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In this work, we present an explicit form of the Lüscher equation and consider the construction of the
operators in different irreducible representations for the case of scattering of two vector particles. The
formalism is applied to scalar QED in the Higgs Phase, where the Uð1Þ gauge boson acquires mass.
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I. INTRODUCTION

The study of scattering in Lattice Field Theory (LFT)
starts with the original work of Lüscher [1]. In this work, an
equation that relates the scattering phase shift of a spinless
particle to the finite-volume spectrum in the rest frame was
derived. The formalism has been extended to moving
frames [2], π − N scattering [3], N − N scattering [4],
different masses [5,6], moving frames with different masses
[7,8] and any multichannel system with arbitrary spin,
momentum and masses [9]. In practice, the extraction of the
phase shifts from data in case of coupled channels is most
conveniently done by the use of the K-matrix approach.
This method was first proposed in Ref. [10], and a complete
description can be found, e.g., in the recent work [11].
For the case of scattering of vector particles, there may

be interesting issues that can be addressed through LFT,
such as the possibility of the Higgs boson to be a bound
state of two W bosons. This is the case for a model
proposed in Refs. [12,13], where a “superstrong interac-
tion” together with superstrongly interacting particles are
present. Instead of the Higgs mechanism, a nonperturbative
mass generation mechanism is suggested. The model is
strongly coupled at the relevant scale, and, therefore, LFT is
the approach to test whether this mechanism exists or not
(see Refs. [14,15] for a first numerical investigation of this
model). One possible consequence of this model could be
that the Higgs represents a bound state in theWW channel.
This justifies a thorough study of the WW interactions
(including both the bound spectrum and scattering) within
LFT, which is possible by using Lüscher’s approach.
The aim of the present work is to study the vector-vector

scattering process in a toy model, which is the first step
towards applying the same method in physically more

interesting cases. To this end, we rederive the Lüscher
equation for scattering of particles with arbitrary spin by
using nonrelativistic effective theory and check that the
results obtained are in agreement with Ref. [9]. We will
further focus on the case of two identical vector particles
and we make use of the spatial symmetries of the lattice to
factorize the Lüscher equation. We explicitly construct the
operators that transform under a certain irreducible repre-
sentation of the spatial symmetry group, and, using these,
we gain access to the different phase shifts of the theory.
The approach will be tested in scalar QED, for which
numerical results will be shown. For a first account of this
work we refer to Ref. [16].

II. SCATTERING OF TWO VECTOR PARTICLES

A. Derivation of Lüscher equation for arbitrary spin

Let us consider a system of two particles with massesmi,
i ¼ 1, 2 in d ¼ 3 dimensions. The system is described by
the effective nonrelativistic Lagrangian

L¼ϕ†
12W1ði∂t−W1Þϕ1þϕ†

22W2ði∂t−W2Þϕ2þLI: ð1Þ
Here, ϕi are the nonrelativistic fields with spin si, Wi ¼
ðm2

i −∇2Þ1=2 and the interactions are contained in LI . The
corresponding nonrelativistic propagators, with ωiðpÞ ¼
ðm2

i þ p2Þ1=2, are diagonal in the spin indices ν; ν0:

ðSiðpÞÞν0ν ¼
1

2ωiðpÞ
1

ωiðpÞ − p0 − iϵ
δν0ν;

ν0; ν ¼ 1;…; 2si þ 1: ð2Þ
The scattering T-matrix is defined through the Lippman-
Schwinger (LS) equation

TðzÞ ¼ ð−HIÞ þ ð−HIÞð−G0ðzÞÞTðzÞ; ð3Þ

where H0 and HI are obtained from the Lagrangian
in the usual way and G0ðzÞ ¼ ðz −H0Þ−1 is the free
resolvent. The two-particle states with a total spin S are
given by
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jk1;k2; S; νi≡ jP;k; S; νi; ð4Þ

with normalization

hP0;k0; S0; ν0jP;k; S; νi ¼ 4ω1ðk1Þω2ðk2Þð2πÞdδdðP0 − PÞð2πÞdδdðk0 − kÞδS0Sδν0ν; ð5Þ

where k1, k2 are the momenta of the particles, S and ν denote the total spin and its projection for the two-particle system,
respectively, and P, k are the total and relative momenta in the laboratory frame:

P¼k1þk2; k¼ μ2k1−μ1k2; μ1;2¼
1

2

�
1�m2

1−m2
2

P2

�
; P0¼ω1ðk1Þþω2ðk2Þ; P2¼P2

0−P2: ð6Þ

Now define the matrix elements:

tS
0S

ν0ν ðk0;k;P; zÞ ¼
Z

ddP0

ð2πÞd hP
0;k0; S0; ν0jTðzÞjP;k; S; νi; ð7Þ

hS
0S

ν0ν ðk0;k;PÞ ¼
Z

ddP0

ð2πÞd hP
0;k0; S0; ν0jð−HIÞjP;k; S; νi: ð8Þ

One may rewrite the LS equation in terms of matrix elements, using Eqs. (7) and (8):

tS
0S

ν0ν ðk0;k;P; zÞ ¼ hS
0S

ν0ν ðk0;k;PÞ þ
Z

ddq
ð2πÞd

X
S00ν00

hS
0S00

ν0ν00 ðk0;q;PÞtS00Sν00ν ðq;k;P; zÞ
4ω1ðq1Þω2ðP − q1Þðω1ðq1Þ þ ω2ðP − q1Þ − zÞ ; ð9Þ

where we define q ¼ μ2q1 − μ1q2, as in Eq. (4). A key point here is that the elementary bubble (the free two-particle
propagator, integrated over the relative momentum) is diagonal in spin, because also the single particle propagators are.
However, the scattering amplitude need not be diagonal.
Now define the projectors to the partial waves in the CM frame, whose momenta are k�:

ΠA0A
ν0ν ðk0�;k�Þ ¼

X
ρ;ρ0

UðS0Þ
ν0ρ0 ðk0�Þ�UðSÞ

νρ ðk�ÞðYJ0l0S0μ0 ðk0�; ρ0ÞÞ�YJlSμðk�; ρÞ; ð10Þ

where A ¼ ðJ; l; S; μÞ, A0 ¼ ðJ0; l0; S0; μ0Þ represent multi-indices and UðSÞ
νρ ðk�Þ is the unitary transformation of the spin

indices under a boost. The spherical harmonics with spin are defined as

YJlSμðk; νÞ ¼
X
m;σ

hlSmσjJμijkjlYlmðk̂ÞχSσðνÞ≡ jkjlYJlSμðk̂; νÞ; k̂ ¼ k=jkj; ð11Þ

where Ylm denote usual spherical harmonics.
Using the projectors, the quantities in Eqs. (7) and (8) can be expanded as

tS
0S

ν0ν ðk0;k;P; zÞ ¼ 4π
X

J0l0μ0;Jlμ

ΠA0A
ν0ν ðk0�;k�ÞtA0Aðjk0�j; jk�j;P; zÞ; ð12Þ

hS
0S

ν0ν ðk0;k;PÞ ¼ 4π
X

J0l0μ0;Jlμ

ΠA0A
ν0ν ðk0�;k�ÞhA0Aðjk0�j; jk�j;PÞ: ð13Þ

If the system is placed in a box of a size L, the momenta are quantized. The integral in the LS equation should be replaced by
a sum:

Z
ddq
ð2πÞd →

1

L3

X
q

; q ¼ 2π

L
ðn − μ1dÞ; n ∈ Z3; ð14Þ

where 2πd=L ¼ P.
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By plugging the Eqs. (12) and (13) into the finite volume equivalent of Eq. (9), one gets:

tA0Aðs;PÞ − hA0Aðs;PÞ ¼
k�

8π
ffiffiffi
s

p
X
B0;B

hA0B0 ðs;PÞððk�Þlþl0 il−l
0
δSB0SBMB0Bðs;PÞÞtBAðs;PÞ; ð15Þ

with s ¼ P2 and SB being the spin of the multi-index B. Note that using dimensional regularization, one is able to rewrite
the LS equation as an algebraic equation, involving only the on-shell quantities. Hence, the quantities tA0A and hA0A in
Eq. (15) coincide with their counterparts from Eqs. (12) and (13) on shell, i.e.,

jk0�j ¼ jk�j ¼ λ1=2ðs;m2
1; m

2
2Þ

2
ffiffiffi
s

p ; z ¼ P0; ð16Þ

where λ denotes the triangle function.
Now, using unitarity of the transformation of the spin indices, one arrives at

MJ0l0S0μ0;JlSμðs;PÞ ¼
32π2

jk�j
ffiffiffi
s

p
L3

il−l
0
δS0S

X
ν

X
q

ðYJ0l0Sμ0 ðq̂�; νÞÞ�YJlSμðq̂�; νÞ
4ω1ðq1Þω2ðP − q1Þðω1ðq1Þ þ ω2ðP − q1Þ − P0Þ

: ð17Þ

This matrix can be related to its equivalent for scalar particles by using Eq. (11):

MJ0l0S0μ0;JlSμ ¼ δS0S
X
m0;m;σ

hl0Sm0σjJ0μ0ihlSmσjJμiMl0m0;lm; ð18Þ

where we used the identity [5,17] (with q ¼ q1 − μ1P)

1

4ω1ω2ðω1 þ ω2 − P0Þ
¼ 1

2P0

1

q2 − ðqPÞ2
P2
0

− ðk�Þ2
þ 1

4ω1ω2

�
1

ω1 þ ω2 þ P0

−
1

ω1 − ω2 þ P0

−
1

ω2 − ω1 þ P0

�
; ð19Þ

kept only the singular part [first term in Eq. (19)] and used ðq�Þ2 ¼ q2 − ðqPÞ2
P2
0

. This way, and up to exponentially suppressed

terms, Ml0m0;lm is given by (see Ref. [5])

Ml0m0;lmðk�; sÞ ¼ ð−1Þl0
π3=2γ

Xlþl0

j¼jl−l0j

Xj

s¼−j

ij

ηjþ1
Zd
jsð1; sÞ�Cl0m0;js;lm; η ¼ jk�jL

2π
; ð20Þ

where

Cl0m0;js;lm ¼ ð−1Þmil0−jþl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2l0 þ 1Þð2jþ 1Þ

p �
l0 j l

m0 s −m

��
l0 j l

0 0 0

�
; ð21Þ

Zd
lmð1; sÞ ¼

X
r∈Pd

jrjlYlmðrÞ
r2 − η2

; Pd ¼ frk ¼ γ−1ðnk − μ1dÞ; r⊥ ¼ n⊥g; ð22Þ

γ ¼ ð1 − P2=P2
0Þ−1=2 and n ∈ Z3. One can see that Eq. (15) is a matrix equation, and the poles in tA0A arise when

detA ¼ 0; ð23Þ
where A is a matrix

AJ0l0S0μ0;JlSμ ¼
8π

ffiffiffi
s

p
jk�jlþl0þ1

ðhJl0S0;lSÞ−1δJ0Jδμ0μ − δS0SMJ0l0Sμ0;JlSμ: ð24Þ

Here it is already implied that J and μ are conserved in scattering processes in the infinite volume, i.e.,
hJ0l0S0μ0;JlSμ ¼ hJl0S0;lSδJ0Jδμ0μ, and the factor il−l

0
can be dropped in the determinant.
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Now, in order to express this equation in a more compact
way, one uses the standard definition of the S matrix (see
[18], for nucleon-nucleon scattering), S ¼ e2iδðsÞ, in terms
of the phase shift δðsÞ. This way, one can write down hJl0S0;lS
in terms of δ:

hJl0S0;lS ¼
8π

ffiffiffi
s

p
jk�jlþl0þ1

ðtan δÞJl0S0;lS: ð25Þ

Plugging it in Eq. (24), we arrive at

AJ0l0S0μ0;JlSμ ¼ ðcot δÞJl0S0;lSδJ0Jδμ0μ − δS0SMJ0l0Sμ0;JlSμ: ð26Þ

B. Two vector particles

A system of two identical vector particles can couple to
total spin S ¼ 0, 1, 2. Even spin combinations are sym-
metric under the exchange of two particles, whereas odd
combinations are antisymmetric. The same holds for the
angular momentum L. The possible combinations of S and
L to JP, respecting Bose statistics (totally symmetric state),
are listed in the Table I. The combinations that have mixing
are in the same column in the table and correspond to same
JP but different L, S. The possible mixings can be para-
metrized by a mixing angle and two eigenvalues. This
would be analogous to the parametrization of the mixings
for two nucleons in Ref. [18]; for example:

cot δ0
þ ¼

�
cos ϵ0 − sin ϵ0
sin ϵ0 cos ϵ0

��
cot δ0

þ
1 0

0 cot δ0
þ

2

��
cos ϵ0 sin ϵ0
− sin ϵ0 cos ϵ0

�
: ð27Þ

Since no mixing occurs between even and odd spins,
neither in the M matrix, nor in the phase shifts,
Eq. (26) factorizes for even and odd spin.

C. Effective range expansion in case of
multiple channels

For the scattering of two spinless particles, it is well
known (see Ref. [19]) that the phase shift can be para-
metrized as a polynomial of k2:

k2lþ1 cot δl ¼
X
n¼0

anlk2n: ð28Þ

One obviously needs an analog of this parametrization in
the multichannel case as well.1 In order to derive such a
parametrization, we note that, within the effective field
theory, the left-hand side of Eq. (13) has a Taylor expansion
in momenta. Taking now into account the fact that the
projector on the right-hand side of the same equation
contains the factor jk�jlþl0, from Eq. (25) one may finally
conclude that, on the mass shell,

klþl0þ1 cot δJl0S0;lS ¼
X
n¼0

ðanÞl0S0;lSk2n: ð29Þ

D. Reduction of the Lüscher equation

Our aim here is to construct the basis vectors of all
irreducible representations (irreps) from the basis vectors of
the irreps of the rotation group, corresponding to the
symmetry in the infinite volume, and to (partially) diag-
onalize the Lüscher equation in this new basis. The general
procedure is well known in the literature, so we shall skip
many details2 Let G be a full octahedral group including
inversions, or a subgroup thereof (little group), which is the
symmetry group in the moving frames. Let Γ be a certain
irrep of G, and let α ¼ 1;… dimΓ be an index labeling
basis vector in this representation. One can construct these
basis vectors by applying certain projection operators to the
basis vectors of the irreps of the rotation group. These
(unnormalized) projectors are given by

ðPΓ;J;l
αβ Þμμ0 ¼

X
S∈G

ðRΓ
αβðSÞÞ�DJ

μμ0 ðSÞ: ð30Þ

Here, DJ
μμ0 ðSÞ denotes the usual Wigner matrix, if S

corresponds to a pure rotation. Otherwise, the group
elements can be represented as S ¼ IS̄, where I is an
inversion and S̄ is a pure rotation. In this case, we define

TABLE I. Possible values of JP with J < 3.

JP 0þ 0− 1þ 1− 2þ 2−

fS; Lg
f0; 0g f0; 2g

f1; 1g f1; 1g f1; 1g, f1; 3g
f2; 2g f2; 2g f2; 0g, f2; 2g, f2; 4g

1An equivalent derivation can be found in Refs. [20,11].

2See, for example, Ref. [21], where the same problem has been
considered by using the helicity formalism.
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DJ
μμ0 ðSÞ ¼ ð−1ÞlDJ

μμ0 ðS̄Þ. Furthermore, RΓ
αβðSÞ denotes a

matrix representation of G in the irrep Γ.
These projectors must be applied to the basis vectors of

the irreps of the rotation group jJ; S; l; μiwith indices β and
μ fixed

jΓ; α; J; S; l; ni ∝
X
μ0
ðPΓ;J;l

αβ Þμμ0 jJ; S; l; μ0i; ð31Þ

where n labels the number of multiple occurrences of Γ.
The different spatial symmetry groups, with their irreduc-
ible representations and the corresponding elements are
listed in Appendices A and B.
As seen from Eq. (31), the basis vectors of the irreducible

representations of the symmetry group of the lattice can be
expressed in terms of the one of the continuum:

jΓ; α; J; l; S; ni ¼
X
μ

cΓnαJlμ jJlSμi; ð32Þ

where the Clebsch-Gordan coefficients cΓnαJlμ can be read
from Tables X–XVII in Appendix C. They are in agreement
with those of Refs. [3,8] and obey the usual orthogonality
conditions

X
μ

ðcΓ0n0α0
Jlμ Þ�cΓnαJlμ ¼ δΓ0Γδα0αδn0n: ð33Þ

The matrix M can be partially diagonalized in the new
basis:

hΓ0; α0; J0; l0; S; n0jMjΓ; α; J; l; S; ni ¼ MΓ
J0l0Sn0;JlSnδΓ0Γδα0α;

ð34Þ
where

MΓ
J0l0Sn0;JlSn ¼

X
μμ0

ðcΓn0αJ0l0μ0 Þ�cΓnαJlμ MJ0l0Sμ0;JLSμ ð35Þ

(for a given Γ and α). Moreover, the matrix cot δ should be
written down in the same basis as M:

ðcot δÞΓJ0l0S0n0;JlSn ¼
X
μ0μ

ðcΓn0αJ0l0μ0 Þ�cΓnαJlμ ðcot δÞJl0S0;lSδμμ0δJJ0

¼ δJJ0δnn0 ðcot δÞJl0S0;lS: ð36Þ

Here, we have used Eq. (33) and the fact that only states
with the same parity can mix. Now one sees that the
determinant factorizes:

Y
S¼even

odd

Y
Γ

detAΓ ¼ 0; ð37Þ

where

AΓ
J0l0S0n0;JLSn ¼ ðcot δÞJl0S0;lSδJJ0δnn0 − δSS0MΓ

J0l0Sn0;JlSn: ð38Þ

For simplicity, MΓ will be expressed in terms of
functions ωjs

ωjs ¼
γ−1η−j−1

π3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

p Zd
jsð1; sÞ: ð39Þ

Understanding and using some symmetry properties of ωlm

simplifies the expressions of MΓ. A frame-independent
property is

Zd
lm ¼ ð−1ÞmZ�

l−m; ð40Þ

and it is a direct consequence of the properties of the
spherical harmonics. Moreover, if one changes the order of
the particles (m1 ↔ m2):

Zd;ðm1;m2Þ
js ¼ ð−1ÞjZd;ðm2;m1Þ

js ; ð41Þ

which for the case of equal masses implies vanishing Zd
js

for odd j. Additional symmetry properties of ωjs in the rest
frame are listed in Table II for the rest frame (See also [22].)
and in Ref. [8] for moving frames. In Appendix E we give
some examples of MΓ in the rest frame.

TABLE II. Possible values of ωlm in the rest frame.

l ωl

0 (ω00)
1 (0, 0, 0)
2 (0, 0, 0, 0, 0)
3 (0, 0, 0, 0, 0, 0, 0)
4

�
5ffiffiffiffi
70

p ω40; 0; 0; 0;ω40; 0; 0; 0; 5ffiffiffiffi
70

p ω40

�
5 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
6

�
0; 0;−

ffiffi
7
2

q
ω60; 0; 0; 0;ω60; 0; 0; 0;−

ffiffi
7
2

q
ω60; 0; 0

�
7 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
8

� ffiffiffiffiffiffi
65
198

q
ω80; 0; 0; 0;

ffiffiffiffi
14
99

q
ω80; 0; 0; 0;ω80; 0; 0; 0;

ffiffiffiffi
14
99

q
ω80; 0; 0; 0;

ffiffiffiffiffiffi
65
198

q
ω80

�
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III. TOY MODEL: SCALAR QED

A. The Lagrangian

In order to test the formalism, we use scalar QED with a
Higgs mechanism, since the vector state needs to be
massive. This model was, for instance, studied in
Ref. [23], whose parameters will be used as a guideline.

The continuumEuclidean Lagrangian of such a theory reads

LE¼
1

4
FμνFμνþðDμϕcÞ†Dμϕcþm2

0jϕcj2þλcjϕcj4; ð42Þ
with Dμϕc ¼ ∂μϕc þ igAμϕc and Fμν ¼ ∂μAν − ∂νAμ.
For the discretization we restrict space-time to a discrete

and finite set of points

x ∈ fðx0; x1; x2; x3Þjx0 ¼ 0; 1;…; T; xi ¼ 0; 1;…; L − 1; i ¼ 1; 2; 3g:

We use periodic boundary conditions. In order to
include the gauge symmetry in the discretized action,
one defines the discretized gauge links at point x in
direction μ as

Ux;μ ¼ eiagAx;μ ; ð43Þ

with gauge potential Ax;μ, gauge coupling g and
lattice spacing a. In the case of QED Ux;μ ∈ Uð1Þ. Scalar

field ϕ, covariant derivative and integrals are discretized as
follows:

aϕcðxÞ →
ffiffiffi
κ

p
ϕx;

DμϕcðxÞ → κðUx;μϕxþμ − ϕxÞ=a2;Z
d4x → a4

X
x

: ð44Þ

This way, the discretized action reads

S ¼
X
x

�
−
β

2

X
μ<ν

ðUx;μν þ U�
x;μνÞ − κ

X
μ

ðϕ�
xUx;μϕxþμ þ ccÞ þ λðjϕxj2 − 1Þ2 þ jϕxj2

�
; ð45Þ

with

λc ¼
λ

κ2
; ðam0Þ2 ¼

1 − 2λ − 8κ

κ
; β ¼ 1

g2
: ð46Þ

The plaquette at point x in the μ-ν plane is defined as usual
by the smallest closed loop

Ux;μν ¼ Ux;μUxþμ;νU
†
x;νU

†
xþν;μ: ð47Þ

B. Construction of the operators

Any transformation of the group G, acting on the
components of any vector, is a combination of an inter-
change of its components, an inversion of an axis and an
inversion of all axes. We would like to study the trans-
formation properties of the operators

OiðxÞ ¼ ϕ†
xUx;iϕxþi ð48Þ

with respect to the transformations from the group G (here,
we choose the spatial component μ ¼ i of the link Ux;μ).
We will consider everything in the continuum first and then
its equivalent for the discretized model.

The transformation of the scalar fields reads

ϕðxÞ → ϕðx0Þ; x0i ¼ TijðS−1Þxj; t0 ¼ t; ð49Þ

where the matrices TijðS−1Þ form a three-dimensional irrep
of the cubic group in the Cartesian basis. Next, we consider
the transformation of the link. The transformation law for
the vector field is given by

AiðxÞ → TijðS−1ÞAjðx0Þ: ð50Þ
For the transformation of a link under Gmultiple cases have
to be taken into account:

(i) The interchange of the components does not affect
the index i. For example, i ¼ 1, whereas the com-
ponents 2,3 are interchanged. Then, in the con-
tinuum, the link transforms as

Uðx;xþae1Þ→exp

�
ig
Z

1

0

dτaA1ðx1þaτ;x3;x2;tÞ
�

¼Uðx0;x0 þae1Þ; ð51Þ
where ei denotes a unit vector in the direction i and
x0 ¼ ðx1; x3; x2; tÞ. On the lattice, this corresponds to

Ux;i → Ux0;i: ð52Þ
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(ii) The interchange involves the component i, e.g.,
i ¼ 1 and the components 1, 2 are interchanged.
Then,

Uðx;xþae1Þ→exp

�
ig
Z

1

0

dτaA2ðx2;x1þaτ;x3;tÞ
�

¼Uðx0;x0 þae2Þ; ð53Þ

or, on the lattice,

Ux;i → Ux0;j; ð54Þ

where x0 is obtained from x by interchanging the
components xi and xj.

Both transformations can be written as

Ux;i → TijðS−1ÞUx0;j; x0i ¼ TijðS−1Þxj: ð55Þ

In other words, the link Ux;i behaves like a vector
under such transformations, albeit not being a vector
with respect to the rotation group.

(iii) i ¼ 1 and the reflection of all axes. The result is
given by

Uðx; xþ ae1Þ → exp
�
−ig

Z
1

0

dτaA1ð−x1 − aτ;−x2;−x3; tÞ
�

¼ U†ðx0 − ae1; x0Þ; ð56Þ

or, on the lattice,

Ux;i → U†
x0−i;i: ð57Þ

(iv) The inversion of one of the axes. Here, again, one
has to consider two different possibilities. First, if
the axis i is not affected by inversion, then

Ux;i → Ux0;i; ð58Þ

otherwise

Ux;i → U†
x0−i;i: ð59Þ

Finally, let us consider the set of the operators OiðxÞ,
defined in Eq. (48) and construct the operators

ŌiðxÞ ¼ ϕ†
xU

†
x−i;iϕx−i: ð60Þ

Using the transformation properties of the scalar field and a
link it is straightforward to check that the following
operator

SðxÞ ¼
X
i

ðOiðxÞ þ ŌiðxÞÞ ð61Þ

transforms as SðxÞ → Sðx0Þ both under rotations
and inversions. One may use this operator, for example,
to project out the spectrum in the representation A1

(rest frame).
On the other hand, it can be checked that the operator

ViðxÞ ¼ OiðxÞ − ŌiðxÞ ð62Þ

behaves like a vector both under the rotations and
reflections. We shall use this operator to construct the

two-particle operators for the vector-vector scattering in
different irreps. The conventions and the naming scheme of
these irreps are listed in Appendix A.
The generalization for the case of a Wilson line of

arbitrary length is given by

OiðxÞ → Oiðx; NÞ ¼ ϕ†
x

�YN−1

n¼0

Uxþni;i

�
ϕxþNi;

ŌiðxÞ → Ōiðx; NÞ ¼ ϕ†
x

�YN
n¼1

U†
x−ni;i

�
ϕx−Ni; ð63Þ

for which Eqs. (61) and (62) do not change (in the
following, in order to simplify the notations, the depend-
ence on N is never displayed explicitly). Note that such
highly nonlocal operators are seen to improve the signal
significantly.

IV. OPERATORS

A generic operator OΓ
αðxÞ, transforming under a specific

irrep Γ of the group G, obeys the following transformation
law

OΓ
αðxÞ → RβαðSÞOΓ

βðx0Þ: ð64Þ

The prescription for constructing such operators is well
known (see, e.g., Refs. [3,8]). Consider first the case of
one-particle operators Oðx; tÞ, whose transformation prop-
erties (a scalar, vector, etc.) are defined. More specifically,
let the action of the group element S on the fieldOðx; tÞ be
represented by a linear matrix AðS−1Þ [unit matrix for
scalars, TijðS−1Þ for vectors, etc.]. Then, it is possible to
project out the component, contributing to a given irrep Γ.
In momentum space, the corresponding expression takes
the form
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OΓ
αðp; tÞ ¼

X
x

eipx
X
S∈G

ðRΓ
αβðSÞÞ�ðAðS−1ÞOÞðx; tÞ; ð65Þ

where the set of RΓ
αβðSÞ forms the irrep Γ of the group G

with index β fixed.
The two-particle operator with total momentum p and

relative momentum q is given by

OΓ
αðp;q; tÞ

¼
X
x;y

�X
S∈G

eipxþq̃ðy−xÞ
�
ðRΓ

αβðSÞÞ�ðAðS−1ÞOÞðx; y; tÞ;

ð66Þ
where the vector q̃ is obtained from the vector q
via q̃i ¼ TijðS−1Þqj.
In order to simplify the construction of the operators, we

note that the irreducible operators transform exactly as the
basis vectors in the corresponding irrep. We shall illustrate
the procedure with one example. Consider the construction
of the two-particle operator in the case where the momenta
of the particles are 2π

L ð0; 0; 1Þ and 2π
L ð0; 0; 0Þ. This is a

case of the little group C4v. From Table XIII one finds that,
e.g., the state j2; 0i is the basis vector in the irrep A1. On the
other hand, various linear combinations of the Cartesian
components of the vector field Viðx; tÞ transform as

j1;�1i ∼∓ 1ffiffiffi
2

p ðV1ðx; tÞ � iV2ðx; tÞÞ;

j1;�0i ∼ V3ðx; tÞ: ð67Þ
The state j2; 0i can be obtained as a linear combination of
the spin-1 states:

j2;0i¼ 1ffiffiffi
6

p j1;1ij1;−1iþ
ffiffiffi
2

3

r
j1;0ij1;0iþ 1ffiffiffi

6
p j1;−1ij1;1i:

ð68Þ
Taking into account the Eq. (67), we finally obtain that the
following operator

OA1ðp; tÞ¼
X
x;y

eipxð−V1ðx; tÞV1ðy; tÞ

−V2ðx; tÞV2ðy; tÞþ2V3ðx; tÞV3ðy; tÞÞ; ð69Þ
with p ¼ 2π

L ð0; 0; 1Þ, indeed projects on the irrep A1 of the
group C4v.
We have collected one- and two-particle operators in

Tables III and V, respectively. Note that this simplified
procedure is only possible if one of the momenta is zero or
both are in the same little group; if that is not the case, one
must use Eq. (66), as in the case for Γ ¼ A1, p ¼ 2π

L ð1; 1; 0Þ
and q ¼ 2π

L ð1; 1; 0Þ of Table V.

V. NUMERICAL RESULTS

The parameter sets we use are compiled in Table IV. Note
that we have five different sets of bare parameters λ and κ
for L ¼ 12 and T ¼ 24. For one of these parameter sets we
have a second volume with L ¼ 16 and T ¼ 32. We
compute correlation functions

CΓðt − t0Þ ¼ hOΓðtÞðOΓÞ†ðt0Þi ð70Þ

using the operators defined in the previous sections. At large
time differences t − t0 these correlation functions are propor-
tional to expð−Eðt − t0ÞÞwithE the energyof the lowest state
with the corresponding quantum numbers. The energies are
calculated with a fit to the shifted correlation function

C̃ΓðtÞ ¼ CΓðtÞ − CΓðtþ 1Þ;

including an excited state, and the errors are calculated
using the Jackknife method. We use the shifted correlation
function to subtract any contribution constant in time
stemming from vacuum expectation values; see also
Ref. [24]. Thermal contaminations in the two-particle
correlation functions with nonzero total momentum turn
out to be not important for our analysis (see plots in
Appendix F). Therefore, we have used the shifted corre-
lation function throughout. All the results are listed in the
tables of Appendix D and they will be discussed in this
section. In addition, we show exemplary plots for effective
masses for selected correlation functions in Appendix F.
The effective mass meff is calculated by solving

TABLE III. Complete list of one-particle operators in the
multiple moving frames and irreps.

d Γ Operator

(0, 0, 0) T−
1 Viðx; tÞ

(0, 0, 1)
A1 V3ðx; tÞ
E

V1ðx; tÞ þ V2ðx; tÞ
V1ðx; tÞ − V2ðx; tÞ

(1, 1, 0)
A1 V1ðx; tÞ þ V2ðx; tÞ
B1 V1ðx; tÞ − V2ðx; tÞ
B2 V3ðx; tÞ

(1, 1, 1)
A1

P
3
i¼1 Viðx; tÞ

E
V1ðx; tÞ − V2ðx; tÞ

V1ðx; tÞ þ V2ðx; tÞ − 2V3ðx; tÞ

TABLE IV. Ensembles used for the simulations. The gauge
coupling is kept constant, β ¼ 2.5.

L3 × T Reference N m2
0

λc κ λ

163 × 32 A16 138 000 −35 88 0.18425 2.9873

123 × 24

A12 33 000 −35 88 0.18425 2.9873
B12 24 000 −35.5 90.6 0.18208 3.0036
C12 21 500 −35.6 91.6 0.18084 2.9956
D12 16 000 −35.85 93.1 0.17949 2.9994
E12 18 800 −36.1 94.7 0.17802 3.0012
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CΓðtÞ − CΓðtþ 1Þ
CΓðtþ 1Þ − CΓðtþ 2Þ ¼

sinhðmeffðt − T=2þ a=2ÞÞ
sinhðmeffðtþ 1 − T=2þ a=2ÞÞ

ð71Þ

numerically for meff.

A. One-particle results

In Fig. 1(a) we show the dependence of the mass of the
vector particle mv on the length of the operator in Eq. (63)
for ensemble A12. We observe a clear improvement
of the signal with increasing operator length. When using
moving frames, the best signal is empirically seen at
N ¼ L=ðdþ 1Þ, with d being the units of momentum in
that particular direction.
Similarly, in Fig. 1(c) we show the dependence of the

mass of the scalar particle ms on the length of the operator
in Eq. (61), N, for ensemble A12. The same mass can be
measured using operator O ¼ jϕj. In addition we show the
mass measured using the operator OA1ð0; 0; tÞ. The corre-
sponding results are shown in the same figure as horizontal
lines denoted as mðϕÞ for the operator O ¼ jϕj and
mA1

W for operator OA1ð0; 0; tÞ, respectively. For ms the
signal improves again with increasing operator length.
However, while ms agrees with mðϕÞ up to operator
lengths of nine, at lengths larger than nine its values drops
and finally agrees with mA1

W . It is expected that these two
states mix because they have the same quantum numbers.
Hence, it seems that the overlap of the operator Eq. (61)
shifts with increasing operator length due to the presence of
more gauge links. Moreover, since the mass of the scalar is
only needed as a reference, and the gap between the scalar
and the vector mass is big, we do not perform a variational
analysis at this point.

In Fig. 1(b) we compare the masses of a single vector
and scalar particle as a function of κ for L ¼ 12. With
increasing κ-value we observe the vector mass to be
approximately constant while the scalar mass increases
almost linearly. In the range of κ-values studied here the
vector mass value is always smaller than the scalar mass
value. We recall that in the continuum the bare masses of

the particles are given by m2
ϕ ¼ −2m2

0 and m2
V ¼ − g2m2

0

λc
,

respectively. Hence, we expect the mass of the vector to be
suppressed with respect to the scalar mass by a factor g and
1=λc. However, it is not clear why the scalar mass
duplicates with increasing κ, whereas the vector mass
increases at best slightly.
In Fig. 1(d) we show the energies of a single vector

particle in the first moving frame as a function of κ for
L ¼ 12 for irreps E and A1. The (red) crosses represent the
prediction by the continuum dispersion relation with the
rest frame mass (irrep T−

1 ) as input. For the moving frames
we observe larger statistical uncertainties as compared to
the dispersion relation. The energy splittings between
different irreps and to the dispersion relation prediction
are compatible with zero.
The comparison between different irreps is shown in

more detail in Fig. 2(a): we plot mv for ensemble A16 for
different irreps and center of mass momenta. Where
we have several momenta for a given irrep, we also show
the weighted average value. The values obtained for the
different moving frames tend to be smaller than the one in
the rest frame, although in every case but one they are
compatible within 2σ. This discrepancy may be associated
to discretization effects. In order to show this, in Fig. 2(b)
we plot for ensemble A16 the energy of the vector particle
in different irreps and moving frames together with the
prediction from the continuum and lattice dispersion
relations, the latter one reading

TABLE V. List of used two-particle operators in the multiple moving frames and irreducible representations. The operatorOΓðp;q; tÞ
is built from the position-space operators, given in this table, by calculating the Fourier-transform with eipxþiqðy−xÞ. This prescription
holds for all operators except with p ¼ 2π

L ð1; 1; 0Þ and q ¼ 2π
L ð0; 1; 0Þ (the second line from below), for which the shortcut is no more

applicable and one has to use Eq. (66).

d Γ L
2π p

L
2π q OΓðx; y; tÞ

(0, 0, 0)
A1 0 0

P
3
i¼1 Viðx; tÞViðy; tÞ

Eþ 0 0 V1ðx; tÞV1ðy; tÞ − V2ðx; tÞV2ðy; tÞ
Tþ
2

0 0 V1ðx; tÞV2ðy; tÞ þ V2ðx; tÞV1ðy; tÞ

(0, 0, 1)

A1 ð0; 0; nÞ ð0; 0; mÞ V1ðx; tÞV1ðy; tÞ þ V2ðx; tÞV2ðy; tÞ þ V3ðx; tÞV3ðy; tÞÞ
A1 ð0; 0; nÞ ð0; 0; mÞ −V1ðx; tÞV1ðy; tÞ − V2ðx; tÞV2ðy; tÞ þ 2V3ðx; tÞV3ðy; tÞÞ
A2 ð0; 0; nÞ ð0; 0; mÞ V1ðx; tÞV2ðy; tÞ − V2ðx; tÞV1ðy; tÞ
B1 ð0; 0; nÞ ð0; 0; mÞ V1ðx; tÞV1ðy; tÞ − V2ðx; tÞV2ðy; tÞ
B2 ð0; 0; nÞ ð0; 0; mÞ V1ðx; tÞV2ðy; tÞ þ V2ðx; tÞV1ðy; tÞ
E ð0; 0; nÞ ð0; 0; mÞ V3ðx; tÞðV1ðy; tÞ þ V2ðy; tÞÞ þ ðV1ðx; tÞ þ V2ðx; tÞÞV3ðy; tÞ

(1, 1, 0)
A1 (1,1,0) 0 V3ðx; tÞV3ðy; tÞ
A1 (1,1,0) (0,1,0)
A2 (1,1,0) 0 V3ðx; tÞðV1ðy; tÞ − V2ðy; tÞÞ þ ðV1ðx; tÞ − V2ðx; tÞÞV3ðy; tÞ
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cosh aE ¼ coshamþ ð1 − cos apÞ: ð72Þ

Here, the mass am is taken to be the one measured in the

rest frame, m
Tþ
1

V . This shows that the continuum dispersion
relation describes our data better and we do not observe
large discretization effects for ap < 0.6. However, around
ap ≃ 1, this description becomes worse, as cut-off effects

get bigger. From now on, we will always use the continuum
dispersion relation with the mass as obtained from the rest
frame as input.

B. Two-particle results

The energy difference ΔE is defined as the difference
between the two-particle energy on the lattice and the

(a) (b)

FIG. 2. Numerical results for single particle operators in ensemble A16. (a) Mass of the vector particle for different irreps and total
momenta for ensemble A16. The continuum dispersion relation has been used. (b) Energies of a single vector particle as a function of the
squared momentum ðapÞ2. The solid and dashed lines represent the prediction of the continuum and lattice dispersion relations,
respectively. Different irreps are slightly displaced for better readability.

(a) (b)

(c) (d)

FIG. 1. Numerical results for single particle operators in ensembles with L ¼ 12. (a) Mass of the vector particle for ensemble A12 for
different lengths of the operator in Eq. (62). (b) Mass of the scalar and vector particle for L ¼ 12 as a function of κ. (c) Mass of the scalar
particle for ensemble A12 as a function of the length of the operator, N, as in Eq. (63). Further explanation can be found in the text. Note
that the error inmA1

VV is too small to be seen. (d) Energy of the vector particle for different irreps in the first moving frame for L ¼ 12 as a
function of κ. It is also compared with the rest frame result by means of the continuum dispersion relation.
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two-particle energy in absence of interactions. In Fig. 3(a)
we show the results for ΔE as a function of κ for the irreps
A1, T

þ
2 and Eþ. For the largest κ-value we include both,

A12 and A16 in the plot, respectively. For higher κ, the
interaction leads to the positive shift (ΔE > 0) with ⪆2σ
statistical significance. As κ becomes smaller, all particles
become lighter and the interaction seems to flip signs. For
the lowest values of κ, the two-particle states have ΔE < 0.

Unfortunately, in the transition region ΔE is compatible
with zero. Comparing A12 and A16, we see the expected
volume dependence in the energy shift (ΔE ∝ L−3), when
comparing L ¼ 12 with L ¼ 16. This can be inferred from
Fig. 3(b), where we show ΔE for A12 and A16 as a
function of 1=L3.
In Fig. 3(e) we show ΔE for ensemble A16 in the first

moving frame for the irreps A1, A2, B1, B2 and E. As

(a) (b)

(c) (d)

(e)

FIG. 3. Numerical results for two particles. (a) Energy difference ΔE as a function of κ in the rest frame for different irreps. Open
symbols correspond to ensemble A16 and closed ones to L ¼ 12. (b) Energy difference ΔE for ensemble A16 and A12 as a function of
the length of the box, L. Additionally, we include the expected behavior. (c) Phase shift in the JP ¼ 0þ channel in ensembles A12, A16
as a function of the scattering momentum k. Partial waves J > 1 have been neglected and the two possible L, S combinations cannot be
distinguished. (d) Phase shift in the JP ¼ 0− channel in ensemble A16 as a function of the scattering momentum k. They are calculated
neglecting partial waves J > 1. (e) Energy difference ΔE for ensemble A16 in the moving frame with total momentum p ¼ 2π

L ð0; 0; 1Þ
and q ¼ 0 as in Eq. (66) for different irreps Γ.
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expected, ΔE depends on the considered irrep. For the
moving frame shown in Fig. 3(e) ΔE is only significantly
different from zero for the E irrep.
Subsequently, in Fig. 3(c) we show the phase shifts with

JP ¼ 0þ computed from the energy shifts. Note that we
neglect partial waves with J > 1 and that the two possible
L, S combinations cannot be distinguished at this level:

cot δ0þ ¼ ω00: ð73Þ

For the highest momentum shown, the ratio between the
nonrelativistic kinetic energy and the mass is quite large,
Ek
m ≈ 0.8. Hence, the kinematic suppression of higher partial
waves, though present, is not strong anymore and a
corresponding systematical error is to be expected. The
phase shift appears to be small and negative for small
scattering momentum, indicating a weak repulsive inter-
action. If the data for large k can be taken seriously, there
seems to be a flip of sign around scattering momentum
ak ≈ 0.18 and a rapid growth toward pi=2 beyond this
point. Without further study, we cannot say whether this
corresponds to a resonance or not.
Finally, in Fig. 3(d) we show the results for the phase

shift with JP ¼ 0−. In this channel there are no mixings,
and one can expect a cleaner determination with respect to
JP ¼ 0þ. Again, we neglect partial waves with J > 1:

cot δ0− ¼ ω00: ð74Þ

The phase shift values are consistent with an attractive
interaction. δ increases with increasing k, which might
indicate a resonance for ak > 0.18.

VI. SUMMARY AND OUTLOOK

In this paper we have rederived the Lüscher formalism
for particles with general spin. We find complete agreement
with Ref. [9]. We have explicitly formulated this approach
for the case of two vector particles in the scalar channel.
The formalism is applied to scalar QED in the Higgs

phase, where the gauge boson becomes massive. For this
model we derived the relevant operators to study scalar,
vector and two vector particles with center of mass
momenta up to ap ¼ 2π

L ð1; 1; 1Þ. We have simulated scalar
QED using Markov chains and we have estimated inter-
acting and noninteracting energy levels for various total
momenta in the scalar channel. We have studied a set of
bare parameter values and two volumes. Even though the
model is sufficiently simple to simulate, it is still a
challenge to gather enough statistics to obtain significant
results. In general, the correlation functions measured by us
appear to be rather noisy.
In addition to the noise, it turns out that we are facing a

dependence of the estimated single particle energy levels
on the total momentum, which could be explained with

lattice artifacts. In the energy shift ΔE, this dependence is
much less pronounced. However, statistical uncertainties
are also larger for ΔE. Still, ΔE shows the expected
dependence on L. This makes us confident that our
measurements are meaningful to a certain extent.
Neglecting at this level any mixings and higher partial
waves, we could extract the phase shift as a function of the
scattering momentum.
A model-independent determination of all S-matrix

parameters is computationally very expensive. Namely, it
would require many volumes and the use of the multi-
channel effective-range expansion [Eq. (29)]. However, our
results show that it is feasible to study the interaction of two
vector particles. Hence, in the future, we plan to apply these
ideas to study the possibility of the Higgs boson to be a
bound state of two W bosons.
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APPENDIX A: CONVENTION FOR THE
IRREDUCIBLE REPRESENTATIONS

The ten irreducible representations (irreps) of the spatial
symmetry groups of the lattice include 4 one-dimensional,
2 two-dimensional and 4 three-dimensional ones. They are:

(i) A1 is the trivial representation, where all elements of
Oh are 1.

(ii) A2 is the trivial representation for O times −1 when
an inversion is present.

(iii) B1 assigns Ri ¼ −1 to rotations in the conjugacy
classes 6C4 and 6C0

2 and R ¼ 1 otherwise.
(iv) B2 is the same as B1 multiplying by −1 when an

inversion is present.
(v) E labels a two-dimensional representation. For the

octahedral group, the superscript E� means whether
an inversion multiplies the element by �1.

(vi) T�
1 is a three-dimensional representation which co-

incides with theWigner matrices:Ri¼ expð−iniJωiÞ,
with J the group generators and ni and ωi as listed in
Table VI. The superscript � labels whether spatial
inversion are assigned always þ1 or �1.

(vii) T�
2 is the same as T1 with a change of sign in the

conjugacy classes 6C4 and 6C0
2.

In Appendix B the elements and characters of the
different spatial symmetry groups are shown. They are
taken to be in agreement with Ref. [3,8].
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APPENDIX B: GROUP TABLES

APPENDIX C: BASIS VECTORS

TABLE VI. Rotations of the groupO. Last column includes the
element of the two dimensional irreducible representation for the
cubic group.

Class Ri n ω RiðE�Þ
I 1 any 0 1

8C3 2 (1, 1, 1) −2π=3 − 1
2
1þ i

ffiffi
3

p
2
σ2

3 (1, 1, 1) 2π=3 − 1
2
1 − i

ffiffi
3

p
2
σ2

4 ð−1; 1; 1Þ −2π=3 − 1
2
1 − i

ffiffi
3

p
2
σ2

5 ð−1; 1; 1Þ 2π=3 − 1
2
1þ i

ffiffi
3

p
2
σ2

6 ð−1;−1; 1Þ −2π=3 − 1
2
1þ i

ffiffi
3

p
2
σ2

7 ð−1;−1; 1Þ 2π=3 − 1
2
1 − i

ffiffi
3

p
2
σ2

8 ð1;−1; 1Þ −2π=3 − 1
2
1 − i

ffiffi
3

p
2
σ2

9 ð1;−1; 1Þ 2π=3 − 1
2
1þ i

ffiffi
3

p
2
σ2

6C4 10 (1, 0, 0) −π=2 − 1
2
σ3 −

ffiffi
3

p
2
σ1

11 (1, 0, 0) π=2 − 1
2
σ3 −

ffiffi
3

p
2
σ1

12 (0, 1, 0) −π=2 − 1
2
σ3 þ

ffiffi
3

p
2
σ1

13 (0, 1, 0) π=2 − 1
2
σ3 þ

ffiffi
3

p
2
σ1

14 (0, 0, 1) −π=2 σ3
15 (0, 0, 1) π=2 σ3

6C0
2 16 (0, 1, 1) −π − 1

2
σ3 −

ffiffi
3

p
2
σ1

17 ð0;−1; 1Þ −π − 1
2
σ3 −

ffiffi
3

p
2
σ1

18 (1, 1, 0) −π σ3
19 ð1;−1; 0Þ −π σ3
20 (1, 0, 1) −π − 1

2
σ3 þ

ffiffi
3

p
2
σ1

21 ð−1; 0; 1Þ −π − 1
2
σ3 þ

ffiffi
3

p
2
σ1

3C2 22 (1, 0, 0) −π 1
23 (0, 1, 0) −π 1
24 (0, 0, 1) −π 1

TABLE VII. Elements of the little groups.

Group Boost Name Elements

Oh (0, 0, 1) C4v R1, R14, R15, R24, IR18, IR19, IR22, IR23

(1, 1, 0) C2v R1, R18, IR19, IR24

(1, 1, 1) C3v R1, R2, R3, IR17, IR19, IR21

TABLE VIII. Elements of the two dimensional irrep in the little
groups.

C4v (R1, R14, R15, IR18, IR19, IR22, IR23, R24)
(1; −iffiffi

2
p ðσ1 þ σ2Þ, iffiffi

2
p ðσ1 þ σ2Þ, σ3, −σ3, 1ffiffi

2
p ðσ1 − σ2Þ,

1ffiffi
2

p ð−σ1 þ σ2Þ, −1)
C3v (R1, R2, R3, IR17, IR19, IR21)

(1;− 1
2
1þ i

ffiffi
3

p
2
σ2, − 1

2
1 − i

ffiffi
3

p
2
σ2,

1
2
σ3 þ

ffiffi
3

p
2
σ1, −σ3,

1
2
σ3 −

ffiffi
3

p
2
σ1)

TABLE IX. Table of elements in the different one dimensional
representations. Valid for all symmetry groups.

1 8C3 6C4 6C0
2 3C2 I 8IC3 6IC4 6IC0

2 3IC2

A1 1 1 1 1 1 1 1 1 1 1
A2 1 1 1 1 1 −1 −1 −1 −1 −1
B1 1 1 −1 −1 1 1 1 −1 −1 1
B2 1 1 −1 −1 1 −1 −1 1 1 −1

TABLE X. Basis vectors for Oh with ð−1ÞJ ≠ ð−1Þl.
Γ J Basis vectors

A2 0 j0; 0i
Tþ
1

1 − 1ffiffi
2

p ðj1; 1i − j1;−1iÞ
1 j1; 0i
1 iffiffi

2
p ðj1; 1i þ j1;−1iÞ

T−
2 2 1ffiffi

2
p ðj2; 1i þ j2;−1iÞ

2 iffiffi
2

p ðj2; 1i − j2;−1iÞ
2 1ffiffi

2
p ðj2;−2i − j2; 2iÞ

E− 2 1ffiffi
2

p ðj2;−2i þ j2; 2iÞ
2 j2; 0i

TABLE XI. Basis vectors for Oh with ð−1ÞJ ¼ ð−1Þl.
Γ J Basis vectors

A1 0 j0; 0i
T−
1 1 − 1ffiffi

2
p ðj1; 1i − j1;−1iÞ

1 j1; 0i
1 iffiffi

2
p ðj1; 1i þ j1;−1iÞ

Tþ
2

2 1ffiffi
2

p ðj2; 1i þ j2;−1iÞ
2 iffiffi

2
p ðj2; 1i − j2;−1iÞ

2 1ffiffi
2

p ðj2;−2i − j2; 2iÞ
Eþ 2 1ffiffi

2
p ðj2;−2i þ j2; 2iÞ

2 j2; 0i
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TABLE XII. Basis vectors for C4v with ð−1ÞJ ≠ ð−1Þl.
Γ J α Basis vectors

A2 0 j0; 0i
A2 1 j1; 0i
E 1 1 1

2
ð1þ iÞj1;−1i − 1

2
ð1 − iÞj1; 1i

1 2 1ffiffi
2

p j1;−1i − 1ffiffi
2

p ij1; 1i
A2 2 j2; 0i
B1 2 1ffiffi

2
p ðj2;−2i − j2; 2iÞ

B2 2 1ffiffi
2

p ðj2;−2i þ j2; 2iÞ
E 2 1 1

2
ð1 − iÞj2;−1i − 1

2
ð1þ iÞj2; 1i

2 2 1ffiffi
2

p j2;−1i þ iffiffi
2

p j2; 1i

TABLE XIII. Basis vectors for C4v with ð−1ÞJ ¼ ð−1Þl.
Γ J α Basis vectors

A1 0 j0; 0i
A1 1 j1; 0i
E 1 1 1

2
ð1þ iÞj1;−1i þ 1

2
ð1 − iÞj1; 1i

1 2 1ffiffi
2

p j1;−1i þ 1ffiffi
2

p ij1; 1i
A1 2 j2; 0i
B1 2 1ffiffi

2
p ðj2;−2i þ j2; 2iÞ

B2 2 1ffiffi
2

p ðj2;−2i − j2; 2iÞ
E 2 1 1

2
ð1 − iÞj2;−1i þ 1

2
ð1þ iÞj2; 1i

2 2 1ffiffi
2

p j2;−1i − iffiffi
2

p j2; 1i

TABLE XIV. Basis vectors for C2v with ð−1ÞJ ≠ ð−1Þl.
Γ J nΓ Basis vectors

A2 0 j0; 0i
A2 1 1ffiffi

2
p j1;−1i þ iffiffi

2
p j1; 1i

B2 1 1ffiffi
2

p j1;−1i − iffiffi
2

p j1; 1i
B1 1 j1; 0i
A2 2 1 j2; 0i
A2 2 2 1ffiffi

2
p ðj2;−2i − j2; 2iÞ

A1 2 1ffiffi
2

p ðj2;−1i − ij2; 1iÞ
B2 2 1ffiffi

2
p ðj2;−2i þ j2; 2iÞ

B1 2 1ffiffi
2

p ðj2;−1i þ ij2; 1iÞ

TABLE XV. Basis vectors for C2v with ð−1ÞJ ¼ ð−1Þl.
Γ J nΓ Basis vectors

A1 0 j0; 0i
A1 1 1ffiffi

2
p j1;−1i þ iffiffi

2
p j1; 1i

B1 1 1ffiffi
2

p j1;−1i − iffiffi
2

p j1; 1i
B2 1 j1; 0i
A1 2 1 j2; 0i
A1 2 2 1ffiffi

2
p ðj2;−2i − j2; 2iÞ

A2 2 1ffiffi
2

p ðj2;−1i − ij2; 1iÞ
B1 2 1ffiffi

2
p ðj2;−2i þ j2; 2iÞ

B2 2 1ffiffi
2

p ðj2;−1i þ ij2; 1iÞ

TABLE XVI. Basis vectors for C3v with ð−1ÞJ ≠ ð−1Þl.
Γ J Basis vectors

A2 0 j0; 0i
A2 1 1ffiffi

3
p j1;−1i þ 1−iffiffi

6
p j1; 0i þ iffiffi

3
p j1; 1i

E 1 −iffiffi
6

p j1;−1i þ 1þiffiffi
3

p j1; 0i þ 1ffiffi
6

p j1; 1i
1 1ffiffi

2
p j1;−1i − iffiffi

2
p j1; 1i

A2 2 1ffiffi
6

p j2;−2i þ 1−iffiffi
6

p j2;−1i þ 1þiffiffi
6

p j2; 1i − 1ffiffi
6

p j2; 2i
E 2 j2; 0i

2 1ffiffi
2

p ðj2;−2i þ j2; 2iÞ
E 2 1−iffiffi

6
p j2;−2i þ iffiffi

6
p j2;−1i − 1ffiffi

6
p j2; 1i þ −1þiffiffi

6
p j2; 2i

2 1ffiffi
2

p ðj2;−1i − ij2; 1iÞ

TABLE XVII. Basis vectors for C3v with ð−1ÞJ ¼ ð−1Þl.
Γ J Basis vectors

A1 0 j0; 0i
A1 1 1ffiffi

3
p j1;−1i þ 1−iffiffi

6
p j1; 0i þ iffiffi

3
p j1; 1i

E 1 −iffiffi
2

p j1;−1i − 1ffiffi
2

p j1; 1i
1 1ffiffi

6
p j1;−1i þ −1þiffiffi

3
p j1; 0i þ iffiffi

6
p j1; 1i

A1 2 1ffiffi
6

p j2;−2i þ 1−iffiffi
6

p j2;−1i þ 1þiffiffi
6

p j2; 1i − 1ffiffi
6

p j2; 2i
E 2 1ffiffi

2
p ðj2;−1i − ij2; 1iÞ

2 − 1−iffiffi
6

p j2;−2i − iffiffi
6

p j2;−1i þ 1ffiffi
6

p j2; 1i þ 1−iffiffi
6

p j2; 2i
E 2 −1ffiffi

2
p ðj2;−2i þ j2; 2iÞ

2 j2; 0i
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APPENDIX D: TABLES FOR THE NUMERICAL RESULTS

TABLE XVIII. Mass of the scalar and vector particle for the different ensembles.

Ensemble amV amϕ

A12 0.1367(69) 0.784(34)
B12 0.1346(43) 0.617(28)
C12 0.1215(38) 0.505(22)
D12 0.1166(44) 0.468(19)
E12 0.0953(48) 0.342(15)
A16 0.1466(16) 0.728(13)

TABLE XIX. Energy in the A1=E irreps of d ¼ ð0; 0; 1Þ for the ensembles of Table V.

Ensemble aEA1
aEE

A12 0.531(13) 0.5382(18)
B12 0.535(15) 0.5357(26)
C12 0.528(16) 0.5225(26)
D12 0.524(19) 0.5300(27)
E12 0.528(17) 0.5210(68)

TABLE XX. Energy and energy shift for two particles.

aEA1
aΔEA1

aEEþ aΔEEþ aETþ
2

aΔETþ
2

A12 0.3046(53) 0.031(14) 0.3007(54) 0.027(15) 0.3076(66) 0.034(15)
B12 0.242(15) −0.028ð17Þ 0.2679(48) −0.0013ð93Þ 0.245(10) −0.025ð13Þ
C12 0.2136(71) −0.024ð10Þ 0.2241(52) −0.0187ð98Þ 0.2503(39) 0.0002(77)
D12 0.1905(74) −0.043ð11Þ 0.2096(58) −0.0236ð99Þ 0.2231(41) −0.0100ð83Þ
E12 0.1641(87) −0.019ð10Þ 0.174(11) −0.026ð12Þ 0.1457(86) −0.0400ð90Þ
A16 0.3010(17) 0.0079(36) 0.3031(20) 0.0100(37) 0.3022(18) 0.0091(36)

TABLE XXI. One-particle mass in the multiple representations with L ¼ 16 using the continuum dispersion relation. An empty slot
(...) for amV indicates that the determination has not been possible due to the precision. The last column is the expected energy with the
rest frame mass.

n Γ aE amV
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðamVÞ2 þ ðapÞ2

p
(0, 0, 0) T−

1 0.1466(16) 0.1466(16) 0.1466(16)

(0, 0, 1)
A1 0.4176(26) 0.1420(77)

0.4192(6)
E 0.41797(80) 0.1431(24)

(1, 1, 0)
A1 0.5724(27) 0.139(11)

0.5744(4)B1 0.5702(28) 0.129(12)
B2 0.5694(10) 0.1257(45)

(1, 1, 1)
A1 0.6925(27) 0.130(14)

0.6958(6)
E 0.6907(29) 0.120(17)

(0, 0, 2)
A1 0.777(17) � � �

0.7990(3)
E 0.7832(13) � � �
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TABLE XXII. Energy for two particles in the moving frame with d ¼ ð0; 0; 1Þ.
Γ aE aΔE aECM γ ak aq

A1 0.5696(18) 0.0038(28) 0.4126(25) 1.3805(40) 0.1452(24) 0.3698(61)
A2 0.5614(13) −0.0044ð25Þ 0.4012(18) 1.3993(31) 0.1369(21) 0.3487(55)
B1 0.5674(19) 0.0016(28) 0.4096(26) 1.3853(42) 0.1430(25) 0.3642(63)
B2 0.5666(11) 0.0008(23) 0.4084(16) 1.3874(23) 0.1422(20) 0.3620(51)
E 0.5835(14) 0.0177(26) 0.4316(18) 1.3523(24) 0.1583(35) 0.4031(89)

TABLE XXIII. Energy spectrum in the A1 representation.

L Frame aE ak δ0þðoÞ

12
ð0; 0; 0Þ þ ð0; 0; 0Þ 0.3046(53) 0.0582(82) −2.09ð52Þ
ð0; 0; 0Þ þ ð0; 0; 1Þ 0.6840(40) 0.1724(68) −0.9ð1.2Þ
ð0; 0; 0Þ þ ð0; 0; 0Þ 0.3010(17) 0.034(64) −1.41ð75Þ
ð0; 0; 1Þ þ ð0; 0; 1Þ 0.8414(14) 0.036(11) −0.80ð72Þ
ð0; 0; 0Þ þ ð0; 0; 1Þ 0.5696(18) 0.1452(24) −1.13ð76Þ
ð0; 0; 0Þ þ ð1; 1; 0Þ 0.7176(14) 0.1736(20) 1.60(83)
ð0; 0; 0Þ þ ð0; 0; 2Þ 0.9127(19) 0.1804(27) 20.3(2.1)
ð1; 0; 0Þ þ ð0; 1; 0Þ 0.8361(22) 0.2703(19) 12.7(4.0)

TABLE XXIV. Energy spectrum in the A2 representation.

L Frame aE ak δ0−ðoÞ
16 ð0; 0; 0Þ þ ð0; 0; 1Þ 0.5614(13) 0.1369(21) 1.2(7)

ð0; 0; 0Þ þ ð1; 1; 0Þ 0.7077(16) 0.1631(23) 4.9(9)
ð0; 0; 0Þ þ ð0; 0; 2Þ 0.9101(18) 0.1770(25) 23(2)

TABLE XXV. Obtained values for the phase shift δ1� in moving frame ð0; 0; 0Þ þ ð0; 0; 1Þ with the assumption of no mixings.

Γ ak Formula δð∘Þ
A1 0.1452(24) cot δ1− ¼ ω00 − ω20 −0.14ð10Þ
A2 0.1369(21) cot δ1þ ¼ ω00 − ω20 0.127(60)
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APPENDIX E: EXAMPLES OF MΓ IN THE REST FRAME

For the irreducible representations Eþ and Tþ
2 , with the notation:

M
Tþ
2
=Eþ

J0l0;Jl ¼

0
B@ ðMTþ

2
=Eþ

22;22 ÞS¼0 0

0 ðMTþ
2
=Eþ

J0l0;Jl ÞS¼2

1
CA; ðE1Þ

with

ðMTþ
2
=Eþ

J0l0;Jl ÞS¼2 ¼

0
BB@

M20;20 M20;22 M20;24

M22;20 M22;22 M22;24

M24;20 M24;22 M24;24

1
CCA: ðE2Þ

MEþ ¼

0
BBBBBBBB@

ω00 þ 18
7
ω40 0 0 0

0 ω00 0 3
ffiffi
2
7

q
ω40

0 0 ω00 þ 36
49
ω40

30
ffiffi
5

p
49

ω40

0 3
ffiffi
2
7

q
ω40

30
ffiffi
5

p
49

ω40 ω00 þ 27
49
ω40

1
CCCCCCCCA
; ðE3Þ

MTþ
2 ¼

0
BBBBBB@

ω00 − 12
7
ω40 0 0 0

0 ω00 0 − 4ffiffiffiffi
14

p ω40

0 0 ω00 − 24
49
ω40 − 20

ffiffi
5

p
49

ω40

0 − 4ffiffiffiffi
14

p ω40 − 20
ffiffi
5

p
49

ω40 ω00 − 18
49
ω40

1
CCCCCCA
: ðE4Þ

For the representation A1 with the notation

MA1

J0l0;Jl ¼
�
MA1

S¼0 0

0 MA1

S¼2

�
; ðE5Þ

ðMA1

J0l0;JlÞS¼0 ¼
�
M00;00 M00;44

M44;00 M44;44

�
; ðE6Þ

ðMA1

J0l0;JlÞS¼2 ¼

0
BBB@

M02;02 M02;42 M02;44 M02;46

M42;02 M42;42 M42;44 M42;46

M44;02 M44;42 M44;44 M44;46

M46;02 M46;42 M46;44 M46;46

1
CCCA; ðE7Þ

ðMA1

J0l0;JlÞS¼0 ¼

0
B@ ω00 6

ffiffi
3
7

q
ω40

6
ffiffi
3
7

q
ω40 ω00 þ 4

143
ð81ω40 þ 260ω60 þ 140ω80Þ

1
CA: ðE8Þ
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ðMA1

J0l0;JlÞS¼2

¼

0
BBBBBBBBB@

ω00
6
ffiffi
6

p
7
ω40

12
7

ffiffiffiffi
15
11

q
ω40 6

ffiffiffiffi
15
77

q
ω40

6
ffiffi
6

p
7
ω40 ω00þ6

7
ω40

12
77

ffiffiffiffi
10
11

q
ð9ω40þ35ω60Þ 2

143

ffiffiffiffi
70
11

q
ð3ω40þ52ω60þ88ω80Þ

12
7

ffiffiffiffi
15
11

q
ω40

12
77

ffiffiffiffi
10
11

q
ð9ω40þ35ω60Þ ω00−

2ð1863ω40þ20566ω60−10976ω80Þ
11011

12
ffiffi
7

p ð45ω40þ208ω60þ72ω80Þ
1573

6
ffiffiffiffi
15
77

q
ω40

2
143

ffiffiffiffi
70
11

q
ð3ω40þ52ω60þ88ω80Þ 12

ffiffi
7

p ð45ω40þ208ω60þ72ω80Þ
1573

1573ω00þ2352ω40þ4160ω60þ560ω80

1573

1
CCCCCCCCCA
:

ðE9Þ

APPENDIX F: EFFECTIVE MASS

(a) (b)

(c) (d)

FIG. 4. Effective masses as a function of t=a for ensemble A16. (a) Effective mass for the one-particle operatorOT−
1 in the rest frame as

in Table III. (b) Effective mass for the two-particle operator OA1 in the rest frame as in Table V. (c) Effective mass for the one-particle
operator OA1 in the moving frame d ¼ ð0; 0; 1Þ as in Table III. (d) Effective mass for the two-particle operator OA1 in the moving frame
d ¼ ð0; 0; 0Þ þ ð0; 0; 1Þ as in Table V.
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