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Inspired by the recent discovery of the Ξþþ
cc by the LHCb Collaboration, we study the magnetic moments

of the spin-1=2 doubly charmed baryons up to the next-to-leading order in covariant baryon chiral
perturbation theory with the extended-on-mass-shell renormalization scheme. There are three low energy
constants at this order: a1, a2, and ga. The latest lattice QCD simulations allow us to fix a combination of a1
and a2, while the axial-vector coupling ga can be determined in three different ways: by fitting to the lattice
QCD data, by the quark model, or by the heavy antiquark diquark symmetry. The magnetic moments of the
spin-1=2 doubly charmed baryons, Ξd

cc and Ξs
cc, can then be predicted. We compare our results with those

obtained in the heavy baryon chiral perturbation theory and other approaches, and point out some
inconsistencies between the lattice QCD simulations and the quark model.

DOI: 10.1103/PhysRevD.98.014040

I. INTRODUCTION

The doubly charmed baryons, Ξu
cc, Ξd

cc, and Ξs
cc, are

composed of two charm quarks and one light quark. One of
them, Ξþ

cc, with a mass of 3519� 2 MeV was first reported
by the SELEX Collaboration [1,2]. Unfortunately, no other
collaborations found such a state. Recently, the LHCb
Collaboration observed another doubly charmed baryon
state Ξþþ

cc with a mass of 3621.4� 0.78 MeV, which has
inspired many theoretical studies on its weak [3–5], strong,
and radiative decays [6–8].
The magnetic moment of a hadron is one of its most

important properties, which encodes crucial information on
its inner structure. In the past, many phenomenological
models have been used to study the magnetic moments of
Ξcc [9–17]. More recently, they have been calculated in
heavy baryon chiral perturbation theory (HBChPT) [18] and
QCD sum rules [19]. In this work, wewill study themagnetic
moments of the spin-1=2 doubly charmed baryons up to the
next-to-leading order (NLO) in covariant baryon chiral
perturbation theory (BChPT) with the extended-on-mass-
shell (EOMS) renormalization scheme. In the present work,
wewill contrast theChPTresultswith the latticeQCDdata of
Ref. [20] to determine the unknown low energy constants

(LECs). In many recent studies (see, e.g., Refs. [21,22]), it
has been shown that the EOMS BChPT can provide a better
description of the lattice QCD quark-mass dependent results
than its nonrelativistic counterpart.
Chiral perturbation theory (ChPT) is a low energy effec-

tive field theory ofQCD,which plays an important role in our
understanding of the nonperturbative strong interaction. In
ChPT, relevant Feynman diagrams contributing to a certain
process are organized as an expansion in powers of the
external momenta and light quark masses. In the center of
such an expansion is a power counting scheme, first proposed
by Weinberg [23]. However, in the one-baryon sector, the
naive power counting breaks down because of the large
nonzero baryonmassm0 in the chiral limit. To overcome this
issue,HBChPT,which performs a dual expansion in termsof
both 1=m0 and the chiral expansion, was proposed [24,25].
Later, two relativistic schemes were also proposed, i.e., the
infrared (IR) [26] and EOMS [27] schemes. For a recent and
concise summary of different schemes, see, e.g., Ref. [28].
The EOMS scheme has already been successfully applied

to study many physical observables such as the magnetic
moments [22,29–31], the masses, and sigma terms [21,
32–34] of the octet and decuplet baryons, the hyperon vector
couplings [35,36], the axial vector charges [37], the pion-
nucleon scattering [38,39], the nucleon Compton scattering
[40], the neutral pion photo production [41], the scattering of
pseudoscalar mesons off D=B mesons [42–44], the DD�
scattering [45], and the Ξcc masses and sigma terms [46,47].
It will be interesting to see how it describes the magnetic
moments of the Ξcc baryons, particularly from the perspec-
tive of lattice QCD simulations.
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This work is organized as follows. In Sec. II, we provide
the theoretical ingredients and calculate the pertinent
Feynman diagrams. Results and discussions are given in
Sec. III, followed by a short summary in Sec. IV.

II. THEORETICAL FORMALISM

The magnetic moments of doubly charmed baryons are
defined via the matrix elements of the electromagnetic
current Jμ in the following way:

hΨðp0ÞjJμjΨðpÞi ¼ ūðp0Þ½γμFB
1 ðtÞ þ

iσμνqν

2mB
FB
2 ðtÞ�uðpÞ;

where ūðp0Þ and uðpÞ are Dirac spinors, mB is the chiral
limit doubly charmed baryon mass, and FB

1 ðtÞ and FB
2 ðtÞ

denote the Dirac and Pauli form factors, respectively. The
four-momentum transfer is defined as q ¼ p0 − p and
t ¼ q2. At t ¼ 0, FB

2 ð0Þ is the so-called anomalous mag-
netic moment, κB, and the magnetic moment is
μB ¼ κB þQB, where QB is the charge of the doubly
charmed baryon. Up to NLO, there are three Feynman
diagrams contributing to the magnetic moments of the Ξcc

as shown in Fig. 1, where diagram (a) is of Oðp2Þ and
diagrams (b) and (c) are of Oðp3Þ.

A. Tree level diagram

The leading order (tree-level) contribution is provided by
the following Lagrangian:

Lð2Þ
MB ¼ a1

1

8mB
H̄σμνF̂þ

μνH þ a2
1

8mB
H̄σμνHTrðFþ

μνÞ; ð1Þ

where σμν ¼ i
2
½γμ; γν�, Fþ

μν ¼ jejðu†Q0Fμνuþ uQ0Fμνu†Þ,
Fμν ¼ ∂μAν − ∂νAμ, F̂þ

μν ¼ Fþ
μν − 1

3
TrðFþ

μνÞ, and Q0 ¼
diagð2; 1; 1Þ is the baryon charge matrix, u ¼ exp½iΦ=2fϕ�
with Φ the unimodular matrix containing the pseudoscalar
nonet, and fϕ the pseudoscalar decay constant. In the
numerical analysis, we use the following physical values

for the decay constants: fπ ¼ 92.4 MeV, fK ¼ 1.22fπ ,
fη ¼ 1.3fπ. For mB, we use the SU(3) average of the lattice
QCD results, i.e.,mB ¼ 3722 MeV [20]. TheΞcc baryons are
contained in a column H, which reads

H ¼

0
B@

Ξu
cc

Ξd
cc

Ξs
cc

1
CA: ð2Þ

The tree level contributions to the magnetic moments can be
easily obtained as

μð2ÞB ¼ αBa1 þ βBa2; ð3Þ
where αB ¼ ðhH̄Q0Hi − 1

3
H̄HhQ0iÞ and βB ¼ H̄HhQ0i are

given in Table I.Wewill determine the two LECs a1 and a2 by
fitting to the lattice QCD simulations.

B. Loop diagrams

AtOðp3Þ, there are two Feynman diagrams, the so-called
baryon-pole and meson-pole diagrams, as shown in Fig. 1.
The Lagrangian for a doubly charmed baryon interacting

with a Nambu-Goldstone boson (NGB) is

Lð1Þ
MBB ¼ ga

2
H̄γμγ5uμH; ð4Þ

where uμ ¼ ½u†ð∂μ − irμÞu − uð∂μ − ilμÞu†�, and ga is the
axial-vector coupling constant.
The Lagrangian describing the interaction between a

baryon and a photon is of OðpÞ and reads

Lð1Þ
B ¼ iH̄γuDμH; ð5Þ

where Dμ¼∂μþΓμ, Γμ¼1
2
½u†ð∂μ−irμÞuþuð∂μ−ilμÞu†�¼

1
2
ðu†∂μuþu∂μu†Þ− i

2
ðu†rμuþulμu†Þ¼−ieQ0Aμ.

The Lagrangian describing the interaction between a
meson and a photon is of Oðp2Þ and reads

Lð2Þ
M ¼ f2ϕ

4
Tr½▽μUð▽μUÞ†�; ð6Þ

where ▽μU ¼ ∂μU þ ieAμðQU −UQÞ and Q ¼
diagð2=3;−1=3;−1=3Þ.
From these, one can easily obtain the loop contributions

to the magnetic moments, i.e.,

μiloop ¼ cibðϕÞHbðmϕÞ þ cimðϕÞHmðmϕÞ; ð7Þ
where cibðϕÞ and cimðϕÞ are tabulated in Tables II and III, i
runs over Ξu

cc, Ξd
cc, and Ξs

cc, and ϕ denotes π, K, or η. The

(a)

(b) (c)

FIG. 1. Feynman diagrams contributing to the magnetic mo-
ments of the Ξcc baryons: (a) tree level, (b) meson pole, and
(c) baryon pole. The solid lines denote the doubly charmed
baryons, the dashed lines denote the Nambu-Goldstone bosons,
and the wiggly lines indicate the photon. The heavy dots indicate
Oðp2Þ vertices, and the normal dots denote OðpÞ vertices.

TABLE I. Oðp2Þ coefficients appearing in Eq. (3).

Ξu
cc Ξd

cc Ξs
cc

αB 2=3 −1=3 −1=3
βB 4 4 4
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loop functionsHbðmϕÞ and HmðmϕÞ with mϕ the mass of a
NGB are

HbðmϕÞ¼−
g2a

16π2f2ϕ

�
m2

Bþ2m2
ϕþ

m2
ϕ

m2
B
ðm2

B−m2
ϕÞ log

�
m2

ϕ

m2
B

�

þ2m3
ϕðm2

ϕ−3m2
BÞ

m2
B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

B−m2
ϕ

q arccos

�
mϕ

2mB

��
; ð8Þ

HmðmϕÞ¼
g2a

16π2f2ϕ

�
−m2

Bþ2m2
ϕþ

m2
ϕ

m2
B
ð2m2

B−m2
ϕÞlog

�
m2

ϕ

m2
B

�

þ2mϕðm4
ϕ−4m2

ϕm
2
Bþ2m2

BÞ
m2

B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

B−m2
ϕ

q arccos
�
mϕ

2mB

��
:

ð9Þ

Up to NLO, the total magnetic moments are a sum of the
tree and loop contributions, and they are usually expressed
in units of the nucleon magneton μN . In the end, we obtain

μΞu
cc
¼ mN

mB

�
2þ 2

3
a1 þ 4a2 þ c1bðϕÞHbðmϕÞ

þ c1mðϕÞHmðmϕÞ
�
;

μΞd
cc
¼ mN

mB

�
1 −

1

3
a1 þ 4a2 þ c2bðϕÞHbðmϕÞ

þ c2mðϕÞHmðmϕÞ
�
;

μΞs
cc
¼ mN

mB

�
1 −

1

3
a1 þ 4a2 þ c3bðϕÞHbðmϕÞ

þ c3mðϕÞHmðmϕÞ
�
;

where mN ¼ 940 MeV is the nucleon mass.

III. RESULTS AND DISCUSSIONS

In the following, we determine the LECs a1 and a2 by
fitting to the lattice QCD simulations of Ref. [20], which are
given in Table IV. The LEC ga will be determined by three
ways: (case 1) by fitting to the latticeQCD simulations, (case
2) by the heavy antiquark diquark symmetry (HADS), or
(case 3) by the quark model. To quantify the agreement with
the lattice QCD data, we use the χ2 defined as

χ2j ¼
X4
k¼1

ðμktheo − μklQCDÞ2
d2k

; ð10Þ

where μktheo and μklQCDðdkÞ are the magnetic moments
(uncertainties) obtained in BChPT and those of the lattice
QCD simulations of Table IV for Ξd

cc (j ¼ 1) and Ξs
cc

(j ¼ 2), respectively.
From Eq. (10), it is clear that since the lattice QCD data

are only available for Ξd
cc and Ξs

cc, we cannot determine the
LECs a1 and a2 simultaneously. Only the combination
c1 ¼ − 1

3
a1 þ 4a2 can be fixed. As a result, we cannot

predict the magnetic moment of Ξu
cc without further inputs.

A. Results at Oðp2Þ
If we just consider the tree level contribution, we have

only one LEC, c1. It can be determined by fitting to the
lattice QCD data. The resulting value and χ2 are shown in
Table V. The predicted magnetic moments of Ξcc at the
physical pion mass are

μΞd
cc
¼ μΞs

cc
¼ mN

mB
ðc1 þ 1Þ ¼ 0.401ð3ÞμN; ð11Þ

where the number in the parenthesis is the uncertainty at the
68% confidence level.

TABLE II. Coefficients of the baryon-pole contributions
appearing in Eq. (7).

cb Ξu
cc Ξd

cc Ξs
cc

π 4 5 0
η 2=3 1=3 4=3
K 2 2 6

TABLE III. Coefficients of the meson-pole contributions ap-
pearing in Eq. (7).

cm Ξu
cc Ξd

cc Ξs
cc

π −2 2 0
K −2 0 2

TABLE IV. Lattice QCD magnetic moments and masses of Ξd
cc

and Ξs
cc at different m2

π [20].

m2
π mΞd

cc
mΞs

cc
μΞd

cc
μΞs

cc

Lattice 0.490 3.810(12) 3.861(17) 0.412(13) 0.389(18)
0.325 3.740(13) 3.806(12) 0.404(12) 0.386(11)
0.168 3.708(16) 3.788(16) 0.410(20) 0.400(11)
0.090 3.689(18) 3.781(28) 0.416(19) 0.402(15)

TABLE V. Oðp2Þ LEC determined by fitting to the lattice QCD
data of Table IV [20] and the corresponding χ2.

Oðp2Þ c1 χΞd
cc

χΞs
cc

0.586(19) 1.678 2.238
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B. Results at Oðp3Þ
At Oðp3Þ, the meson masses will contribute via the loop

diagrams. We determine the eta and kaon masses by the
leading order ChPT. Setting the strange quark mass to its
physical value, we obtain the following relation:

m2
K ¼ 1

2
m2

π þ
�
m2

K −
1

2
m2

π

�
phys

;

m2
η ¼

1

3
m2

π þ
4

3

�
m2

K −
1

2
m2

π

�
phys

: ð12Þ

Fitting to the lattice QCD simulations tabulated in
Table IV and with the LEC ga determined in the three
different ways explained above, the resulting LECs as well
as the χ2 are tabulated in Table VI. For the sake of
comparison, we show the results obtained in HBChPT as
well. It is seen that the lattice QCD data seem to prefer a ga
that is smaller than that predicted either by the quark model
or the HADS. Furthermore, as ga becomes larger, the
EOMS BChPT description of the lattice QCD data
becomes slightly better than that of the HBChPT, although
for case 1, where ga is taken as a free LEC, the descriptions
are of similar quality.
In Figs. 2 and 3, we plot the predicted magnetic moments

of Ξd
cc and Ξs

cc as a function of m2
π , in comparison with the

lattice QCD data. As can be clearly seen, there is not much
difference between the EOMS and HB results. However,
somewhat surprisingly, using the ga determined by either
the quark model or the HADS yields unacceptable fits. This
indicates that there is a considerable discrepancy between
the quark model (the HADS) and the lattice QCD simu-
lations of Ref. [20].1

Note that we have used all of the eight sets of lattice
QCD data and some of them are obtained with pion masses
as large as 700 MeV. They are probably beyond the limit
where anOðp3Þ BChPT study can be trusted. Nevertheless,
it is clear from the plots that limiting ourselves to the lattice
QCD data with smaller pion masses will not change
qualitatively any of our conclusions.
In contrary to the nucleon case where the HB and EOMS

results can differ substantially [22], for the doubly charmed
Ξcc baryons, the loop contributions are much suppressed.
This can be easily seen from the small ga ≈ 0.08–0.25,
which is less than a fifth of the axial-vector coupling of the
nucleon, gA ¼ 1.26. As shown in Fig. 4, the magnetic

TABLE VI. Low energy constants c1 and ga and the corresponding χ2 of each case described in the text.

Case 1 Case 2 Case 3

EOMS HB EOMS HB EOMS HB

c1 0.535(82) 0.542(70) 0.249 (19) 0.264(19) 0.060(19) 0.083(21)
ga 0.078(61) 0.074(56) 0.2 0.2 0.25 0.25
χ2Ξd

cc
1.494 1.513 11.175 13.180 27.797 32.785

χ2Ξs
cc

2.039 2.048 4.268 4.448 8.664 9.155

FIG. 2. Magnetic moment of Ξd
cc as a function of m2

π . The
theoretical results are obtained with the LEC c1 determined by
fitting to the lattice QCD data and the LEC ga determined in three
different ways as explained in the text.

FIG. 3. Same as Fig. 2, but for the magnetic moment of Ξs
cc.

1One may need go to the next-to-next-to-leading order
(NNLO) to draw a firm conclusion. However, at present, this
is not feasible because of the increase in the number of free LECs
in BChPT and the limited lattice QCD data.
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moments of Ξd
cc and Ξs

cc receive only small relativistic
corrections, while for Ξu

cc the correction is slightly larger.
This can serve a nontrivial test of the ChPT results once
more refined lattice QCD data become available.
One should note that the fits to the lattice QCD

simulations are only of an exploratory nature. In the present
work, we have not taken into account finite volume
corrections and continuum extrapolations. In addition,
because of the limited lattice QCD data, we have not
performed a full study of truncation errors, different from
the study of the magnetic moments of the ground-state octet
baryons [22].
In Table VII, we compare the predicted magnetic

moments of Ξcc (case 1) with those obtained in
other approaches. One finds that the theoretical results
are very much scattered. Clearly, more investigations are
needed to understand the current situation. Such studies
may provide vital information on the nature of these Ξcc
baryons.
A few comments are in order. Clearly, the lattice QCD

results of Ref. [20] and the present BChPT results (based on
the same lattice QCD data) are not consistent with the quark
model results. This is somehow surprising because one
naively expects that the quark model becomes a better
approximation of QCD with increasing quark masses as
realized in lattice QCD simulations. In addition, the rather
weak pion mass dependence of the lattice QCD data
dictates a ga much smaller than the one predicted by either
the quark model or the HADS. This may also be seen as a
sign of the inconsistency between the quark model and the
lattice QCD simulations. It remains an interesting issue to
understand such discrepancies.

IV. SUMMARY

We calculated the magnetic moments of the Ξcc baryons
in covariant baryon chiral perturbation theory with the
extended-on-mass-shell scheme up to the next-to-leading
order. The relevant low-energy constants are determined by
fitting to lattice QCD simulations. We showed that the
lattice QCD data support an axial-vector coupling ga
smaller than those predicted by either the quark model
or the heavy antiquark diquark symmetry. In addition, we
found that relativistic corrections are very small for Ξd

cc and
Ξs
cc, but relatively large for Ξu

cc. This should be tested by
future lattice QCD simulations. On the other hand, we
notice that the present lattice QCD results are inconsistent
with those of the quark model. More studies, particularly
lattice QCD studies, are therefore in urgent need given
the remarkable experimental progress achieved in the last
few years.
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Note added.—Recently, a study of the electromagnetic
form factors of the Ξcc baryons in the same theoretical
framework appeared in arXiv [48], focusing more on the q2

dependence of the form factors, rather on their light quark
mass dependence. Their predicted magnetic moments, with
a jgaj ¼ 0.2, are consistent with ours within uncertainties.

FIG. 4. Loop contributions to the magnetic moments of Ξcc as a
function of m2

π for ga ¼ 0.25.

TABLE VII. Comparison of the magnetic moments of Ξcc with
those predicted by other approaches. Note that the EOMS BChPT
results are obtained by fitting to the lattice QCD data of Ref. [20]
up to NLO taking c1 and ga as free LECs.

Ψ Ξu
ccðμNÞ Ξd

ccðμNÞ Ξs
ccðμNÞ

QCD sum rule [19] 0.84 0.46 0.43
HBChPT [18] −0.25 0.85 0.78
Lattice QCD [20] � � � 0.425 0.413
QM [9] −0.12 0.80 0.69
RQM [10] −0.10 0.86 0.72
Skyrmion [11] −0.47 0.98 0.59
NQM [12] −0.20 0.79 0.64
χCQM [13] 0.006 0.84 0.70
RTQM [14] 0.13 0.72 0.67
NRQM [15] −0.20 0.78 0.63
MIT bag model [16] 0.17 0.86 0.84
CLP [17] −0.154 0.778 0.657
EOMS BChPT� � � � 0.392(13) 0.397(15)
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