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We deliver lattice results for the I ¼ 0 ππ elastic s-wave scattering length calculated with the MILC
Nf ¼ 3 flavors of the Asqtad-improved staggered fermions. The scattering phase shifts are determined by
Lüscher’s formula from the energy-eigenvalues of ππ systems at one center of mass frame and four moving
frames using the moving wall source technique. Our measurements are good enough to resolve the
scattering length a and effective range r, moreover, it allows us to roughly estimate the shape parameter P.
Using our lattice results, the scattering length a and effective range r at the physical point are extrapolated
by chiral perturbation theory. Our results are reasonably consistent with the Roy equation determinations
and the newer experimental data. Numerical computations are carried out with two MILC fine
(a ≈ 0.09 fm, L3 × T ¼ 403 × 96) and one MILC superfine (a ≈ 0.06 fm, L3 × T ¼ 483 × 144) lattice
ensembles at three pion masses of mπ ∼ 247 MeV, 249 MeV, and 314 MeV, respectively.
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I. INTRODUCTION

The pion-pion (ππ) scattering amplitudes are solely
predicted at leading order (LO) in chiral perturbation
theory (χPT) [1]. The next-to-leading order (NLO) and
next-to-next-to-leading order (NNLO) corrections in the
chiral expansion result in the perturbative deviations from
the LO prediction for small pion masses, and include both
estimable nonanalytical contributions and analytical terms
with low-energy constants (LEC’s) [2–6], which can be
secured from the experimental measurements or lattice
calculations.
With stringent χPT constraints, the E865 secured ππ

scattering lengths from the semileptonic Ke4 decay [7].
UsingRoy equations after the correction for isospin breaking
mass effects, the NA48=2 decisive analyses of the Ke4 and
K3π decays lead to the robust results on the s-wave ππ
scattering lengths [8]. All of these values can be used to
inversely determine the significant values of the LEC’s.
With huge progress of numerical algorithms, assisted by

giant upgrade of computer power, lattice simulations are
able to determine the LEC’s values in the isospin-2 ππ

scattering with robust statistics [9–12]. Using the LEC’s
obtained at the nonphysical pion masses, the scattering
parameters at the physical point can be predicted under the
guidance of χPT. Moreover, Roy-equation [13–15] can
determine ππ scattering parameters with trustworthy pre-
cision [5,6,16], which can be employed to compare with
the relevant lattice evaluations. NPLQCD Collaboration
elegantly demonstrated these strategies in the isospin-2 ππ
scattering [9].
It is well-known that the I ¼ 0 ππ channel harbors the

lowest resonance: the scalar σ or f0ð500Þ meson, which
have been recently reconfirmed with dispersive analyses
and new experimental data [17]. Hence, it is highly
desirable to investigate the isospin-0 ππ interaction proper-
ties directly from lattice QCD.
However, only a few of lattice studies in the isospin-0

channel are reported so far. Kuramashi et al. carried out a
pioneering work for the isospin-0 channel with moving
wall source technique [18,19]. A first attempt to extract the
sigma from lattice was made in Refs. [20,21]. With vacuum
diagram, we attempted to crudely calculate the isospin-0 ππ
scattering, and estimated the value of lI¼0

ππ , which is a
LEC appearing in the NLO χPT expression of I ¼ 0 ππ
scattering length [22–24]. Liu et al. study the isospin-0 ππ
s-wave scattering length from twisted mass lattice QCD,
and evaluate lI¼0

ππ [25]. A chiral extrapolation of the hadron
spectrum results is performed in the isoscalar sector [26].
Recently, R. A. Briceno investigated the isoscalar ππ
scattering and σ meson resonance [27]. Guo et al. studied
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the elastic phase-shifts for ππ scattering in the scalar and
isoscalar channel [28].
It is very impressive that, as it is demonstrated for the

isospin-2 ππ scattering [9], the near threshold behavior of
the inverse partial wave amplitude can be exploited to
determine the scattering length, effective range and shape
parameters, which can be written in terms of a series of
threshold parameters which satisfy low-energy theorems
imposed by chiral symmetry and encrypt the chief momen-
tum dependence of partial wave amplitude [5,9]. Thus, one
can predict the scattering parameters at the physical point
by relevant NLO χPT expressions [9]. Lattice predictions
of scattering parameters are observed to be consistent with
Roy equation determinations [9]. In this work, we will
extend this technique to the isospin-0 ππ scattering. As it is
shown later, this is not a trivial development since it
exhibits some novel features.
Additionally, this approach is only valid in the elastic

region, so the pion mass values should be small enough to
be below threshold where σ meson approaches stable [25].
Although the strict value of this threshold is not clear, the
one-loop inverse amplitude method [29] indicates that the
threshold mπ < 400 MeV should be secure (see more
details in Refs. [30–32]). In this work, our lattice studies
are calculated at pion masses: 247 MeV, 249 MeV and
314 MeV, respectively. Since pion mass values are all
below this threshold, the influence of the σ meson can be
reasonably ignored [25]. Therefore, we will only use ππ
correlator to calculate the I ¼ 0 ππ elastic s-wave scatter-
ing lengths, as it is done in Ref. [25].
In the present study, we will exploit two MILC fine

(a ≈ 0.09 fm,L3 × T ¼ 403 × 96), and oneMILC superfine
(a ≈ 0.06 fm, L3 × T ¼ 483 × 144) lattice ensembles with
Nf ¼ 3 flavors of Asqtad-improved staggered dynamical
quarks [33–35] to compute the isospin-0 s-wave ππ scatter-
ing length, where Lüscher’s technique [36–38] and its
extension [39–45] are employed to extract the scattering
phases with lattice-calculated energy eigenstates. The mov-
ing wall source technique [18,19,46] is utilized to calculate
the four diagrams classified for the I ¼ 0 ππ scattering
[18,19,47].
According to the rule of thumb discussions [48,49], if we

use the fine gauge configurations, employ lattice ensembles
with relatively large spatial dimensions L, and sum the
correlators over all time slices (96 or 144), the signals are
anticipated to be significantly improved [49]. Consequently,
the signals of vacuum diagram are found to be remarkably
improved as compared with our previous works in
Refs. [22,23]. It allows us to not only measure the scattering
length, but also explore the effective range. The chiral
extrapolations of the scattering length mπaI¼0

0 is performed
using NLO χPT. Extrapolated to the physical value of
mπ=fπ, our final results give rise to

mπaI¼0
0 ¼ 0.217ð9Þð5Þ; lI¼0

ππ ¼ 45.6ð7.6Þð3.8Þ;

which are in reasonable agreement with the recent exper-
imental and theoretical determinations as well as the lattice
calculations available in the literature.
Most of all, after the chiral extrapolations of the effective

range mπr to the physical point, we can probe its lattice
result as

mπr ¼ −6.07ð44Þð36Þ;

which is also in fair accordance with the Roy-equation
determination [5,6].
This paper is organized as follows. The Lüscher’s finite

volume method, lattice setup, and the computation of the
finite volume spectrum of ππ system are discussed in
Sec. II. The lattice results are given in Sec. III, together with
relevant fits, which are employed to determine the thresh-
old parameters and the effective range parameters. In
Sec. IV, a summary of the relevant χPT formulas at
NLO and the chiral extrapolation of lattice-measured data
are provided. A brief summary and some discussions are
shown in Sec. V.

II. FINITE-VOLUME METHODS

In the present study, we will examine the s-wave ππ
system with the isospin representation of ðI; IzÞ ¼ ð0; 0Þ.
We restrict ourselves to the total momenta P ¼ ½0; 0; 0�,
½0; 0; 1�, ½0; 1; 1�, ½1; 1; 1� and ½0; 0; 2�, where the momenta
are written in units of 2π

L .

A. Center-of-mass frame

In the center-of-mass frame, the energy levels of two free
pions are provided by

E ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ jpj2
q

;

where p ¼ 2π
L n, and n ∈ Z3. The lowest energy E for

n ≠ 0 (e.g., n ¼ ð0; 0; 1Þ) is not within the elastic region
2mπ < E < 4mπ, or beyond the t-channel cut, which starts
at k2 ¼ m2

π [9]. We should remark at this point that the
finite-volume methods are only valid for elastic scattering,
consequently, we are only interested in n ¼ 0 for the
current study.
Due to the interaction between two pions, the energy

levels of ππ system are shifted by the hadronic interaction
from E to Ē,

Ē ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ k2
q

; k ¼ 2π

L
q;

where the dimensionless scattering momentum q ∈ R.
The most important irreducible representation is Aþ

1 . It is
the Lüscher formula that relates the energy Ē to the s-wave
ππ scattering phase δ [37,38],
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k cot δðkÞ ¼ 2

L
ffiffiffi
π

p Z00ð1; q2Þ; ð1Þ

where the zeta function is formally defined by

Z00ðs; q2Þ ¼
1ffiffiffiffiffiffi
4π

p
X
n∈Z3

1

ðjnj2 − q2Þs : ð2Þ

The zeta function Z00ðs; q2Þ can be efficiently evaluated by
the method described in Ref. [50]. We notice an equivalent
Lüscher formula has been recently developed in Ref. [51],
where the influence of the d-wave mixing with s-wave for
the boosted case is found to be small.
The lowest energy levels in the center-of-mass frame are

below the threshold (namely, k2 < 0) due to the attractive
interaction in the isospin-0 ππ scattering, as it is already
noticed in Refs. [18,19,22,23,25]. It should be worthwhile
to stress that the scattering phase shift δðkÞ in the con-
tinuum is solely denoted for k2 > 0 [37]. As for the case of
k2 < 0, it is usual to usher in a phase σðkÞ, which is
associated with δðkÞ via the analytic continuation of
tan σðkÞ ¼ −i tan δðkÞ [37]. Consequently, in the rest of
the analysis, it is convenient to always adopt the notation
k cot δðkÞ, as it is already done in Ref. [18,19,22,23,25].

B. Moving frame

Using a moving frame with non-zero total momentum
P ¼ ð2π=LÞd, d ∈ Z3, the energy levels of two free pions

EMF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ jp1j2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ jp2j2
q

;

where p1, p2 denote the three-momenta of the pions,
which obey the periodic boundary condition, p1 ¼ 2π

L n1,
p2 ¼ 2π

L n2, n1;n2 ∈ Z3, and total momentum P meets
P ¼ p1 þ p2 [39].
In the presence of the interaction between two pions, the

energy ECM is

ECM ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ k2
q

; k ¼ 2π

L
q; ð3Þ

where the dimensionless momentum q ∈ R, k ¼ jpj,
and p are quantized to the values p ¼ 2π

L r; r ∈ Pd, and
the set Pd is

Pd ¼
�
rjr ¼ γ⃗−1

�
nþ d

2

�
;n ∈ Z3

�
; ð4Þ

where γ⃗−1 is the inverse Lorentz transformation operating
in the direction of the center-of-mass velocity v, γ⃗−1p ¼
γ−1pk þ p⊥, where pk and p⊥ are the ingredients of p
parallel and perpendicular to v, respectively. Using the
Lorentz transformation, the energy ECM is connected to the
EMF through

E2
CM ¼ E2

MF − P2:

The first moving frame (MF1) are taken with d ¼ e3. We
implemented the second moving frame (MF2) with
d ¼ e2 þ e3. In order to acquire more eigenenergies, we
considered the third moving frame (MF3) with
d ¼ e1 þ e2 þ e3. The fourth moving frame (MF4) with
d ¼ 2e3 is also taken into account. For these evaluations,
the scattering phase shifts can be acquired from the total
energy of the two-particle system enclosed in a cubic torus
with total momentum P ¼ 2π

L d by the generalized Lüscher
relation [36–39]

k cot δðkÞ ¼ 2

γL
ffiffiffi
π

p Zd
00ð1; q2Þ; ð5Þ

where the γ-factor is denoted by γ ¼ EMF=ECM. The most
important irreducible representation is Aþ

1 , which is rel-
evant for two-particle s-wave scattering states in infinite
volume.
The evaluation procedure of zeta functions Zd

00ð1;q2Þ is
discoursed in Appendix A of Ref. [50]. As a consistency
check, we exploit the formula (5) described in Ref. [9] to
calculate the zeta functionsZd

00ð1; q2Þ as well, both methods
are found to arrive at the same results. Moreover, we have
verified that two approaches are mathematically equivalent
for the choice of Λ ¼ 1 in Ref. [9].

C. ππ correlator function

In this section, we follow original derivations and
notations in Refs. [18,19,47] to study ππ scattering of
two Nambu-Goldstone pions in Asqtad-improved stag-
gered dynamical fermion formalism. We build the iso-
spin-0 ππ state with following interpolating operator
[18,19]1

OI¼0
ππ ðp; tÞ ¼ 1ffiffiffi

3
p fπ−ðtÞπþðp; tþ 1Þ þ πþðtÞπ−ðp; tþ 1Þ

− π0ðtÞπ0ðp; tþ 1Þg: ð6Þ

with the interpolating pion operators denoted by

1In this operator, the momentum p is associated with time
tþ 1, and there is another similar operator where the momentum
p is associated with time t. After averaging over the two
operators, we build an operator, which is symmetric by swapping
the momentum 0 and p, and preserve the parity symmetry. Please
consult the technical issue of constructing a parity conserving
operator in Ref. [52]. Note that this parity violation in Eq. (6)
vanishes when tþ 1 is replaced by t, consequently, it tends to be a
small effect. It should be incorporated into more sophisticated
lattice study in the future.

I ¼ 0 ππ s-WAVE SCATTERING LENGTH FROM … PHYS. REV. D 98, 014514 (2018)

014514-3



πþðtÞ ¼ −
X
x

d̄ðx; tÞγ5uðx; tÞ;

π−ðtÞ ¼
X
x

ūðx; tÞγ5dðx; tÞ;

π0ðtÞ ¼ 1ffiffiffi
2

p
X
x

½ūðx; tÞγ5uðx; tÞ − d̄ðx; tÞγ5dðx; tÞ�:

Note that the operator OI¼0
ππ ðp; tÞ belongs to Aþ

1 .
The ππ four-point correlation function with the momen-

tum p can be expressed as,

Cππðp; t4; t3; t2; t1Þ
¼

X
x1

X
x2

X
x3

X
x4

eip·ðx4−x2Þ

× hOπðx4; t4ÞOπðx3; t3ÞO†
πðx2; t2ÞO†

πðx1; t1Þi; ð7Þ

where we usually choose t1 ¼ 0, t2 ¼ 1, t3 ¼ t, and t4 ¼
tþ 1 to prevent the intricate color Fierz rearrangement of
the quark lines [18,19].
In the isospin limit, ππ scattering amplitude receives

only four contributions, we exhibit these quark-line dia-
grams in Fig. 1, which are normally classified as direct (D),
crossed (C), rectangular (R), and vacuum (V) diagrams,
respectively [18,19,47].

In the present study, we employ moving wall source
technique to evaluate four quark-line diagrams [18,19]. In
our previous studies [23,24], we present a detailed pro-
cedure to express these diagrams in the center-of-mass
frame [23] with the light quark propagator G [18,19], and
the relevant expressions in the moving frame are also
provided in Ref. [24]. To write them in the generic frame
(i.e., the momenta p ¼ ½0; 0; 0�, ½0; 0; 1�, ½0; 1; 1�, ½1; 1; 1�
and ½0; 0; 2�), we used an up quark source with 1, and an
anti-up quark source with eip·x (except for V, where we
use 1) on each site for two pion creation operator,
respectively, then relevant expressions can be written as

CD
ππðp; t4; t3; t2; t1Þ ¼

X
x3;x4

cosðp · x4ÞhTr½G†
t1ðx3; t3ÞGt1ðx3; t3Þ�Tr½G†

t2ðx4; t4ÞGt2ðx4; t4Þ�i;

CC
ππðp; t4; t3; t2; t1Þ ¼

X
x3;x4

cosðp · x4ÞhTr½G†
t1ðx3; t3ÞGt2ðx3; t3ÞG†

t2ðx4; t4ÞGt1ðx4; t4Þ�i;

CR
ππðp; t4; t3; t2; t1Þ ¼

X
x2;x3

cosðp · x2ÞhTr½G†
t1ðx2; t2ÞGt4ðx2; t2ÞG†

t4ðx3; t3ÞGt1ðx3; t3Þ�i;

CV
ππðp; t4; t3; t2; t1Þ ¼

X
x2;x3

cosðp · ðx2 − x3ÞÞhTr½G†
t1ðx2; t2ÞGt1ðx2; t2Þ�Tr½G†

t4ðx3; t3ÞGt4ðx3; t3Þ�i;

− δp;0
X
x2;x3

hTr½G†
t1ðx2; t2ÞGt1ðx2; t2ÞihTr½G†

t4ðx3; t3ÞGt4ðx3; t3Þ�i; ð8Þ

where we note the fact that for the momenta p≠0≡½0;0;0�,
X
x2;x3

cosðp · ðx2 − x3ÞÞhTr½G†
t1ðx2; t2ÞGt1ðx2; t2Þi

× hTr½G†
t4ðx3; t3ÞGt4ðx3; t3Þ�i ¼ 0:

The combinations of light quark propagator G that we
apply for ππ four-point functions are shown in Fig. 1. Note
that the vacuum diagram is not accompanied by a vacuum
subtraction for nonzero momenta p [24].
It should be worthwhile to mention that the treatment of

vacuum part is actually similar to that of the disconnected
piece for sigma operator in our previous study [53], where

Professor Carleton DeTar has especially designed a FFT
algorithm to calculate the disconnected part [53]. In a same
manner, the vacuum diagram can be calculated with a FFT
algorithm, which is courteously dedicated to Appendix A.
In practice, we found that it indeed saves computer resource
significantly.
The ππ correlation functions can be expressed in terms of

four diagrams [18,19,47],

CI¼0
ππ ðtÞ≡Dþ Nf

2
C − 3NfRþ 3

2
V; ð9Þ

where the staggered-flavor factor Nf ¼ 4 is introduced due
to the number of tastes natural to the Kogut-Susskind

(a) (b) (c) (d)

FIG. 1. Quark-line diagrams for ππ correlation functions. The
wall sources are represented by short bars, and open circles
indicate the wall sinks for local pion operators.
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formulation [47]. Using the quadruple root of the fermion
determinant, the four-fold degeneracy of the staggered sea
quarks is believed to be neatly removed [47].
We should remember that, the contributions of non-

Nambu-Goldstone pions in the intermediate states is
exponentially suppressed for large t [18,19,47]. Hence,
we think that ππ interpolator does not greatly couple to
other ππ tastes, and neglect this systematic errors.

D. Lattice calculation

We employed the MILC gauge configurations with three
Asqtad-improved staggered sea quarks [54,55]. The sim-
ulation parameters are summarized in Table I. By MILC
convention, lattice ensembles are referred to as “fine” for
a ≈ 0.09 fm, and “super-fine” for a ≈ 0.06 fm. For easy
notation, it is handy to adopt ðaml; amsÞ to categorize
lattice ensembles. We should bear in mind that MILC gauge
configurations are generated using the staggered formu-
lation of lattice fermions [56] with the fourth root of
fermion determinant [33]. All the gauge configurations
were gauge fixed to Coulomb gauge before calculating
light quark propagators.
Although it is expensive, the moving wall source

technique [18,19] is believed to be able to calculate the
relevant correlators with high quality. We extend this
method to two-particle system with nonzero momenta to
examine the κ, σ, and K⋆ð892Þ meson decays [24,57,58],
and meson-meson scattering [22,23,46]. From these works,
we found that moving-wall source technique can calculate
four-point correlators with desirable quality.
To compute ππ correlators, the conjugate gradient

method is used to get the matrix element of the inverse
Dirac fermion matrix. We compute the correlators on all the
T time slices, and explicitly combine theses results, namely,
the correlator CππðtÞ is measured by

CππðtÞ ¼
1

T

XT
ts¼0

hðππÞðtþ tsÞðππÞ†ðtsÞi:

After averaging the propagators over all the T values, the
statistics are found to be remarkably improved.2

According to the analytical arguments in Refs. [19,48]
and the semiempirical discussions in Ref. [49], the noise-
to-signal ratio of ππ correlator is improved approximately
∝ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NsliceL3

p
, where L is the lattice spatial dimension,

and Nslice is the number of the time slices calculated the
light propagators for a given lattice ensemble. In the
present study, we exploit the MILC lattice ensembles with
the relatively large L (40 or 48), and sum ππ correlators
over all the time slices (96 or 144), consequently, it is
natural that the signals of ππ correlators should be
significantly improved. Admittedly, the most efficient
way to improve the relevant noise-to-signal ratio is to
use the finer gauge configurations or equivalent aniso-
tropic gauge configurations [27].
We compute two-point pion correlators with the zero and

nonzero momenta (0 and p) as well,

Cπð0; tÞ ¼
1

T

XT−1
ts¼0

h0jπ†ð0; tþ tsÞWπð0; tsÞj0i; ð10Þ

Cπðp; tÞ ¼
1

T

XT−1
ts¼0

h0jπ†ðp; tþ tsÞWπðp; tsÞj0i; ð11Þ

where π is pion point-source operator and Wπ is pion wall-
source operator [33,34]. To simplify notations, the sum-
mation over lattice space point in sink is not written out. It
should be worthwhile to stress that the summations over all
the time slices for π propagators guarantee the extraction

TABLE I. Simulation parameters of the MILC lattice ensembles. Lattice dimensions are described in lattice units with spatial (L) and
temporal (T) size. The gauge coupling β is shown in Column 3. The fourth block give bare masses of the light and strange quark masses
in terms of aml and ams, respectively. Column 5 gives pion masses in MeV. The lattice spatial dimension (L) in fm and in units of the
finite-volume pion mass are given in Column 6 and 7 respectively. We also list the mass ratio mπ=fπ . The values of the calculated ππ
correlators for each of the lattice ensembles are shown in Column 9, and the last Column gives the number of gauge configurations used
in this work.

Ensemble L3 × T β aml=ams mπðMeVÞ LðfmÞ mπL mπ=fπ Nππ
slice Ncfg

a ≈ 0.06 fm
48144f21b747m0036m018 483 × 144 7.47 0.0036=0.018 314 2.8 4.49 2.23(2) 144 102

a ≈ 0.09 fm
4096f21b708m0031m031 403 × 96 7.08 0.0031=0.031 247 3.4 4.21 1.70(1) 96 604
4096f3b7045m0031 403 × 96 7.045 0.0031=0.0031 249 3.4 4.20 1.76(1) 96 560

2For each gauge configuration, we compute 3T ¼ 3 � 96 ¼
284 or 3T ¼ 3 � 144 ¼ 432 light quark propagators. In practice,
we save all the light u quark propagators into the moving disks,
when needed, they are copied into computer memory. Using this
strategy, then for each time-slice calculation, it averagely costs
only three light quark propagator computations for three colors.
On this point of view, it is actually “cheap.”
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of pion mass with high precision (see the semiempirical
discussions in Ref. [49]).
Discarding the contributions from the excited states, the

pion massmπ and energy EπðpÞ can be robustly extracted at
large t from the two-point pion correlators (10) and (11),
respectively [55],

Cπð0; tÞ ¼ Aπð0Þ½e−mπ t þ e−mπðT−tÞ� þ � � � ; ð12Þ

Cπðp; tÞ ¼ AπðpÞ½e−EπðpÞt þ e−EπðpÞðT−tÞ� þ � � � ; ð13Þ

where the ellipses indicate the oscillating parity partners,
and Aπð0Þ and AπðpÞ are two overlapping amplitudes,
which are used to evaluate the wrap-around contributions
for ππ correlators subsequently [59–61].
Using the method described in MILC’s work [62,63], we

can calculate the pion decay constants fπ for three MILC
ensembles. Our fitted values of the pion decay constants are
found to be in well agreement with the same quantities
which are professionally computed on the same lattice
ensembles by the MILC collaboration [55,62,63]. The
MILCs determinations on pion decay constants are directly
quoted in this work, and are listed in Table I with mπ=fπ .

E. Extraction of energies

The energy Eππ of the ππ system is able to be extracted
from the ππ four-point function which demonstrates as
[64,65]

CππðtÞ ¼ Zππ cosh

�
Eππ

�
t −

1

2
T

��

þ ð−1ÞtZ0
ππ cosh

�
E0
ππ

�
t −

1

2
T

��
þ � � � : ð14Þ

for a large t to suppress the excited states, the terms
alternating in sign is a symbol of a staggered scheme, and
the ellipsis implies the contributions from the excited states
which are reduced exponentially. In practice, the pollution
due to the “wraparound” effects [59–61] should be con-
sidered. Actually, we will withdraw the “wraparound”
pollution before fitting with this formula, as practiced in
our former works [22–24].

III. FITTING ANALYSES

A. Lattice phase shift

In order for a more intuitive presentation of our lattice
results, we evaluate the ratios [18,19],

RXðtÞ ¼ CX
ππð0; 1; t; tþ 1Þ

Cπð0; tÞCπð1; tþ 1Þ ; X ¼ D;C;R; and V;

ð15Þ
where Cπð0; tÞ and Cπð1; tþ 1Þ are pion correlators with a
given momentum [18,19]. We should remark at this point

that our visualizations of various diagrams for the ππ
correlator is somewhat analogous to those of the Hadron
Spectrum Collaboration in Ref. [27], where the time
dependence of ππ correlator is weighted by eE0t with E0

the energy of the lightest state. As a matter of fact, both
visualized methods indicate the corresponding energy
shifts of the ππ system.
In Fig. 2, we display the various contributions to an

example ππ correlator for a MILC ensemble (0.0031,
0.031) at P ¼ ½0; 0; 0� as the functions of t, which are
illustrated as the individual ratios RXðtÞ; X ¼ D;C; R, and
V. The vacuum deduction, which is time independent, is
carried out with the technique described in Ref. [23]. It is
worth stressing that the vacuum diagram is not accom-
panied by a vacuum subtraction for the cases with the
nonzero momenta [24].
The ratio values of the direct amplitude RD are quite

close to oneness, indicating a fairly weak interaction in this
channel [18,19,22–25]. In fact, the I ¼ 0 ππ scattering is
perturbative at low momentum and at small light-quark
masses, as mandated by χPT. As a consequence, in a finite
volume, two-pion energies deviate slightly from the non-
interacting energies; namely, the sum of the pion masses (or
the boosted pion masses for moving frames). And the ratio
of the energy shift to total energy is normal about 5%
[18,19,22–25].
The systematically oscillating behavior of the rectangu-

lar amplitude is obviously observed, which is a typical
feature of the staggered formulation of lattice fermions
and corresponds to the contributions from the intermediate
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FIG. 2. Individual amplitude ratios RXðtÞ of ππ four-point
functions computed via the moving wall source technique at
P ¼ ½0; 0; 0� for MILC ensemble (0.0031, 0.031): direct diagram
(blue circle) displaced by 0.9, vacuum diagram (green stars),
crossed diagram (magenta squares), and rectangular diagram (red
crosses).
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states with opposite parity [64]. Currently, we use DeTar’s
strategy [65] [or Eq. (14)] to remove this oscillating
contribution. For the vacuum amplitude of this lattice
ensemble, we obtain a good signal up to t ∼ 26, beyond
which signals are quickly lost. We notice that all the four
diagrams are measured with good signals, and make a
remarkable progress as compared with our previous works
[22–24].
As already explained in previous studies [22–24], a

persuasive way to process our lattice data is the resort to the
“effective energy” plot, which is a variant of the effective

mass plot, and very similar to the “effective scattering
length” plot [66]. In practice, the isospin-0 ππ four-point
functions were fit by altering the minimum fitting distances
Dmin, and putting the maximum distance Dmax either at T=2
or where the fractional statistical errors exceed about 20%
for two sequential time slices [33]. The example “effective
energy” plots for the MILC ensemble (0.0031, 0.031) as the
functions of Dmin are illustrated in Fig. 3. For P ¼ ½0; 0; 0�,
the plateau is clearly observed from Dmin ¼ 8 ∼ 16. We
also notice that this plateau is distorted starting from
t ¼ 17, since the relevant vacuum contribution becomes
noisy after that, as compared with the other contributions,
please see Fig. 2 for details.
The energies aEππ of ππ system are secured from the

“effective energy” plots, and chosen by looking for a
combination of a “plateau” in the energy as the function
of Dmin, a good confidence level and Dmin large enough to
suppress the excited states [59,66]. It should be worthwhile
to stress once again that the“wraparound” contamination
[59–61] are removed before fitting by subtracting the
lattice-calculated wraparound contribution from the rel-
evant correlators. In the present study, our measured
quantities from two-point functions are sufficiently precise
to allow us to subtract the wraparound contributions, and
the unwanted finite-T effects are anticipated to be neatly
removed. The details of how to calculate the “wraparound”
contamination in center-of-mass frame and the moving
frames are provided in our previous work [49].
The fitted values of the energies aEππ of ππ system, fit

range and fit quality (χ2=dof) are given in Table II. The fit
qualities χ2=dof are turned out to be reasonable. Now it is
straightforward to substitute these fitted energies aEππ into
Lüscher formula (1) or (5) to secure the relevant values of
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FIG. 3. Effective energy Eππ plots for the MILC ensemble
(0.0031, 0.031) as the functions of Dmin for the ππ scattering in
the I ¼ 0 channel in lattice units.

TABLE II. Summaries of the lattice results for the fitted energies Eππ of the I ¼ 0 ππ system. The third block shows the fitted energies
Eππ in lattice units. Column four gives the fitting range, and Column five indicates the number of degrees of freedom (dof) for the fit. The
six block is the center-of-mass scattering momentum k2 in terms of m2

π , and Column seven gives the values of k cot δ=mπ , which are
calculated by Lüscher formula (1) or (5).

Ensemble P aE Range χ2=dof k2=m2
π k cot δ=mπ

(0.0036,0.018) ½0; 0; 0� 0.17704(88) 14–28 14.4=11 −0.01043ð91Þ 0.638(122)
½0; 0; 1� 0.23896(176) 13–24 10.6=8 0.1421(241) 0.526(155)
½0; 1; 1� 0.28164(230) 13–21 2.4=5 0.2874(371) 0.396(146)
½1; 1; 1� 0.31862(299) 12–23 16.5=8 0.4321(544) 0.449(187)
½0; 0; 2� 0.35776(276) 12–25 5.7=10 0.6990(564) 0.478(315)

(0.0031,0.031) ½0; 0; 0� 0.20207(103) 16–25 12.4=6 −0.0787ð77Þ 1.423(216)
½0; 0; 1� 0.28198(136) 14–25 8.9=8 0.2373(174) 1.277(240)
½0; 1; 1� 0.33510(131) 13–23 9.1=7 0.4203(198) 0.919(142)
½1; 1; 1� 0.38406(363) 11–19 5.3=5 0.6580(629) 1.324(648)
½0; 0; 2� 0.42356(403) 11–22 12.1=8 0.8211(771) 0.832(723)

(0.031,0.0031) ½0; 0; 0� 0.20169(103) 15–27 2.2=9 −0.00804ð96Þ 1.382(260)
½0; 0; 1� 0.28233(147) 14–24 8.6=7 0.2429(188) 1.346(277)
½0; 1; 1� 0.33514(199) 12–19 2.2=4 0.4236(303) 0.937(224)
½1; 1; 1� 0.38130(437) 10–18 10.6=5 0.6134(752) 1.038(563)
½0; 0; 2� 0.42521(303) 10–24 8.9=11 0.8562(583) 1.061(681)
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the k cot δ=mπ . All of these values are also summarized in
Table II, where the statistical errors of k2 are calculated
from both the statistical errors of the energies aEππ and
pion masses amπ . Note that the relevant scattering
momenta k are cited in units of pion masses mπ in order
to explicate the remaining analysis in such a manner which
is independent of the scale setting, as it is suggested by
NPLQCD Collaboration in Ref. [9]. All of these five
states (namely, P ¼ ½0; 0; 0�, ½0; 0; 1�, ½0; 1; 1�, ½1; 1; 1�
and ½0; 0; 2�) for each lattice ensemble will been analyzed
to produce the effective range expansion parameters.

B. The effective range approximation parameters

As it is shown latter, the effective range approximation is
an expansion of the real part of the inverse partial wave
scattering amplitude ½RetðkÞ�−1 in powers of k, the magni-
tude of the center-of-mass three-momentum of each pion
[9],3 namely,

k cot δ
mπ

¼ 1

mπa
þ 1

2
mπr

�
k2

m2
π

�
þ P

�
k2

m2
π

�
2

þ � � � ð16Þ

where mπa, mπr, and P are called as the scattering length,
effective range, and shape parameter, respectively. Note
thatmπa andmπr are cited in units ofm−1

π , and an alterative
way is employed in the present study to denote the
dimensionless quantity shape parameter P, as compared
with that of the isospin-2 ππ scattering in Ref. [9], where P
is scaled with ðmπrÞ3. Moreover, there is no minus sign in
the first term in Eq. (16) since the scattering length mπa is
positive value for the isospin-0 ππ scattering [2,5,9]. For
simple notations, ma≡maI¼0

0 , similar for mπr and P.
As it is pointed out in Ref. [9], the afore-mentioned

effective range approximation is believed to be convergent
for the energies below the t-channel cut, which starts
at k2 ¼ m2

π .
In the present study, we just have five lattice data for each

lattice ensemble at disposal. This is mainly due to our
currently limited computational resources. Of course, the
lack of lattice ensembles with the different spatial extent L
for a given pion mass is an another important reason. The
lattice-determined values of k cot δ=mπ are summarized in
Table II, we also exhibit these values in Figs. 4–6 for the
(0.0031, 0.031), (0.0031, 0.0031) and (0.0036, 0.018)
ensembles, respectively. Fortunately, the lattice-determined
values of k cot δ=mπ are turned out to be all within the
t-channel cut k2 ¼ m2

π .
Moreover, we observe that the values of k cot δ=mπ are

not roughly linear in k2 during the region k2=m2
π < 1.0,

which reflects the fact that the shape parameter P indeed
has a impact on the curvature. Actually, according to our
analytical discussions in Sec. IV, the second term and third
term in Eq. (16) both contribute significantly for the values
of k cot δ=mπ ,

4 Consequently, to be safe, we will include
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FIG. 4. A three-parameter fit to lattice-determined values of
k cot δ=mπ over the region k2=m2

π < 1.0 (Fit B) for the (0.0031,
0.031) ensemble. The shaded cyan band corresponds to statistical
error, and solid magenta curve is the central values. The black
circle in this figure indicates the relevant fit value of 1=ðmπaÞ.
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FIG. 5. The same of Fig. 4, but for the (0.0031, 0.0031)
ensemble.

3In Ref. [67], the effective range function k−1 tan δ is used
instead of the effective range function k cot δ, due to the
occurrence of subthreshold poles in k cot δ. Moreover, the regime
of validity for the effective range expansion is discussed in
Ref. [40].

4According to the discussions in Sec. IV, we can estimate that
the ratio of the effective rangemπr to the shape parameter P at the
physical point is −2.27ð39Þ, which partially confirmed the
assumption [25] that the contribution of Oðk4Þ term is not big
than that of Oðk2Þ term at least within t-channel cut k2 ¼ m2

π .
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both terms in the analyses of the values of k cot δ=mπ

throughout the remaining analyses.
So far, the influences of the higher order terms (NNLO,

etc.) from χPT is quite limited, which indicates the
contributions from Oðk6Þ term or higher are not clear
[25]. Additionally, using just five lattice data for each
ensemble, we are not able to effectively consider such high
order contribution.
In the region k2=m2

π < 0.5, we only have three or four
data at disposal. As is done for the isospin-2 ππ scattering
in Ref. [9], the scattering length mπa and effective range
mπr are fit (Fit A) with Eq. (16), where the shape parameter
P and the other higher orders terms are fixed to be zero. The
fitted values of mπa and mπr are given in the third column
of Table III.
In the region k2=m2

π < 1, lattice calculations indicates
that the curvatures have the quadratic (and higher) depend-
ence on k2. Therefore, three leading effective range
expansion parameters in Eq. (16) are fit (Fit B) to lattice
evaluations of k cot δ=mπ . The fits are compared to the
lattice calculations in Figs. 4–6 for the (0.0031, 0.031),
(0.0031, 0.0031) and (0.0036, 0.018) ensembles, respec-
tively. The fitted values of mπa, mπr and P are given in the
fourth Column of Table III. The shaded cyan band
corresponds to statistical error, and the solid magenta
curves are the central values. The black circles in these
figures indicate the relevant fit values of 1=ðmπaÞ.
It is explicit from Table III that the fit parameters of Fit B

are reasonable consistent with those of Fit A within the
statistical uncertainties. In what follows, we will make use
of χPT to predict the scattering parameters at physical pion
mass, with the fit parameters listed in Table III as input. We
note that our lattice-measured values of k cot δ=mπ for each
lattice ensemble have relatively large errors, which give rise
to the large statistical errors for the extracted quantities

(mπa, mπr and P). On the same time, it leads to the
relatively low χ2=dof values. The straightforward way to
move the χ2=dof into a more reasonable range is to use
more gauge configurations for each lattice ensemble
[19,48,49], which is certainly beyond the scope of this
work since it requires the huge of the computer resource.
We note that some other fitting strategies to improve the
statistical errors are discussed in Refs. [68,69],
Usually, the truncation of the effective range r is

considered to be an important source of systematic error,
and in Ref. [23], we only use one point (center of mass
P ¼ ½0; 0; 0�) to evaluate the scattering length ðmπaÞ000,
which is also calculated using only one data from center of
mass frame in the pioneering works [18,19]. To make this
difference of these results more intuitive, we also listed the
relative error,

Ra ¼
				mπa − ðmπaÞ000

mπa

				 × 100%;

in Table III for three lattice ensembles. From Table III, we
find that the relative errors for three lattice ensembles are
not small, which means that this kind of the systematic
error can not be ignored. We view this as one of the most
important results in the present study.
Considering the relatively strong interaction in the

isospin-0 ππ channel, Liu et al. realized that the contribu-
tion of Oðk2Þ and higher order terms in the effective range
expansion is very important for the reliable lattice calcu-
lation of scattering length [25]. Since they have one energy
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FIG. 6. The same of Fig. 4, but for the (0.0036, 0.018)
ensemble.

TABLE III. Summaries of the effective range expansion
parameters evaluated from the lattice determinations of
k cot δ=mπ for three MILC lattice ensembles.

Ensemble Quantity Fit A Fit B

(0.0036,0.018) mπa 1.72(25) 1.76(27)
mπr −0.818ð689Þ −1.27ð73Þ
m2

πar −1.40ð1.20Þ −2.25ð1.32Þ
P - 0.788(727)

χ2=dof 0.542=2a 0.327=2
Ra - 12.5

(0.0031,0.031) mπa 0.722(78) 0.736(79)
mπr −2.00ð77Þ −2.24ð65Þ
m2

πar −1.44ð58Þ −1.65ð51Þ
P - 0.592(648)

χ2=dof 0.37=1 1.08=2
Ra - 4.73

(0.0031,0.0031) mπa 0.730(97) 0.743(93)
mπr −1.69ð1.02Þ −1.75ð62Þ
m2

πar −1.23ð76Þ −1.30ð49Þ
P - 0.456(645)

χ2=dof 0.59=1 0.923=2
Ra - 2.67

aFour data are within the region k2=m2
π < 0.5 for this

ensemble.
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level for each pion mass, the values of the effective range r
are directly determined from NLO χPT [25]. Hence, our
investigation in this work exactly follows Liu et al.’s work
[25], and makes an improvement towards a calculation of
I ¼ 0 ππ scattering length by directly estimating the
effective range r from lattice simulation.
In addition, we found that the shape parameter P should

be also included for the successful fit of the low momentum
lattice values of k cot δ=mπ during the region k2=m2

π < 1,
which are illustrated in Figs. 4–6, respectively. This will be
clearly interpreted by the chiral perturbation prediction at
NLO in Sec. IV.
Admittedly, our fitted values of the shape parameter P

listed in Table III contain the rather large statistical errors,
as a result, it is not convincing to use these data to perform
the chiral extrapolation to the physical pion mass. This
kinds of work should be waiting for the more robust lattice
data in the future. Of course, the most efficient way to
improve the statistical errors of the shape parameter P is
working on the lattice ensembles with the different size L
for a given pion mass, as is done for the isospin-2 ππ
scattering in Ref. [9], since it can produce more reliable
data in the region k2=m2

π < 1.0.
Furthermore, according to the analytical arguments in

Refs. [19,48] and rule of thumbdiscussions inRef. [49],most
straightforward way to improve the noise-to-signal ratios of
the relevant correlators is to employ very fine gauge
configurations or anisotropic gauge configurations [27]. In
addition, if we use lattice ensembles with relatively large L,
and sum ππ correlators over all time slices, the signals are
anticipated to be significantly improved [49].With this aim in
mind, our ongoing lattice investigation on the isospin-0 ππ
scattering will be carried out with MILC ultrafine gauge
configuration (a ≈ 0.45 fm and L3 × T ¼ 643 × 192).

About five years ago, when we sincerely requested
Professor Eulogio Oset to give us some comments for
our previous work in Ref. [23], he suggested that we
consider the effective range parameter r in the calculation
of the I ¼ 0 ππ scattering length.5 This work specifically
answers his inquiries, and we here admire his sharp insight
of the physical essence.

IV. CHIRAL EXTRAPOLATIONS

The low-energy theorems imposed by chiral symmetry
indicates that each scattering parameter can be related to the
relevant LEC which appears at NLO in χPT [9]. In this
section, we will exploit NPLQCD Collaboration’s tech-
nique in Sec. V of Ref. [9] and follow the original
derivations and notations in Refs. [2,5,9] to provide the
NLO χPT expressions for the effective range expansion and
threshold parameters in the isospin-0 ππ scattering. For
easy notation, the Mandelstam variables (s, u, t) are
expressed in units of the physical pion mass squared m2

π.

A. Threshold parameters in χPT

In the elastic region (4 ≤ s ≤ 16), unitarity indicates
that the isospin-0 ππ s-wave scattering amplitude tðsÞ≡
tI¼0
l¼0ðsÞ can be described by real phase shift δ [2,5]

tðsÞ ¼
�

s
s − 4

�1
2 1

2i
fe2iδðsÞ − 1g: ð17Þ

According to the discussions in Appendix B, the I ¼ 0 ππ
s-wave NLO scattering amplitude can then be expressed in
terms of only three independent low-energy constants
(LEC’s), C1, C2, and C3 [2,5]:

tðkÞ ¼ 7m2
π

16πf2π
þm4

π

f4π

�
C1 þ
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384π3

�
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f2π
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where, k ¼ jkj is the magnitude of the center-of-mass
three-momentum of each pion, i.e., s ¼ 4ð1þ k2=m2

πÞ. and
the constants Ciði ¼ 1; 2; 3Þ can be described in terms of
the renormalized, quark mass independent low-energy
constants lr

i ðμ ¼ fπ;phyÞ [2,5]

5The numerical computations of this work were unceasingly
carried out for more than five years. We should especially thank
Prof. Hou Qing, and Prof. He Yan’s continuous encouragements
and comprehensive supports.
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C1 ¼
1

4π
ð20lr

1 þ 20lr
2 þ 5lr

3 þ 7lr
4Þ þ

35

256π3

C2 ¼
1

π
ð16lr

1 þ 12lr
2 þ 2lr

4Þ −
13

192π3

C3 ¼
1

3π
ð44lr

1 þ 28lr
2Þ −

295

576π3
: ð19Þ

It should be worthwhile to stress that three constants:
5=ð384π3Þ, 247=ð576π3Þ, and 35=ð48π3Þ in Eq. (18) will
be neatly cancelled out in Taylor expansion of last two
terms in Eq. (18) for small k2. Note that the renormalization
scale μ is fixed to be the physical pion decay constant
fπ;phy. To express the relevant formulas as a function of
mπ=fπ, we change fπ;phy with fπ , which only results in the
corrections at NNLO [25].
The near threshold (to be specific, k2 → 0) behavior for

the real part of the partial wave amplitude tðkÞ can be
expressed as a power-series expansion in the center-of-
mass three-momentum [2,5]

RetðkÞ ¼ mπaþ k2bþ k4cþOðk6Þ; ð20Þ

where the threshold parameters a and b are referred to as
the scattering length and slope parameter, respectively. Of
course, the threshold parameter c is also regarded as an
another slope parameter. Note that there is no minus sign

before mπa in Eq. (20), which is consistent with the
definition of the effective range approximation in Eq. (16).
We should remark at this point that three independent

constantsC1,C2 andC3 are directly related to the scattering
length a, slope parameter b, and slope parameter c,
respectively. This is a little bit different from those for
the isospin-2 ππ scattering in Ref. [9], where three
independent constants C1, C2 and C4 are directly related
to the scattering length a, effective range r, and shape
parameter P, respectively.
It is easy to show that the inverse form of real part of

scattering amplitude tðkÞ in Eq. (17) can be written as an
elegant form,

½RetðkÞ�−1 ¼
�
1þ k2

m2
π

�−1=2 k cot δ
mπ

þ
�
1þ k2

m2
π

�−1=2 k2

m2
π

�
k cot δ
mπ

�
−1
: ð21Þ

Plugging Eq. (16) into Eq. (21), and comparing them
with the near threshold behavior of the partial wave
amplitude tðkÞ denoted in Eq. (20), the effective range
mπr and the shape parameter P can be nicely described
only in terms of three threshold parameters [5]:

mπr ¼
1

mπa
−

2m2
πb

ðmπaÞ2
− 2mπa; ð22Þ

P ¼ 8m4
πðb2 −mπacÞ − 4m2

πb½mπaþ 2ðmπaÞ3� − ðmπaÞ2 þ 4ðmπaÞ4 − 8ðmπaÞ6
8ðmπaÞ3

: ð23Þ

Equations (22) and (23) can be used inversely to secure the
slope parameters b and c from the lattice-measured
effective range expansion parameters [9].
To simplify the notation, it is convenient to follow the

original notation in Ref. [9] to denote z≡m2
π=f2π . After

expanding the NLO partial wave scattering amplitude
denoted in Eq. (18) in powers of k2, it is straightforward
to obtain the NLO χPT expressions for the threshold
parameters:

mπa ¼ 7z
16π

þ z2C1 −
63

256π3
z2 log z; ð24Þ

m2
πb ¼ z

2π
þ z2C2 −

13

24π3
z2 log z; ð25Þ

m4
πc ¼ z2C3 −

25

72π3
z2 log z: ð26Þ

It is interesting and important to notice that no any
contributions are accepted from LO χPT for the slope

parameter c, as it is already noticed that for the isospin-2 ππ
scattering in Ref. [9].
In our previous work [23], we directly make use of the

explicit results in Appendix C of Ref. [5] to get the χPT
formula for the scattering length mπa, we find it is nice to
consistent with the relevant result in Eq. (24), which was
recently used to extrapolate the lattice-measured data to the
physical pion mass by Liu et al. in Ref. [25]. Note that the
constant C1 is related to the constant lI¼0

ππ denoted in
Ref. [23] by

C1 ¼
7

256π3
ðlI¼0

ππ þ 5Þ: ð27Þ

As it demonstrated in Appendix B, we also nicely repro-
duce the relevant results in Appendix C of Ref. [5] for slope
parameter b. Note that there is no explicit formula for the
slope parameter c in Ref. [5].
From Eq. (22), we note that the effective range mπr

contains three components. It is easy to show that the
second term indeed dominates the effective range mπr for
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the small z-values, as it is observed in Ref. [25], on the
other hand, for the large z-values, the third term absolutely
dominates the effective range mπr, and the first term
approaches zero. To be safe, we include all the three parts
in the present study.
Plugging these formulas for the threshold parameters

[namely, the Eqs. (24)–(26)] into the Eqs. (22) and (23),
after some strenuous algebraic manipulations, it is straight-
forward to achieve the NLO χPT descriptions for the
effective range approximation parameters:

mπr ¼ −
144π

49z
þ C4 þ

157

147π
ln z −

7z
8π

− 2z2C1; ð28Þ

m2
πar ¼ −

9

7
þ zC5 þ

25

21π2
z ln z −

49z2

128π2
−
7z3

4π
C1; ð29Þ

P ¼ 478π

343z
þ C6 þ

673

3528π
ln z −

9z
32π

þ 8192π3

343
C3C1zþ

�
10240

1029
C1 −

288

49
C3

�
z ln z

þ z2
�
1

2
C1 − C2

�
−

343z3

4096π3
−
147z4

256π4
C1; ð30Þ

where the constants C4, C5, and C6 are solely denoted in
terms of the constants C1, C2, and C3 via

C4 ¼
256π2

49

�
25

7
C1 − 2C2

�
; ð31Þ

C5 ¼
16π

7

�
16

7
C1 − 2C2

�
; ð32Þ

C6 ¼ −
33248π2

2401
C1 þ

3200π2

343
C2 −

256π2

49
C3: ð33Þ

Note that we should keep last two terms in NLO χPT
expressions formπr in Eq. (28), which naturally come from
the third part of mπr denoted in Eq. (22). In the same
manner, the last two terms in NLO χPT expressions for
m2

πar in Eq. (29) are required to hold as well. On the other
hand, the relevant two terms for the isospin-2 case can be
reasonably overlooked [9]. Similarly, the last six terms in
NLO χPT expressions for P in Eq. (30) should be reserved.
We should remark at this point that Eqs. (28)–(30) are

valid for the range of interest in the present study, and
more terms should be added into these equations for large
z-values. Moreover, the factor −9=7 in Eq. (29) indicates
the relevant LO χPT prediction.
In practice, it is handful to recast the constants Ciði ¼

1; 2; 3Þ in terms of the scale-independent dimensionless
couplings l̄i [2,5]

C1¼
1

256π3

�
40

3
l̄1þ

80

3
l̄2−5l̄3þ28l̄4þ63ln

m2
π

f2π;phy
þ35

�
;

C2¼
1

192π3

�
32l̄1þ48l̄2þ24l̄4þ104ln

m2
π

f2π;phy
−13

�
;

C3¼
1

72π3

�
11l̄1þ14l̄2þ25ln

m2
π

f2π;phy
−
295

8

�
: ð34Þ

Meanwhile, using Eqs. (31) and (32), we can also recast
the C4 and C5 in terms of the scale-independent dimen-
sionless couplings

C4 ¼
1

147π

�
−
792

7
l̄1 −

688

7
l̄2 −

375

7
l̄3 þ 108l̄4

−157 ln
m2

π

f2π;phy
þ 479

�
;

C5 ¼ −
1

42π2

�
144

7
l̄1 þ

176

7
l̄2 þ

30

7
l̄3þ50 ln

m2
π

f2π;phy
þ 43

�
:

ð35Þ

Using Eqs. (34) and (35), we can measure the values of
C1, C2, C3, C4, and C5 via the reported values of the scale
independent couplings l̄i in Refs. [6,70]

l̄1 ¼ −0.4� 0.6; l̄2 ¼ 4.3� 0.1;

l̄3 ¼ 2.9� 2.4; l̄4 ¼ 4.4� 0.2; ð36Þ

and the renormalization scale μ is set to be the physical pion
decay constant fπ;phy ¼ 130.2ð1.7Þ [71]. Then we arrive at

C1 ¼ 0.033ð2Þ; C2 ¼ 0.051ð4Þ; C3 ¼ 0.010ð3Þ;
C4 ¼ 0.865ð0.511Þ; C5 ¼ −0.184ð59Þ: ð37Þ

Note that if we make use of Eq. (19) and take the estimated
values of lr

i ’s in Ref. [25], we can get the same values
of Ciði ¼ 1; 2; 3; 4; 5Þ.
With the estimated values of C1, C2, and C3 in Eq. (37),

and using Eqs. (22) and (23), the ratio of the effective range
mπr to the shape parameter P at the physical pion mass can
be estimated as −2.27ð39Þ. This indicates the second term
and third term in Eq. (16) both contribute significantly for
the lattice-measured values of k cot δ=mπ . Meanwhile, it
partially confirmed the assumption in Ref. [25] that the
contribution of theOðk4Þ term is not big than that ofOðk2Þ
term at least within the t-channel cut k2 ¼ m2

π . Admittedly,
at NLO χPT level, the contributions from Oðk6Þ term or
higher are not clear for us as well [25], and it definitely
needs the knowledge of the higher order terms (NNLO,
etc.) from χPT, which is certainly beyond the scope of
this work.
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It should be worthwhile to stress that, for the isospin-2
ππ scattering, the mπr always has positive value [9].
However, for the isospin-0 case, it always holds negative
value. To verify the valid of the Eq. (28), we straightfor-
wardly use Eq. (22) to measure the corresponding results,
where the Eqs. (24) and (25) are used, and the values of C1,
C2, and C3 in Eq. (37) are plugged in. The relevant results
are displayed in top panel of Fig. 7. We also show the
relevant results using Eq. (28), which are displayed in
bottom panel of Fig. 7. One thing greatly comforting us is
that both methods give similar results, which indicates that
Eq. (28) is valid at least for the range of interest in this
work. Analogously, we can discuss the validity of Eq. (29).
In what follows, we can use Eqs. (28) and (29).
Similarly, to check the applicable scope of Eq. (30), we

directly make use of Eq. (23) to measure the corresponding
results. It is very inspiring that both methods also result in
the somewhat similar results, which indicates that Eq. (30)
is also valid at least for the range of interest in the present
study. Admittedly, Eq. (30) is not simple style. For the large

z-values (e.g., z > 6), it deviates seriously from these using
Eq. (23). In the rest of the analysis, we can use Eq. (30).
It is worth mentioning that the NLO expressions given in

Eqs. (28)–(30) are much more complicate than those of the
isospin-2 [9]. Actually, it partially reflects the fact that the
LO χPT can nicely reproduce the I ¼ 2 s-wave ππ
scattering length with just a 0.5% deviation as compared
with the relevant experimental and theoretical results
[1,7,8]. Nevertheless, in the isospin-0 channel, the agree-
ment between LO χPT and corresponding experiments and
theoretical results is departed by about 30% [1,7,8].

B. Chiral extrapolation of threshold parameters

In this work, lattice calculations are performed at pion
masses: 247 MeV, 249 MeV and 314 MeV, respectively,
according to the previous discussions, the influence of the
σ meson can be reasonably ignored. In principle, we can
exploit all of our data to carry out the relevant chiral
extrapolation. Nevertheless, as it is pointed out in Ref. [25],
the pion mass values should be small enough to make the
NLO chiral expansion valid. For this purpose, we carry out
the chiral extrapolation only using the data with two lower
pion masses (247 and 249 MeV).
Using NLO χPT expressions for the scattering length

mπa in Eq. (24), the value of the constant C1 can be
obtained by fitting with lattice-measured mπa from Fit B
provided in Table III. We can then translate the constant C1

into the familiar lI¼0
ππ by Eq. (27). Moreover, the scattering

length mπa at physical pion mass can be predicted using
NLO χPT expressions denoted in Eq. (24). The chiral
extrapolation of the scattering length mπa is shown in
Fig. 8, and the extrapolated value at physical point is
indicated by black circle on the physical line. The relevant
results are given in Table IV as Fit-1.
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FIG. 7. The dashed green lines denote the physical line, and the
Roy equation predictions [6] are the black circle on the physical
line. The brown band on bottom panel denotes the results are
calculated at NLO in χPT using Eq. (28) with the relevant input
data from Ref. [6]. For comparison, the cyan band on top panel
denotes the relevant results are directly evaluated using Eq. (22).
The solid magenta curves are the central values.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
mπ

2 /fπ
 2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

m
πa ππI=

0

FIG. 8. Chiral extrapolation of mπa using only the lattice data
with two lower pion masses. The dashed orange line indicates the
physical line. The lattice QCD þ χPT prediction at physical pion
mass is the black circle on the physical line, where the statistical
error and systematic error are added in quadrature. The shaded
cyan band corresponds to statistical error, and solid magenta
curve is the central values.
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On the same time, the corresponding fitting results with
all the tree pion masses are also provided in Table IV as
Fit-2, which agree with Fit-1 within statistical errors.
The differences of two fits are considered as the estimated
systematic uncertainties [25]. This leads to our ultimate
results for scattering length mπaI¼0

0 , lI¼0
ππ and CNLO

1 as

mπaI¼0
0 ¼ 0.217ð9Þð5Þ; lI¼0

ππ ¼ 45.6ð7.6Þð3.8Þ;
CNLO
1 ¼ 0.0448ð68Þð31Þ; ð38Þ

where the superscript in the constant C1 indicates that it is
estimated at NLO χPT. Our lattice result of mπaI¼0

0 is in
reasonable agreement with the newer experimental and
theoretical determinations as well as lattice calculations.
In Table V, we compare this result, together with lI¼0

ππ , to
these relevant results accessible in the literature.
With NLO χPT expressions for the effective range mπr

in Eq. (28) and m2
πar in Eq. (29), the C4 and C5 values can

be obtained by fitting with lattice-determined mπr and
m2

πar from Fit B listed in Table III, where the C1 is fixed to
the cental value of CNLO

1 in Eq. (38), since we just have two
lattice data at disposal. Moreover, the effective range mπr

and m2
πar at physical pion mass can be predicted by NLO

χPT. The relevant results are provided in Table IV as Fit-1.
Besides, the relevant fitting results with three pion

masses are given in Table IV as Fit-2, which agree with
Fit-1 within statistical errors. The differences of two fits are
regarded as the estimated systematic errors. This leads to
our ultimate results of mπr and m2

πar as

mπr ¼ −6.07ð44Þð36Þ; m2
πar ¼ −1.18ð13Þð6Þ: ð39Þ

In Fig. 9, the chiral extrapolations of mπr and m2
πar are

shown in the top panel, and bottom panel, respectively. Note
that our lattice determination ofm2

πar is fairly consistentwith
the LO χPT prediction of m2

πar ¼ −9=7ð1þOðm2
π=Λ2

χÞÞ.
It is quite inspiring that our lattice-obtained values of the

scattering lengthmπaI¼0
0 the effective rangemπr, and m2

πar
are turned out to be in reasonable accordance with the Roy
equation determinations [6],

TABLE V. Comparison of results available in the literature for
mπa and lI¼0

ππ .

mπaI¼0
0 lI¼0

ππ

This work 0.217(9)(5) 45.6(7.6)(3.8)
Liu [25] 0.198(9)(6) 30(8)(6)
Fu [23] 0.214(4)(7) 43.2(3.5)(5.6)
Weinberg [1] 0.1595(5) -
CGL [6] 0.220(5) 48.5(4.3)
NA48/2 [8] 0.220(3)(2)
E865 [7] 0.216(13)(2) 45.0(11.2)(3.5)
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FIG. 9. Chiral extrapolations of mπr and m2
πar using only the

lattice data with two lower pion masses. The dashed orange line
indicates the physical line. The lattice QCDþ χPT prediction at
physical pion mass is the red cross on the physical line, where the
statistical error and systematic error are added in quadrature. The
Roy equation predictions [6] are the black circles on the physical
line. The horizontal blue solid line in the bottom panel denotes
the LO χPT prediction, which ism2

πar ¼ −9=7 in the chiral limit.

TABLE IV. Results of NLO chiral fit for mπa, mπr and m2
πar.

Fit-1 uses two data from the (0.0031,0.031) and (0.0031,0.0031)
ensembles, while Fit-2 includes three data from all the lattice
ensembles.

Quantity Fit-1 Fit-2

mπaI¼0
0

0.217(9) 0.222(8)

CNLO
1

0.0448(68) 0.0479(58)

lI¼0
ππ 45.6(7.6) 49.4(6.6)

χ2=dof 0.32=1 1.1=2

mπr −6.07ð44Þ −5.71ð38Þ
CNLO
4

2.36(44) 2.71(38)

χ2=dof 0.27=1 2.42=2

m2
πar −1.18ð0.13Þ −1.13ð0.12Þ

CNLO
5

0.152(0.117) 0.195(0.107)

χ2=dof 0.42=1 1.27=2
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mπaI¼0
0 ¼ 0.220ð5Þ; m2

πb ¼ 0.276ð6Þ;
mπr ¼ −7.300ð0.584Þ; m2

πar ¼ −1.606ð79Þ: ð40Þ

Figure 9 provides a comparison of our lattice calculations
and the Roy equation values of mπr and m2

πar, which are
indicated by black circles on the physical line. Our fit
results ofmπaI¼0

0 and mπr seem to be reasonable consistent
with the corresponding CGL predictions roughly at the
1σ-level [6]. However, for m2

πar, the roughly 2σ-level
discrepancy is observed.
According to Eq. (28), the effective range mπr is

divergent in the chiral limit, this can partially explain the
extrapolated value of mπr to the physical point usually has
relative large statistical uncertainty, as compared with those
of mπaI¼0

0 and m2
πar. In practice, the statistical error of

mπr is roughly estimated by the error of C4, and it is not
dependent on the pion mass (or z-value).

V. SUMMARY AND CONCLUSION

In this work, using the MILC fine or superfine gauge
configurations [33,34] with three flavors of Asqtad-
improved staggered dynamical quarks [35], we performed
a lattice study of the isospin-0 s-wave ππ scattering over
a range of momenta below the inelastic threshold, and
total momenta P ¼ ½0; 0; 0�, ½0; 0; 1�, ½0; 1; 1�, ½1; 1; 1�, and
½0; 0; 2�, where, Lüscher’s technique [36–38] and its exten-
sions [39–45] are utilized to extract the scattering phase
shifts with lattice-calculated energy-eigenstates.
The technique of the “moving” wall source introduced in

Refs. [18,19] is exploited to calculate four diagrams
classified for the I ¼ 0 ππ scattering in Refs. [18,19].
Consequently, the signals of vacuum diagram are remark-
ably improved as compared with our previous studies
[23,24], which enables us to not only measure the scattering
length, but also explore the effective range. The chiral
extrapolations of mπaI¼0

0 and mπr are performed by NLO
χPT. Extrapolated to the physical value of mπ=fπ , our final
outcomes yield

mπaI¼0
0 ¼ 0.217ð9Þð5Þ; mπr ¼ −6.07ð44Þð36Þ;

which are in reasonable agreement with the newer exper-
imental and theoretical determinations as well as the lattice
calculations.
In the interpolation of a fit to the lattice-measured values

of k cot δ=mπ during the region k2=m2
π < 1.0, we include

three leading parameters in the effective range expansion,
which implement Liu et al.’s strategies [25] directly from
lattice QCD. In particular, we confirmed that the effective
range r and shape parameter P should be included for the
successful fit [25].
For each lattice ensemble, we just calculate five points,

simply due to the lack of computational resources, thus,
robust extraction of shape parameter P definitely need more

lattice data for each lattice ensemble. Admittedly, the most
efficient way to improve the statistical errors of P is
working on lattice ensembles with different size L for a
given pion mass, as is done for the isospin-2 ππ scattering
in Ref. [9].
So far, the influences of the higher order terms from χPT

is quite limited, and we also cannot rule out that such
contributions are significant [25]. It will be very interesting
to systematically study the NNLO χPT expressions for
leading three terms in the effective range expansion, and
investigate ultimate numerical results due to its modifica-
tions from the NLO χPT expressions, we reserve this
challenging work for the future.
The σ meson is clearly presented in low energy [46,72],

and it is necessary to map out “avoided level crossings”
between σ resonances and isospin-0 ππ states to secure the
reliable scattering length as investigated in the πK scatter-
ing [46,72]. Luckily, according to Liu et al.’s discussions
[25], the contaminations from σ meson for three lattice
ensembles with small pion masses are negligible. Of
course, sigma meson should be incorporated into more
sophisticated lattice computation in the future.
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APPENDIX A: FFT ALGORITHM
FOR VACUUM DIAGRAM

In this Appendix, we follow the original notations in
Ref. [53] to transplant the FFT algorithm for the
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disconnected piece for sigma operator [53] into the vacuum
diagram of ππ operator.
According to Eq. (8), the first part of the vacuum

diagram can be expressed with quark propagators G as

CV
ππðp; t4; t3; t2; t1Þ ¼ Re

X
x2;x3

eip·ðx2−x3Þ

× hTr½G†
t1ðx2; t2ÞGt1ðx2; t2Þ�

× Tr½G†
t4ðx3; t3ÞGt4ðx3; t3Þ�i: ðA1Þ

Let denote that

σðx2; t2Þ≡ Tr½G†
t1ðx2; t2ÞGt1ðx2; t2Þ�;

σðx3; t3Þ≡ Tr½G†
t4ðx3; t3ÞGt4ðx3; t3Þ�; ðA2Þ

then Eq. (A1) can be rewritten as

CV
ππðp; t4; t3; t2; t1Þ ¼ Re

X
x2;x3

eip·ðx2−x3Þhσðx2; t2Þσðx3; t3Þi;

If we define the Fourier transform:

σðp; tÞ ¼
X
x

σðx; tÞe−ip·x;

then Eq. (A1) can be recast as

CV
ππðp; tÞ ¼

1

T
Re

XT−1
t2¼0

hσð−p; t2Þσðp; t3Þi; ðA3Þ

where t ¼ t3 − t1, and we sum over all the time slice to
improve the statistics. Note that t2 ¼ t1 þ 1 and t4 ¼ t3 þ 1.
Of course, in the center-of-mass frame, the vacuum diagram
is still accompanied by a vacuum subtraction [24].

APPENDIX B: THE NLO ππ SCATTERING
AMPLITUDE

In this Appendix, we follow the original derivations and
notations in Refs. [2,4–6,9] to derive the isospin-0 ππ
partial scattering amplitude in χPT at NLO.
For the elastic ππ scattering, the Mandelstam variables

are written in units of physical pion mass squared m2
π as

s¼4þ4k2

m2
π
; u¼−

2k2

m2
π
ð1þcosθÞ; t¼−

2k2

m2
π
ð1−cosθÞ;

where θ is the scattering angle, and k ¼ jkj is the
magnitude of the center-of-mass three-momentum of each
pion. Note that the Legendre polynomials P0ðcos θÞ ¼ 1

and P2ðcos θÞ ¼ 3=2 cos2 θ − 1.
To calculate the amplitudes on the isospin-0 ππ scattering,

one expands the combinations with I ¼ 0 in the s-channel as

T0ðs; tÞ ¼ 3Aðs; t; uÞ þ Aðt; u; sÞ þ Aðu; s; tÞ:
Using the formula (4.14) and the notations in Ref. [5], we
arrive at

T0ðs; tÞ ¼ x2

�
7þ 8

k2

m2
π

�
þ x22½5b1 þ 12b2 þ 48b3 þ 32b4� þ x22

k2

m2
π
8ðb2 þ 12b3 þ 12b4Þ þ x22

k4

m4
π

�
8

3
ð22b3 þ 34b4Þ

�

þ x22
k4

m4
π

�
16

3
P2ðcos θÞðb3 þ 7b4ÞÞ

�
þ x22½3Fð1ÞðsÞ þGð1Þðt; sÞ þ Gð1Þðu; sÞ

þ Fð1ÞðtÞ þ Gð1Þðu; tÞ þ 3Gð1Þðs; tÞ þ Fð1ÞðuÞ þ Gð1Þðt; uÞ þ 3Gð1Þðs; uÞ�; ðB1Þ

where F and G are loop integrals denoted in Ref. [4], and
x2 ≡ 2m2

π=f2π . It is trivial to show that

3Fð1ÞðsÞþGð1Þðt;sÞþGð1Þðu;sÞ¼ J̄ðsÞ
�
49

2
þ56k2

m2
π
þ32k4

m4
π

�
;

and

Fð1ÞðtÞ þGð1Þðu; tÞ þ 3Gð1Þðs; tÞ ¼ 1

6
J̄ðtÞðCut −DutÞ;

Fð1ÞðuÞ þ Gð1Þðt; uÞ þ 3Gð1Þðs; uÞ ¼ 1

6
J̄ðuÞðCut þDutÞ;

where for easy notation, we define

Cut ≡ 5þ 16k2

m2
π
þ 24k4

m4
π
þ 40k4

m4
π
cos2θ;

Dut ≡ 16 cos θ
k2

m2
π

�
3þ 4k2

m2
π

�
; ðB2Þ

and the loop function J̄ðsÞ introduced Ref. [2] is formally
denoted as

J̄ðsÞ ¼ 1

16π2
ffiffiffi
z

p
log

� ffiffiffi
z

p
− 1ffiffiffi

z
p þ 1

�
þ 1

8π2
; z ¼ 1 −

4

s
:

For later simple notation, we denote
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KðsÞ≡ 1

16π2
ffiffiffi
z

p
log

� ffiffiffi
z

p
− 1ffiffiffi

z
p þ 1

�
:

Using the power representations of the loop integrals (B.1) in Ref. [6], we can write

J̄ðuÞ ¼ 1

96π2

�
uþ u2

10
þ u3

70
þOðu4Þ

�
;

J̄ðtÞ ¼ 1

96π2

�
tþ t2

10
þ t3

70
þOðt4Þ

�
;

where we consider that the values of u and t are small due to the small k2 value. Note that

J̄ðuÞ þ J̄ðtÞ ¼ 1

96π2

�
uþ tþ ðuþ tÞ2

10
þ ðuþ tÞ3Þ

70

�
−

1

96π2

�
2ut
10

þ 3utðuþ tÞ
70

�
þ � � �

¼ J̄ðuþ tÞ− 1

96π2

�
2ut
10

þ 3utðuþ tÞ
70

�
þ � � � ;

JðuÞ − JðtÞ ¼ u − t
96π2

�
1þ uþ t

10
þ u2 þ utþ t2

70

�
þ � � � :

Now it is ready to show that

J̄ðuÞþ J̄ðtÞ¼ J̄

�
−
4k2

m2
π

�
−

1

120π2
k4

m4
π
ð1− cos2θÞ

�
1−

6k2

7m2
π

�
þOðk6Þ;

J̄ðuÞ− J̄ðtÞ¼−
1

24π2
k2

m2
π
cosθ

�
1−

2k2

5m2
π
þ 2k4

35m4
π
ð3þ cos2θÞ

�
þOðk6Þ:

Hence, it is obvious to show that

Fð1ÞðtÞ þGð1Þðu; tÞ þ 3Gð1Þðs; tÞ þ Fð1ÞðuÞ þGð1Þðt; uÞ þ 3Gð1Þðs; uÞ

¼ 1

6
½ðJ̄ðuÞ þ J̄ðtÞÞCut þ ðJ̄ðuÞ − J̄ðtÞÞDut�

¼ J̄

�
−
4k2

m2
π

��
5

6
þ 8

3

k2

m2
π
þ 56

9

k4

m4
π
þ 40

9

k4

m4
π
P2ðcos θÞ

�
−

25

216π2
k4

m4
π
−

47

216π2
k4

m4
π
P2ðcos θÞ þOðk6Þ: ðB3Þ

We thus arrive at

T0ðs; tÞ ¼ x2

�
7þ 8k2

m2
π

�
þ x22

1

16π2
½49þ 5b̄1 þ 12b̄2 þ 48b̄3 þ 32b̄4� þ x22

k2

16π2m2
π

�
352

3
þ 8ðb̄2 þ 12b̄3 þ 12b̄4Þ

�

þ x22
k4

16π2m4
π

�
2014

27
þ 8

3
ð22b̄3 þ 34b̄4Þ

�
þ x22K

�
4þ 4k2

m2
π

��
49

2
þ 56

k2

m2
π
þ 32

k4

m4
π

�

þ x22K

�
−
4k2

m2
π

��
5

6
þ 8

3

k2

m2
π
þ 56

9

k4

m4
π

�
þ x22

k4

m4
π
P2ðcos θÞ

�
−

47

216π2
þ 1

3π2
ðb̄3 þ 7b̄4Þ þ

40

9
J̄

�
−
4k2

m2
π

��
: ðB4Þ

where we ignore the Oðk6Þ in Eq. (B3) since we are only interested in the terms up to and including the Oðk4Þ term in
the end.
To compare the theoretical amplitudes with data on the isospin-0 ππ scattering (e.g., lattice data, etc.), it is traditional to

expand the combination with isospin-0 in the s-channel T0ðs; tÞ into the partial waves,

T0ðs; tÞ ¼ 32π
X∞
l¼0

ð2lþ 1ÞPlðcos θÞt0lðsÞ: ðB5Þ

Consequently, we get the partial wave for s-wave (l ¼ 0)
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t00ðs; tÞ ¼
m2

π

16πf2π

�
7þ 8

k2

m2
π

�
þ m4

π

128π3f4π

�
49þ 5b̄1 þ 12b̄2 þ 48b̄3 þ 32b̄4 þ

5

3

�

þ m2
π

64π3f4π
k2
�
281

9
þ 4ðb̄2 þ 12b̄3 þ 12b̄4Þ þ

247

9

�
þ 1

24π3f4π
k4
�
−
253

72
þ 11b̄3 þ 17b̄4 þ

35

2

�

þ 1

πf4π
K

�
4þ 4k2

m2
π

��
49

16
m4

π þ 7m2
πk2 þ 4k4

�
þ 1

πf4π
K

�
−
4k2

m2
π

��
5

48
m4

π þ
1

3
m2

πk2 þ
7

9
k4
�
; ðB6Þ

and that for the d-wave (l ¼ 2)

t02ðs; tÞ
k4

¼ 1

120π3f4π

�
−
47

72
þ b̄3þ7b̄4

�
þ 1

36πf4π
J

�
−
4k2

m2
π

�
;

ðB7Þ

where the convention of fπ is about 130 MeV. We should
remark that three constants: 5=3, 247=9, and 35=2 in the
right-hand side of Eq. (B6) will be neatly cancelled out in
the Taylor expansion of last two terms in Eq. (B6) for
small k2.
The near threshold (to be specific, k2 → 0) behavior for

the real part of the partial wave amplitude tðkÞ can be
normally expressed as a power-series expansion in the
center-of-mass energy

RetIlðkÞ ¼ k2lfaIl þ k2bIl þ k4cIl þOðk6Þg; ðB8Þ

where the threshold parameters aIl and bIl are referred to
as the scattering lengths and slope parameters, respectively.
Of course, cIl is naturally regarded as an another slope
parameter. Matching Eq. (B8) to Eq. (B6) yields

a00¼
7m2

π

16πf2π

�
1þ m2

π

56π2f2π
ð49þ5b̄1þ12b̄2þ48b̄3þ32b̄4Þ

�
;

b00¼
1

2πf2π

�
1þ m2

π

32π2f2π

�
281

9
þ4b̄2þ48b̄3þ48b̄4

��
;

c00¼
1

24π3f4π

�
−
253

72
þ11b̄3þ17b̄4Þ

�
;

a02¼
1

120π3f4π

�
−
47

72
þ b̄3þ7b̄4

�
: ðB9Þ

It is obvious that we nicely reproduce the relevant results
in Appendix C of Ref. [5] for the scattering length aIl and
the slope parameter bIl at NLO, as expected. Note that we
also give the explicit formula for the slope parameter c00
in Eq. (B9) using the CGL language in Ref. [5]. In this
Appendix, to double-check our relevant results for the
s-wave, we also list the results for d-wave, since the
scattering amplitude in Eq. (B4) includes both information
of them.
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