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In this paper, we examine the effect of nonzero quark masses on the renormalization of gauge-invariant
nonlocal quark bilinear operators, including a finite-length Wilson line (called Wilson-line operators).
These operators are relevant to the definition of parton quasidistribution functions, the calculation on the
lattice of which allows the direct nonperturbative study of the corresponding physical parton distribution
functions. We present our perturbative calculations of the bare Green’s functions, the renormalization
factors in RI0 and MS schemes, as well as the conversion factors of these operators between the two
renormalization schemes. Our computations have been performed in dimensional regularization at one-
loop level, using massive quarks. The conversion factors can be used to convert the corresponding lattice
nonperturbative results to the MS scheme, which is the most widely used renormalization scheme for the
analysis of experimental data in high-energy physics. Also, our study is relevant for disentangling the
additional operator mixing that occurs in the presence of nonzero quark masses, both on the lattice and in
dimensional regularization.
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I. INTRODUCTION

Parton quasidistribution functions (quasi-PDFs) are nowa-
dayswidely employed in the nonperturbative studyof hadron
structure in lattice QCD. They are directly related to the
matrix elements of gauge-invariant nonlocal fermion bilinear
operators, including a finite-length Wilson line, which are
called Wilson-line operators. These functions were first
introduced by X. Ji [1,2] in order to obtain nonperturbative
results for the physical light-cone parton distribution func-
tions (PDFs) on the Euclidean lattice. PDFs are an essential
tool for studying the quark and gluon structure of hadrons, as
they describe the distributions of momentum and spin of
constituent partons (quarks, antiquarks, and gluons) inside a
hadron, in the infinite momentum frame. With the use of
LargeMomentumEffective Field Theory, quasi-PDFs can be
related to the physical PDFs at large momenta [1,3], through
a matching procedure.
So far, quasi-PDFs have been studied from many points

of view. Several aspects are being investigated both
perturbatively and nonperturbatively, using various tech-
niques. Exploratory lattice simulations [4–13], as well as

perturbative one-loop calculations [14–16] of quasi-PDFs
for the unpolarized, helicity, and transversity cases, have
been performed, giving promising results. Furthermore,
perturbative calculations of the matching between quasi-
PDFs and physical PDFs have been implemented in
Refs. [3,17–22]; a discussion about subtleties on the
continuation of PDFs to the Euclidean region can be found
in Refs. [14,23–25]. The quasi-PDF framework is also
applied to transverse momentum–dependent distributions
(TMDs) [26–32], generalized parton distributions [33,34],
hadronic light-cone distribution amplitudes [35–39], and
proton spin structure [40]. An overview of recent progress
in the study of quasi-PDFs can be found in Ref. [41].
An important issue, which needs to be addressed in order

to obtainmeaningful results from lattice investigations, is the
renormalization of quasi-PDFs in a fully nonperturbative
manner. Using a continuum regularization, Refs. [42,43]
address the renormalizability of quasi-PDFs to higher orders
in perturbation theory; some related early seminal work
regarding the renormalization of Wilson-loop operators can
be found in Refs. [44,45]. A perturbative one-loop calcu-
lation [16,46] of the matrix elements of the Wilson-line
operators on the lattice has shown two nontrivial features of
these operators: linear divergences (similar to those found in
the continuum [44]), in addition to the logarithmic diver-
gences, and mixing among certain pairs of the original
operators under renormalization. Studies for the elimination
of the linear divergences have been made using various
methods, such as the static quark potential [17,47,48], the
gradient flow [49–51], the nonperturbative bare matrix
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elements of the Wilson-line operators [16,46], and the
auxiliary field formalism [20,52–55]. A complete nonper-
turbative renormalization prescription, which relies on non-
perturbative matrix elements of Wilson-line operators, is
described in Ref. [56]; results from recent lattice simulations
by ETMC, employing this renormalization prescription, are
presented in Refs. [57,58]. A similar renormalization pre-
scription is described in Refs. [59–61]. Furthermore,
improved lattice versions of Wilson-line operators of order
Oða1Þ are presented in Ref. [62]. In addition, alternative
approaches for extracting physical PDFs on the lattice are
currently investigated, e.g., Ioffe-time distributions (called
pseudo-PDFs) [63–66], Compton amplitudes utilizing the
operator product expansion [67], “lattice cross sections”
[17,68], and Gaussian-weighted quasi-PDFs [69].
To date, all lattice studies of the renormalization of

Wilson-line operators have only considered massless fer-
mions, expecting that the presence of quark masses can
cause only imperceptible changes; this is indeed a reason-
able assumption for light quarks. However, for heavy
quarks, this statement does not hold. In addition, simu-
lations cannot be performed exactly at zero renormalized
mass. One could, of course, adopt a zero-mass renormal-
ization scheme even for heavy quarks, but such a scheme is
less direct and entails additional complications. Thus, it
would be useful to investigate the significance of finite
quark masses on the renormalization of Wilson-line oper-
ators. This is the goal of our present study.
In this work, we calculate the conversion factors from RI0

to the MS scheme, in dimensional regularization (DR) at
one-loop level for massive quarks. The conversion factors
can be combined with the regularization independent (RI0)-
renormalization factors of the operators, computed in
lattice simulations, in order to calculate the nonperturbative
renormalization of these operators in MS. Nonperturbative
evaluations of the renormalization factors cannot be obtained
directly in the MS scheme, since the definition of MS is
perturbative in nature; most naturally, one calculates them in
a RI0-like scheme and then introduces the corresponding
conversion factors between RI0 and MS, which rely neces-
sarily on perturbation theory. Given that the conversion
between the two renormalization schemes does not depend
on regularization, it is more convenient to evaluate it in DR.
Thus, the perturbative calculation of conversion factors is an
essential ingredient for a complete study of quasi-PDFs. This
work is a continuation to a previous paper [16], in which,
among other results, one-loop conversion factors of Wilson-
line operators are presented for the case of massless quarks.
In studying composite operators, one issue that must be

carefully addressed is that of possible mixing with other
similar operators. Many possibilities are potentially present
for the nonlocal operators that we study:
(A) Operators involving alternative paths for the Wilson

line joining the quark pair will not mix among
themselves, as demonstrated in Ref. [52] (and also in

Refs. [44,45] for the case of closed Wilson loops).
This property is related to translational invariance
and is similar to the lack of mixing between a local
composite operator OðxÞ with OðyÞ. Given that a
discrete version of translational invariance is pre-
served on the lattice, nonlocal operators involving
different paths should not mix also on the lattice.

(B) Operators involving only gluons will also not mix.
This can be seen, e.g., via the auxiliary field approach
(e.g., Ref. [52]); as a specific case, the operator of
Eq. (1) cannot mix with an operator containing the
gluon field strength tensor in lieu of the quark fields
(joined by aWilson line in the adjoint representation),
since this operator is higher dimensional.

(C) There may also be mixing among operators with
different flavor content in a RI0 scheme, depending
on the scheme’s precise definition. However, the
mixing is expected to be at most finite and thus not
present in the MS scheme; by comparing to the
massless case, in which exact flavor symmetry
allows no such mixing, the difference between the
massive and massless case will bear no superficial
divergences, since the latter are UV regulated by the
masses. The auxiliary field approach, by involving
only composite operators in the (anti)fundamental
representation of the flavor group, shows that no
flavor mixing needs to be introduced.

Even in the absence of quark masses, bare Green’s
functions of Wilson-line operators may contain finite,
regulator-dependent contributions that cannot be removed
by a simple multiplicative renormalization; as a conse-
quence, an appropriate (i.e., regularization-independent)
choice of renormalization prescription for RI’ necessitates
the introduction of mixing matrices for certain pairs of
operators [16], both in the continuum and on the lattice.
The results of the present work demonstrate that the
presence of quark masses affects the observed operator-
mixing pairs, due to the chiral-symmetry breaking of mass
terms in the fermion action. Compared to the massless case
on the lattice [16], the mixing pairs remain the same for
operators with equal masses of external quark fields, i.e.,
ð1; γ1Þ, ðγ5γ2; γ3γ4Þ, ðγ5γ3; γ4γ2Þ, and ðγ5γ4; γ2γ3Þ, where
by convention 1 is the direction of the straight Wilson line
and 2, 3, and 4 are directions perpendicular to it. However,
for operators with different masses of external quark fields,
flavor-symmetry breaking leads to additional mixing pairs:
ðγ5; γ5γ1Þ, ðγ2; γ1γ2Þ, ðγ3; γ1γ3Þ, and ðγ4; γ1γ4Þ. As a con-
sequence, the conversion factors are generally nondiagonal
2 × 2 matrices. This is relevant for disentangling the
observed operator mixing on the lattice. Also, comparing
the massive and the massless cases, the effect of finite mass
on the renormalization of Wilson-line operators becomes
significant for strange quarks, as well as for heavier quarks.
These are features of massive quasi-PDFs, which must be
taken into account in their future nonperturbative study.
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The outlineof this paper is as follows. In Sec. II,we provide
the theoretical setup related to the definition of the operators
that we study, along with the necessary prescription of the
renormalization schemes. Section III contains our results for
the bareGreen’s functions in DR, the renormalization factors,
as well as the conversion factors of these operators between
the renormalization schemes. In Sec. IV, we present several
graphs of the conversion factor matrix elements for certain
values of free parameters. Finally, in Sec.V,we concludewith
possible future extensions of our work.
We have also included two Appendices. Appendix A

contains a discussion on technical aspects, such as the
methods that we used to calculate the momentum-loop
integrals, as well as the limits of vanishing regulator and/or
masses.A table ofFeynmanparameter integrals,which appear
in the expressions of our results, is relegated to Appendix B.

II. THEORETICAL SETUP

A. Definition of Wilson-line operators

The Wilson-line operators are defined by a quark and an
antiquark field in two different positions, a product of Dirac
gamma matrices and a path-ordered exponential of the
gauge field (called Wilson line), which joins the fermion
fields together, in order to ensure gauge invariance. For
simplicity, we choose the Wilson line to be a straight path
of length z in the μ direction1; thus, the operators have the
form

OΓ ¼ ψ̄ðxÞΓP
�
exp

�
ig
Z

z

0

dζAμðxþ ζμ̂Þ
��

ψðxþ zμ̂Þ;

ð1Þ

where Γ ¼ 1, γ5, γμ, γν, γ5γμ, γ5γν, γμγν, γνγρ,
μ ≠ ν ≠ ρ ≠ μ, and z is the length of the Wilson line;
γ5 ¼ γ1γ2γ3γ4. The quark and antiquark fields may have
different flavors: ψf and ψ̄f0 ; flavor indices will be implicit
in what follows. Operators with Γ ¼ (γμ or γν), (γ5γμ or
γ5γν), (γμγν or γνγρ) correspond to the three types of PDFs:
unpolarized, helicity, and transversity, respectively.

B. Definition of renormalization schemes

Taking into account the presence of nonzero fermion
masses in our calculations, we adopt mass-dependent
prescriptions for the renormalization of Wilson-line oper-
ators. We define the renormalization factors that relate the
bare OΓ with the renormalized operators OR

Γ via2

OR
Γ ¼ Z−1

Γ OΓ: ð2Þ

[In the presence of operator mixing, this relationship is
appropriately generalized; see Eq. (8)]. The corresponding
renormalized one-particle irreducible (1-PI) amputated
Green’s functions of Wilson-line operators ΛR

Γ ¼
hψROR

Γ ψ̄
Riamp are given by

ΛR
Γ ¼ Z1=2

ψf Z
1=2
ψf0 Z

−1
Γ ΛΓ; ð3Þ

where ΛΓ ¼ hψOΓψ̄iamp are the bare amputated Green’s
functions of the operators and Zψf

is the renormalization

factor of the fermion field with flavor f, defined by ψR
f ¼

Z−1=2
ψf ψf [ψfðψR

f Þ is the bare (renormalized) fermion field].
In the massive case, renormalization factors of the fermion
and antifermion fields appearing in bilinear operators of
different flavor content may differ among themselves, as
the fields have generally different masses.

1. Renormalization conditions for fermion
fields and masses

At this point, we provide the conditions for the mass-
dependent renormalization of fermion fields, as well as the
multiplicative renormalization of fermion masses: mR ¼
Z−1
m mB [mB (mR) are the bare (renormalized) masses for

each flavor]; the latter is not involved in our calculations,
but we include it for completeness.
In MS, renormalization factors Zψ of the fermion field

and Zm of the fermion mass must contain, beyond tree
level, only negative powers of ε (the regulator in DR in D
dimensions, D≡ 4 − 2ε); their values are fixed by the
requirement that the renormalized fermion self-energy be a

finite function of the renormalized parametersmMS and gMS

(g ¼ μεZggMS; μ is a dimensionful scale):

hψMSψ̄MSi ¼ lim
ε→0

�
Z−1
ψ hψψ̄i

���
g¼μεZggMS

mB→mMS

�
: ð4Þ

In RI0, convenient conditions for the fermion field of a
given flavor and the corresponding mass are

ZX;RI0
ψ trð−iqhψψ̄i−1Þjqν¼q̄ν ¼ 4Ncq̄2 ð5Þ

ZX;RI0
ψ trð1hψψ̄i−1Þjqν¼q̄ν ¼ 4NcmRI0 ¼ 4NcðZX;RI0

m Þ−1mB;

ð6Þ

where q̄ν is the RI0 renormalization scale 4-vector, mRI0 is
the RI0-renormalized fermion mass, Nc is the number of
colors, and the symbol X can be any regularization, such as
DR or lattice. These conditions are appropriate for lattice
regularizations that do not break chiral symmetry, so the

1For the sake of definiteness, we will often choose μ ¼ 1 in
the sequel.

2All renormalization factors, generically labeled Z, depend on
the regularization X (X ¼ DR, LR, etc.) and on the renormaliza-
tion scheme Y (Y ¼ MS, RI0, etc.) and should thus properly be
denoted as ZX;Y , unless this is clear from the context.
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Lagrangian massm0 coincides with the bare massmB, e.g.,
staggered/overlap/domain wall fermions. For regulariza-
tions that break chiral symmetry, such as Wilson/clover
fermions, a critical mass mc is induced; one must first
find the value of mc by a calibration in which one requires
that the renormalized mass for a “benchmark” meson
attains a desired value, e.g., zero pion mass, and then
set mB ¼ m0 −mc.

2. Renormalization conditions for Wilson-line operators

As is standard practice, we will derive the factors ZΓ by
imposing appropriate normalization conditions on the
quark-antiquark Green’s functions of OΓ.

In the spirit of MS, ZDR;MS
Γ contains, beyond tree level,

only negative powers of ε. Here, we note that the leading
poles in n-loop diagrams of bare Green’s functions,Oð1=εnÞ
(n ∈ Zþ), are multiples of the corresponding tree-level
values and thus do not lead to any mixing. Subleading poles
will not lead to divergent mixing coefficients, as is implicit in
the renormalizability proofs of Refs. [44,45,52]. So, in the
MS scheme, we can use the standard definitions of renorm-
alization factors, as in Eq. (2).
In RI0, things are more complicated. There is, a priori,

wide flexibility in defining RI0-like normalization condi-
tions for Green’s functions. Given that no mixing is
encountered in MS renormalization and given that any
other scheme can only differ from MS by finite factors, one
might a priori expect to be able to adopt a deceptively
simple prescription, in which RI0-renormalized operators
are simply multiples of their bare counterparts, satisfying a
standard normalization condition,

Tr½ΛRI0
Γ ðΛtree

Γ Þ†�qν¼q̄ν
¼ Tr½Λtree

Γ ðΛtree
Γ Þ†� ¼ 4Nc; ð7Þ

where Λtree
Γ ¼ Γ expðiqμzÞ is the tree-level value of the

Green’s function of operatorOΓ andΛRI0
Γ is defined through

Eqs. (3) and (2). There is, however, a fundamental problem
with such a prescription: the renormalized Green’s function
resulting from Eq. (7) will depend on the regulator that was
used in order to compute it (and, thus, it will not be
regularization independent, as the name RI suggests). As
was pointed out in Ref. [16], bare Green’s functions of OΓ,
computed on the lattice, contain additional contributions
proportional to the tree-level Green’s function of OΓ0 ,
where Γ0 ¼ Γγμ þ γμΓ (whenever the latter differs from
zero). Such contributions will not be eliminated by apply-
ing the renormalization prescription of Eq. (7), thus leading
to renormalized Green’s functions that differ from those
obtained in DR. It should be pointed out that, in all cases,
the renormalized functions will contain a number of
tensorial structures, the elimination of which may be
possible at best only at a given value of the renormalization
scale. However, the main concern here is not the elimina-
tion of mixing contributions, desirable as this might be;

what is more important is to establish a RI0 scheme that is
indeed regularization independent so that nonperturbative
estimates of renormalization factors can be converted to the
MS scheme using conversion factors that are regulator
independent.
Given the preferred direction μ of the Wilson-line

operator, there is a residual rotational (or hypercubic, on
the lattice) symmetry with respect to the three remaining
transverse directions, including also reflections. As a
consequence, given an appropriate choice of a renormal-
ization scheme, no mixing needs to occur among operators
that do not transform in the same way under this residual
symmetry. In particular, mixing can occur only among pairs
of operators ðOΓ;OΓγμÞ.
Denoting generically the two operators in such a pair by

ðOΓ1
;OΓ2

Þ, the corresponding renormalization factors will
be 2 × 2 mixing matrices:

ORI0
Γi

¼
X2
j¼1

½ðZX;RI0
Γ1;Γ2

Þ−1�ijOΓj
; ði ¼ 1; 2Þ: ð8Þ

More precisely, the mixing pairs ðOΓ1
;OΓ2

Þ are ð1; γ1Þ,
ðγ5; γ5γ1Þ, ðγ2; γ1γ2Þ, ðγ3; γ1γ3Þ, ðγ4; γ1γ4Þ, ðγ5γ2; γ3γ4Þ,
ðγ5γ3; γ4γ2Þ, and ðγ5γ4; γ2γ3Þ. Therefore, the renormalized
1-PI amputated Green’s functions of Wilson-line operators
have the following form:

ΛRI0
Γi

¼
X2
j¼1

ðZX;RI0
ψf Þ1=2ðZX;RI0

ψf0 Þ1=2½ðZX;RI0
Γ1;Γ2

Þ−1�ijΛΓj
: ð9Þ

Thus, an appropriate renormalization condition, especially
for lattice simulations, is

Tr½ΛRI0
Γi
ðΛtree

Γj
Þ†�qν¼q̄ν

¼ Tr½Λtree
Γi

ðΛtree
Γj

Þ†� ¼ 4Ncδij: ð10Þ
Combining Eqs. (9) and (10), the RI0 condition takes the
form

ðZX;RI0
Γ1;Γ2

Þ
ij
¼ 1

4Nc
ðZX;RI0

ψf Þ1=2ðZX;RI0
ψf0 Þ1=2Tr½ΛΓi

ðΛtree
Γj

Þ†�qν¼q̄ν
:

ð11Þ
Based on the above symmetry arguments, such a RI0
condition will indeed be regularization independent, for
all regularizations that respect the above symmetries.
One could of course adopt more general definitions of

RI0, e.g., a prescription in which each of the 16 operators
OΓ can contain admixtures of some of the remaining
operators,

ORI0
Γi

¼
X16
j¼1

½ðZX;RI0 Þ−1�ijOΓj
; ði ¼ 1;…; 16Þ; ð12Þ

in such a way that the renormalized Green’s functions will
satisfy a condition similar to Eq. (10), but with the indices
i, j ranging from 1 to 16. However, such a definition would
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introduce additional finite mixing, which would violate the
rotational symmetry in the transverse directions, e.g.,
mixing among Oγ1 and Oγ2 ; such a violation would occur
whenever the RI0 renormalization scale 4-vector q̄ is chosen
to lie in an oblique direction. To avoid such unnecessary
mixing, it is thus natural to adopt the “minimal” prescrip-
tion of Eqs. (8)–(11). Since this prescription extends
beyond one-loop order, it may be applied to nonperturba-
tive evaluations of the renormalization matrices ZL;RI0 .
Let us note that, as it stands, Eq. (10) leads to renorm-

alization factors that depend on the individual components of
q̄, rather than just q̄2 and q̄μ; consequently, the renormaliza-
tion factors of, e.g.,Oγ2 andOγ3 will have different numerical
values. One could, of course, defineRI0 in such away that the
residual invariance is manifest; this can be seen by analogy
with local operators, e.g., OVi

¼ ψ̄ðxÞγiψðxÞ, where ZV is
often defined as the average over ZVi

(i ¼ 1, 2, 3, 4), and, in
doing so, ZV turns out to depend only on the length of the
renormalization scale 4-vector. Adopting such a definition,
the values of the conversion factors can be read off our bare
Green’s functions [see Eqs. (15)–(26) below] in a rather
straightforward way, and they will indeed depend only on q̄2

and q̄μ. However, in defining the RI0 scheme for Wilson-line
operators, we have aimed at being as general as possible and
thus did not take any averages, as above, in order to
accommodate possible definitions employed in nonpertur-
bative investigations of the renormalization factors; after all,
the conversion factors that we calculate must be applicable
precisely to these investigations. It goeswithout saying that if
one chooses all components of the renormalization scale 4-
vector, perpendicular to the Wilson line, to vanish, then
residual rotational invariance is automatically restored.
Finally, one could define RI0 in such a way that

renormalization factors would be strictly real, e.g., by
taking the absolute value of the lhs in Eq. (10); indeed,
the choice of the definition of RI0, leading to complex
renormalization factors, is not mandatory, but it is a natural
one, following the definition used in nonperturbative
investigations. All these choices are related to the MS
scheme via finite conversion factors; thus, no particular
choice is dictated by the need to remove divergences, either
in dimensional regularization or on the lattice.

C. Conversion factors

As a consequence of the 2 × 2 matrix form of the RI0
renormalization factors, the conversion factors between RI0

and MS schemes will also be 2 × 2 mixing matrices. Being
regularization independent, they can be evaluated more
easily in DR. They are defined ash

CMS;RI0
Γ1;Γ2

i
ij
¼
�
ZDR;MS
Γi

�
−1

·
h
ZDR;RI0
Γ1;Γ2

i
ij

¼
X2
k¼1

h�
ZLR;MS
Γ1;Γ2

Þ−1
i
ik
·
h
ZLR;RI0
Γ1;Γ2

i
kj
: ð13Þ

We note in passing that the definition of the MS scheme
depends on the prescription used for extending γ5 to D
dimensions3; this, in particular, will affect conversion
factors for the pseudoscalar and axial-vector operators.
However, such a dependence will only appear beyond one
loop. Now, the Green’s functions in the RI0 scheme can be
directly converted to the MS scheme through

 
ΛMS
Γ1

ΛMS
Γ2

!
¼
 
ZLR;MS
ψf

ZLR;RI0
ψf

!
1=2 ZLR;MS

ψf0

ZLR;RI0
ψf0

!1=2

×
�
ZLR;MS
Γ1;Γ2

�
−1

·
�
ZLR;RI0
Γ1;Γ2

�
·

 
ΛRI0
Γ1

ΛRI0
Γ2

!

¼ 1�
CMS;RI0
ψf

�
1=2
�
CMS;RI0
ψf0

�
1=2

�
CMS;RI0
Γ1;Γ2

�
·

 
ΛRI0
Γ1

ΛRI0
Γ2

!
;

ð14Þ

where CMS;RI0
ψf ≡ ZLR;RI0

ψf =ZLR;MS
ψf ¼ ZDR;RI0

ψf =ZDR;MS
ψf is the

conversion factor for a fermion field of a given flavor.

III. COMPUTATION AND RESULTS

In this section, we present our one-loop results for the
bare Green’s functions of Wilson-line operators, the
renormalization factors, and the conversion factors between
RI0 and MS schemes, using dimensional regularization. In
this regularization, Green’s functions are Laurent series in
ε, where ε is the regulator, defined byD≡ 4 − 2ε, and D is
the number of Euclidean spacetime dimensions, in which
momentum-loop integrals are well defined. We also inves-
tigate the operator mixing.

A. Bare Green’s functions

There are four one-loop Feynman diagrams correspond-
ing to the two-point Green’s functions of operators OΓ,
shown in Fig. 1. The last diagram (d4) does not depend on
the quark masses, and therefore its contribution is the same
as that of the massless case. In Appendix A, we describe the
method that we used to calculate the momentum-loop
integrals of the above diagrams. Below, we provide our
results for the bare Green’s function of operators for each
Feynman diagram separately. Our expressions depend on
integrals of modified Bessel functions of the second kind,
Kn, over Feynman parameters. These integrals are pre-
sented in Eqs. (B1)–(B16) of Appendix B. For the sake of
brevity, we use the following notation: fij ≡ fiðq; z; mjÞ,
gij ≡ giðq; z;mjÞ, and hi ≡ hiðq; z;m1; m2Þ. Also, index μ
is the direction parallel to the Wilson line; indices ν, ρ, and
σ are the directions perpendicular to the Wilson line; and

3See, e.g., Refs. [70–75] for a discussion of four relevant
prescriptions and some conversion factors among them.
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μ, ν,ρ, and σ are all different among themselves. Furthermore,
μ̄ is the MS renormalization scale, μ̄≡ μð4π=eγEÞ1=2, where
μ (not to be confused with the spacetime index μ) appears in
the renormalization of theD-dimensional coupling constant;
g ¼ μεZggR, and γE is the Euler constant. In addition, Cf ¼
ðN2

c − 1Þ=ð2NcÞ is the Casimir operator, and β is the gauge
fixing parameter, defined such that β ¼ 0ð1Þ corresponds to
the Feynman (Landau) gauge. Finally, symbols S (scalar),

P (pseudoscalar),Vμ (vector in the μ direction),Vν (vector in
the ν direction), Aμ (axial-vector in the μ direction),
Aν (axial-vector in the ν direction), Tμν (tensor in the μ
and ν directions), and Tνρ (tensor in the ν and ρ directions)
correspond to the operatorsOΓ with Γ ¼ 1, γ5, γμ, γν, γ5γμ,
γ5γν, γμγν, γνγρ, respectively. We note that only tree-level
values for the quarkmasses appear in the following one-loop
expressions:

Λd1
S ¼ g2Cf

16π2

�
Λtree
S

	
ðβ − 4Þð−4h1 − 2izqμh2 þ jzjðh4 þm1m2h5 − q2h7ÞÞ

þ βðq2 −m1m2Þ
	
1

2
z2ðh2 − q2h3Þ þ jzjðizqμðh5 − h6 − h7Þ − ðh5 − 2h6 þ q2h8ÞÞ





þ Λtree
S qiðm1 þm2Þ

	
β

�
jzjðh5 − q2h8Þ −

1

2
z2ðh2 þ q2h3Þ

�
− 2jzjðh5 − h6Þ




þ Λtree
Vμ

ðm1 þm2Þz½ðβ þ 2Þh1 − βðjzjq2ðh5 − h6 − h7Þ − izqμh2Þ�
�

ð15Þ

Λd1
P ¼ γ5Λ

d1
S fm2 ↦ −m2g ð16Þ

Λd1
Vμ

¼ g2Cf

16π2

�
Λtree
Vμ

	
−4ðβ − 1Þh1 þ jzj½ðβ þ 2Þh4 − ðβ − 2Þðm1m2h5 þ q2h7Þ� þ 2βzqμ½zqμh2 − iðh1 þ h2Þ

þ ijzjðh5 − h6 − h7Þ� þ βðq2 þm1m2Þ
	
jzjðh6 − q2h8Þ −

1

2
z2ðh2 þ q2h3Þ





þ ðΛtree
Vμ

qm1 þ qΛtree
Vμ

m2Þβ
	
−jzjðzqμðh5 − h6 − h7Þ − iðh6 − q2h8ÞÞ þ

1

2
iz2ðh2 − q2h3Þ



þ Λtree

S ðm1 þm2Þ½zðβ − 4Þh1 − 2ijzjqμðβ − 2Þðh5 − h6Þ� þ Λtree
S q½2jzjqμðβðh5 − h6 þm1m2h8Þ − 2h7Þ

− βz2qμðh2 −m1m2h3Þ þ 2izðβh1 − 2h2Þ − iβzjzjðq2 þm1m2Þðh5 − h6 − h7Þ�
�

ð17Þ

Λd1
Vν

¼ g2Cf

16π2

�
Λtree
Vν

	
−2ð2ðβ − 1Þh1 þ ðβ − 2Þizqμh2Þ − ðβ − 2Þjzjðm1m2h5 þ q2h7 − h4Þ

þ ðq2 þm1m2Þβ
	
jzjðizqμðh5 − h6 − h7Þ þ ðh6 − q2h8ÞÞ þ

1

2
z2ðh2 − q2h3Þ





þ ðΛtree
Vν

qm1 þ qΛtree
Vν

m2Þiβ
	
jzjðh6 − q2h8Þ −

1

2
z2ðh2 þ q2h3Þ



þ Λtree

Tμν
ðm1 −m2Þβz½−h1 þ jzjq2ðh5 − h6 − h7Þ

− izqμh2� þ Λtree
Vμ

zqν½βðijzjðq2 −m1m2Þðh5 − h6 − h7Þ þ 2ðzqμh2 − ih1ÞÞ − 4ih2�
− ðΛtree

Vμ
qm1 þ qΛtree

Vμ
m2Þβzjzjqνðh5 − h6 − h7Þ þ Λtree

S ðm1 þm2Þiqν½−2ðβ − 2Þjzjðh5 − h6Þ þ βz2h2�

þ Λtree
S qqν½βð2jzjðh5 − h6 þm1m2h8Þ − z2ðh2 −m1m2h3ÞÞ − 4jzjh7�

�
ð18Þ

Λd1
AμðνÞ ¼ γ5Λ

d1
VμðνÞfm2 ↦ −m2g ð19Þ

FIG. 1. Feynman diagrams contributing to the one-loop calculation of the Green’s functions of Wilson-line operator OΓ. The straight
(wavy) lines represent fermions (gluons). The operator insertion is denoted by double straight line.
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Λd1
Tμν

¼ g2Cf

16π2

�
Λtree
Tμν

β

	
−2ð2h1− z2q2μh2Þþ jzj½h4þq2ðh5−h7þ2izqμðh5−h6−h7ÞÞ�−2izqμðh1þh2Þ

− ðq2−m1m2Þ
�
jzjq2h8þ

1

2
z2ðh2þq2h3Þ

�

þðΛtree

Tμν
qm1þqΛtree

Tμν
m2Þ
	
β

	
1

2
iz2ðh2−q2h3Þ− jzjðzqμðh5−h6−h7Þ

þ iðh5−2h6þq2h8ÞÞ


þ2ijzjðh5−h6Þ



−Λtree

Vν
ðβ−2Þzðm1−m2Þh1þΛtree

Vν
qβ½2ðjzjqμm1m2h8− izh1Þ

þ izjzjðq2−m1m2Þðh5−h6−h7Þþ z2qμðh2þm1m2h3Þ�−Λtree
Vμ

iβz2qνðm1−m2Þh2þΛtree
Vμ

qβqν½z2ðh2−m1m2h3Þ

−2jzjm1m2h8�þΛtree
S βzqν½2ðih1−zqμh2Þ− ijzjðq2−m1m2Þðh5−h6−h7Þ�þΛtree

S qβzjzjqνðm1−m2Þðh5−h6−h7Þ
�

ð20Þ

Λd1
Tνρ

¼ g2Cf

16π2

�
Λtree
Tνρ

β

	
−2ð2h1 þ izqμh2Þ þ jzjðh4 þ q2ðh5 − h7ÞÞ þ ðq2 −m1m2Þ

	
1

2
z2ðh2 − q2h3Þ

− jzjðq2h8 − izqμðh5 − h6 − h7ÞÞ




þ ðΛtree
Tνρ

qm1 þ qΛtree
Tνρ

m2Þi
	
−β
�
1

2
z2ðh2 þ q2h3Þ þ jzjðh5 − 2h6 þ q2h8Þ

�

þ 2jzjðh5 − h6Þ


þ εμνρσΛtree

Aσ
ðm1 þm2Þ½−βzjzjq2ðh5 − h6 − h7Þ þ ðβ − 2Þzh1 þ iβz2qμh2�

þ ðΛtree
Tμν

qρ − Λtree
Tμρ

qνÞβz½2ðih1 − zh2qμÞ − ijzjðq2 þm1m2Þðh5 − h6 − h7Þ� þ ½ðΛtree
Tμν

qρ − Λtree
Tμρ

qνÞqm1

þ qðΛtree
Tμν

qρ − Λtree
Tμρ

qνÞm2�βzjzjðh5 − h6 − h7Þ þ ðΛtree
Vν

qρ − Λtree
Vρ

qνÞiβz2ðm1 −m2Þh2

− ðΛtree
Vν

qρ − Λtree
Vρ

qνÞqβ½z2ðh2 þm1m2h3Þ þ 2jzjm1m2h8�
�

ð21Þ

Λd2
S ¼ g2Cf

16π2

�
Λtree
S

	
ðβ − 1Þ

	
2f11 − 2 −

1

ε
− log

�
μ̄2

q2 þm2
1

�
þm2

1

q2
log
�
1þ q2

m2
1

�


þ βq2ðiqμðg31 − zf31Þ þ ðq2 þm2
1Þg41 − ðq2 − q2μÞg51Þ − 2iqμg21



þ Λtree

S qβm1½−qμðg31 − zf31Þ þ ig41ðq2 þm2
1Þ − ig51ðq2 − q2μÞ�

þ Λtree
Vμ

m1ð2g11 − βzf21Þ þ Λtree
Vμ

qiðβzf21 − 2ðg11 − g21ÞÞ
�

ð22Þ

Λd2
Γ ¼ Λd2

S Γ ð23Þ

Λd3
S ¼ g2Cf

16π2

�
Λtree
S

	
ðβ − 1Þ

	
2f12 − 2 −

1

ε
− log

�
μ̄2

q2 þm2
2

�
þm2

2

q2
log

�
1þ q2

m2
2

�


þ βq2ðiqμðg32 − zf32Þ þ ðq2 þm2
2Þg42 − ðq2 − q2μÞg52Þ − 2iqμg22



þ Λtree

S qβm2½−qμðg32 − zf32Þ þ ig42ðq2 þm2
2Þ − ig52ðq2 − q2μÞ�

þ Λtree
Vμ

m2ð2g12 − βzf22Þ þ qΛtree
Vμ

iðβzf22 − 2ðg12 − g22ÞÞ
�

ð24Þ

Λd3
Γ ¼ ΓΛd3

S ð25Þ

Λd4
Γ ¼ g2Cf

16π2
Λtree
Γ

	
4þ ðβ þ 2Þ

�
2γE þ 1

ε
þ log

�
1

4
z2μ̄2

��

: ð26Þ

UV-divergent terms of orderOð1=εÞ arise from the last three diagrams. These terms are multiples of the tree-level values
of Green’s functions and therefore do not lead to any mixing. However, there are finite terms for each OΓ with different
Dirac structures than the original operator; some of these terms are responsible for the finite mixing that occurs in RI0. In
particular, they lead to the expected mixing within the pairs ðΓ;ΓγμÞ or equivalently ðΓ; γμΓÞ. This is a consequence of the
violation of chiral symmetry by themass term in the fermion action aswell as the flavor-symmetry breakingwhenmasses have
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different values. For the case of equal masses (no flavor-
symmetry breaking)m1 ¼ m2, the mixing pattern reduces to
ðΓ; 1

2
fΓ; γμgÞ, which is the same as the pattern for massless

quarks on the lattice. Our findings are expected to be valid
also on the lattice.
The one-loop Green’s functions exhibit a nontrivial

dependence on dimensionless quantities involving the
Wilson-line length z, the external quark momentum q,
and the quark masses mi (i ¼ 1, 2): zqμ, zmi. This
dependence is in addition to the standard logarithmic
dependence on μ̄: logðμ̄2=q2Þ. Also, we note that our
results are not analytic functions of z near z ¼ 0; this
was expected due to the appearance of contact terms
beyond tree level. For the case z ¼ 0, the nonlocal
operators are replaced by local massive fermion bilinear
operators; their renormalization is addressed in Ref. [76],
using a generalization of the RI-SMOM scheme, called RI-
mSMOM. Further, the Green’s functions of Feynman
diagrams satisfy the following reflection relations, with
respect to z:

Λd1
Γ ðz;m1; m2Þ ¼

1

4
trðΓ2Þ½Λd1

Γ ð−z;−m2;−m1Þ�† ð27Þ

Λd2
Γ ðz;mÞ ¼ 1

4
trðΓ2Þ½Λd3

Γ ð−z;−mÞ�† ð28Þ

Λd4
Γ ðzÞ ¼ 1

4
trðΓ2Þ½Λd4

Γ ð−zÞ�†: ð29Þ

[Note that ð1=4ÞtrðΓ2Þ ¼ �1, depending on Γ.] The total
one-loop bare Green’s functions of operators OΓ are
given by the sum over the contributions of the four diagrams:

Λ1-loop
Γ ¼

X4
i¼1

Λdi
Γ : ð30Þ

B. Renormalization factors

1. Renormalization factors of fermion field and mass

The perturbative determination of Zψ and Zm proceeds in
textbook fashion by calculating the bare fermion self-energy
in DR to one loop; we present it here for completeness. The
Feynman diagram contributing to this two-point Green’s
function is shown in Fig. 2. Denoting by Σ the higher-order
terms Oðg2Þ of the 1-PI amputated Green’s function of the
fermion field, the inverse full fermion propagator takes
the following form: hψψ̄i−1 ¼ iqþm1 − Σ. Writing Σ in
the more useful form, Σ ¼ iqΣ1ðq2; mÞ þm1Σ2ðq2; mÞ, we
present the one-loop results for the functions Σ1, Σ2:

Σ1ðq2; mÞ ¼ g2Cf

16π2
ðβ − 1Þ

�
1þ 1

ε
þ log

�
μ̄2

q2 þm2

�
−
m2

q2

	
1 −

m2

q2
log

�
1þ q2

m2

�
�
þOðg4Þ ð31Þ

Σ2ðq2; mÞ ¼ g2Cf

16π2

�
2þ ðβ − 4Þ

	
2þ 1

ε
þ log

�
μ̄2

q2 þm2

�
−
m2

q2
log

�
1þ q2

m2

�
�
þOðg4Þ: ð32Þ

The renormalization conditions for Zψ and Zm in the RI0 scheme, using the above notation, take the following
perturbative forms:

ZDR;RI0
ψ ¼ 1

1 − Σ1

����
qν¼q̄ν

ð33Þ

ZDR;RI0
m ¼ 1 − Σ1

1 − Σ2

����
qν¼q̄ν

: ð34Þ

Thus, in the presence of finite fermion masses, the results for the renormalization factors of the fermion field and mass are
given below:

ZDR;RI0
ψ ¼ 1þ g2Cf

16π2
ðβ − 1Þ

	
1

ε
þ 1þ log

�
μ̄2

q̄2 þm2

�
−
m2

q̄2

�
1 −

m2

q̄2
log

�
1þ q̄2

m2

��

þOðg4Þ ð35Þ

ZDR;RI0
m ¼ 1þ g2Cf

16π2

	
−
3

ε
þ β − 5 − 3 log

�
μ̄2

q̄2 þm2

�
− ðβ − 4Þm

2

q̄2
log

�
1þ q̄2

m2

�

þ ðβ − 1Þm
2

q̄2

�
1 −

m2

q̄2
log

�
1þ q̄2

m2

��

þOðg4Þ: ð36Þ

FIG. 2. Feynman diagram contributing to the one-loop calcu-
lation of the fermion self-energy. The straight (wavy) lines
represent fermions (gluons).
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We recall that themass appearing in the above expressions
is the renormalizedmass,which coincideswith the baremass
to this order. The results forZψ andZm are in agreement with
Ref. [77], in the massless limit and for q̄ ¼ μ̄.
The renormalization factors in the MS scheme can be

readily inferred from Eqs. (35) and (36) by taking only the
pole part in epsilon:

ZDR;MS
ψ ¼ 1þ g2Cf

16π2
1

ε
ðβ − 1Þ þOðg4Þ ð37Þ

ZDR;MS
m ¼ 1þ g2Cf

16π2
1

ε
ð−3Þ þOðg4Þ: ð38Þ

2. Renormalization factors of Wilson-line operators

Now, we have all the ingredients for the extraction of
renormalization factors of Wilson-line operators in the RI0

and MS schemes. By writing Zψf
and ΛΓ in the form

ZDR;Y
ψf ¼ 1þ g2zYψf

þOðg4Þ; ð39Þ

ΛΓi
¼ Λtree

Γi
þ Λ1-loop

Γi
þOðg4Þ; ði ¼ 1; 2Þ; ð40Þ

where4

Λ1-loop
Γi

¼ g2
X2
j¼1

λijΛtree
Γj

þ � � � ;

λij ¼
1

4Nc

1

g2
Tr½Λ1-loop

Γi
ðΛtree

Γj
Þ†�; ð41Þ

the condition for the renormalization of Wilson-line oper-
ators in the RI0 scheme, up to one loop, reads

½ZDR;RI0
Γ1;Γ2

�ij ¼ δij þ g2δij

�
1

2
zRI

0
ψf

þ 1

2
zRI

0
ψf0 þ λiijqν¼q̄ν

�
þ g2ð1 − δijÞλijjqν¼q̄ν : ð42Þ

The equivalent expression for ZDR;MS
Γ follows from

Eq. (42), by keeping in λij only pole parts in epsilon;
the latter appear only for i ¼ j, leading to

ZDR;MS
Γi

¼ 1þ g2
�
1

2
zMS
ψf

þ 1

2
zMS
ψf0 þ λiij1=ε

�
: ð43Þ

Our final results are presented below. In the MS scheme,
the renormalization factors of operators have the form

ZDR;MS
Γ ¼ 1þ g2Cf

16π2
3

ε
þOðg4Þ; ð44Þ

in agreement with Refs. [52,78,79]. As we observe, they
are independent of operator Γ, fermion masses, Wilson-line
length z, and gauge parameter β. In RI0, the renormalization
factors are given with respect to the conversion factors,
which are presented in the next section:

½ZDR;RI0
Γ1;Γ2

�ij ¼ ½CMS;RI0
Γ1;Γ2

�ij þ
g2Cf

16π2
3

ε
δij þOðg4Þ: ð45Þ

The above relation stems from the one-loop expression
of Eq. (13).

C. Conversion factors

We present below our results for all the matrix elements
of 2 × 2 conversion factors in a compact way. We use the
same notation as in Sec. III A for bare Green’s functions;
the only difference is that the Feynman parameter integrals,
appearing here, depend on the RI0 scale q̄ instead of the
external momentum q,

½CS;Vμ
�
11
¼ 1þg2Cf

16π2

�
7−3βþ2ðβþ2ÞγEþ2ðβ−1Þðf11þf12Þ− ðβ−4Þð4h1− jzjh4Þþ3 log

�
μ̄2

q̄2

�

þðβþ2Þ log
�
1

4
z2q̄2

�
þ1

2
ðβ−1Þ

	
−
m2

1

q̄2
−
m2

2

q̄2
þm2

1

q̄2

�
2þm2

1

q̄2

�
log

�
1þ q̄2

m2
1

�
þm2

2

q̄2

�
2þm2

2

q̄2

�
log

�
1þ q̄2

m2
2

�

þ log

�
1þm2

1

q̄2

�
þ log

�
1þm2

2

q̄2

�

þ2jzjm1m2ðβ−2Þh5þβjzjðq̄2−m1m2Þð2h6− q̄2h8Þ

− q̄2jzjðβh5þðβ−4Þh7Þþβq̄2½ðm2
1þ q̄2Þg41þðm2

2þ q̄2Þg42− ðq̄2− q̄2μÞðg51þg52Þ�

þ1

2
βz2ðq̄2−m1m2Þðh2− q̄2h3Þ−2iq̄μðg11þg12Þþ izq̄μ½βðf21þf22Þ−2ðβ−4Þh2�

þ iβq̄2q̄μ½g31þg32− zðf31þf32Þ�þ iβzjzjq̄μðq̄2−m1m2Þðh5−h6−h7Þ
�
þOðg4Þ ð46Þ

4The Green’s functions Λ1−loop
Γi

also contain additional Dirac structures [see Eqs. (15)–(26)], which do not contribute to the evaluation
of renormalization factors ZΓ in the MS scheme, as they are Oðε0Þ terms, nor in RI0, as the trace in Eq. (11) gives zero.
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½CS;Vμ
�
12

¼ g2Cf

16π2

�
−βzðm1f21 þm2f22Þ − βq̄2μ½m1ðg31 − zf31Þ þm2ðg32 − zf32Þ� þ iβq̄μ½m1ðm2

1 þ q̄2Þg41
þm2ðm2

2 þ q̄2Þg42 − ðq̄2 − q̄2μÞðm1g51 þm2g52Þ� þ 2ðm1g11 þm2g12Þ

þ ðm1 þm2Þ
	
ðβ þ 2Þzh1 − iβq̄2jzjq̄μh8 þ ijzjq̄μððβ − 2Þh5 þ 2h6Þ þ

1

2
iβz2q̄μðh2 − q̄2h3Þ

− βq̄2zjzjðh5 − h6 − h7Þ

�

þOðg4Þ ð47Þ

½CS;Vμ
�
21
¼ ½CS;Vμ

�
12
þ g2Cf

16π2
ðm1þm2Þf−6zh1− 3iðβ− 2Þjzjq̄μðh5−h6Þþ βzjzjðq̄2− q̄2μÞðh5−h6−h7ÞgþOðg4Þ ð48Þ

½CS;Vμ
�
22

¼ ½CS;Vμ
�
11
þ g2Cf

16π2
f−12h1 − 12izq̄μh2 þ 3jzj½2h4 −m1m2ððβ − 2Þh5 − βh6Þ�

− 2βjzjm1m2ðq̄2 − q̄2μÞh8 þ jzjðq̄2 þ 2q̄2μÞ½βðh5 − h6Þ − 2h7� − βz2ðq̄2 − q̄2μÞðh2 þm1m2h3Þg þOðg4Þ ð49Þ

½CP;Aμ
�ij ¼ ½CS;Vμ

�ijfhk ↦ ð−1Þ1þδijhk; m1 ↦ −m1gðwhere i; j ¼ 1; 2 and k ¼ 1; 2;…; 8Þ ð50Þ

½CVν;Tμν
�
11

¼ ½CP;Aμ
�
11
þ g2Cf

16π2
f−12h1 − 4izq̄μh2 þ jzjðq̄2 þ 2q̄2νÞ½βðh5 − h6Þ − 2h7�

þ jzj½2h4 þm1m2ððβ − 2Þh5 − βh6 þ 2βq̄2νh8Þ� − βz2q̄2νðh2 −m1m2h3Þg þOðg4Þ ð51Þ

½CVν;Tμν
�
12

¼ −½CP;Aμ
�
12
þ g2Cf

16π2
ðm1 −m2Þf2zh1 þ iðβ − 2Þjzjq̄μðh5 − h6Þ − βzjzjq̄2νðh5 − h6 − h7Þg þOðg4Þ ð52Þ

½CVν;Tμν
�
21

¼ −½CP;Aμ
�
21
−
g2Cf

16π2
ðm1 −m2Þf2zh1 þ iðβ − 2Þjzjq̄μðh5 − h6Þ − βzjzjq̄2νðh5 − h6 − h7Þg þOðg4Þ ð53Þ

½CVν;Tμν
�
22

¼ ½CP;Aμ
�
22
þ g2Cf

16π2
f−4h1 þ 4izq̄μh2 þ jzjðq̄2 − 2q̄2νÞ½βðh5 − h6Þ − 2h7�

− jzj½2h4 þm1m2ððβ − 2Þh5 − βh6 þ 2βq̄2νh8Þ� þ βz2q̄2νðh2 −m1m2h3Þg þOðg4Þ ð54Þ

½CAν;Tρσ
�ij ¼ ð−εμνρσÞ1þδij ½CVν;Tμν

�ijfhk ↦ ð−1Þ1þδijhk;m1 ↦ −m1g
ðwhere i; j ¼ 1; 2 and k ¼ 1; 2;…; 8; εμνρσ is the Levi-Civita tensor; ε1234 ¼ 1Þ: ð55Þ

Our results are in agreement with Ref. [16] in the massless limit.5 A consequence of the above relations is that, in the case
of equal quark massesm1 ¼ m2, the nondiagonal matrix elements of CP;Aμ

and CVν;Tμν
vanish. Also, the matrix elements of

conversion factors satisfy the following reflection relation with respect to z:

½CΓ1;Γ2
ðq̄; z; m1; m2Þ�ij ¼ ð−1Þ1þδij ½C�

Γ1;Γ2
ðq̄;−z;m1; m2Þ�ij: ð56Þ

This means that the real part of diagonal (nondiagonal) matrix elements is an even (odd) function of z, while the imaginary
part is odd (even).

IV. GRAPHS

In this section, we illustrate our results for conversion factors by selecting certain values of the free parameters used in
simulations. To this end, we plot the real and imaginary parts of the conversion factor matrix elements as a function of
Wilson-line length, z. For input, we employ certain parameter values, used by ETMC in the ensemble of dynamical

5Checking agreement is quite nontrivial; it requires the elimination of certain integrals over Feynman parameters, integration by parts,
as well as the interchange of the limit operation with integration.
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Nf ¼ 2þ 1þ 1 twisted mass fermions of Ref. [12]; i.e., we set6 g2 ¼ 3.077, β ¼ 1 (Landau gauge), Nc ¼ 3, μ̄ ¼ 2 GeV,
and q̄ ¼ 2π

32a ðnz; 0; 0; nt2 þ 1
4
Þ, for a ¼ 0.082 fm (lattice spacing), nz ¼ 4, and nt ¼ 8 (the Wilson line is taken to lie in the
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FIG. 3. Real (left panels) and imaginary (right panels) parts of the conversion factor matrix elements for the operator pair (S, V1) as a
function of z, for different values of quark masses [g2 ¼ 3.077, β ¼ 1, Nc ¼ 3, μ̄ ¼ 2 GeV, q̄ ¼ 2π

32ð0.082 fmÞ ð4; 0; 0; 174 Þ].

6Amost natural choice for the coupling constantwould be itsMSvalue, even though the choice of barevs renormalized coupling constant
should, in principle, be irrelevant for one-loop results, such as the ones we plot in this section. Nevertheless, these plots are meant to reveal
some salient features of the conversion factors, which certainly are not affected by selecting g2 ∼ 3.77 (MS) rather than g2 ¼ 3.077 (lattice);
indeed, given the simple linear dependence on g2 of the quantities plotted, the effect of a change in g2 can be inferred by inspection. For
precise quantitative values of the conversion factors, one should of course refer to our results in algebraic form, presented in Sec. III.
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z direction, which, by convention, is denoted by μ ¼ 1).
Expressed in GeV, q̄ ¼ ð1.887; 0; 0; 2.048Þ GeV. To exam-
ine the impact of finite quark masses on the conversion
factors, we plot six different cases of external quark masses:
(1) massless quarks (m1 ¼ m2 ¼ 0)

(2) m1 ¼ m2 ¼ 13.2134 MeV, corresponding to the
bare twisted mass used in Ref. [12]

(3) one up and one strange quark (m1 ¼ 2.3 MeV,
m2 ¼ 95 MeV)

(4) two strange quarks (m1 ¼ m2 ¼ 95 MeV)

0.0 0.5 1.0 1.5 2.0

1.20

1.25

1.30

1.35

1.40

1.45

1.50

z fm

R
e

C
P,

A
1

11

0.0 0.1 0.2
1.198

1.202

1.206

0.0 0.5 1.0 1.5 2.0
0.24

0.22

0.20

0.18

0.16

0.14

0.12

z fm

Im
C

P,
A

1
11

0.15 0.25 0.35
0.225

0.221

0.217

0.0 0.5 1.0 1.5 2.0
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

z fm

R
e

C
P,

A
1

12

0.0 0.5 1.0 1.5 2.0
0.015

0.010

0.005

0.000

0.005

z fm

Im
C

P,
A

1
12

0.0 0.5 1.0 1.5 2.0
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

z fm

R
e

C
P,

A
1

21

0.0 0.5 1.0 1.5 2.0

0.025

0.020

0.015

0.010

0.005

0.000

z fm

Im
C

P,
A

1
21

0.0 0.5 1.0 1.5 2.0
1.0

1.1

1.2

1.3

1.4

1.5

z fm

R
e

C
P,

A
1

22

0.15 0.25 0.35

1.18

1.22

1.26

0.0 0.5 1.0 1.5 2.0
0.24

0.22

0.20

0.18

0.16

0.14

0.12

0.10

z fm

Im
C

P,
A

1
22

0.15 0.25 0.35
0.224

0.220

0.216

m1 m2 0 MeV m1 m2 13.2134 MeV m1 2.3 MeV, m2 95 MeV

m1 m2 95 MeV m1 2.3 MeV, m2 1275 MeV m1 m2 1275 MeV

FIG. 4. Real (left panels) and imaginary (right panels) parts of the conversion factor matrix elements for the operator pair (P, A1) as a
function of z, for different values of quark masses [g2 ¼ 3.077, β ¼ 1, Nc ¼ 3, μ̄ ¼ 2 GeV, q̄ ¼ 2π

32ð0.082 fmÞ ð4; 0; 0; 174 Þ].
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(5) one up and one charm quark (m1 ¼ 2.3 MeV,
m2 ¼ 1275 MeV)

(6) two charm quarks (m1 ¼ m2 ¼ 1275 MeV).
As regards the q̄ dependence, we have not included further
graphs for the sake of conciseness; however, using a variety
of values for the components of q̄, we find no significant
difference. More quantitative assessments can be directly
obtained from our algebraic results.
In Figs. 3 and 4, we present graphs of some represen-

tative conversion factors (CS;V1
, CP;A1

) for the six cases of
external quark masses. The plots are given only for positive
values of z, since the behavior of conversion factors for
negative values follows the reflection relation of Eq. (56).
We observe that the real part of the conversion factor matrix
elements is an order of magnitude larger than the imaginary
part and that the diagonal elements are an order of
magnitude larger than the nondiagonal elements. Also,
for increasing values of z, the real part of diagonal elements
tends to increase, while the imaginary part as well as the
real part of nondiagonal elements tend to stabilize.
Diagonal elements are almost equal to each other, as
regards both their real and imaginary parts; a similar
behaviour is also exhibited by the nondiagonal elements.
Further, the diagonal elements of CS;V1

and CP;A1
behave

almost identically, while the nondiagonal elements have
different behavior; this is to be expected, given that the
cases of equal masses give zero nondiagonal elements for
CP;A1

. Comparing the six cases, we deduce that the impact
of mass becomes significant when we include a strange or a
charm quark; the presence of a strange quark causes
changes of order 0.005–0.01 for real parts and 0.001–
0.003 for imaginary parts, while the presence of a charm
quark causes changes of order 0.07–0.14 for real parts and
0.015–0.03 for imaginary parts. On the contrary, the cases
of massless quarks and m1 ¼ m2 ¼ 13.2134 MeV are
almost coincident. Therefore, we conclude that, for quark
masses quite smaller than the strange quark mass, we may
ignore the mass terms in our calculations, while for larger
values, the mass terms are significant.
Regarding the convergence of the perturbative series,

we note that one-loop contributions are a small fraction of
the tree-level values, which is a desirable indication of
stability. Nevertheless, given that these contributions are
not insignificant, a two-loop calculation would be certainly
welcome; this is further necessitated by the fact that the
one-loop contributions for the real parts of the diagonal
matrix elements of the conversion factors do not suffi-
ciently stabilize for large values of z.

V. CONCLUSIONS AND FOLLOW-UP WORK

In this paper, we have presented the one-loop calcula-
tion, in dimensional regularization, of the renormalization
factors for nonlocal quark operators, including a straight
Wilson line, which are involved in the definition of quasi-
PDFs. The novel aspect of this work is the presence of

nonzero quark masses in our computations, which results in
mixing among these operators, both in the continuum and
on the lattice.
The operator mixing, observed in Ref. [16] for massless

fermions on the lattice, is extended into more operator pairs
for massive fermions. More precisely, for operators with
equal masses of external quark fields, the mixing pairs are
the same as those of massless fermions; i.e., the unpolarized
quasi-PDF in direction μ (parallel to the Wilson line) mixes
with the twist-3 scalar operator, and the helicity quasi-PDF
in direction ν (perpendicular to μ) mixes with the trans-
versity quasi-PDF in directions perpendicular to μ and ν.
However, for operators with different masses of external
quark fields, there are additional pairs: the helicity quasi-
PDF in direction μ mixes with the pseudoscalar operator,
and the unpolarized quasi-PDF in direction ν mixes with
the transversity quasi-PDF in the μ and ν directions. Thus,
before matching to the physical massive PDFs, one must
eliminate the mixing nonperturbatively. To this end, we
extend the RI0 scheme suggested in Ref. [16] including the
additional mixing pairs.
To convert the nonperturbative RI0 estimates of renorm-

alization factors to the MS scheme, we have calculated the
one-loop conversion factors between the two schemes in
DR for massive quarks. Because of the operator-pair
mixing in the continuum, the conversion factors are
generally nondiagonal 2 × 2 matrices. Comparing with
the massless case, the impact of quark masses on the
conversion factors becomes significant for values near or
greater than the strange quark mass.
A natural continuation of the present work is the two-

loop calculation of the renormalization factors in DR, as
well as the conversion factors between the RI0 and MS
schemes. According to Ref. [56], two-loop corrections of
the conversion factors are expected to suppress the unphys-
ical observed feature of the negative real part of the
nonperturbative renormalized matrix elements for large
Wilson-line lengths. A byproduct of this two-loop calcu-
lation is the anomalous dimension of the operators to next
order in g2, which can be found in Refs. [79–81]; this is
useful for improving the method for eliminating the linear
divergences, nonperturbatively (see Ref. [16]).
Another extension of our work is the perturbative study

of Wilson-line operators with more composite Wilson lines,
such as “staples.” Here, the appearance of an additional
special direction (specifying the plane on which the staple
lies) may give us further operator-mixing patterns. Thus,
this perturbative investigation can be a guidance to the
development of a nonperturbative renormalization prescrip-
tion for eliminating mixing and linear divergences in these
operators as well. Such staple operators are involved in the
definition of TMDs, which are currently under investiga-
tion for the nucleon and pion in lattice QCD [27,28,30].
Our findings will be presented separately in a future
publication.
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APPENDIX A: THE INTEGRATION METHOD

In this Appendix, we describe the method that we used to
evaluate the D-dimensional momentum-loop integrals,
appearing in the calculation of the Feynman diagrams of
Fig. 1. First, we introduce Feynman parameters. Second,
we perform the standard integrations over the ðD − 1Þ
directions perpendicular to the Wilson line (see, e.g.,
Ref. [82]). Next, we perform the remaining nontrivial
integration over the parallel direction, which has an
exponential z dependence. This procedure gives the follow-
ing formulas, in terms of modified Bessel functions of the
second kind, Kν:

AðαÞ ¼
Z

dDp
ð2πÞD

eipμz

ðp2þ 2k ·pþm2Þα

¼ 21−α−D=2jzjα−D=2e−ikμz

πD=2ΓðαÞðm2 − k2Þα=2−D=4K−αþD=2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2− k2

p
jzj
�

ðA1Þ
Z

dDp
ð2πÞD

eipμzpν1 � � �pνn

ðp2 þ 2k · pþm2Þα

¼ ð−1ÞnΓðα − nÞ
2nΓðαÞ

∂
∂kν1

� � � ∂
∂kνn

Aðα − nÞ: ðA2Þ

After the momentum integrations, we perform Laurent
expansion in ε, keeping terms up to Oðε0Þ. In this step, we
have to be careful when interchanging the integration over
Feynman parameters with the limit of a vanishing regulator
(ε → 0). In the massive case, studied in the present paper,
the interchange is permissible; however, this interchange is
not generally valid, as is exemplified by the following term
stemming from diagram 1, in the massless case7:

BðεÞ¼
Z

1

0

dx
expðiqμzxÞq2x2jzj1þεε

ðq2xð1−xÞÞð1þεÞ=2 K1þε

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2xð1−xÞ

q
jzj
�
:

ðA3Þ

A naive limit ε → 0− of this term would simply give 0, due
to the multiplicative factor of ε. However, this is incorrect,
given the existence of a pole at x ¼ 1. Expanding the
integrand of Eq. (A3) into a power series of (1 − x),

K1þε

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2xð1 − xÞ

q
jzj
�

¼ 1

2
Γð1þ εÞ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2xð1 − xÞ

p
jzj
�
−1−ε

2−1−ε

þOðð1 − xÞð1þεÞ=2Þ; ðA4Þ

expðiqμzxÞ ¼ expðiqμzÞ þOð1 − xÞ; ðA5Þ

we isolate the pole:

Z
1

0

dx

	
2εεΓð1þ εÞ expðiqμzÞ

ðq2Þεð1 − xÞ1þε þOðð1 − xÞð1þεÞ=2Þ


:

ðA6Þ

The terms of order Oðð1 − xÞð1þεÞ=2Þ are integrable in the
limit ε → 0−, and thus they give 0. In the leading term of
Eq. (A6), we must perform the Feynman parameter integral
first, and after that, we take the limit ε → 0−. Then, a finite
but nonzero result remains:

lim
ε→0−

BðεÞ ¼ − expðiqμzÞ: ðA7Þ

Therefore, the naive interchange of limit and integration
sets a contribution erroneously to zero. To avoid such
errors, we use a subtraction of the form

lim
ε→0

Z
dxIðε; xÞ ¼

Z
dxlim

ε→0
ðIðε; xÞ − I1ðε; xÞÞ

þ lim
ε→0

Z
dxI1ðε; xÞ; ðA8Þ

where Iðε; xÞ is a term of the original expression and
I1ðε; xÞ denotes the leading terms of Iðε; xÞ in a power
series expansion with respect to (x − xi) about all singular
points xi; here, x denotes Feynman parameters and/or ζ
variables stemming from the definition of OΓ. Such a
subtraction must also be applied when we take the massless
limit of our results, m → 0, for the same reasons.
The final expression depends on the Feynman parameter

integrals and/or the integrals stemming from the definition
of OΓ; these can be integrated numerically for all values of
q, z, and quark masses used in simulations.

APPENDIX B: TABLE OF FEYNMAN
PARAMETER INTEGRALS

In this Appendix, we present a table of Feynman
parameter integrals, which appear in the expressions of
our results. They do not have a closed analytic form, but
they are convergent and can be computed numerically. We
can classify them into three types of integrals:
(1) f1–f3: integrals over the Feynman parameter x

7Diagram 1 is actually UV convergent; however, in order to
avoid spurious IR divergences, it is convenient to evaluate it in
D > 4 dimensions (ε < 0) and take the limit ε → 0− in the end.
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(2) g1–g5: double integrals over the Feynman parameter x and variable ζ (the location of gluon fields along the
Wilson line)

(3) h1–h8: double integrals over the Feynman parameters x1 and x2.
These integrals are functions of the external momentum 4-vector qν, the Wilson-line length z, and the external quark masses
m1 and/orm2. Also, they involve a modified Bessel function of the second kind,K0 orK1. For the sake of brevity, we use the
following notation: s≡ ðq2ð1 − xÞxþm2xÞ1=2 and t≡ ðq2ð1 − x1 − x2Þðx1 þ x2Þ þm2

1x1 þm2
2x2Þ1=2,

f1ðq; z;mÞ ¼
Z

1

0

dx exp ð−iqμxzÞK0ðjzjsÞ ðB1Þ

f2ðq; z; mÞ ¼
Z

1

0

dx exp ð−iqμxzÞK0ðjzjsÞð1 − xÞ ðB2Þ

f3ðq; z; mÞ ¼
Z

1

0

dx exp ð−iqμxzÞK0ðjzjsÞð1 − xÞ x
2

s2
ðB3Þ

g1ðq; z; mÞ ¼
Z

1

0

dx
Z

z

0

dζ exp ð−iqμxζÞK0ðjζjsÞ ðB4Þ

g2ðq; z; mÞ ¼
Z

1

0

dx
Z

z

0

dζ exp ð−iqμxζÞK0ðjζjsÞx ðB5Þ

g3ðq; z; mÞ ¼
Z

1

0

dx
Z

z

0

dζ exp ð−iqμxζÞK0ðjζjsÞð1 − xÞ x
2

s2
ðB6Þ

g4ðq; z; mÞ ¼
Z

1

0

dx
Z

z

0

dζ exp ð−iqμxζÞK0ðjζjsÞð1 − xÞ x
2

s2
ζ ðB7Þ

g5ðq; z; mÞ ¼
Z

1

0

dx
Z

z

0

dζ exp ð−iqμxζÞK0ðjζjsÞð1 − xÞ x
3

s2
ζ ðB8Þ

h1ðq; z;m1; m2Þ ¼
Z

1

0

dx1

Z
1−x1

0

dx2 exp ð−iqμðx1 þ x2ÞzÞK0ðjzjtÞ ðB9Þ

h2ðq; z; m1; m2Þ ¼
Z

1

0

dx1

Z
1−x1

0

dx2 exp ð−iqμðx1 þ x2ÞzÞK0ðjzjtÞð1 − x1 − x2Þ ðB10Þ

h3ðq; z;m1; m2Þ ¼
Z

1

0

dx1

Z
1−x1

0

dx2 exp ð−iqμðx1 þ x2ÞzÞK0ðjzjtÞð1 − x1 − x2Þ ·
ðx1 þ x2Þ2

t2
ðB11Þ

h4ðq; z; m1; m2Þ ¼
Z

1

0

dx1

Z
1−x1

0

dx2 exp ð−iqμðx1 þ x2ÞzÞK1ðjzjtÞt ðB12Þ

h5ðq; z; m1; m2Þ ¼
Z

1

0

dx1

Z
1−x1

0

dx2 exp ð−iqμðx1 þ x2ÞzÞK1ðjzjtÞ
1

t
ðB13Þ

h6ðq; z; m1; m2Þ ¼
Z

1

0

dx1

Z
1−x1

0

dx2 exp ð−iqμðx1 þ x2ÞzÞK1ðjzjtÞ
ðx1 þ x2Þ

t
ðB14Þ

h7ðq; z;m1; m2Þ ¼
Z

1

0

dx1

Z
1−x1

0

dx2 exp ð−iqμðx1 þ x2ÞzÞK1ðjzjtÞ
ð1 − x1 − x2Þ2

t
ðB15Þ

h8ðq; z; m1; m2Þ ¼
Z

1

0

dx1

Z
1−x1

0

dx2 exp ð−iqμðx1 þ x2ÞzÞK1ðjzjtÞð1 − x1 − x2Þ ·
ðx1 þ x2Þ2

t3
: ðB16Þ
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