ/}SDa _ guﬁs;m)’
(A10)
{Mﬂl/’ Saﬁ} — 8yyaﬂ)(sg + gﬂuaaxsg_7
(A1)
(57, S] = —i( M + <MY + P M+ o),
(A12)
w gapy _ 3 pagh | qpagh _ _ g gap
{5,859 =3 (99" + 9 g"g“
1
6 (Cravh y crbvar, (A13)

The simplest case appears in the calculation of H — DD

1 1
Tr($"S%) = Tr (2 [, S0] + 5 {5, S“/’}>

1
=4 (gﬂ“g”ﬂ + g9 - ngﬂ)
— gy, (A14)

Similarly, the calculation of Z° — DD requieres
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Tr(M* M) = Tr (% (M, M) —|—%{M’“’, M“ﬁ}> — 4(grrgh — g o) = 4GP,

(A15)

The first example of the reduction mentioned above is faced in the calculation of Z® — DD which also requires to calculate

1 1
Tr(SMVS(I/)’M/m') —Tr <E {S/,w’ Sa/i}M/)o’ + 5 [S;w’ Sa/i]M/m>

— %lTr((g”“M”ﬁ + guaM/,tﬂ + guﬂM/m + gyﬂMva)Mpo)

— _Zi(guaGyﬁpa + guaGﬂﬁpa + guﬂG;mpv + g,uﬁGuapo)’ (A16)
and
1
sy 1 (Y5 sy ) (s o )
((E g/,tasy/)’ gvaSﬂ/} + gﬂ[)’SDa _ gpﬂS/m) _ gﬂw/)’)(sa _ gt S/)’ >
X (E (g}/pséo' _ gépS}/a + gyasép _ g(?asyp) _ 8}/&6){57}1 _ syé/lp)(so‘l> )
= —g'egrP TvPée 1 gﬂagépTvﬂyv — gwngvﬁ&p + gﬂagévTVﬂyﬂ + g gJ’/’Tﬂﬁ‘Sl’ - gﬁp THPro 4 7 gyaTﬂﬁép

_ gua géoTuﬁyp _ gyﬁ gyp Tva&r + gy/f ngpTuaya _ gy/f gyaTva5p + gyﬁ ngoTvayp 4 guﬁ gypT/m&r _ guﬁ gép THaro

+ guﬂ gyeruaép

Similarly it can be shown that

Tr(M;wM(l/iM/m’) — _2i(gua sz/)’/m’ _ gU(lGﬂﬂ/)ﬁ

_ y;/)’Gzzapo- + gv/)’Gya/)or)’ (A]g)
Tr(ySPOSPMm) = —2(emobTroe, 4 gwoardh ) (A19)
Tr(yM™ M%) = —dignah, (A20)

The calculation of the trace of terms involving six or
eight S or M factors (with an even number of S factors)
needed in this paper are reduced in a similar way.

There is a simpler way to obtain these results however,
which is specially useful for terms with six or more factors.
Since the result rests only on the algebraic properties in
Egs. (A8), (A9), (A10), (A11), (A12), (A13), we can use
any representation of these operators for the calculation of
the trace. In this concern, the use of the representation
where the internal matrix indices transform as Lorentz
indices is convenient, since in this case the calculation of
the trace reduces to contractions of Lorentz indices which

_ guﬂ g56 THarp _ 4 ( g;wr/)’ 8}’(”»(1’ T(lr/)i + S,WT//’ 876}4) Tarfo‘]L 4 ghvTa ‘E.]/(S/lerﬁ‘[p]L 1 ghvTa gy(%/) Tﬁ‘,gg) .

(A17)

|
can be easily done using conventional algebraic manipu-
lation codes like FEYNCALC. In this representation, each
internal matrix index a is replaced by a pair of antisym-
metric Lorentz indices aff [39]. The explicit form of the
operators in the covariant basis is given by

1
(l)aﬂ}/& = ) (gaygﬂ6 - gaégﬂy)7 (A21)
i

()()(z/}y(‘i = 5811/)’}'5’ (A22)
(M/w)aﬂy,s = _i(guylaﬂw‘} + gﬂr‘ilaﬂyy - gyylaﬂué - géyla/)’yu)v
(A23)

(Spw)aﬁy(s gﬂulaﬂyé g;lylaﬁué - gﬂﬁlaﬂyu - gyulaﬁyé
— Ysu laﬂyﬂ . (A24)

The explicit form of C** can be constructed from
Eq. (A4) and the above relations.
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