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In this work, we present an explicit form of the Liischer equation and consider the construction of the
operators in different irreducible representations for the case of scattering of two vector particles. The
formalism is applied to scalar QED in the Higgs Phase, where the U(1) gauge boson acquires mass.
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I. INTRODUCTION

The study of scattering in Lattice Field Theory (LFT)
starts with the original work of Liischer [1]. In this work, an
equation that relates the scattering phase shift of a spinless
particle to the finite-volume spectrum in the rest frame was
derived. The formalism has been extended to moving
frames [2], 7 — N scattering [3], N — N scattering [4],
different masses [5,6], moving frames with different masses
[7,8] and any multichannel system with arbitrary spin,
momentum and masses [9]. In practice, the extraction of the
phase shifts from data in case of coupled channels is most
conveniently done by the use of the K-matrix approach.
This method was first proposed in Ref. [10], and a complete
description can be found, e.g., in the recent work [11].

For the case of scattering of vector particles, there may
be interesting issues that can be addressed through LFT,
such as the possibility of the Higgs boson to be a bound
state of two W bosons. This is the case for a model
proposed in Refs. [12,13], where a “superstrong interac-
tion” together with superstrongly interacting particles are
present. Instead of the Higgs mechanism, a nonperturbative
mass generation mechanism is suggested. The model is
strongly coupled at the relevant scale, and, therefore, LFT is
the approach to test whether this mechanism exists or not
(see Refs. [14,15] for a first numerical investigation of this
model). One possible consequence of this model could be
that the Higgs represents a bound state in the WW channel.
This justifies a thorough study of the WW interactions
(including both the bound spectrum and scattering) within
LFT, which is possible by using Liischer’s approach.

The aim of the present work is to study the vector-vector
scattering process in a toy model, which is the first step
towards applying the same method in physically more
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interesting cases. To this end, we rederive the Liischer
equation for scattering of particles with arbitrary spin by
using nonrelativistic effective theory and check that the
results obtained are in agreement with Ref. [9]. We will
further focus on the case of two identical vector particles
and we make use of the spatial symmetries of the lattice to
factorize the Liischer equation. We explicitly construct the
operators that transform under a certain irreducible repre-
sentation of the spatial symmetry group, and, using these,
we gain access to the different phase shifts of the theory.
The approach will be tested in scalar QED, for which
numerical results will be shown. For a first account of this
work we refer to Ref. [16].

II. SCATTERING OF TWO VECTOR PARTICLES

A. Derivation of Liischer equation for arbitrary spin

Let us consider a system of two particles with masses m;,
i =1, 2 in d = 3 dimensions. The system is described by
the effective nonrelativistic Lagrangian

L=¢12W,(i0,— W)y +p52W,(i0,— Wa)pr + Ly, (1)

Here, ¢; are the nonrelativistic fields with spin s;, W; =
(m? — V2)!/2 and the interactions are contained in £;. The
corresponding nonrelativistic propagators, with w;(p) =
(m? 4 p*)!/2, are diagonal in the spin indices v, v/:

1 1

S = 2 ) o)~ e

Viv=1,...,2s;+ 1. (2)

The scattering T-matrix is defined through the Lippman-
Schwinger (LS) equation

T(z) = (=H;) + (=H;)(=Go(2))T(2), (3)

where H, and H; are obtained from the Lagrangian
in the usual way and Gy(z) = (z—Hy)™' is the free
resolvent. The two-particle states with a total spin S are
given by
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ky. Ky, S.v) =

V), (4)

with normalization

<P,,k/,S/

v) = 4wy (ky)w, (ky) (27)64 (P — P)(27)6% (K’ — k)8556,,, (5)

where k1, k, are the momenta of the particles, S and v denote the total spin and its projection for the two-particle system,
respectively, and P, k are the total and relative momenta in the laboratory frame:

1 1—m3
P:k1—|—k2, k:luzkl—ﬂlkz, ,Lt]’z 2<1:|: P 2), Poza)](kl)+w2(k2), PZZP%—PZ. (6)

Now define the matrix elements:

55(k' k,P,z) = /éil: (P K, S, V|T(z)|P.k,S,v), (7)
dp!
hS5(k'. k,P) = / (‘;TI; (P K., S V|- ). (8)

One may rewrite the LS equation in terms of matrix elements, using Eqgs. (7) and (8):

d’q S5 (K, q. P)i5,5(q. k. P.2)
(27)* £~ 4w, (q1) 02 (P — qq) (@1 (q1) + 02 (P —qq) = 2)

S'S _ S
ty,y(k’,k,P,z)_hy,f(k’,k,P)—f—/ (9)

where we define q = u,q; — p1qs, as in Eq. (4). A key point here is that the elementary bubble (the free two-particle
propagator, integrated over the relative momentum) is diagonal in spin, because also the single particle propagators are.
However, the scattering amplitude need not be diagonal.

Now define the projectors to the partial waves in the CM frame, whose momenta are k*:

A1) = UL 06) U (k) Qs (6" ) sy (). (10)

PP’

where A = (J,1,S,u), A = (J',I',S', i) represent multi-indices and U,(j;) (k*) is the unitary transformation of the spin
indices under a boost. The spherical harmonics with spin are defined as

Visu(k.v) = Z<ISV”U|JM>|k|lY1m(R)Z§(V) = ‘k|lYJlS,u(l%’y)’ k= k/[Kk|, (11)

m,o

where Y/, denote usual spherical harmonics.
Using the projectors, the quantities in Eqs. (7) and (8) can be expanded as

S5k k. P.2) =4r > TIAK k)i (k™], [k*|. P, 2), (12)
JU Jlu

hSS(K' K. P) =4r > TIAKK"™ K*)hys (K™, ). (13)
JUY Jlu

If the system is placed in a box of a size L, the momenta are quantized. The integral in the LS equation should be replaced by
a sum:

2 3

where 2zd/L = P.
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By plugging the Eqgs. (12) and (13) into the finite volume equivalent of Eq. (9), one gets:
tpa(s,P) = hyu(s, P) = < \/_ZhA (s P)((K)Hi 5 o Mpp(s.P))tga(s. P). (15)

with s = P? and S being the spin of the multi-index B. Note that using dimensional regularization, one is able to rewrite
the LS equation as an algebraic equation, involving only the on-shell quantities. Hence, the quantities 744 and Ay, in
Eq. (15) coincide with their counterparts from Eqgs. (12) and (13) on shell, i.e.,

2125, m3)

k/*:k*: ,
K= | = 5

Z:P(J, (16)

where 1 denotes the triangle function.
Now, using unitarity of the transformation of the spin indices, one arrives at

327 \/s ,_, (Yyrse (@ v)"Y 115,(Q°,v)
oy P i a 5 17
Motsy ’”Sﬂ(s’ )= k| L3 SSZZ4CU1 (q1)@2(P - q1)(@,(q1) + 02 (P —qq) = Py) a7

This matrix can be related to its equivalent for scalar particles by using Eq. (11):

Myrsy sy = Os's Z (I'Sm'c|J'w') (ISmo|Tu) My i (18)

m',m,c

where we used the identity [5,17] (with q = q; — ¢, P)

1 1 1 1 1 1 1
+ - - ) 19
40)10)2(601 +Cl)2 —Po) 2P0q ( ) (k*) 46()1602 (Cl)l +602 +P0 w1 — W) -+ PO Wy — +P0> ( )
0

2 _ (qP)?

kept only the singular part [first term in Eq. (19)] and used (q*)? = 57— This way, and up to exponentially suppressed
0

terms, M, is given by (see Ref. [5])

1)1’ I+ J y |k*|L
Ml’m’,lm(k B - 3/2 Z | ZWZJS 1 S Cl’fﬂ’,js,lm? I’[ = 7, (20)
/ 1-l'| s=—]
where

. r j l r j 1
Cr jsam = (D)™ =T/ 20+ 1)(20 + 1)(2j + 1) / / , (21)

e m s —-m 0 0 O

r Y,,, _
Z | | L Py={ry=y"'(n—pd),r, =n,}, (22)
reP,

y = (1 =P?/P%)~"/2 and n € Z>. One can see that Eq. (15) is a matrix equation, and the poles in ¢4, arise when
det A =0, (23)

where A is a matrix

87+\/s

_ J 1
AJ’I’S’;/,JIS# - |k*|l+l/+l (h['s’ 15) 5J'J5/4';4 - 6S’SMJ’I’SM’.JIS/4' (24)

Here it is already implied that J and p are conserved in scattering processes in the infinite volume, i.e.,
hyvsy gisu = Mg 156778, and the factor i~ can be dropped in the determinant.
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TABLE 1. Possible values of J” with J < 3.

JP (0 0~ 1 1~ 2+ 2-
{0,0} {0,2}

{S,L} {1,1} {1,1} {1,1}, {1,3}
{2,2} {2,2} {2,0}, {2,2}, {2,4}

Now, in order to express this equation in a more compact
way, one uses the standard definition of the S matrix (see
[18], for nucleon-nucleon scattering), S = (%), in terms
of the phase shift 5(s). This way, one can write down /17,
in terms of o:

W 8m\/s

818 — |k*|l+l’+1 (tan 5); (25)

I is*
Plugging it in Eq. (24), we arrive at

_ J
AJ’I’S’W,JZSM = (cot 5)1/s/_1551’15;4’;4 - 5S’SMJ’I’S;¢’,JZS/4- (26)

cos €
cotd” =
sin e

Since no mixing occurs between even and odd spins,
neither in the M matrix, nor in the phase shifts,
Eq. (26) factorizes for even and odd spin.

C. Effective range expansion in case of
multiple channels

For the scattering of two spinless particles, it is well
known (see Ref. [19]) that the phase shift can be para-
metrized as a polynomial of k:

K2 cot 6 = a k™. (28)
n=0

One obviously needs an analog% of this parametrization in
the multichannel case as well.” In order to derive such a
parametrization, we note that, within the effective field
theory, the left-hand side of Eq. (13) has a Taylor expansion
in momenta. Taking now into account the fact that the
projector on the right-hand side of the same equation
contains the factor |k*|*, from Eq. (25) one may finally
conclude that, on the mass shell,

k't cot Sy = Z(Gn)l’s',lskzn- (29)
n=0

'An equivalent derivation can be found in Refs. [20,11].

. +
—sinegg\ [ cotd) 0 Cos €
Ccos € cot 5(2)+ —sing

B. Two vector particles

A system of two identical vector particles can couple to
total spin S =0, 1, 2. Even spin combinations are sym-
metric under the exchange of two particles, whereas odd
combinations are antisymmetric. The same holds for the
angular momentum L. The possible combinations of S and
L to J?, respecting Bose statistics (totally symmetric state),
are listed in the Table I. The combinations that have mixing
are in the same column in the table and correspond to same
JP but different L, S. The possible mixings can be para-
metrized by a mixing angle and two eigenvalues. This
would be analogous to the parametrization of the mixings
for two nucleons in Ref. [18]; for example:

sin € ) o

cos €

D. Reduction of the Liischer equation

Our aim here is to construct the basis vectors of all
irreducible representations (irreps) from the basis vectors of
the irreps of the rotation group, corresponding to the
symmetry in the infinite volume, and to (partially) diag-
onalize the Liischer equation in this new basis. The general
procedure is well known in the literature, so we shall skip
many details® Let G be a full octahedral group including
inversions, or a subgroup thereof (little group), which is the
symmetry group in the moving frames. Let I" be a certain
irrep of G, and let @ = 1,...dimI" be an index labeling
basis vector in this representation. One can construct these
basis vectors by applying certain projection operators to the
basis vectors of the irreps of the rotation group. These
(unnormalized) projectors are given by

(Pl D = D _(RLy(8)" D1, (S). (30)
SeG

Here, D/Jm’ (S) denotes the usual Wigner matrix, if S
corresponds to a pure rotation. Otherwise, the group
elements can be represented as S = IS, where I is an
inversion and S is a pure rotation. In this case, we define

2See, for example, Ref. [21], where the same problem has been
considered by using the helicity formalism.
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D, (S) = (-1)'D;, (8). Furthermore, R!,(S) denotes a
matrix representation of G in the irrep I'.

These projectors must be applied to the basis vectors of
the irreps of the rotation group |/, S, [, ) with indices  and

u fixed
’ > x Z(Pl(;,b]’”yﬂ'

!

"

). (1)

where n labels the number of multiple occurrences of I'.
The different spatial symmetry groups, with their irreduc-
ible representations and the corresponding elements are
listed in Appendices A and B.

As seen from Eq. (31), the basis vectors of the irreducible
representations of the symmetry group of the lattice can be
expressed in terms of the one of the continuum:
ZCE"“U ISu),

IC.a.J.1.S.n) (32)

where the Clebsch-Gordan coefficients c%‘f can be read
from Tables X—XVII in Appendix C. They are in agreement
with those of Refs. [3,8] and obey the usual orthogonality
conditions

E o \*
(CJIM

u

) c‘]lﬂa = OrrOuadun- (33)

The matrix M can be partially diagonalized in the new
basis:

(o, J,I',S,n

) = Mg’l/Sn’.JlSnérTéa/a’
(34)

where

I'n'a

Crru )" leuaMJ’l’Sﬂ’.JLSu (35)

:Z(

'

r
MJ’I’Sn’.JlSn

(for a given I and a). Moreover, the matrix cot 6 should be
written down in the same basis as M:

(cotd)!,

§ (lim)”

- 5]./’5rm (COt 5)

Tna
JUS'n' JiSn — C.Il;t COt 5)[’5’ 155/4;4’5.11’

Is's* (36)
Here, we have used Eq. (33) and the fact that only states
with the same parity can mix. Now one sees that the
determinant factorizes:

1T H det A" = (37)
=T

where

A st ssn = (€0U8)75 16178 = 855 Mgy yisy- (38)

For simplicity, M will be expressed in terms of
functions wq

. Ly
Js _71'3/2 2]+1

z4(1,5). (39)

Understanding and using some symmetry properties of @,
simplifies the expressions of M'. A frame-independent
property is

74, = (<1z;.

l-m>

(40)

and it is a direct consequence of the properties of the
spherical harmonics. Moreover, if one changes the order of
the particles (m; <> m,):

Zd,(ml.mz) _ ( I)IZ d,(mj. ml)

Js

(41)

which for the case of equal masses implies vanishing Z;%'S
for odd j. Additional symmetry properties of j, in the rest
frame are listed in Table II for the rest frame (See also [22].)
and in Ref. [8] for moving frames. In Appendix E we give
some examples of M" in the rest frame.

TABLE II. Possible values of w,,, in the rest frame.
l ()]
0 (@w00)
1 0,0,0
2 0, 0,0,0,0)
3 0, 0, 0,0,0, 0, 0)
4 (12540-0.0.0,4,0.0,0, 00 )
5 0,0,0,0,0,0,0,0,0,0, 0)
6
(o, 0. =1/3060:0.0,0.0,0,0.0, = [T, 0,0)
7 0,0,0,0,0,0,0,0,0,0,0,0,0, 0, 0)

8
( 19wgo,ooo\fwgo,ooocogoooo\fwgo,ooo

wso)
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III. TOY MODEL: SCALAR QED
A. The Lagrangian

In order to test the formalism, we use scalar QED with a
Higgs mechanism, since the vector state needs to be
massive. This model was, for instance, studied in
Ref. [23], whose parameters will be used as a guideline.
|

x € {(x0,x1, %2, %3)|xg =0, 1, ..., T

We use periodic boundary conditions. In order to
include the gauge symmetry in the discretized action,
one defines the discretized gauge links at point x in
direction yu as

U

xp eiagAX'“’ (43)

with gauge potential A, ,, gauge coupling g and
lattice spacing a. In the case of QED U, , € U(1). Scalar
|

The continuum Euclidean Lagrangian of such a theory reads

1
EE:ZF”UFyu+(Dy¢c)TDy¢C+m%|¢c|2+/lc|¢c|4v (42)

with D¢, = 0, + igA,¢. and F,, = 0,A, — D,A,,.
For the discretization we restrict space-time to a discrete
and finite set of points

X :O,l,...,L_l’i: 17273}

[

field ¢, covariant derivative and integrals are discretized as
follows:

age(x) = V..
Dype(x) = k(U ypory — #1)/ .

/d4x - a4z. (44)

X

This way, the discretized action reads

ﬂ * *
S = Z (_EZ(UX,/ID + Ux,/u/) - KZ(¢xe,ﬂ¢x+ﬂ + CC) + ﬂ(|¢x|2 - 1)2 + |¢x|2 ’ (45)
X HU<v "
[
with The transformation of the scalar fields reads
A 1-24-8 1 x) = ¢(x'), xﬁ-:T,--S_lx-, =1 (49
/Ic = 5> (amo)z = 7K’ ﬁ = ? (46) ¢( ) ¢( ) ']( ) 7 ( )
K K

The plaquette at point x in the y-v plane is defined as usual
by the smallest closed loop

Ux,m/ = UX,/.{ Ux+;t,y U)Tfl/ ULLI/,M . (47)

B. Construction of the operators

Any transformation of the group G, acting on the
components of any vector, is a combination of an inter-
change of its components, an inversion of an axis and an
inversion of all axes. We would like to study the trans-
formation properties of the operators

O0i(x) = $iU, iprr (48)

with respect to the transformations from the group G (here,
we choose the spatial component y = i of the link U, ).
We will consider everything in the continuum first and then
its equivalent for the discretized model.

where the matrices 7';;(S™") form a three-dimensional irrep
of the cubic group in the Cartesian basis. Next, we consider
the transformation of the link. The transformation law for
the vector field is given by

Ai(x) = T;;(S7HA;(x). (50)

For the transformation of a link under G multiple cases have
to be taken into account:

(i) The interchange of the components does not affect
the index i. For example, i = 1, whereas the com-
ponents 2,3 are interchanged. Then, in the con-
tinuum, the link transforms as

1
U(x,x+ae;)—exp <ig/ draA (x +a1,x3,x2,t)>
0
=U(x'.x'+ae). (51)

where ¢; denotes a unit vector in the direction i and
x' = (x1,x3, X, 1). On the lattice, this corresponds to

Ux.i - Ux’,i‘ (52)
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(i) The interchange involves the component i, e.g.,
i =1 and the components 1, 2 are interchanged.
Then,

1
U(x,x+ae;)—exp <ig/ draA,(xy,x +a1,x3,t)>
0
=U(X',x'+ae,), (53)

or, on the lattice,

Ux,i - Ux’ (54)

J2

1
U(x,x + ae;) — exp (—ig/ draA,(—x; — ar, —x,, —x3, t)) =U'(x' —ae;,x),
0

or, on the lattice,

Ui = U,

xX'=ii*

(57)
(iv) The inversion of one of the axes. Here, again, one
has to consider two different possibilities. First, if
the axis i is not affected by inversion, then

Ux,i - Ux’,i7 (58)

otherwise

U, = U (59)

X' =i

Finally, let us consider the set of the operators O;(x),
defined in Eq. (48) and construct the operators
©i(x) = ¢1Tc U;Tc—i,iébx—i- (60)

Using the transformation properties of the scalar field and a

link it is straightforward to check that the following
operator

(61)

transforms as S(x) — S(x’) both under rotations
and inversions. One may use this operator, for example,
to project out the spectrum in the representation A,
(rest frame).
On the other hand, it can be checked that the operator
Vi(x) = 0,(x) - Oy(x) (62)
behaves like a vector both under the rotations and
reflections. We shall use this operator to construct the

where x’ is obtained from x by interchanging the
components x; and x;.

Both transformations can be written as
U,i— Tij(S_l)Ux’

g X =TS g

(55)
In other words, the link U, ; behaves like a vector
under such transformations, albeit not being a vector
with respect to the rotation group.

i =1 and the reflection of all axes. The result is
given by

(iif)

(56)

|
two-particle operators for the vector-vector scattering in
different irreps. The conventions and the naming scheme of
these irreps are listed in Appendix A.

The generalization for the case of a Wilson line of
arbitrary length is given by

N-1
O;(x) = O;(x,N) = $i <H Ux+m',i> Prinis
n=0

N
O;(x) = O;(x,N) = ¢ (H Ui—m’.i) Drnis (63)
n=1

for which Egs. (61) and (62) do not change (in the
following, in order to simplify the notations, the depend-
ence on N is never displayed explicitly). Note that such
highly nonlocal operators are seen to improve the signal
significantly.

IV. OPERATORS

A generic operator O (x), transforming under a specific
irrep I" of the group G, obeys the following transformation
law

oL (x) —» Rﬁa(S)O/F,(x/). (64)
The prescription for constructing such operators is well
known (see, e.g., Refs. [3,8]). Consider first the case of
one-particle operators O(x, t), whose transformation prop-
erties (a scalar, vector, etc.) are defined. More specifically,
let the action of the group element S on the field O(x, ) be
represented by a linear matrix A(S~!) [unit matrix for
scalars, T j(S‘l) for vectors, etc.]. Then, it is possible to
project out the component, contributing to a given irrep I'.
In momentum space, the corresponding expression takes
the form

014503-7



FE. ROMERO-LOPEZ, A. RUSETSKY, and C. URBACH

PHYS. REV. D 98, 014503 (2018)

Ou(p.1) =Y e™) (R(S)) (A(STHO)(x. 1), (65)

X Seg

where the set of Rgﬂ(S) forms the irrep I of the group G
with index f fixed.

The two-particle operator with total momentum p and
relative momentum q is given by

OL(p.q.1)

— Z(Zeipx+ﬁ(y—x)> (Rgﬁ(8)>*(A(S_1)O>(X,y, l‘),

Xy \Seg
(66)

where the vector ¢ is obtained from the vector q
via g; = T;;(S7")q;.

In order to simplify the construction of the operators, we
note that the irreducible operators transform exactly as the
basis vectors in the corresponding irrep. We shall illustrate
the procedure with one example. Consider the construction
of the two-particle operator in the case where the momenta
of the particles are 22(0,0,1) and 2%(0,0,0). This is a
case of the little group Cy,,. From Table XIII one finds that,
e.g., the state |2, 0) is the basis vector in the irrep A;. On the
other hand, various linear combinations of the Cartesian
components of the vector field V;(x, ¢) transform as

1,£1) ~ :F\%(V1 (x,1) £iV,(x, 1)),

1,£0) ~ V3 (x.1). (67)

The state |2, 0) can be obtained as a linear combination of
the spin-1 states:
2
1,-1)+ \@|1,0>

Taking into account the Eq. (67), we finally obtain that the
following operator

1

V6

2,0) =

1.1)

1,0)

1.-1)

1
7 1.1).
(68)

TABLE III. Complete list of one-particle operators in the
multiple moving frames and irreps.

d r Operator
0, 0, 0 Ty Vi(x, 1)
A, Vi(x,1)
(07 O’ ]) E V| (X, t) + V2(X, l)
Vi(x, 1) = Va(x,1)
A Vi(x, 1) + Va(x.1)
1, 1,0 B, Vi(x,1) = Vy(x,1)
B, Vi(x,1)
A Ly Vilx.1)
(a1 . Vi 1) = Va(x, 1

Vi(x, 1) + Vo(x, 1) = 2V3(x, 1)

OMi(p,t) = Zeipx(—Vl (x,)Vy(y.1)
Xy

—Vo(xX,0)Va(y,1) +2V3(x,1)V3(y. 1)), (69)

with p = 22(0,0, 1), indeed projects on the irrep A; of the
group Cy,.

We have collected one- and two-particle operators in
Tables III and V, respectively. Note that this simplified
procedure is only possible if one of the momenta is zero or
both are in the same little group; if that is not the case, one
must use Eq. (66), as in the case for ' = A, p = ZL—” (1,1,0)
and q =22 (1,1,0) of Table V.

V. NUMERICAL RESULTS

The parameter sets we use are compiled in Table IV. Note
that we have five different sets of bare parameters 4 and «
for L = 12 and T = 24. For one of these parameter sets we
have a second volume with L =16 and T =32. We
compute correlation functions

CH{r = 1) = (O ()(O")'(1) (70)

using the operators defined in the previous sections. At large
time differences ¢ — ¢’ these correlation functions are propor-
tional to exp(—E(t — ¢')) with E the energy of the lowest state
with the corresponding quantum numbers. The energies are
calculated with a fit to the shifted correlation function

Cl(t)=C(t)=C"(t+ 1),

including an excited state, and the errors are calculated
using the Jackknife method. We use the shifted correlation
function to subtract any contribution constant in time
stemming from vacuum expectation values; see also
Ref. [24]. Thermal contaminations in the two-particle
correlation functions with nonzero total momentum turn
out to be not important for our analysis (see plots in
Appendix F). Therefore, we have used the shifted corre-
lation function throughout. All the results are listed in the
tables of Appendix D and they will be discussed in this
section. In addition, we show exemplary plots for effective
masses for selected correlation functions in Appendix F.
The effective mass mgg is calculated by solving

TABLE IV. Ensembles used for the simulations. The gauge
coupling is kept constant, f = 2.5.

L3xT Reference N m} Ae K yl

16*x32  Al6 138 000 —35 88 0.18425 2.9873

Al2 33 000 -35 88 0.18425 2.9873
B12 24 000 -35.5 90.6 0.18208 3.0036
123 x 24 C12 21 500 -35.6 91.6 0.18084 2.9956
D12 16 000 —35.85 93.1 0.17949 2.9994
E12 18 800 —36.1 94.7 0.17802 3.0012
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TABLE V. List of used two-particle operators in the multiple moving frames and irreducible representations. The operator O (p, q, )
is built from the position-space operators, given in this table, by calculating the Fourier-transform with e??*+40=X)_ This prescription
holds for all operators except with p = ZL—” (1,1,0) and q = 2L—” (0,1,0) (the second line from below), for which the shortcut is no more

applicable and one has to use Eq. (66).

d r £p £q o' (x,y,1)
A 0 0 3 Vix, 1)Vi(y, 1)
0, 0, 0) E* 0 0 Vi(x.0)Vi(y. 1) = Vo(x. 1) Vo (y. 1)
Tt 0 0 Vi OVa(y. 1)+ Va(x OV (3. 1)
Ay (0.0,n) (0.0,m) Vix. )Vi(y. 1) + Va(x. ) Va(y. 1) + V3(x. 1) V3(y. 1))
A (0,0,n) (0,0,m) =Vi(x.)Vi(y. 1) = Va(x, )Va(y. 1) + 2V5(x, 1) V5(y. 1))
0.0, 1) A, (0,0,n) (0,0,m) Vi(x,0)Va(y, 1) = Va(x, )V, (y, 1)
o B, (0,0, n) (0,0, m) Vi(x.)Vi(y. 1) = Va(x, 1)Va(y. 1)
BZ (0» 07 n) (07 O’ m) VI(X 3 Vz(y t) + VZ(X I)Vl(y’ )
E (0.0.n) (0.0,m) V(X )(Vi(y. 1) + Va(y. 1)) + (Vi(x. 1) + Va(x.1))V3(y. 1)
A, (1,1,0) 0 Vi(x,1)Vs(y. 1)
1, 1,0 Ay (1,1,0) (0,1,0)
A (1,1,0) 0 Vi(x, )(Vi(y.1) = Va(y. 1)) + (Vi(x.1) = Va(x. 1)) V5(y. 1)
Cl(t)—=Cr(t+1) sinh(meg(t —T/2 4+ a/2)) In Fig. 1(b) we compare the masses of a single vector

~ sinh(me(t + 1 — T/2 + a/2))
(71)

Clt+1)-Cl'(r+2)

numerically for mg;.

A. One-particle results

In Fig. 1(a) we show the dependence of the mass of the
vector particle m,, on the length of the operator in Eq. (63)
for ensemble Al2. We observe a clear improvement
of the signal with increasing operator length. When using
moving frames, the best signal is empirically seen at
N =L/(d+ 1), with d being the units of momentum in
that particular direction.

Similarly, in Fig. 1(c) we show the dependence of the
mass of the scalar particle m, on the length of the operator
in Eq. (61), N, for ensemble Al12. The same mass can be
measured using operator O = |¢|. In addition we show the
mass measured using the operator O41(0, 0, ¢). The corre-
sponding results are shown in the same figure as horizontal
lines denoted as m(¢) for the operator O = |¢p| and
ma} for operator O41(0,0,¢), respectively. For m, the
signal improves again with increasing operator length.
However, while m, agrees with m(¢) up to operator
lengths of nine, at lengths larger than nine its values drops
and finally agrees with mﬁv‘. It is expected that these two
states mix because they have the same quantum numbers.
Hence, it seems that the overlap of the operator Eq. (61)
shifts with increasing operator length due to the presence of
more gauge links. Moreover, since the mass of the scalar is
only needed as a reference, and the gap between the scalar
and the vector mass is big, we do not perform a variational
analysis at this point.

and scalar particle as a function of « for L = 12. With
increasing k-value we observe the vector mass to be
approximately constant while the scalar mass increases
almost linearly. In the range of x-values studied here the
vector mass value is always smaller than the scalar mass
value. We recall that in the continuum the bare masses of

2

2 202
the particles are given by mgj = —2mg and mj, = —7h

A’
respectively. Hence, we expect the mass of the vector to be
suppressed with respect to the scalar mass by a factor g and
1/A.. However, it is not clear why the scalar mass
duplicates with increasing x, whereas the vector mass
increases at best slightly.

In Fig. 1(d) we show the energies of a single vector
particle in the first moving frame as a function of « for
L = 12 for irreps E and A;. The (red) crosses represent the
prediction by the continuum dispersion relation with the
rest frame mass (irrep 77) as input. For the moving frames
we observe larger statistical uncertainties as compared to
the dispersion relation. The energy splittings between
different irreps and to the dispersion relation prediction
are compatible with zero.

The comparison between different irreps is shown in
more detail in Fig. 2(a): we plot m, for ensemble A16 for
different irreps and center of mass momenta. Where
we have several momenta for a given irrep, we also show
the weighted average value. The values obtained for the
different moving frames tend to be smaller than the one in
the rest frame, although in every case but one they are
compatible within 2¢. This discrepancy may be associated
to discretization effects. In order to show this, in Fig. 2(b)
we plot for ensemble A16 the energy of the vector particle
in different irreps and moving frames together with the
prediction from the continuum and lattice dispersion
relations, the latter one reading
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Numerical results for single particle operators in ensembles with L = 12. (a) Mass of the vector particle for ensemble A12 for

different lengths of the operator in Eq. (62). (b) Mass of the scalar and vector particle for L = 12 as a function of . (c) Mass of the scalar
particle for ensemble A12 as a function of the length of the operator, N, as in Eq. (63). Further explanation can be found in the text. Note
that the error in m?,‘v is too small to be seen. (d) Energy of the vector particle for different irreps in the first moving frame for L = 12 asa
function of . It is also compared with the rest frame result by means of the continuum dispersion relation.

coshaE = cosham + (1 —cosap). (72)

Here, the mass am is taken to be the one measured in the
TH . . . .
rest frame, m,' . This shows that the continuum dispersion
relation describes our data better and we do not observe
large discretization effects for ap < 0.6. However, around

ap ~ 1, this description becomes worse, as cut-off effects

(a)

0.16} ¢ (0,00 Y (1,10 ¢ Average
A (001) a (11
0.15} '
0.14 * +
g 0.13} f
0.12}
0.11}
0.10— . 2 2
iy Ay E B, B,
r

get bigger. From now on, we will always use the continuum
dispersion relation with the mass as obtained from the rest
frame as input.

B. Two-particle results

The energy difference AE is defined as the difference
between the two-particle energy on the lattice and the

(b)

0.8 === continuum § aE _
== |attice
/”
0.7 1 Pig
”
”
w /,
S 0.6 Al
2
7
4
0.5 /
: 4
/7
0.4 1 . . - . .
0.2 0.3 0.4 0.5 0.6
(ap)?

FIG. 2. Numerical results for single particle operators in ensemble A16. (a) Mass of the vector particle for different irreps and total
momenta for ensemble A16. The continuum dispersion relation has been used. (b) Energies of a single vector particle as a function of the
squared momentum (ap)?. The solid and dashed lines represent the prediction of the continuum and lattice dispersion relations,
respectively. Different irreps are slightly displaced for better readability.
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two-particle energy in absence of interactions. In Fig. 3(a)
we show the results for AE as a function of « for the irreps
Ay, T;r and E'. For the largest x-value we include both,
A12 and A16 in the plot, respectively. For higher k, the
interaction leads to the positive shift (AE > 0) with 320
statistical significance. As k becomes smaller, all particles
become lighter and the interaction seems to flip signs. For
the lowest values of «, the two-particle states have AE < 0.

Unfortunately, in the transition region AE is compatible
with zero. Comparing A12 and A16, we see the expected
volume dependence in the energy shift (AE « L~?), when
comparing L = 12 with L = 16. This can be inferred from
Fig. 3(b), where we show AE for Al2 and Al6 as a

function of 1/L3.

In Fig. 3(e) we show AE for ensemble A16 in the first
moving frame for the irreps A;, A,, By, B, and E. As

(a) 0.06 (b) 0.06
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T @
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FIG. 3.

and ¢ = 0 as in Eq. (66) for different irreps T
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Numerical results for two particles. (a) Energy difference AE as a function of « in the rest frame for different irreps. Open
symbols correspond to ensemble A16 and closed ones to L = 12. (b) Energy difference AE for ensemble A16 and A12 as a function of
the length of the box, L. Additionally, we include the expected behavior. (c) Phase shift in the J* = 0* channel in ensembles A12, A16
as a function of the scattering momentum k. Partial waves J > 1 have been neglected and the two possible L, S combinations cannot be
distinguished. (d) Phase shift in the J” = 0~ channel in ensemble A16 as a function of the scattering momentum k. They are calculated
neglecting partial waves J > 1. (e) Energy difference AE for ensemble A16 in the moving frame with total momentum p = ZT” (0,0,1)
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expected, AE depends on the considered irrep. For the
moving frame shown in Fig. 3(e) AE is only significantly
different from zero for the E irrep.

Subsequently, in Fig. 3(c) we show the phase shifts with
JP = 0% computed from the energy shifts. Note that we
neglect partial waves with J > 1 and that the two possible
L, S combinations cannot be distinguished at this level:

cot 50- = Wq(- (73)

For the highest momentum shown, the ratio between the
nonrelativistic kinetic energy and the mass is quite large,
% ~ 0.8. Hence, the kinematic suppression of higher partial
waves, though present, is not strong anymore and a
corresponding systematical error is to be expected. The
phase shift appears to be small and negative for small
scattering momentum, indicating a weak repulsive inter-
action. If the data for large k can be taken seriously, there
seems to be a flip of sign around scattering momentum
ak ~0.18 and a rapid growth toward pi/2 beyond this
point. Without further study, we cannot say whether this
corresponds to a resonance or not.

Finally, in Fig. 3(d) we show the results for the phase
shift with J© = 0~. In this channel there are no mixings,
and one can expect a cleaner determination with respect to
JP = 0T. Again, we neglect partial waves with J > 1:

cot 507 = Wq- (74)

The phase shift values are consistent with an attractive
interaction. § increases with increasing k, which might
indicate a resonance for ak > 0.18.

VI. SUMMARY AND OUTLOOK

In this paper we have rederived the Liischer formalism
for particles with general spin. We find complete agreement
with Ref. [9]. We have explicitly formulated this approach
for the case of two vector particles in the scalar channel.

The formalism is applied to scalar QED in the Higgs
phase, where the gauge boson becomes massive. For this
model we derived the relevant operators to study scalar,
vector and two vector particles with center of mass
momenta up to ap = 22(1,1, 1). We have simulated scalar
QED using Markov chains and we have estimated inter-
acting and noninteracting energy levels for various total
momenta in the scalar channel. We have studied a set of
bare parameter values and two volumes. Even though the
model is sufficiently simple to simulate, it is still a
challenge to gather enough statistics to obtain significant
results. In general, the correlation functions measured by us
appear to be rather noisy.

In addition to the noise, it turns out that we are facing a
dependence of the estimated single particle energy levels
on the total momentum, which could be explained with

lattice artifacts. In the energy shift AE, this dependence is
much less pronounced. However, statistical uncertainties
are also larger for AE. Still, AE shows the expected
dependence on L. This makes us confident that our
measurements are meaningful to a certain extent.
Neglecting at this level any mixings and higher partial
waves, we could extract the phase shift as a function of the
scattering momentum.

A model-independent determination of all S-matrix
parameters is computationally very expensive. Namely, it
would require many volumes and the use of the multi-
channel effective-range expansion [Eq. (29)]. However, our
results show that it is feasible to study the interaction of two
vector particles. Hence, in the future, we plan to apply these
ideas to study the possibility of the Higgs boson to be a
bound state of two W bosons.
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APPENDIX A: CONVENTION FOR THE
IRREDUCIBLE REPRESENTATIONS

The ten irreducible representations (irreps) of the spatial
symmetry groups of the lattice include 4 one-dimensional,
2 two-dimensional and 4 three-dimensional ones. They are:

(1) A is the trivial representation, where all elements of
0, are 1.

(i1) A, is the trivial representation for O times —1 when
an inversion is present.

(iii) B, assigns R; = —1 to rotations in the conjugacy
classes 6C4 and 6C’, and R = 1 otherwise.

(iv) B, is the same as B; multiplying by —1 when an
inversion is present.

(v) E labels a two-dimensional representation. For the
octahedral group, the superscript E* means whether
an inversion multiplies the element by +1.

(vi) T? is a three-dimensional representation which co-
incides with the Wigner matrices: R; =exp(—in'Jw;),
with J the group generators and n' and w; as listed in
Table VI. The superscript £ labels whether spatial
inversion are assigned always +1 or +1.

(vii) T5 is the same as T with a change of sign in the
conjugacy classes 6C, and 6C}.

In Appendix B the elements and characters of the
different spatial symmetry groups are shown. They are
taken to be in agreement with Ref. [3,8].
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APPENDIX B: GROUP TABLES

TABLE VI. Rotations of the group O. Last column includes the
element of the two dimensional irreducible representation for the
cubic group.

Class R; n w R,(EY)

I 1 any 0 1

8C; 2 (1, 1, 1) —2z/3 11+z\2f62
3 (1, 1, 1) 27/3 _,1_%_52
4 (-1,1,1) —2r/3 ~l1- iaz
5 (-1,1,1) 21/3 _11 48,
6 (-1,-1,1) —2z/3 -11 +M§6
7 (-1,-1,1) 27/3 11_1\2/‘62
8 (1,-1,1) —2r/3 ~l1- 1\2/_52
9 (1,-1,1) 21/3 _114 8,

6C, 10 (1, 0,0 —n/2 _%03_\/7551
11 (1, 0, 0) /2 _%03_£61
12 0, 1, 0) -n/2 —loy+ f
13 0, 1, 0) /2 ~lo, +\/_
14 0,0, 1) —/2 03
15 0,0, 1) z/2 03

6C) 16 0, 1, 1) - ~lo —401
17 (0,-1,1) - —%63—‘/7551
18 (1, 1, 0) - 03
19 (1,-1,0) - 03
20 (1,0, 1) - —%@4—@01
21 (=1,0,1) - —loy +§61

3C, 22 (1, 0, 0) - 1
23 0, 1, 0) - 1
24 0,0, 1) - 1

TABLE VII. Elements of the little groups.

Elements
Ry, Ri4s Ris, Ryy, IRg, IR 9, IRy, IRy3
Ry, Rig, IR9, IRo4
R, Ry, R3, IRy7, IR 9, IR,

Group Boost Name
Oh (0’ 0’ 1) C41;
(la 1’ 0) C21/‘
(l, 17 1) CSL‘

TABLE VIII. Elements of the two dimensional irrep in the little
groups.
Cay (Ry, Ri4, Ris, IR 13, IR 19, IRy, IRy3, Roy)

(ls_Té(fﬁ +03), \/LE(GI +0,), 03, =03, ﬁ(fﬂ - 03),
\/%(—01 +03), —1)

Cs, (Ris Ry, R3, IR7, IR 9, IRy))
a-i1+ i?cz, -11- i\/TE(Fz, 103 +§61, —03,

V3

1
303 —%01)

TABLE IX. Table of elements in the different one dimensional
representations. Valid for all symmetry groups.

1 8C; 6C, 6C, 3C, I B8IC; 6IC, 6IC, 3IC,
A1 1 1 1 1 1 1 1 1 1
A 11 1 1 1 -1 -1 -1 -1 -1
B, 1 1 -1 -1 1 1 1 -1 -1 1
B, 1 1 -1 -1 1 -1 -1 1 1 -1

APPENDIX C: BASIS VECTORS

TABLE X. Basis vectors for O, with (=1)7 # (-=1)’.

r J Basis vectors
Ay 0 0, 0)
T 1 \/Lz(|1 1y —|1,-1))
1 ,0)
1 A (L1 +1,-1))
75 2 (2. 1) +12.-1))
2 T (2.-2) - [2.2))
E- 2 \Lﬁ(|2 =2) +12,2))
2 [2,0)
TABLE XI. Basis vectors for O;, with (=1)’ = (=1)".

r J Basis vectors
A 0 |0, 0)
Ty 1 —%(1,1>—|1,—1>)
1 [1,0)
1 (L) 4 [1,-1)
TS 2 (2.1 + [2.-1))
2 (2.1) - |2.-1))
2 7(2.-2) - 2,2))
E* 5 (12.-2) +12,2))
2,0)
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TABLE XII. Basis vectors for C,, with (—1)7 # (=1)% TABLE XV. Basis vectors for C,, with (=1)’ = (=1)".
r J a Basis vectors r J nr Basis vectors
A, 0 0.0) A, 0 0, 0)
A, 1 ,0) A 1 SlL-1) +5[1.1)
1 i
E 1 I L4 )l-1)—ta - B ! =1 =511
1 2 1, —1) — L], B, ‘ 1.0)
sl =) =il D A, 2 1 12,0)
Ay 2 2,0) A 2 2 5(12,-2) - 2,2))
B, 2 7(12.-2) - 2,2)) As 2 5 (2.-1) —il2,1))
B, 2 L (2.-2) + [2.2)) By 2 7(12.-2) +[2.2)
, | 1 _ 1 B, 2 S(2.-1) +i2,1))
E (=02, -1) =5 (1 +i)[2.1)
2 2 L2 -1)+502,0)
TABLE XIII.  Basis vectors for Cy, with (=1) = (=1)’. TABLE XVI.  Basis vectors for Cs, with (=1)” # (=1)".
r J a Basis vectors r J Basis vectors
A 0 |0,0) Ay 0 |0, 0)
A, 1 |1.0) A, 1 FIL=1) +Z1,0) + 7= [1.1)
E 1 I %(1+1i)|1,—1>+§1(}—i)|1,1> E 1 SEIL=1) + 5, o>+¢6|1 1)
1 2 ﬁ|l,—l>+%l|l,l> 1 %|17_1> |1’1>
A, 2 12.0) A, 2 Jel2.-2) + 2, 1) + 1) — 2, 2)
B 2 L (2-2) + .2)) ’ v v
! Ve ' E 2 12,0)
B, 2 5 (12,-2) - 2,2)) 2 5 (2.-2) +12,2))
E 2 1 1 _f)|2’_1> +%i(1+i)|2,1> E 2 Z2,-2) + 2. -1) - £ 2. 1) + = 2,2)
2 2 21 - 52, 1) 2 L (12.-1) = i[2.1)
TABLE XVII. Basis vectors for Cs, with (=1)/ = (=1)’.
TABLE XIV. Basis vectors for Cy, with (—1)! # (=1). r J Basis vectors
. Ay 0 0. 0)
r J nr Basis vectors A { . i ;
” 5 o 1 LI =1) + 521,00 + & 1,1)
A, 1 ﬁ|1,—1>+ﬁ|1,1> E 1 1 ‘7’2|1,—11>_—¢%\1,1}
B, 1 LI -1) -51,1) 1 %|1»_1>+_+l|1’0>+%/‘|1’1>
B, 1 1,0) A 2 L2, -2) + 2, -1) + 2,1 2,2
A 5 | 2.0) 1 J12.-2) + Z 2, 1) +H[2.1) - =[2.2)
A, 2 2 5(2,-2)-2) E 2 g 5 (2.-1) = l|2 1)) -
A 2 Hl2.-1) = ij2.1)) 2 RGN0+ F22)
B, 2 s (2. 2>+\2 2) E 2 =112, -2) +]2.2))
2 ! V2
B, 7 (2.-1) +i2.1)) 2 12,0)
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TABLE XVIIIL.

APPENDIX D: TABLES FOR THE NUMERICAL RESULTS

Mass of the scalar and vector particle for the different ensembles.

Ensemble amy am

Al2 0.1367(69) 0.784(34)

B12 0.1346(43) 0.617(28)

C12 0.1215(38) 0.505(22)

D12 0.1166(44) 0.468(19)

E12 0.0953(48) 0.342(15)

Al6 0.1466(16) 0.728(13)

TABLE XIX. Energy in the A;/E irreps of d = (0,0, 1) for the ensembles of Table V.

Ensemble aky, aEpg

Al2 0.531(13) 0.5382(18)

B12 0.535(15) 0.5357(26)

Cl12 0.528(16) 0.5225(26)

D12 0.524(19) 0.5300(27)

E12 0.528(17) 0.5210(68)
TABLE XX. Energy and energy shift for two particles.

aky, aAEy, aEg+ aAEg+ aET; aAET;

Al2 0.3046(53) 0.031(14) 0.3007(54) 0.027(15) 0.3076(66) 0.034(15)
B12 0.242(15) —0.028(17) 0.2679(48) —0.0013(93) 0.245(10) —0.025(13)
C12 0.2136(71) —0.024(10) 0.2241(52) —0.0187(98) 0.2503(39) 0.0002(77)
D12 0.1905(74) —0.043(11) 0.2096(58) —0.0236(99) 0.2231(41) —0.0100(83)
El12 0.1641(87) —-0.019(10) 0.174(11) —-0.026(12) 0.1457(86) —0.0400(90)
Al6 0.3010(17) 0.0079(36) 0.3031(20) 0.0100(37) 0.3022(18) 0.0091(36)
TABLE XXI. One-particle mass in the multiple representations with L = 16 using the continuum dispersion relation. An empty slot

(...) for amy indicates that the determination has not been possible due to the precision. The last column is the expected energy with the
rest frame mass.

n aE amy (amy)? + (ap)?

0, 0, 0) T 0.1466(16) 0.1466(16) 0.1466(16)
Ay 0.4176(26) 0.1420(77)

©,0,1) E 0.41797(80) 0.1431(24) 0.4192(6)
A 0.5724(27) 0.139(11)

(1, 1, 0) B 0.5702(28) 0.129(12) 0.5744(4)
B, 0.5694(10) 0.1257(45)
Ay 0.6925(27) 0.130(14)

(. 1, 1) E 0.6907(29) 0.120(17) 0.6958(6)
A 0.777(17)

©, 0,2) E 0.7832(13) 0.7990(3)
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TABLE XXII. Energy for two particles in the moving frame with d = (0,0, 1).

r aE aAE aEcy y ak aq

A 0.5696(18) 0.0038(28) 0.4126(25) 1.3805(40) 0.1452(24) 0.3698(61)

A, 0.5614(13) —0.0044(25) 0.4012(18) 1.3993(31) 0.1369(21) 0.3487(55)

B 0.5674(19) 0.0016(28) 0.4096(26) 1.3853(42) 0.1430(25) 0.3642(63)

B, 0.5666(11) 0.0008(23) 0.4084(16) 1.3874(23) 0.1422(20) 0.3620(51)

E 0.5835(14) 0.0177(26) 0.4316(18) 1.3523(24) 0.1583(35) 0.4031(89)

TABLE XXIII. Energy spectrum in the A; representation.

L Frame aE ak So+ (%)

12 (0,0,0) + (0,0,0) 0.3046(53) 0.0582(82) -2.09(52)
(0,0,0) + (0,0,1) 0.6840(40) 0.1724(68) -0.9(1.2)
(0,0,0) + (0,0,0) 0.3010(17) 0.034(64) —1.41(75)
(0,0,1) + (0,0, 1) 0.8414(14) 0.036(11) —-0.80(72)
(0,0,0) + (0,0, 1) 0.5696(18) 0.1452(24) —1.13(76)
(0,0,0) + (1,1,0) 0.7176(14) 0.1736(20) 1.60(83)
(0,0,0) + (0,0,2) 0.9127(19) 0.1804(27) 20.3(2.1)
(1,0,0) + (0,1,0) 0.8361(22) 0.2703(19) 12.7(4.0)

TABLE XXIV. Energy spectrum in the A, representation.

L Frame aE ak So-(?)

16 (0,0,0) + (0,0,1) 0.5614(13) 0.1369(21) 1.2(7)

(0,0,0) + (1,1,0) 0.7077(16) 0.1631(23) 4.909)
(0,0,0) + (0,0,2) 0.9101(18) 0.1770(25) 23(2)

TABLE XXV. Obtained values for the phase shift §,+ in moving frame (0,0,0) + (0,0, 1) with the assumption of no mixings.

r ak Formula 5(°)
A 0.1452(24) cotdy- = wpy — wap —0.14(10)
A, 0.1369(21) cotdy+ = wgy — Wy 0.127(60)
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APPENDIX E: EXAMPLES OF M" IN THE REST FRAME

For the irreducible representations E* and T3, with the notation:

T /E*

M?l/f; _ (M2 )s=o 0
. + /gt ’
0 (M7 )5t

with

Moz Mooz Maos

TS /E
(M7 ) )s—a = | Moo Mpz Moy
Maso0 Mgz Moy

w0 + F wag 0 0 0
e 0 Dop 0 3\@%
- 0 0 woo + R w49 %g v |
0 3 \@wm % Wy W + 33 Dap
Wop — % Wy 0 0 0
M = 0 Woo 0 - ﬁ Wy
a 0 oo — % Wy — % Wy
0 - ﬁ @Dy — Z(L)T;ﬁ @40 Woo — % @40

For the representation A; with the notation

o (Mse 0
JUJL A ’

( M?/lll JI)S=0 _ (Moo,oo Moo.44 )
' Muso0 Masas

Mpop Mpso Moepas Moas

( M% /1)5:2 _ Mpop My Mipas Mirgs

' Muysoo Masay Magas Magas

Myso Masar Magsas Magas

3
Woo 6 \/;w4o

A
(MJ’II/,JI)S:O -
6\/%6040 oo + 13—3 (81(1)40 + 2600)60 + 140(080)

014503-17

(E1)

(E3)

(E4)



F. ROMERO-LOPEZ, A. RUSETSKY, and C. URBACH PHYS. REV. D 98, 014503 (2018)

A
(M3 j)s=2

6v6 12 /15 15
@oo 7 W40 T \/1:16040 6\/%6040
6v6 6 12 /10 2 /70
2wy Woo +7W40 7\ 11940 +35w¢0) m\/;(3w40+52w60+88w80>
12 /is 12 /10 _2(1863w49+20566w0—~10976w3) 12v/7(45049+208w4 +72w5)
7 \/:a’40 771/ 11(9wa0 +35060) Woo 11011 1573
127 (45w,40+208wen+72wg) 1573w00+2352w409+4160wgn+560wgg

6\/%6040 %\/@(30040 +52we0 +88wyg)
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APPENDIX F: EFFECTIVE MASS
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FIG. 4. Effective masses as a function of #/a for ensemble A16. (a) Effective mass for the one-particle operator O'1 in the rest frame as
in Table III. (b) Effective mass for the two-particle operator Q41 in the rest frame as in Table V. (c) Effective mass for the one-particle
operator O in the moving frame d = (0,0, 1) as in Table III. (d) Effective mass for the two-particle operator O in the moving frame
d=(0,0,0) + (0,0, 1) as in Table V.
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