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We smear quenched lattice QCD ensembles with lattice volume 323 × 8 by using Wilson flow. Six
ensembles at temperature near the critical temperature Tc corresponding to the critical inverse coupling
βc ¼ 6.06173ð49Þ are used to investigate the localization of topological charge density. If the effective
smearing radius of Wilson flow is large enough, the density, size and peak of Harrington-Shepard (HS)
caloron-like topological lumps of ensembles are stablewhen β ≤ 6.050, but start to change significantly when
β ≥ 6.055. The inverse participation ratio (IPR) of topological charge density shows similar results, it begins
to increase when β ≥ 6.055 and is stable when β ≤ 6.050. The pseudoscalar glueball mass is extracted from
the topological charge density correlator (TCDC) of ensembles at T ¼ 1.19Tc, and 1.36Tc, the masses are
1.915(98) and 1.829(123) GeV respectively, they are consistent with results from conventional methods.
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I. INTRODUCTION

Topological properties of the QCD vacuum are believed
to play an important role in QCD. For example, the
topological susceptibility has the famous Witten-
Veneziano relation, which can explain the U(1) anomaly
and the large mass of the η0 meson [1–3]. The topological
structure of the QCD vacuum is related to chiral symmetry
breaking and may be also related to confinement [4,5].
A usual way to study the topological structure is

investigating the localization of topological charge density,
such as Belavin-Polyakov-Schwartz-Tyupkin (BPST)
instanton-like localized topological lumps at zero temper-
ature. BPST instanton is a semi-classical solution of the
QCD Lagrangian in Euclidean space [6]. Isolated instan-
tons are zero modes of the Dirac operator. When these
modes mix with each other they will shift away from zero
modes [5]. The way how they mix is important, since it is
the topological structure of the QCD vacuum.When we use
the gluonic definition for the topological charge density
qðxÞ to investigate the topological localized structures,
such as instantons, a UV filter is needed to remove the
short-ranged topological fluctuations and preserve the
long-ranged topological structures [7–11].

Since the topological structure is connected with chiral
symmetry breaking and confinement, we are interested in
the behavior of topological structures when the temperature
is near the critical temperature Tc. The temperature in
lattice QCD is given by:

T ¼ 1

Ntat
; ð1Þ

in which at is the lattice spacing in the temporal direction,
and Nt is the temporal lattice size. Therefore we can
change Nt or at to vary the temperature T. If we change
Nt, because Nt cannot be too large the temperature will be
changed coarsely. Thus we cannot get different ensembles
with small variation of temperature near Tc. Therefore we
will vary the temperature by changing at, which means
that we will generate different temperature ensembles by
slightly varying the inverse coupling β. The conventional
UV filters like cooling, smoothing and smearing [12–16]
lead to different smearing effects when the ensembles
have different lattice spacings, even though the parameters
are set to be the same. So we will use the gradient flow,
which provides a general energy scale. Its effective
smearing radius λ ¼ ffiffiffiffi

8t
p

[17], where t is the flow time.
Recent works [18–20] show that the gradient flow is
consistent with standard cooling, therefore like using
cooling we can also use the gradient flow to study
topological structures. Then we can compare the topo-
logical structure of different ensembles and avoid the
different smearing effects.
In our work, we used the Harrington-Shepard (HS)

caloron solutions [21] to filter the localized topological
lumps, which is the generalized form of BPST instantons at
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finite temperature with periodic boundary condition at the
temporal direction. We also used the inverse participation
ratio (IPR) [22] to investigate the topological localization.
The IPR is defined by:

IPR ¼ V

P
xjqðxÞj2

ðPxjqðxÞjÞ2
; ð2Þ

in which qðxÞ is the topological charge density. In this work
we use the gluonic definition for qðxÞ:

qðxÞ ¼ 1

32π2
ϵμνρσTrC½FμνðxÞFρσðxÞ�; ð3Þ

in which ϵμνρσ is the Levi-Civita symbol, TrC is the trace
running over the color space, and the field tensor Fμν is
defined by:

FμνðxÞ ¼ −
i
2
ðCμνðxÞ − C†

μνðxÞÞ

−
1

3
ReTrC

�
−
i
2
ðCμνðxÞ − C†

μνðxÞÞ
�
; ð4Þ

in which CμνðxÞ is the average of the four plaquettes on the
μ − ν plane. When all topological charges focus on one
lattice site IPR ¼ V, IPR would decrease if the topological
charge density becomes more delocalized. Finally it will
equal to 1 when the topological charge density distributes
uniformly.
The topological charge density correlator (TCDC) of

quenched QCD can be used to extract pseudoscalar glue-
ball masses at zero temperature with Wilson flow [23]. In
our work, we extracted the pseudoscalar glueball mass from
TCDC at finite temperature with Wilson flow. The results
are compared with those from Ref. [24]. Unlike conven-
tional methods, this method does not need large lattice size
in the temporal direction to do fitting, which is hard to be
satisfied in ensembles at finite temperature especially at
high temperatures.

II. LOCATING THE HS CALORON-LIKE
TOPOLOGICAL LUMPS

A. Find the critical inverse coupling βc
First, we need to find the critical temperature Tc. In other

words we need to determine the critical inverse coupling βc.
We use pure gauge ensembles that have lattice size 323 × 8
in our work. We use the susceptibility χP of the Polyakov
loop to find βc. χP is defined as

χP ¼ hΘ2i − hΘi2; ð5Þ

in which Θ is the Zð3Þ rotated Polyakov loop:

Θ ¼
8<
:

ReP exp½−2iπ=3�; argP ∈ ½π=3; πÞ;
ReP; argP ∈ ½−π=3; π=3Þ;
ReP exp½2iπ=3�; argP ∈ ½−π;−π=3Þ;

ð6Þ

where P is the usual Polyakov loop of each configuration.
In Table I the 6 ensembles we used to find βc are listed.

The lattice size is 323 × 8. We expect that the finite volume
effects are negligible. The lattice spacing a is found by
using [25]

a ¼ r0 expð−1.6804 − 1.7331ðβ − 6Þ þ 0.7849ðβ − 6Þ2
− 0.4428ðβ − 6Þ3Þ; ð7Þ

where r0 is set to be 0.5 fm from Ref. [26]. Obviously
Table I shows that βc is near 6.060. The critical inverse
coupling βc is obtained by interpolating to the location
where χP is maximum. We use a B-spline interpolation
and obtain βc ¼ 6.06173ð49Þ, which is compatible with
βc ¼ 6.06239ð38Þ in Ref. [27].

B. HS caloron-like topological lumps

In this paper we use the HS caloron solutions to filter the
localized topological charge density lumps. The localized
topological lumps are defined by sites that have maximum
absolute value of qðxcÞ in a 34 hypercube centered at site
xc. The center xc is also mentioned as peak. After applying
the HS caloron filters in the following, we can get calorons-
like topological lumps.
In SU(2) gauge theory at temperature T, HS caloron

solution of gauge field AμðxÞ has the exact form as [21]

AμðxÞ ¼ Aa
μðxÞTa; Ta is the generators for SUð2Þ;

Aa
μðxÞ ¼ ηð�Þ

aμν∂ν lnΦðxÞ; ΦðxÞ ¼ 1þ πρ2

jx⃗ − x⃗cj=T
sinhð2Tπjx⃗ − x⃗cjÞ

coshð2Tπjx⃗ − x⃗cjÞ − cosð2Tπðx4 − xc4ÞÞ
; ð8Þ

TABLE I. The quenched ensembles of Wilson action in this
work. The lattice size is 323 × 8. 10000 sweeps were done before
thermalization. Each configuration is separated by 10 sweeps.
Each sweep includes 5 times quasi heat-bath and 5 steps of
leapfrog.

β Ncnfg χP a

6.045 2000 3.02ð38Þ × 10−4 0.0863 fm
6.050 2000 4.92ð14Þ × 10−4 0.0856 fm
6.055 2000 7.67ð23Þ × 10−4 0.0849 fm
6.060 2000 9.36ð47Þ × 10−4 0.0842 fm
6.065 2000 8.15ð19Þ × 10−4 0.0835 fm
6.070 2000 5.82ð18Þ × 10−4 0.0828 fm
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where xc is the center of a HS caloron, ρ is the size of
a HS caloron. It satisfies the (anti-)self-dual condition

Fμν ¼ �F̃μν, F̃μν ¼ 1
2
ϵμνρσFρσ, η

ð�Þ
aμν is the ’t Hooft symbol:

ηð�Þ
aμν ¼ ϵaμν; μ; ν ¼ 1; 2; 3;

ηð�Þ
a4ν ¼ −ηð�Þ

aν4 ¼ �δaν; ηð�Þ
a44 ¼ 0: ð9Þ

When the temperature T → 0, it approaches the BPST

instanton solution ΦðxÞ → 1þ ρ2

ðx−xcÞ2 [6]. Similar things

happen when we constrain our study at the region
jx − xcj ≪ 1=T ¼ Ntat. Therefore when we use the center
and its 8 closest neighbour sites on the lattice to filter the
topological lumps with HS calorons, we can just use the
BPST instanton solution to approximate the HS caloron
solution in SU(3):

AaðBPSTÞ
μ ðxÞ ¼ 2Raαηð�Þ

αμν
ðx − xcÞν
ðx − xcÞ2

1

1þ ðx−xcÞ2
ρ2

;

a ¼ 1; 2;…; 8; α ¼ 1; 2; 3; ð10Þ

where Raα represents the color rotations embedding the
SU(2) BPST instantons into SU(3).
The topological charge density near the center of an

isolated instanton approximates

qBPSTðxÞ ¼ � 6

π2ρ4

�
ρ2

ðx − xcÞ2 þ ρ2

�
4

; ð11Þ

where the “þ” sign is for instanton, “−” for anti-instanton.
Then at the center

qBPSTðxcÞ ¼ � 6

π2ρ4
: ð12Þ

Therefore we can get the relation

qðxÞ
qðxcÞ

¼
�

ρ2

ðx − xcÞ2 þ ρ2

�
4

: ð13Þ

In this paper we use the peak and the 8 closest neighbor
sites on the lattice to fit Eq. (13) to get the size ρ.
Like in Ref. [28], we also use 3 filter conditions to find

HS caloron-like topological lumps:
(i)

ffiffiffiffiffiffiffiffiffiffiffi
6

π2qðxcÞ
4

q
ρ

∈ ð1 − ϵR; 1þ ϵRÞ; ð14Þ

which comes from Eq. (12).
(ii)

P
jx−xcj≤aqðxÞP
jx−xcj≤asðxÞ

∈ ð1 − ϵS; 1þ ϵSÞ; ð15Þ

where the normalized action density sðxÞ ¼
a4

8π2
P

μ<νtrCF
2
μνðxÞ, the normalization factor 8π2

comes from the action of a single HS caloron

S ¼ g2

π2
jQj with Q ¼ R

d4xqðxÞ.
(iii) To avoid double countings of two peaks of a single

but distorted HS caloron, we filter peak xc0 by

if jxc − xc0 j < ϵρðxcÞ: ð16Þ

The topological lump centering at xc0 will be filtered.

III. LOCALIZATION OF TOPOLOGICAL
CHARGE DENSITY

We use the HS calorons filter conditions and IPR to
investigate the localization of topological charge density.
Ensembles in Table I would be used every ten configura-
tions, which means that every ensemble includes 200
configurations and each configuration is separated by
100 sweeps. We only show the figures that result from
parameters ϵR ¼ 0.5; ϵS ¼ 0.4; ϵ ¼ 0.7, 1.0. But we have
used parameters varied in the regions ϵR ¼ 0.3–0.7;
ϵS ¼ 0.2 − 0.6; ϵ ¼ 0.7 − 1.0. These results are consistent
with the discussion in the following. We choose ϵR ¼ 0.5,
ϵS ¼ 0.4 since the results are stable around them.
The gradient flow we used is of Wilson action, which

means that we use Wilson flow to smear the gauge fields.
The effective smearing radius λ runs from 0.3 to 0.9 fm.
In Fig. 1, we present the topological charges Q of ten

configurations versus Wilson flow in every ensemble, the
topological charges Q of the original configurations have
also been presented. Obviously when λ runs from 0.3 to
0.9 fm, the topological charges Q approach to integers. At
the same time the topological charges Q do not drop down
to the value zero. Therefore the long-ranged topological
structures should be preserved during the Wilson flow.

A. Investigating the HS caloron-like topological lumps

In Fig. 2, we show the three quantities of HS caloron-like
topological lumps versus β: the average density hNi, the
average size hρi and hqcðxÞi, which is the average absolute
value of topological charge density on the peak. The three
quantities with different effective smearing radius are
marked with different colors or shapes.
With the increase of the effective smearing radius λ, the

average density hNi decreases monotonically, the average
size hρi grows monotonically. Unlike hNi and hρi, hqcðxÞi
of the ensembles at higher temperatures decreases at first,
then becomes to increase instead as λ increases.
The phenomena that hNi decreases monotonically and

hρi grows monotonically can be expected. Since with the
increase of λ, more and more small topological lumps
would be smoothed out.
When λ is large, we find that the three quantities of HS

caloron-like topological lumps are consistent at β ¼ 6.045
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and β ¼ 6.050. It indicates that the localization of topo-
logical charge density is stable. When β ≥ 6.055, we find
that the three quantities change significantly as the temper-
ature increases. It means that the topological structures
have a transition point near β ¼ 6.055.
Since when λ is small, the short-ranged fluctuations may

not be suppressed enough, we need not pay much attention
to the behaviors of the three quantities of the HS caloron-
like topological lumps at small λ.
The decrease of the average density hNi when β ≥ 6.055

means that the topological excitation is suppressed. It may
explain why the topological susceptibility starts to drop
down near Tc [29].
Noting that 1

hNi, the average volume occupied by one HS
caloron-like topological lump, is always close to ð2hρiÞ4,
the average volume of the HS caloron-like topological
lumps. It means that the HS caloron-like topological lumps
are not sparse but dense.
Since the chiral condensate hψ̄ψi ∝ − hNi12

hρi [5], the
decrease of hNi and the increase of hρi as the temperature
increases at β ≥ 6.055 indicate that the absolute value of

chiral condensate will drop down as the temperature rises.
It is consistent with the fact that the chiral symmetry will
restore at high temperature.
IPR has also been used to study the localization of qðxÞ,

and conclusions from both methods are consistent.

B. Average IPR versus β with Wilson flow

In Fig. 3 we show the average inverse participation ratio
hIPRi versus β with Wilson flow. Theoretically, when a
certain structure is embedded in a finite 4D space dis-
cretized by lattice spacing a, the IPR of the structure obeys
IPR ∼ a4−d as a → 0 [22], where d denotes the dimension
of the structure. But the dependence of IPR on the volume
of the finite 4D space is small [22]. However, when we use
gradient flow to smear the configurations in a space
discretized with different lattice spacings, the average
IPR of qðxÞ with same λ would be almost the same if λ
is large enough, only mild scaling violation is found [23].
Therefore, any manifest differences of hIPRi of qðxÞ
among different temperatures cannot result from the lattice
discretization with different lattice spacings. The manifest
differences can only result from the different localizations
of topological charge density at different temperatures.
In Fig. 3 we find that when λ is large, hIPRi increases as

β increases when β ≥ 6.055. It is just the same transition
point that we found in Sec. III A. Obviously, this behavior
of hIPRi should come from the fact that the topological
localization was enhanced by the increase of temperature.
The ensembles at β ¼ 6.045 and β ¼ 6.050 have hIPRi
compatible for all used λ. It means that the localization of
qðxÞ has not changed yet when β ≤ 6.050, just like the
behaviors of the three quantities of HS caloron-like
topological lumps in Fig. 2.
By using the two different methods, we get the con-

clusion that the localization of topological charge density
near Tc does not change when β ≤ 6.050, and starts to
change significantly when β ≥ 6.055.

IV. EXTRACTING THE PSEUDOSCALAR
GLUEBALL MASS FROM THE TCDC

AT HIGH TEMPERATURE

The topological charge density correlator (TCDC) is
defined by

CqqðrÞ ¼ hqðxÞqðyÞi; r ¼ jx − yj: ð17Þ

In the negative tail region of the TCDC, it can be
approximated by the pseudoscalar propagator [30]

hqðxÞqðyÞi ¼ m
4π2r

K1ðmrÞ; r ¼ jx − yj;

where K1ðzÞ is the modified Bessel function, it has the
asymptotic form as
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FIG. 1. The topological charges Q of ten configurations versus
Wilson flow, λ runs from 0.3 to 0.9 fm. Q of original configu-
rations have also been presented. The topological charges
approach to integers and do not drop down to the value zero
during the Wilson flow.
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FIG. 2. The parameters setting: ϵR ¼ 0.5, ϵS ¼ 0.4, left panels: ϵ ¼ 1.0, right panels: ϵ ¼ 0.7. From top to bottom: the average density
hNi, the average size hρi, and the average absolute value hqcðxÞi.
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K1ðzÞ ∼
large z

e−z
ffiffiffiffiffi
π

2z

r �
1þ 3

8z

�
: ð18Þ

Thus we can extract the mass of pseudoscalar particle by
fitting Eq. (18) at zero temperature [23,31,32].
We may also use Eq. (18) to extract the pseudoscalar

glueball mass from TCDC at finite temperature in
quenched lattice QCD, the mass m and amplitude are set
to be two free parameters in the fitting procedure. The
procedure has been applied to the two ensembles in
Table II. The effective smearing radius λ of Wilson flow
runs from 0.12 to 0.20 fm, each ensemble includes 500
configurations.
We find that when the starting point of the fitting range is

fixed and the ending point is varied, once the error bar of
the TCDC at the ending point touches the value zero, the

fitting result is independent of the ending point. This
phenomenon is also found in Ref. [23]. Therefore we fix
the ending point that the error bar of the TCDC has touched
the value zero and vary the starting point to extract pre-
liminary pseudoscalar glueball mass M. Then we find the
proper λ and fitting window to extract the final pseudo-
scalar glueball mass M. Results are showed in Fig. 4.
Both ensembles have the most stable plateau of the

preliminary pseudoscalar glueball mass M at λ ¼ 0.16 fm.
Therefore we choose the data from λ ¼ 0.16 fm to extract
M. The final fitting window is determined by the range that
the plateaus of the preliminary pseudoscalar glueball mass
overlap with plateaus nearby. In Fig. 4, red solid lines
denote the final fitting results of the pseudoscalar glueball
mass M, their ranges represent the final fitting windows,
pink dash lines represent the errors of the final pseudoscalar
glueball mass M. Numeric results are T ¼ 1.19Tc, M ¼
1.915ð98Þ × 103 MeV and T¼1.36Tc, M ¼ 1.829ð123Þ×
103 MeV. For comparing our results with those from
Ref. [24], we had used same parameter r0 ≈ 410 MeV
as Ref. [24] does. The fitting results are consistent with
those from Ref. [24]. Noting that the final fitting window in
the left panel is shorter than that in the right panel. It should
be owing to the coarser lattice spacing a of the ensemble in
the left panel, same thing has also been found in Ref. [23].
In fact, we also apply the fitting procedure to ensembles at
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FIG. 3. hIPRi of topological charge density with Wilson flow
versus the inverse coupling β, the effective smearing radius λ of
Wilson flow runs from 0.3 to 0.9 fm.

TABLE II. The quenched ensembles of Wilson action in this
work. The lattice size is 323 × 8. 10000 sweeps were done before
thermalization. Each configuration is separated by 100 sweeps.
Each sweep includes 5 times quasi heat-bath and 5 steps of
leapfrog.

β 6.170 6.236
Ncnfg 500 500
T 1.19Tc 1.36Tc
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FIG. 4. The pseudoscalar glueball mass M with Wilson flow and fixed ending point, the horizontal axis r=a is the starting point of the
preliminary fitting range. Left: T ¼ 1.19Tc, right: T ¼ 1.36Tc.
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lower temperatures, which means ensembles with coarser
lattice spacing a, but fail to get proper final fitting windows
to extract the final pseudoscalar glueball mass M. As for
our work, this method is available for extracting the
pseudoscalar glueball mass at finite temperature with lattice
spacing a < 0.08 fm.

V. SUMMARY

In this paper we use Wilson flow to smear ensembles of
quenched lattice QCD with lattice volume 323 × 8 at finite
temperature. To study the topological structure of quenched
QCD vacuum near Tc corresponding to the critical inverse
coupling βc ¼ 6.06173ð49Þ, we have used HS caloron-like
topological lumps and IPR of topological charge density.
When the effective smearing radius λ is large enough, we

find that the three quantities of HS caloronlike topological
lumps are stable when β ≤ 6.050. But these quantities
change significantly when β ≥ 6.055. Similar behaviour is
also found by using IPR to investigate the localization of
topological charge density, so the result is reliable. We
extract the pseudoscalar glueball mass from TCDC at
T ¼ 1.19Tc; 1.36Tc, the results are consistent with those
from conventional method.
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