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We propose a way to improve the resolution of the spatial momentum and the time interval for hadron
propagators utilizing the lattice geometry. We demonstrate the validity of the method presenting results for
pseudoscalar meson energies with and without finite momenta in a large-scale quenched QCD simulation.
The method should be useful especially for master-field simulations.
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I. INTRODUCTION

Lattice QCD has been considered to be an ideal theo-
retical tool for quantitative understanding of the dynamics of
the strong interaction. The main difficulties are controlling
the systematic errors: quenching effects, unphysical quark
masses, finite volume effects and finite lattice spacing
effects. PACS-CS collaboration, which was the predecessor
of PACS collaboration, got rid of the former two systematic
errors by performing 2þ 1 flavor lattice QCD simulations
with the Wilson-type quark action reducing the ud quark
masses up to the physical point [1,2]. After that PACS
collaboration chose a strategy to make the physical volume
larger at/near the physical point: We generated 2þ 1 flavor
QCD configurations on a ð8.1 fmÞ4 lattice at a cutoff of
a−1 ≈ 2.3 GeV [3]. Having confirmed various advantages
thanks to the large volume, we have taken a further step
toward even larger scale simulation [4].Meanwhile, Lüscher
has also proposed an idea of large-scale simulation, called
master-field simulation, based on superior properties due to
large volume [5].
In this paper, we propose a useful method, especially in

the master-field (very large volume) simulations, which
provides a finer resolution for the spatial momentum and
the time interval in hadron propagators with the effective
use of the lattice geometry. We show its validity by taking a
case of the pseudoscalar meson energies with and without
finite momenta on a large lattice in quenched QCD.

This paper is organized as follows. In Sec. II, we first
explain how to effectively use the lattice geometry for
calculation of physical quantities in lattice QCD. The
simulation details are given in Sec. III. In Sec. IV, we
present the numerical results for the propagation of a
pseudoscalar meson with and without finite momenta
and their dispersion relation. Our conclusions and outlook
are summarized in Sec. V.

II. USE OF LATTICE GEOMETRY

We first explain a reconstruction from a given periodic
square lattice to another one with different lattice geometry.
Suppose we have a two-dimensional periodic square lattice
with the side length of L, and divide it into three pieces
labeled by a, b and c as illustrated in the left panel of Fig. 1.
By rearranging b and c pieces as in the right panel of Fig. 1
with the use of periodicity of the lattice, we can obtain a new
rectangular lattice, whose longer side can be regarded as
space with the periodic interval of

ffiffiffi
2

p
L and shorter side as

time with the length of L=
ffiffiffi
2

p
. This means that the new

rectangular lattice could provide the finer momentum and

FIG. 1. A reconstruction of two-dimensional periodic lattice.
An L × L square lattice divided into three pieces labeled by a, b
and c in the left panel can be rearranged into a rectangular lattice
in the right panel with the use of periodicity. The long side of the
rectangular lattice is periodic with the interval of

ffiffiffi
2

p
L. The short

side has the length of L=
ffiffiffi
2

p
.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 98, 014515 (2018)

2470-0010=2018=98(1)=014515(10) 014515-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.98.014515&domain=pdf&date_stamp=2018-07-31
https://doi.org/10.1103/PhysRevD.98.014515
https://doi.org/10.1103/PhysRevD.98.014515
https://doi.org/10.1103/PhysRevD.98.014515
https://doi.org/10.1103/PhysRevD.98.014515
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


time resolution by 1=
ffiffiffi
2

p
compared to the original square

lattice. Note that different types of division and rearrange-
ment for the square lattice allow different rectangular
lattices.
In order to present the rigorous procedure for the

reconstruction of a four-dimensional periodic lattice, we
need some mathematical preliminaries given in the follow-
ing subsections. After this preparation, we will show that
the reconstruction method yields lattices of different
geometries with enlarged spatial volume and reduced time
extent, which should improve the resolution of the spatial
momentum and the discretized time interval.

A. Four-dimensional periodic lattice

In order to define a four-dimensional periodic lattice
Λ, we start with the standard orthonormal basis feμgμ¼1;2;3;4

in R4,

eμ ¼ fðeμÞα ≡ δαμgα¼1;2;3;4; ð1Þ

eμ · eν ≡
X4
α¼1

ðeμÞαðeνÞα ¼ δμν; ð2Þ

where the first equation is the definition of the basis vectors
and δαμ; δμν are the Kronecker delta and the second equation
represents orthonormality of the basis. In this paper, we will
change the orthonormal basis feμg with the Euclidian
metric δμν to any basis fEμgμ¼1;2;3;4 with any globally
constant metric gμν, so that a basis with lower indices and
its dual basis with upper indices are different from each
other in general. We distinguish upper and lower indices of
vectors and tensors and use metrics to raise and lower the
indices. Needless to say, the orthonormal basis feμg is self
dual and its dual basis feμg is the same. Now with the use
of the orthonormal basis feμg, the four-dimensional peri-
odic lattice Λ is defined as a set of the following coordinate
vectors,

n ¼ nρeρ; nρ ∈ Z ð3Þ
with the Einstein summation convention. The coefficients
fnρgρ¼1;2;3;4 are the coordinates of n with respect to the
basis feμg. Since we assume the periodic boundary con-
dition for all the four directions feμgμ¼1;2;3;4, we can
identify an and anþ aNeμ with a the lattice spacing
and N the lattice extent of each direction. Note that we
consider the lattice with the same lattice extent N for each
direction eμ to simplify the discussion. It is straightforward
to generalize the discussion to any lattice with different
lattice extents.

B. Bases with reduced time and enlarged spatial volume

Now we consider a different basis fEμgμ¼1;2;3;4,
where E4 is the time direction and fEigi¼1;2;3 are the
three-dimensional spatial directions perpendicular to E4.

We first introduce the following vector w along the time
direction E4,

w ¼ wρeρ; wρ ∈ Z; ð4Þ

where w ≠ eμ and fwμgμ¼1;2;3;4 has no common integral
divisor larger than one. It is worth emphasizing that the
number of independent vectors is of order of N3 by a naive
counting. For each vector n ∈ Λ, we assign an integer nt in
unit of the lattice spacing a to express the time coordinate:

nt ¼ mod ðn · w; NÞ ¼ mod ðnρwρ; NÞ: ð5Þ

In case of w ¼ e4, we have nt ¼ n4 as usual. It allows us to
divide the lattice Λ into N time slices Bnt ,

Λ ¼ ⋃
nt¼0;1;…;N−1

Bnt ; ð6Þ

Bnt ¼ fn ∈ Λjnt ¼ mod ðn · w; NÞg: ð7Þ

Each time slice Bnt contains N3 lattice sites, which is
explained from the periodicity on the time slices in
Sec. II D. The distance between the adjacent time slices
becomes a=

ffiffiffiffiffiffiffiffiffiffi
w · w

p
< a with the lattice spacing a divided

by the norm of w. So it is natural to adopt the rescaled
vector w=ðw · wÞ as the time direction basis E4,

E4 ¼
w

w · w
ð8Þ

¼ ðE4Þρeρ; ðE4Þρ ¼
wρ

w · w
∈ Q: ð9Þ

In fact, E4 is geometrically equivalent to the dual basis
vector of w such that E4 · w ¼ 1. Notice that the lattice
spacing of the time direction, denoted by a4, is reduced by
the factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E4 · E4

p ð< 1Þ comparedwith that of the orthogo-
nal basis,

a4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E4 · E4

p
a: ð10Þ

So the lattice extent of the time direction is reduced to
aN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E4 · E4

p
in the basis fEμg. The lattice volume ðaNÞ4

does not depend on the choice of basis vectors, so that the
spatial volume should increase to ðaNÞ3= ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E4 · E4

p
to

compensate for the reduction of the time extent. In order
to do so, we can take the spatial basis vectors fEigi¼1;2;3

orthogonal to E4 such that

Ei ¼ ðEiÞρeρ; ðEiÞρ ∈ Z; i ¼ 1; 2; 3; ð11Þ

E4 · Ei ¼ ðE4ÞαðEiÞα ¼ 0; i ¼ 1; 2; 3; ð12Þ

detE ¼ �1; ð13Þ
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where E is the 4 × 4 matrix whose μ-α element is
ðEμÞαðμ; α ¼ 1; 2; 3; 4Þ. From purely algebraic considera-
tions, it is found that the spatial basis vectors are uniquely
fixed up to SLð3;ZÞ transformations on those vectors and
each of fðEiÞαg for i ¼ 1, 2, 3 has no common integral
divisor larger than one. The third equation (13) restricts the
transformation from feμg to fEμg to the group of linear
transformations preserving the volume so that the lattice
volume is ðaNÞ4 in both bases.

C. Dual basis and metric

For later convenience we introduce the dual basis fEμg
with upper indices as the basis of momentum space, the
metric gμν and its inverse gμν. Let feμg be the dual basis of
the orthonormal basis feμg such that eμ · eν ¼ δμν and
eμ · eν ¼ δμν. The dual basis fEμg is defined as

Eμ ¼ ðEμÞρeρ; ð14Þ

Eμ · Eν ¼ ðEμÞαðEνÞα ¼ δμν ; ð15Þ

ðEμÞαðEμÞβ ¼ δβα; ð16Þ

where ðE4Þα ∈ Z and ðEiÞα ∈ Q for i ¼ 1, 2, 3. The metric
and its inverse are defined as

gμν ¼ Eμ · Eν ¼ ðEμÞαðEνÞα; ð17Þ

gμν ¼ Eμ · Eν ¼ ðEμÞαðEνÞα: ð18Þ

By definition, gi4 ¼ 0 and gi4 ¼ 0 for i ¼ 1, 2, 3. Raising
and lowering the indices are performed by contracting with
the metrics as

Eμ ¼ gμνEν; ð19Þ

Eμ ¼ gμνEν ð20Þ

and equivalently

ðEμÞα ¼ gμνðEνÞβδβα; ð21Þ

ðEμÞα ¼ gμνðEνÞβδβα: ð22Þ

D. Coordinate vector and its periodicity

Having defined the geometry of Λ in terms of the bases,
any vector n ∈ Λ is expanded in both of the bases feμg and
fEμg as

n ¼ nρeρ ¼ rρEρ; ð23Þ

where nρ ∈ Z. The relation between fnμg and frμg
coordinates is easily derived as

rμ ¼ ðEμÞρnρ; nμ ¼ ðEρÞμrρ; ð24Þ

and r4 ∈ Z and r1;2;3 ∈ Q because ðE4Þα ∈ Z and
ðE1;2;3Þα ∈ Q. In general, the spatial coordinates r1;2;3

are rational numbers. It follows from the definition of nt
in Eq. (5) that nt ¼ n4 in the basis feμg and nt ¼ r4 in the
basis fEμg.
There is a remark about the periodicity of the vector an.

In the basis feμg, the vector an is periodic with the interval
of aNeμ for μ ¼ 1, 2, 3, 4 discussed in Sec. II A. In the basis
fEμg, the spatial basis vectors in Eq. (11) are defined by the
liner combinations with the integer coefficients fðEiÞαg for
i ¼ 1, 2, 3, each of which has no common integral divisor
larger than one, so that an is also periodic with the interval
of aNEi for i ¼ 1, 2, 3. The spatial periodicity shows thatN
lattice sites are aligned along each spatial direction and N3

lattice sites reside in each time slice. On the other hand, the
time direction E4 of Eq. (8) is defined by the liner
combination with the rational coefficients ðE4Þα ∈ Q so
that an is not periodic with the interval of aNE4 but
periodic with aNE4=ðE4 · E4Þ. Therefore, the time slices at
ntð¼ r4Þ ¼ 0 and N, given by Bnt¼0 and Bnt¼N of Eq. (7),
are not simply related by the translation along E4. We need
a spatial shift vector aN

P
3
i¼1 s

iEi on Bnt¼N to satisfy the
periodicity. In order to determine the coefficients fsig, it
may be convenient to introduce a vector l ¼ Nlρeρ, lρ ∈ Z
to satisfy

aN
E4 · E4

E4 þ al ¼ aNE4 þ aN
X3
i¼1

siEi; ð25Þ

which leads to the relation:

si ¼ ðEiÞρlρ ∈ Q i ¼ 1; 2; 3: ð26Þ

For any n ∈ Bnt¼0, the corresponding vector of Bnt¼N is
identified by the shift of aNE4 followed by the spatial
correction of aN

P
3
i¼1 s

iEi on Bnt¼N .
1 The additional shift

on Bnt¼N plays an important role in time correlators with
finite momenta in Sec. II G.

E. Improvement of resolution for time interval and
spatial momentum

Let us discuss the lattice spacing with the general basis
fEμg. The lattice spacing aμ for each Eμ direction is
defined by

aμ ¼ ffiffiffiffiffiffi
gμμ

p
a; μ ¼ 1; 2; 3; 4. ð27Þ

1This identification in E4 direction corresponds to
shifted boundary conditions in time direction in thermal field
theories [6].
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Since 0 < g44 < 1 and g11, g22, g33 ≥ 1 by the definition of
Eq. (17), we obtain (i) a4 < a and (ii) a1;2;3 ≥ a. The result
(i) means the improvement of the resolution for the time
interval along E4 direction. The result (ii) combined with
the fact that detðgμνÞ ¼ 1 and gi4 ¼ 0 for i ¼ 1, 2, 3 tells us
that the spatial volume increases by the factor of 1=

ffiffiffiffiffiffi
g44

p
such as ðaNÞ3= ffiffiffiffiffiffi

g44
p

. According to this, the smallest spatial
momentum squared is allowed to decrease to a value less
than ð2π=aNÞ2.
We now consider the Fourier series expansion to look

into more details of the spatial momentum. Let n⃗ be any
spatial vector given by

n⃗ ¼
X3
i¼1

riEi; ri ∈ Q ð28Þ

on the time slice Bnt , and let p⃗ be any spatial momentum
given by

p⃗ ¼
X3
i¼1

piEi ð29Þ

in the dual spatial basis fEigi¼1;2;3. In order to determine
the allowed range of the momentum, we consider a periodic
function fðan⃗Þ ¼ fðan⃗þ aNEiÞ (i ¼ 1, 2, 3) so that the
Fourier series expansion is defined by

fðan⃗Þ ¼
X
p⃗

f̃ðp⃗Þ expðian⃗ · p⃗Þ; ð30Þ

where f̃ðp⃗Þ ∈ C and n⃗ · p⃗ ¼ P
3
i¼1 r

ipi. The periodicity
condition on fðan⃗Þ yields the condition expðiaNpiÞ ¼ 1 so
that the allowed range of the momentum is

pi ¼
2πmi

aN
; mi ¼ 0; 1;…; N − 1; ð31Þ

and the spatial momentum squared is

p2 ¼ p⃗ · p⃗ ¼
X3
i¼1

pipjgij: ð32Þ

Recall that the spatial volume in the basis fEμg increases
by 1=

ffiffiffiffiffiffi
g44

p
, and conversely its dual spatial volume in the

basis fEμg decreases by
ffiffiffiffiffiffi
g44

p
. This means that there exists

at least one diagonal spatial element of the inverse metric to
satisfy gii < 1, where the index i is not summed, in the
spatial basis vectors fEigi¼1;2;3 and their dual ones
fEigi¼1;2;3, which are, if necessary, transformed by an
element of SLð3;ZÞ and its inverse respectively. Therefore,
the smallest nonzero momentum squared is given by
ð2π=aNÞ2gii, which is smaller than ð2π=aNÞ2.

F. Examples

It may be instructive to consider some representative
cases for the time direction vector w of Eq. (4). In the
following, we list the relevant quantities associated with
each w: Basis fEμg of Eqs. (8) and (11), its dual basis fEμg
of Eq. (14), the metric gμν, gμν of Eqs. (17) and (18), the
distance between the adjacent time slices a4 of Eq. (27), the
smallest nonzero momentum squared p2

min of Eq. (32) and
the shift coefficients si in Eq. (26).

(i) fw1; w2; w3; w4g ¼ f0; 0; 0; 1g
The corresponding bases are the orthonormal ones:

fEμg ¼ feμg; ð33Þ

fEμg ¼ feμg: ð34Þ

The metric and its inverse are the Kronecker delta
gμν ¼ δμν, gμν ¼ δμν. The distance between the adjacent
time slices is a4 ¼ a. The smallest nonzero spatial momen-
tum squared is p2

min ¼ ð2π=aNÞ2. The shift coefficients
are fs1; s2; s3g ¼ f0; 0; 0g.
(ii) fw1; w2; w3; w4g ¼ f0; 0; 1; 1g

The corresponding bases are

fðE1Þ1; ðE1Þ2; ðE1Þ3; ðE1Þ4g ¼ f1; 0; 0; 0g; ð35Þ

fðE2Þ1; ðE2Þ2; ðE2Þ3; ðE2Þ4g ¼ f0; 1; 0; 0g; ð36Þ

fðE3Þ1; ðE3Þ2; ðE3Þ3; ðE3Þ4g ¼ f0; 0; 1;−1g; ð37Þ

fðE4Þ1; ðE4Þ2; ðE4Þ3; ðE4Þ4g ¼
n
0; 0;

1

2
;
1

2

o
; ð38Þ

and

fðE1Þ1; ðE1Þ2; ðE1Þ3; ðE1Þ4g ¼ f1; 0; 0; 0g; ð39Þ

fðE2Þ1; ðE2Þ2; ðE2Þ3; ðE2Þ4g ¼f0; 1; 0; 0g; ð40Þ

fðE3Þ1; ðE3Þ2; ðE3Þ3; ðE3Þ4g ¼
n
0; 0;

1

2
;−

1

2

o
; ð41Þ

fðE4Þ1; ðE4Þ2; ðE4Þ3; ðE4Þ4g ¼ f0; 0; 1; 1g: ð42Þ

The metric and its inverse are

gμν ¼

0
BBBB@

1 0 0 0

0 1 0 0

0 0 2 0

0 0 0 1
2

1
CCCCA; ð43Þ
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gμν ¼

0
BBBB@

1 0 0 0

0 1 0 0

0 0 1
2

0

0 0 0 2

1
CCCCA: ð44Þ

Other relevant quantities are

a4 ¼
1ffiffiffi
2

p a; ð45Þ

p2
min ¼

1

2

�
2π

aN

�
2

; ð46Þ

fs1; s2; s3g ¼
�
0; 0;

1

2

�
: ð47Þ

(iii) fw1; w2; w3; w4g ¼ f0; 1; 1; 1g
The corresponding bases are

fðE1Þ1; ðE1Þ2; ðE1Þ3; ðE1Þ4g ¼ f1; 0; 0; 0g; ð48Þ

fðE2Þ1; ðE2Þ2; ðE2Þ3; ðE2Þ4g ¼ f0; 1;−1; 0g; ð49Þ

fðE3Þ1; ðE3Þ2; ðE3Þ3; ðE3Þ4g ¼ f0; 0; 1;−1g; ð50Þ

fðE4Þ1; ðE4Þ2; ðE4Þ3; ðE4Þ4g ¼
n
0;
1

3
;
1

3
;
1

3

o
; ð51Þ

and

fðE1Þ1; ðE1Þ2; ðE1Þ3; ðE1Þ4g ¼ f1; 0; 0; 0g; ð52Þ

fðE2Þ1; ðE2Þ2; ðE2Þ3; ðE2Þ4g ¼
n
0;
2

3
;−

1

3
;−

1

3

o
; ð53Þ

fðE3Þ1; ðE3Þ2; ðE3Þ3; ðE3Þ4g ¼
n
0;
1

3
;
1

3
;−

2

3

o
; ð54Þ

fðE4Þ1; ðE4Þ2; ðE4Þ3; ðE4Þ4g ¼ f0; 1; 1; 1g: ð55Þ

The metric and its inverse are

gμν ¼

0
BBBB@

1 0 0 0

0 2 −1 0

0 −1 2 0

0 0 0 1
3

1
CCCCA; ð56Þ

gμν ¼

0
BBBB@

1 0 0 0

0 2
3

1
3

0

0 1
3

2
3

0

0 0 0 3

1
CCCCA: ð57Þ

Other relevant quantities are

a4 ¼
1ffiffiffi
3

p a; ð58Þ

p2
min ¼

2

3

�
2π

aN

�
2

; ð59Þ

fs1; s2; s3g ¼
�
0;
2

3
;
1

3

�
: ð60Þ

(iv) fw1; w2; w3; w4g ¼ f1; 1; 1; 1g
The corresponding bases are

fðE1Þ1; ðE1Þ2; ðE1Þ3; ðE1Þ4g ¼ f1;−1; 0; 0g; ð61Þ

fðE2Þ1; ðE2Þ2; ðE2Þ3; ðE2Þ4g ¼ f0; 1;−1; 0g; ð62Þ

fðE3Þ1; ðE3Þ2; ðE3Þ3; ðE3Þ4g ¼ f0; 0; 1;−1g; ð63Þ

fðE4Þ1; ðE4Þ2; ðE4Þ3; ðE4Þ4g ¼
�
1

4
;
1

4
;
1

4
;
1

4

�
; ð64Þ

and

fðE1Þ1; ðE1Þ2; ðE1Þ3; ðE1Þ4g ¼
�
3

4
;−

1

4
;−

1

4
;−

1

4

�
; ð65Þ

fðE2Þ1; ðE2Þ2; ðE2Þ3; ðE2Þ4g ¼
�
1

2
;
1

2
;−

1

2
;−

1

2

�
; ð66Þ

fðE3Þ1; ðE3Þ2; ðE3Þ3; ðE3Þ4g ¼
�
1

4
;
1

4
;
1

4
;−

3

4

�
; ð67Þ

fðE4Þ1; ðE4Þ2; ðE4Þ3; ðE4Þ4g ¼ f1; 1; 1; 1g: ð68Þ

The metric and its inverse are

gμν ¼

0
BBBB@

2 −1 0 0

−1 2 −1 0

0 −1 2 0

0 0 0 1
4

1
CCCCA; ð69Þ

gμν ¼

0
BBBB@

3
4

1
2

1
4

0

1
2

1 1
2

0

1
4

1
2

3
4

0

0 0 0 4

1
CCCCA: ð70Þ

Other relevant quantities are
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a4 ¼
1

2
a; ð71Þ

p2
min ¼

3

4

�
2π

aN

�
2

; ð72Þ

fs1; s2; s3g ¼
�
3

4
;
1

2
;
1

4

�
: ð73Þ

There is a comment on reflection positivity in terms of
the lattice site arrangement on the time slices. For each time
direction w in the above examples (i)–(iv), we can define a
time reflection with respect to the time slice Bnt¼0 such as
fr1; r2; r3; r4g → fr1; r2; r3;−r4g, so that we can show the
reflection positivity as in Refs. [7,8]. But in case of w
whose some coefficients wi are larger than or equal to two,
for instance fw1; w2; w3; w4g ¼ f0; 0; 1; 2g, we can not
naively define a time reflection with respect to Bnt¼0: For
each lattice site fr1; r2; r3; r4g on Bnt¼r4 , there exists no
corresponding lattice site fr1; r2; r3;−r4g on Bnt¼−r4 in
general. It seems difficult to show reflection positivity in
such bases. In numerical calculation in Sec. III, we consider
only the cases (i)–(iv) presented above.
We alsomake a comment on the parity transformations for

the cases of (i)–(iv). Their definitions are given as follows:

ðiÞ fr1; r2; r3; r4g → f−r1;−r2;−r3; r4g; ð74Þ

ðiiÞ fr1; r2; r3; r4g → f−r1;−r2;−r3; r4g; ð75Þ

ðiiiÞ fr1; r2; r3; r4g → f−r1;−r3;−r2; r4g; ð76Þ

ðivÞ fr1; r2; r3; r4g → f−r3;−r2;−r1; r4g: ð77Þ

These are compatible with periodicity in the basis
fEμg discussed in II D. The transformations for (i) and
(ii) are usual ones. On the other hand, those for (iii) and (iv)
involve interchange of coordinates, r2 ↔ r3 and r1 ↔ r3,
respectively.

G. Time correlators

Let us consider time correlators with and without spatial
momenta in the general basis fEμg on the periodic lattice
Λ. In the orthonormal basis feμg, we take a hadron operator
OðnρÞ at a position an ¼ anρeρ ∈ Λ. The correlator is
given by hOðnρÞOð0Þi. Performing the summation over the
spatial volume at time ntð¼ n4Þ, the time correlator with
zero spatial momentum behaves as

a3
X

nρ∈Bnt

hOðnρÞOð0Þi ¼ C0ðe−antm þ e−aðN−ntÞmÞ; ð78Þ

where C0 is an amplitude, m is the hadron mass coupled to
O and the exited state contributions are omitted. For the

correlator with a finite spatial momentum p⃗, summing over
the spatial volume with the weight expðian⃗ · p⃗Þ, the time
correlator behaves as

a3
X

nρ∈Bnt

eian⃗·p⃗hOðnρÞOð0Þi

¼ Cpðe−ant
ffiffiffiffiffiffiffiffiffiffiffiffi
m2þp⃗·p⃗

p
þ e−aðN−ntÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
m2þp⃗·p⃗

p
Þ; ð79Þ

where Cp is an amplitude.
In the basis fEμg, we take OðrρÞ ¼ OððEρÞλnλÞ.2 The

lattice spacing for E4 is given by a4 ¼ ffiffiffiffiffiffi
g44

p
a in Eq. (27),

so that the time correlator with zero spatial momentum
behaves as

a3ffiffiffiffiffiffi
g44

p
X
rρ∈Bnt

hOðrρÞOð0Þi¼C0
0ðe−

ffiffiffiffiffi
g44

p
antmþe−

ffiffiffiffiffi
g44

p
aðN−ntÞmÞ;

ð80Þ
where nt ¼ r4, C0

0 is an amplitude and the excited state
contributions are omitted. The factor

ffiffiffiffiffiffi
g44

p
in the left-hand

side of Eq. (80) represents the enlarged spatial volume and
it indicates the reduced time interval in the right-hand side.
Similarly, the time correlator with a finite momentum p⃗
behaves as

a3ffiffiffiffiffiffi
g44

p
X
rρ∈Bnt

eian⃗·p⃗hOðrρÞOð0Þi

¼ C0
pðe−

ffiffiffiffiffi
g44

p
ant

ffiffiffiffiffiffiffiffiffiffiffiffi
m2þp⃗·p⃗

p
þ ϕðp⃗Þe− ffiffiffiffiffi

g44
p

aðN−ntÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
m2þp⃗·p⃗

p
Þ;
ð81Þ

ϕðp⃗Þ ¼ e−i
P

3

i¼1
aNpisi ; ð82Þ

where C0
p is an amplitude and the additional phase factor

ϕðp⃗Þ comes from the shift aNðs1E1 þ s2E2 þ s3E3Þ on
Bnt¼N . Since pi ¼ 2πmi=ðaNÞ (mi ¼ 0; 1;…; N − 1) the
phase factor is given by ϕðp⃗Þ ¼ expð−2πiP3

i¼1 misiÞ.

III. SIMULATION DETAILS

The purpose of numerical calculation is to check the
validity of our method so that we employ an experienced
simulation setup with less computational cost. Our numeri-
cal test is performed in quenched QCD employing the
Iwasaki gauge action [9],

2Since the general basis fEμg is related by the linear trans-
formation in Eqs. (8)–(13) to the orthonormal basis feμg, any
operator with vector indices such as vector mesons or even any
nonlocal operator for staggered fermions in fEμg can be always
written by a linear combination of the corresponding operators in
feμg. Thus, the results presented in this subsections can be
straightforwardly applied to any type of fermion discretization as
well as any type of operator in general.
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S ¼ β

6

X
n∈Λ

�
c0
X
μ<ν

W1×1
μν ðnÞ þ c1

X
μ;ν

W1×2
μν ðnÞ

�
ð83Þ

with c1 ¼ −0.331 for the 1 × 2 Wilson loop W1×2
μν ðnÞ and

c0 ¼ 1–8c1 ¼ 3.648 for the 1 × 1 Wilson loop W1×1
μν ðnÞ.

We choose β ¼ 6=g2 ¼ 2.575, which is one of the bare
couplings employed in Ref. [10]. Gauge configurations are
generated on a 1284 lattice with the periodic boundary
condition employing theHMCalgorithm in the orthonormal
basis feμg as usual. We focus on the energy of the fictitious
“ηss”meson in the various bases as physical quantity, which
is easily calculated at a very high level of statistical precision
with and without momenta. Quark propagators are solved in
feμg at every 100 trajectories employing the wall source
method without gauge fixing [11], and then time correlators
of hadrons are constructed in any basis fEμg including feμg.
All the errors are estimated by a single elimination jackknife
method in terms of configurations.
We use an improved Wilson quark action with the mean-

field improved clover coefficient cSW defined by

cSW ¼ ðW̄1×1
μν Þ−3=4 ¼ ð1 − 0.8412=βÞ−3=4 ¼ 1.345;

where W̄1×1
μν is the value in one-loop perturbation theory

[10]. The lattice spacing is 0.1130(11) fm determined from

mρ [10] so that the spatial extent of the lattice is 14.46
(14) fm. One hopping parameter κ ¼ 0.1341493786 is
chosen to yield mPS ¼ 690.6 MeV, which corresponds to
the “ηss” meson mass mηss ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2

K −m2
π

p
¼ 690.6 MeV.

mPSL is more than 50. The simulation parameters are
summarized in Table I.
In order to investigate cutoff effects on the pseudoscalar

meson energies calculated in our method, we generate
another quenched QCD ensemble on a 884 lattice at β ¼
2.334 with the mean-field improved clover coefficient
cSW ¼ 1.398. This lattice has a coarser lattice spacing
0.1632(16) fm, where the spatial extent of the lattice is
14.36(14) fm. The hopping parameter for “ηss”meson mass
is κ ¼ 0.1356019196.

IV. RESULTS

A. Effective masses

In Fig. 2, we first show the effective mass of the “ηss”
meson as a function of

ffiffiffiffiffiffi
g44

p
nt with four choices of the time

direction w at β ¼ 2.575. Figure 3 is a magnified version of
Fig. 2 choosing the time interval of 7 ≤ ffiffiffiffiffiffi

g44
p

nt ≤ 20. We
observe that the lattice spacing in the time direction is varied
according to w. The case of fwρg≡ fw1; w2; w3; w4g ¼
f1; 1; 1; 1g gives the finest lattice spacing, which is reduced
to a half as compared to the case of fwρg ¼ f0; 0; 0; 1g.
Numerical values of the fit results for the “ηss” meson
mass are listed in Table II. We find clear deviation beyond
the error bar among four cases of w: The biggest is 0.25%

TABLE I. Simulation parameters. Nmeas denotes the number of hadron measurements. The lattice spacing a is taken from Ref. [10].

β Lattice size a [fm] cSW κ for mηss Nmeas

2.575 1284 0.1130(11) 1.345 0.1341493786 120
2.334 884 0.1632(16) 1.398 0.1356019196 120
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FIG. 2. Effective mass of the “ηss” meson as a function offfiffiffiffiffiffi
g44

p
nt along the time direction w at β ¼ 2.575. The black filled

circle indicates the effective mass for fwρg ¼ f0; 0; 0; 1g withffiffiffiffiffiffi
g44

p ¼ 1, the red filled diamond for fwρg ¼ f0; 0; 1; 1g withffiffiffiffiffiffi
g44

p ¼ 1=
ffiffiffi
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p
, the green filled triangle for fwρg ¼ f0; 1; 1; 1g

with
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p
, and the blue star for fwρg ¼ f1; 1; 1; 1gwithffiffiffiffiffiffi

g44
p ¼ 1=2.
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Fig. 2 to clarify the time resolution depending on fwρg. Error bars
are within symbols.
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difference between the cases of fwρg ¼ f0; 0; 0; 1g and
f1; 1; 1; 1g, each of which yields less than 0.017% error
for the “ηss” meson mass. The situation is quantitatively
clarified by defining the relative mass difference δ ¼
mPSjfwρg=mPSjf0;0;0;1g − 1, which is also presented in
Table II. This small but solid difference could be a cutoff
effect due to the change of lattice geometry. In order to check
our speculation, we have repeated the calculation on a
coarser lattice at β ¼ 2.334 with the same physical volume
and the “ηss” meson mass as in the case of β ¼ 2.575. The
results for the “ηss” meson effective mass are plotted in
Fig. 4. Table III summarizes the numerical values for the
results of the “ηss”mesonmass and their relative differences.
We observe the similar deviation among four cases ofw as in
the case of β ¼ 2.575. In Fig. 5, we plot the relative mass
difference δ at β ¼ 2.575 and 2.334 as a function of a2. As
the lattice spacing diminishes, the mass difference mono-
tonically reduces as we expected.
To investigate a possible origin of the mass difference

among the bases, let us consider a dispersion relation of a

free scaler field with zero spatial momentum in the general
basis fEμg, which is given by

4

g44
sinh2

� ffiffiffiffiffiffi
g44

p
amPS

2

�
¼ ðamηssÞ2; ð84Þ

where mPS is the physical mass, namely the pole mass, and
mηss is the bare mass. In the continuum limit, mPS ¼ mηss .
To evaluate the cutoff effects on mPS, we expand mPS in
terms of the lattice spacing a:

mPS ¼ mηss þ amð1Þ
PS þ a2mð2Þ

PS þOða3Þ: ð85Þ

Solving Eqs. (84) and (85) up to Oða2Þ we find that

the OðaÞ term vanishes, mð1Þ
PS ¼ 0, and the Oða2Þ term is

given by

mð2Þ
PS ¼ −

g44
24

m3
ηss : ð86Þ

So the relative mass difference δ up to Oða2Þ is
expressed as

δ ¼ 1

24
a2m2

ηssð1 − g44Þ: ð87Þ

At β ¼ 2.575 this expression yields δ ¼ 0.0033, 0.0044 and
0.0049 for fwρg¼f0;0;1;1g;f0;1;1;1g and f1;1;1;1g,
and at β ¼ 2.334 we obtain δ ¼ 0.0068, 0.0091 and
0.0102 for fwρg¼f0;0;1;1g;f0;1;1;1g and f1; 1; 1; 1g.
We find that the measured relative mass difference δ can be
qualitatively explained by the Oða2Þ effects on the pseu-
doscaler meson mass.
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FIG. 4. Same as Fig. 2 at β ¼ 2.334.

TABLE II. Fit masses for each time direction w ¼ wρeρ at
β ¼ 2.575 on a 1284 lattice. The fit range is

ffiffiffiffiffiffi
g44

p
nt ≥ 20. δ

is the relative mass difference with respect to the mass for
fwρg ¼ f0; 0; 0; 1g.
fwρg f0; 0; 0; 1g f0; 0; 1; 1g f0; 1; 1; 1g f1; 1; 1; 1g
amPS 0.395107(46) 0.395756(45) 0.396044(50) 0.396120(65)
δ 0 þ0.00164ð16Þ þ0.00237ð17Þ þ0.00256ð20Þ

TABLE III. Fit masses for each time direction w ¼ wρeρ at
β ¼ 2.334 on a 884 lattice. The fit range is

ffiffiffiffiffiffi
g44

p
nt ≥ 14. δ is

the relative mass difference with respect to the mass for
fwρg ¼ f0; 0; 0; 1g.
fwρg f0; 0; 0; 1g f0; 0; 1; 1g f0; 1; 1; 1g f1; 1; 1; 1g
amPS 0.571371(72) 0.573658(77) 0.574420(63) 0.574830(78)
δ 0 þ0.00400ð18Þ þ0.00534ð19Þ þ0.00605ð22Þ
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FIG. 5. Cutoff dependence of relative mass difference δ with
respect to the “ηss” meson mass along fwρg ¼ f0; 0; 0; 1g. The
red filled diamond represents δ for fwρg ¼ f0; 0; 1; 1g, the green
filled triangle for fwρg ¼ f0; 1; 1; 1g, and the blue star for
fwρg ¼ f1; 1; 1; 1g.
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B. Effective energies with finite momenta

Now let us turn to the “ηss” meson energies with finite
momenta. In Fig. 6, we plot the effective energies with
spatial momentum squared ðapÞ2 ¼ 0 (black filled circle),
ð2π=128Þ2 × 1 (red filled diamond) and ð2π=128Þ2 × 2
(green filled triangle) along the time direction of fwρg ¼
f0; 0; 0; 1g at β ¼ 2.575. The black dashed line denotes the
value of amPS in Table II, which is the “ηss” meson mass,

and the red and green dashed lines are for the expected
energies estimated by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðamPSÞ2 þ ðapÞ2

p
. We observe that

the measured effective energies with finite momenta
show good consistencies with the expected ones. Figure 7
shows effective energies along the time direction of
fwρg ¼ f0; 0; 1; 1g. In this case, the minimum and the
second minimum fractional spatial momentum squared in
unit of ð2π=128Þ2 are ð2π=128Þ2 × 1=2 (red filled dia-
mond) and ð2π=128Þ2 × 3=2 (green filled triangle).3 We
find that the “ηss”meson successfully acquires the expected
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FIG. 6. Effective energies with momenta at β ¼ 2.575 as a
function of

ffiffiffiffiffiffi
g44

p
nt ¼ nt choosing fwρg ¼ f0; 0; 0; 1g for the

time direction. The black filled circle, the red filled diamond
and the green filed triangle are the effective energies
with spatial momentum squared ðapÞ2 ¼ 0; ð2π=128Þ2 × 1 and
ð2π=128Þ2 × 2, respectively. The black dashed line represents
the central value of the fit mass amPS in Table II. The red and
green dashed lines are the expected energies given byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðamPSÞ2 þ ðapÞ2
p

with spatial momentum squared ðapÞ2 ¼
ð2π=128Þ2 × 1 and ð2π=128Þ2 × 2, respectively.
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expected energies with spatial momentum squared ðapÞ2 ¼
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FIG. 9. Dispersion relation of “ηss” meson at β ¼ 2.575. The
data correspond to those in Figs. 6–8. The black filled circle
represents the dispersion relation for fwρg ¼ f0; 0; 0; 1g, the red
filled diamond for fwρg ¼ f0; 0; 1; 1g and the green triangle for
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3The second minimum momentum squared is ð2π=128Þ2,
which is not fractional in unit of ð2π=128Þ2 and out of our
interest here.
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energies with finite momenta. Figure 8 is for the case of
fwρg ¼ f0; 1; 1; 1g, whose minimum spatial momentum
squared is ð2π=128Þ2 × 2=3 (red filled diamond). Again we
find good consistency between the measured effective
energy and the expected one. In Fig. 9, we present the
dispersion relation for the “ηss” meson, where the numeri-
cal values of the fit energies are summarized in Table IV.
We find that the red and green symbols slightly shift
upward from the black ones. This could be due to the cutoff
effects discussed in the previous subsection.

V. CONCLUSIONS AND OUTLOOK

We have proposed an efficient use of geometry in lattice
QCD simulations. An appropriate reconstruction of a given
periodic lattice provides us an opportunity to improve the
resolution of the spatial momentum and the time interval.
We have explained the theoretical details and presented
some numerical results to demonstrate the validity of our
method. We have also found that tiny cutoff effects
depending on the time direction w safely diminish toward
the continuum limit. The reconstruction method could
help us investigate the hadron structures, the excited states,
the heavy hadrons etc., especially, in the master-field
simulations.
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