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We calculate the next-to-leading order (NLO) radiative correction to the color-octet hc inclusive
production in eþe− annihilation at a super B factory, within the nonrelativistic QCD factorization
framework. The analytic expression for the NLO short-distance coefficient (SDC) accompanying the color-

octet production operator Ohc
8 ð1S0Þ is obtained after summing both virtual and real corrections. The size of

NLO correction for the color-octet production channel is found to be positive and substantial. The NLO
prediction to the hc energy spectrum is plagued with unphysical end-point singularity. With the aid of
the soft-collinear effective theory, those large end-point logarithms are resummed to the next-to-leading
logarithmic (NLL) accuracy. Consequently, further supplemented with the nonperturbative shape function,
we obtain the well-behaved predictions for the hc energy spectrum in the entire kinematic range, which
awaits examination by the forthcoming Belle II experiment.

DOI: 10.1103/PhysRevD.98.014039

I. INTRODUCTION

The hcð1PÞmeson, the lowest-lying spin-singlet P-wave
charmonium, is the last member found among the char-
monium family below the open charm threshold. The first
hint about its existence was reported in the process
pp̄ → hc → J=ψπ0 by the Fermilab E760 experiment in
1992 [1]. Finally, in 2005, the hc state was firmly
established through the process pp̄ → hc → ηcγ in the
Fermilab E835 experiment [2], as well as through the
isospin-violating charmonium transition process ψð2SÞ →
hcð→ ηcγÞ þ π0 in the CLEO-c experiment [3,4]. Later,
this decay chain was confirmed in the BESIII experiment
with a much greater data sample [5,6]. To date, the latest
measured mass and width of hc are Mhc ¼ 3525.38�
0.11 MeV and Γhc ¼ 0.7� 0.28� 0.22 MeV, respectively
[7]. Two exclusive decay channels, the electric dipole (E1)
radiative transition hc → ηcγ and the Okubo-Zweig-Iizuka
(OZI)-suppressed annihilation decay hc → 2πþ2π−π0, have
been measured, with the corresponding branching fractions
Bðhc → ηcγÞ ¼ ð51� 6Þ% and Bðhc → 2πþ2π−π0Þ ¼
ð2.2þ0.8

−0.7Þ%, respectively [7]. It is worth mentioning that

the 1P1 counterparts in the bottomonium family, the
hbð1P; 2PÞ mesons, have also recently been established
via the di-pion transition from the ϒð5SÞ resonance in the
Belle experiment [8].
It is interesting to ask whether one can possibly under-

stand various dynamical aspects of the hc meson from the
first principles of QCD. In fact, nonrelativistic QCD
(NRQCD) [9], the modern effective field theory to describe
the slowly moving heavy quark–antiquark system, is an
appropriate model-independent framework to tackle a
multiscale system exemplified by the charmonium state
hc. Furthermore, the NRQCD factorization approach
[10], originally developed by Bodwin et al., provides a
powerful and systematic language to describe the inclusive
quarkonium production and decay processes that has been
fruitfully applied to uncountable charmonium phenome-
nologies in the past two decades [11].
For the dominant E1 decay process hc → ηcγ, there have

been many preceding studies based on the multipole
expansion picture in the quark potential models [12].
Moreover, the radiative and relativistic corrections to the
inclusive hadronic widths of hc;b have recently been
investigated in the NRQCD factorization framework
[13]. On the other hand, hc production in various collision
environments has also been extensively investigated in
recent years. For instance, hc inclusive production in B
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meson decay [14,15]; hc photoproduction [16]; hc hadro-
production [17–19]; inclusive hc production from eþe−

annihilation [20,21]; and exclusive hc production from Z0

decay [22], from double charmonium production in eþe−
annihilation [23], and from ϒðnSÞ decay [24].
The hadroproduction rate of hc is significant at the

LHC experiment due to the huge partonic luminosity. A
recent computation indicates that the gluon-to-hc frag-
mentation probability may reach the order 10−6 [25]. In
sharp contrast to J=ψðψ 0Þ hadroproduction [26–30],
unfortunately it is rather challenging to reconstruct the
hc events via the dominant decay channel hc → ηcγ, due
to the tremendous background at hadron collision experi-
ments. In contrast, tagging hc is much more tractable in
the eþe− machines than in hadron colliders. For example,
the exclusive hc production process eþe− → hcπþπ− at
center-of-mass energy

ffiffiffi
s

p ¼ 4.170 GeV has been studied
by the CLEO Collaboration, with the cross section
measured to be 15.6� 2.3� 1.9� 3.0 pb [31]. They
also found evidence for the process eþ þ e− → hcη at
the 3σ confidence level. As a byproduct of studying this
exclusive hc production channel, BESIII have recently
found two charmoniumlike resonances, namely, the
Yð4220Þ and Yð4390Þ [32].
The forthcoming Belle II experiment (also referred to

as a super B factory) will accumulate a tremendous data
set near the ϒð4SÞ energy. In this paper, we will focus on
the inclusive hc production in eþe− annihilation atffiffiffi
s

p
≈ 10.58 GeV, near the ϒð4SÞ resonance. In the pre-

vious work [20,21], the NRQCD SDCs were evaluated for
both color-singlet and color-octet channels at the leading
order (LO) in αs, and it was found that the latter octet-
channel production cross section dominated the singlet-
channel cross section. Therefore, in order to make a more
precise prediction, it is helpful to evaluate the next-to-leading
order (NLO) QCD correction to the color-octet cross section.
Moreover, to expedite the experimental search for hc, it is
crucial to predict not only the total hc production rate, but
also the differential hc energy spectrum.
The LO color-octet contribution to the hc energy

spectrum in eþe− → hc þ X is simply a δ-function, deter-

mined by the partonic process eþe− → cc̄ð1Sð8Þ0 Þ þ g. After
including the real correction in the color-octet channel,

eþe− → cc̄ð1Sð8Þ0 Þ þ gg, the energy spectrum then becomes
continuous over the entire allowed domain; however, it
turns out to be singular near the upper end point, due to the
soft and collinear gluon radiation in this limited region of
phase space. This signals a breakdown of the fixed-order
QCD prediction, and failure of NRQCD expansion near
this kinematic end-point region. The aim of this work is
thus twofold. First we extend the LO color-octet NRQCD
SDC obtained in [20] to NLO in αs, in a fully analytical
manner. Secondly, we follow the recipe of the resumming
large logarithms in the color-octet channel for the process

eþe− → J=ψ þ X near the end-point region [33], which
was formulated in the context of the soft-collinear
effective theory (SCET) [34–39], to tame the end-point
singularity encountered in our case, and finally predict
a well-behaved hc energy spectrum. We hope our pre-
diction will provide some useful guidance for unambig-
uously erecting the hc state in the forthcoming Belle II
experiment.
The rest of the paper is distributed as follows. In Sec. II,

the fixed-order calculations for the short-distance coef-
ficients (SDCs) are presented within the NRQCD factori-
zation framework. We first review the existing LO results
for both color-singlet and octet channels. In Sec. III, we
present the analytical expressions for NLO NRQCD SDCs
from the color-octet channel, including both virtual and
real corrections. In Sec. IV, within the SCET framework,
we show how to resum the large endpoint logarithms to
the next-to-leading logarithmic (NLL) accuracy. In Sec. V,
we present our numerical results for the total hc produc-
tion rate and its differential energy spectrum. We also
discuss the observational prospects of the hcð1P; 2PÞ
states in the forthcoming Belle II experiment. Finally
we summarize in Sec. VI. In the Appendix, we expound
how to analytically carry out the three-body phase space
to isolate the soft and collinear divergences in d ¼ 4 − 2ϵ
spacetime dimensions.

II. NRQCD FACTORIZATION AND LO
SHORT-DISTANCE COEFFICIENTS

A. NRQCD factorization for hc production

Heavy quarkonium is a QCD bound state predominantly
composed of a pair of a nonrelativistic heavy quark and
antiquark. For the charmonium, the typical velocity between
the charm quarks inside a charmonium is roughly v2 ≈ 0.3;
thus, velocity expansion is not anticipated to converge very
well. According to the NRQCD factorization theorem [10],
the inclusive production rate of hc can be expressed as a
sum of the product of perturbatively calculable NRQCD
SDCs and the nonperturbative NRQCD long-distance matrix
elements (LDMEs). The importance of the LDMEs is
weighed by the power counting in v. At the lowest order
in v, the differential cross section for inclusive hc production
can be written as [10]

dσ½eþe− → hc þ X� ¼ dF1ðμΛÞ
m4

c
hOhc

1 ð1P1Þi

þ dF8

m2
c
hOhc

8 ð1S0ÞðμΛÞi þ � � � ; ð1Þ

where the SDCs dF1 and dF8 can be calculated order by
order in αs, and hOhc

1 ð1P1Þi and hOhc
8 ð1S0Þi are the color-

singlet and color-octet NRQCD production LDMEs,
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respectively. The corresponding hc production operators in
NRQCD are defined as [10]1

Ohc
1 ð1P1Þ ¼ χ†

�
−
i
2
D
↔
�
ψ
X
X

jhc þ Xi

· hhc þ Xjψ†
�
−
i
2
D
↔
�
χ; ð2aÞ

Ohc
8 ð1S0Þ ¼ χ†Taψ

X
X

jhc þ Xi · hhc þ Xjψ†Taχ; ð2bÞ

where ψ and χ denote the Pauli spinor fields that annihilate a

heavy quark and create a heavy antiquark, respectively. D
↔

represents the left-right symmetric spatial component of
the covariant derivative Dμ ¼ ∂μ − igsTaAa

μ, and Ta

(a ¼ 1;…; 8) signifies the generator in the fundamental
representation of the SUð3Þc group. The μΛ refers to the
NRQCD factorization scale, which lies in the range
mcv ≤ μΛ ≤ mc. These two NRQCD production operators
are interconnected through the NRQCD renormalization
group equation (RGE) [10]:

d
d ln μ2Λ

hOhc
8 ð1S0ÞðμΛÞi ¼

2CFαsðμΛÞ
3πNcm2

c
hOhc

1 ð1P1Þi: ð3Þ

Being infrared finite, dF1 and dF8 are insensitive to the
long-distance hadronization effects and thus can be deter-
mined through the standard perturbative matching pro-
cedure. One can replace the physical hc state in Eq. (1)

by the free on-shell cc̄ pairs with quantum numbers 1Sð8Þ0 or
1Pð1Þ

1 , computing both sides of Eq. (1), demanding both
perturbative QCD and perturbative NRQCD to generate
identical results. Ultimately, one can solve these two linear
equations to ascertain the two SDCs, order by order in αs.
Here we stress that it is crucial to include the color-octet
contribution; otherwise the uncanceled IR divergences
emerging from the color-singlet channel would impede
the predictive power of NRQCD. For the computation in

the QCD side, it is convenient to employ the covariant
projection technique [42,43] to project the cc̄ amplitude onto
the intended 2Sþ1LJ states. Throughout this work, dimen-
sional regularization (DR), that is, to work in the spacetime
dimensions d ¼ 4 − 2ϵ, is adopted to regularize both UV
and IR divergences.
A kinematical simplification also arises from the

s-channel nature of this process. As long as we are
concerned only with the hc energy distribution, one can
reexpress the hc production rate from eþe− annihilation in
terms of that from virtual photon decay [44]:

dσ½eþe− → hc þ X� ¼ 4πα

s3=2
dΓ½γ� → hc þ X�; ð4Þ

where the center-of-mass energy of the eþe− system is
denoted by

ffiffiffi
s

p
.

Some representative Feynman diagrams for cc̄ðnÞ
[n ¼ 1Sð8Þ0 or 1Pð1Þ

1 ] production from eþe− annihilation in
both color-singlet and color-octet channels are shown in
Fig. 1. Due to the odd C parity of the hc meson, the color-
singlet channel starts at Oðα2sÞ, while the octet contribution
starts at OðαsÞ. In the rest of this section, we will briefly
review the LO results for F8 and F1, which were first
analytically evaluated in Ref. [20].

B. LO color-octet SDC

At LO in the color-octet channel, we only need to

consider eþe− → γ� → cc̄ð1Sð8Þ0 Þ þ g. The differential two-
body phase space in d ¼ 4 − 2ϵ dimensions reads [20]

dΦ2 ¼
cϵ
8π

s−ϵð1 − rÞ1−2ϵδð1þ r − zÞdz; ð5Þ

where

cϵ ≡ ð4πÞϵ Γð1 − ϵÞ
Γð2 − 2ϵÞ ; r≡ 4m2

c

s
; z≡ 2P0ffiffiffi

s
p ; ð6Þ

with Pμ ¼ ðP0;PÞ representing the four-momentum of the
cc̄ pair.
The LO amplitude squared turns out to be

X
Pol;Col

jMð0Þ½γ� → cc̄ð1Sð8Þ0 Þ þ g�j2

¼ 256π2e2cαCACFαsμ
2ϵ
r ð1 − ϵÞð1 − 2ϵÞ; ð7Þ

FIG. 1. Representative Feynman diagrams for the cc̄ðnÞ production from eþe− annihilation, for n ¼ 1Sð8Þ0 or 1Pð1Þ
1 .

1It was first made clear by Nayak et al. [40,41] a decade ago
that the original definition of the NRQCD color-octet production
operator [10] is not gauge invariant, and the correct definition
necessitates the inclusion of eikonal lines that run from the
location of the quark/antiquark fields to infinity. To the pertur-
bative order considered in this work, this nuisance does not play a
role so we adhere to the conventional definition [10].
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where ec ¼ 2
3
is the electric charge of the charm quark, and

CA ¼ 3 and CF ¼ 4
3
are the Casimirs of the color SUð3Þc

group. Integrating Eq. (7) over the two-body phase space in
Eq. (5), we obtain

σ̂ð8ÞLO ≡ 2πα

3s2

Z
dΦ2

X
Pol;Col

jMð0Þ½γ� → cc̄ð1Sð8Þ0 Þ þ g�j2

¼
�
4πμ2r
s

�
ϵ Γð2 − ϵÞ
Γð1 − 2ϵÞ

64π2e2cα2CACFαsð1 − rÞ1−2ϵ
3s2

:

ð8Þ

The factor 1
3
accounts for averaging over the three polar-

izations of γ�. The differential expression of σ̂ð8ÞLO in four
dimensions reads

dσ̂ð8ÞLO

dz

����
d→4

¼ 64π2e2cα2CACFαsð1 − rÞ
3s2

δð1þ r − zÞ: ð9Þ

Substituting Eq. (9) into the left-hand side of Eq. (1), and
only retaining the NRQCD matrix element in the color-
octet channel, we then deduce the LO color-octet SDC:

dFLO
8

dz
¼ mc

hOcc̄
8 ð1S0Þi

dσ̂ð8ÞLO

dz

¼ 64π2e2cα2CACFαsð1 − rÞmc

3ðN2
c − 1Þs2 δð1þ r − zÞ; ð10Þ

where we have used hOcc̄
8 ð1S0Þi ¼ N2

c − 1. The integrated
color-octet SDC is then

FLO
8 ¼ 64π2e2cα2CACFαsð1 − rÞmc

3ðN2
c − 1Þs2 ; ð11Þ

which scales as 1=s2 asymptotically.

C. LO color-singlet SDC

To determine the LO SDC in the color-singlet channel,
we need to consider the partonic process eþe− →

cc̄ð1Pð1Þ
1 Þ þ gg. The IR divergence appears in the upper

end point of the hc spectrum, when one of the gluons
becomes soft. It is most convenient to handle this IR
singularity using DR. As a virtue of the color-octet
mechanism of NRQCD, the single IR pole is factored into
the color-octet NRQCD LDME. As a remnant of this IR
divergence, the renormalized color-octet LDME is defined
at the NRQCD factorization scale μΛ; in the meantime, the
SDC F1 acquires an explicit logarithmic dependence on μΛ.
The differential color-singlet SDC dF1=dz is somewhat too
lengthy to reproduce here, and we refer interested readers to
Ref. [20] for its complete expression. Here we just present
the integrated color-singlet SDC:

FLO
1 ðμΛÞ ¼

64πe2cα2CFα
2
smc

9Ncs2
ð1 − rÞ

�
− ln

μ2Λ
4m2

c
þ 2 ln ð1 − rÞ − 65 − 84r

12ð1 − rÞ þ
7þ 7r − 9r2

6ð1 − rÞ2 ln r

þ rð5 − 7rÞ
16ð1 − rÞ2 ln

2
1þ ffiffiffiffiffiffiffiffiffiffi

1 − r
p

1 −
ffiffiffiffiffiffiffiffiffiffi
1 − r

p þ 14 − 15r

8ð1 − rÞ3=2 ln
1þ ffiffiffiffiffiffiffiffiffiffi

1 − r
p

1 −
ffiffiffiffiffiffiffiffiffiffi
1 − r

p
�
; ð12Þ

which is obtained according to the M̄S renormalization
scheme. It is enlightening to see the asymptotic behavior of
FLO
1 in the

ffiffiffi
s

p
≫ mc limit:

FLO
1 ðμΛÞjAsym ¼ 64πe2cα2CFα

2
smc

9Ncs2

�
−

7

12
ln r − ln

μ2Λ
4m2

c

−
65

12
þ 7

2
ln 2

�
; ð13Þ

which is proportional to 1=s2 times a single logarithm
of s=m2

c.

III. NLO RADIATIVE CORRECTION FOR THE
COLOR-OCTET CHANNEL

In this section, we are going to calculate the NLO radiative
correction for the color-octet SDC dF8, which includes the

real correction eþe− → cc̄ð1Sð8Þ0 Þ þ ggðqq̄Þ, together with

the one-loop virtual correction to eþe− → cc̄ð1Sð8Þ0 Þ þ g.
The UV divergences encountered in virtual correction will
be eliminated by the standard renormalization procedure,
while the IR singularities turn out to cancel out after
summing both real and virtual corrections.
In the NLO calculation, we generate the QCD Feynman

diagrams and amplitudes using the package FeynArts [45],
and employ the package FeynCalc [46] to carry out con-
traction of the Lorentz indices and trace over Dirac matrices.
We use the Feynman gauge throughout the calculation.

A. Real correction

There are more Feynman diagrams for eþe− → γ� →
cc̄ð1Sð8Þ0 Þ þ gg than the color-singlet channel, since the
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three-gluon vertex is permitted due to the color-octet
feature of the cc̄ pair. Furthermore, the new channel

eþe− → γ� → cc̄ð1Sð8Þ0 Þ þ qq̄ also becomes permissible.
One typical real emission diagram is depicted in Fig. 1.
In this section, we will quickly present the analytic results

by integrating the squared amplitudes over the three-body
phase space in DR, closely following the recipe outlined in
Ref. [20]. To ensure the correctness of our results, we also
redo the calculation using a numerical recipe, i.e., utilizing
the two-cutoff phase space slicing method [47], and find full
agreement with our analytical results.

First, let us introduce, in addition to z, two additional
fractional energy variables, x1 and x2:

x1 ≡ 2k01ffiffiffi
s

p ; x2 ≡ 2k02ffiffiffi
s

p ; ð14Þ

where k1 and k2 represent the momenta of the final-state
gluons (or light quark and antiquark) in a real emission
process. These variables are subject to the constraint
x1 þ x2 þ z ¼ 2 by energy conservation.

For convenience, we separate the squared amplitude for γ� → cc̄ð1Sð8Þ0 Þ þ gg into four pieces:

X
Pol;Col

jMR½γ�→cc̄ð1Sð8Þ0 Þþgg�j2¼ISðxi;zÞþICðxi;zÞþISCðxi;zÞþIFinðxi;zÞ; ð15Þ

with i ¼ 1, 2. Explicitly, these four pieces are

ISðxi; zÞ ¼ −
212π3e2cαC2

ACFα
2
sμ

4ϵ
r ð1 − ϵÞð1 − 2ϵÞr
s

�
1

ð1þ r − z − x1Þ2
þ 1

ð1þ r − z − x2Þ2
�
; ð16aÞ

ICðxi; zÞ ¼
212π3e2cαC2

ACFα
2
sμ

4ϵ
r ð1 − ϵÞð1 − 2ϵÞ

ð1 − rÞ2s
x1x2 − 2ð1 − rÞ2

1þ r − z
; ð16bÞ

ISCðxi; zÞ ¼ −
212π3e2cαC2

ACFα
2
sμ

4ϵ
r ð1 − ϵÞð1 − 2ϵÞð1 − rÞ
s

1

1þ r − z

�
1

1þ r − z − x1
þ 1

1þ r − z − x2

�
; ð16cÞ

IFinðxi; zÞ ¼
212π3e2cαC2

ACFα
2
s

ð1 − rÞ2ð2 − zÞ2ð1 − r − x1Þ2ð1 − r − x2Þ2s
fð1 − rÞ3ð1þ r − zÞðz − 2rÞð2 − zÞ2

− ð1 − rÞ3ð5þ 2rþ r2 − 5z − rzþ z2Þx1x2 þ 2ð1 − rÞð2 − zÞ2x21x22 − ð3 − r − zÞx31x32g: ð16dÞ

Each individual term is symmetric under the exchange
x1 ↔ x2, reflecting the Bose symmetry of the two gluons in
the final state. Upon phase space integration, the first term
IS would lead to a single soft pole, when one of the gluons
becomes soft. The second term IC would result in a single
collinear pole, when the final-state gluons become collinear
to each other. The third term ISC would produce the double
IR pole, arising from the corner of phase space where one
of the gluons becomes simultaneously soft and collinear to
the other one. Note both soft and collinear singularities can
arise only when the cc̄ pair acquires its maximal energy,
that is, in the z → 1þ r limit. The last term IFin will not
result in any IR divergences upon phase space integration
and therefore can be directly treated in four spacetime
dimensions.
Integrating the squared amplitudes in Eq. (15) over the

three-body phase space, we obtain

σ̂ð8Þ;ggR ≡ σ̂ð8Þ;ggDiv þ σ̂ð8Þ;ggFin ; ð17Þ

where the “divergent” and “finite” partonic cross sections
are defined as

σ̂ð8Þ;ggDiv ¼
Z

1þr

2
ffiffi
r

p dz
dσ̂ð8Þ;ggDiv

dz

¼ 1

2!

2πα

3s2

Z
dΦ3½ISðxi; zÞ þ ICðxi; zÞ þ ISCðxi; zÞ�;

ð18aÞ

σ̂ð8Þ;ggFin ¼
Z

1þr

2
ffiffi
r

p dz
dσ̂ð8Þ;ggFin

dz
¼ 1

2!

2πα

3s2

Z
dΦ3IFinðxi; zÞ:

ð18bÞ

Here dΦ3 signifies the three-body phase space measure,
whose exact definition in d ¼ 4 − 2ϵ dimensions is given in
Eq. (A1). We have also included a symmetry factor 1

2!
in

Eq. (18), to account for the indistinguishability of the final-
state gluons.
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By carrying out one-fold integration over x1 in Eq. (18), we then arrive at the partonic cross section differential in the
energy fraction of the cc̄ pair:

dσ̂ð8Þ;ggDiv

dz
¼ σ̂ð8ÞLO

αs
π

ð1 − rÞ−2ϵrϵ
Γð1 − ϵÞ

�
4πμ2r
s

�
ϵ

× CA

��
1

2ϵ2
þ 17

12

1

ϵ
− 2ln2

ffiffiffi
r

p
1þ ffiffiffi

r
p −

23

6
ln

ffiffiffi
r

p
1þ ffiffiffi

r
p −

π2

4
þ 67

36

�
δð1þ r − zÞ

þ
�

1

1þ r − z

�
þ

�
2 ln

2 − zþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 4r

p

2
− ln

z −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 4r

p

zþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 4r

p −
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 4r

p

1 − r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 4r

p
ð6þ 2r − 6zþ z2Þ
12ð1 − rÞ3

�

−
�
ln ð1þ r − zÞ
1þ r − z

�
þ

	
; ð19aÞ

dσ̂ð8Þ;ggFin

dz
¼ σ̂ð8ÞLO

αs
π

CA

12ð1 − rÞ3ðz − 2rÞ3ð2 − zÞ2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 − 4r
p

½16rð3 − 9rþ 9r2 þ 24r3 − 28r4 þ 9r5Þ

− 8ð3 − 3r − 9r2 þ 120r3 − 94r4 þ 27r5Þzþ 4ð6 − 15rþ 162r2 − 75r3 þ 22r4Þz2
− 2ð3þ 90rþ 23r2 þ 4r3Þz3 þ 2ð12þ 25rþ 3r2Þz4 − ð9þ 5rÞz5 þ z6�

þ 12ð1 − rÞ2 ln z − 2r −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 4r

p

z − 2rþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 4r

p ½4rð1 − 2r − 6r2 þ 2r3 − 3r4Þ þ 8r2ð6þ rþ 3r2Þz

− 2ð1þ 12rþ 15r2 þ 12r3Þz2 þ 2ð3þ 9rþ 8r2Þz3 − 2ð2þ 3rÞz4 þ z5�
	
; ð19bÞ

where σ̂ð8ÞLO is given in Eq. (8).
From Eq. (19a), one immediately sees that the double and single IR poles indeed occur exactly at the location z ¼ 1þ r.

The “þ”-function in Eq. (19a) is understood in the distributive sense, i.e.,

Z
1þr

2
ffiffi
r

p dz½fðzÞ�þgðzÞ ¼
Z

1þr

2
ffiffi
r

p dzfðzÞ½gðzÞ − gð1þ rÞ�; ð20Þ

where gðzÞ is an arbitrary test function that is regular at z ¼ 1þ r.
Obtaining the analytic expressions in Eq. (19) requires more effort than in the color-singlet channel, since a double IR

pole emerges in our case, whereas only a single soft pole occurs in that case [20]. Some technical details about isolating IR
singularities with the DR method are expounded in Appendix.
Further integrating Eq. (19) over the entire range of z, we then obtain the integrated partonic cross section for

eþe− → cc̄ð1Sð8Þ0 Þ þ gg:

σ̂ð8Þ;ggR ¼ σ̂ð8ÞLO
αs
π

ð1 − rÞ−2ϵrϵ
Γð1 − ϵÞ

�
4πμ2r
s

�
ϵ

CA

�
1

2ϵ2
þ 17

12

1

ϵ
þ 2 − 3r
16ð1 − rÞ ln

2
1 −

ffiffiffiffiffiffiffiffiffiffi
1 − r

p

1þ ffiffiffiffiffiffiffiffiffiffi
1 − r

p

þ Li2

�
−
1 − r
r

�
þ 10 − 9r

12ð1 − rÞ3=2 ln
1 −

ffiffiffiffiffiffiffiffiffiffi
1 − r

p

1þ ffiffiffiffiffiffiffiffiffiffi
1 − r

p þ 1 − 6 ln r
6ð1 − rÞ þ 235

36
−
5π2

12

�
: ð21Þ

We can carry out the real correction calculation for γ� → cc̄ð1Sð8Þ0 Þ þ qq̄ in a similar vein. The squared amplitude in d
dimensions reads

X
u;d;s

X
Pol;Col

jMR½γ� → cc̄ð1Sð8Þ0 Þ þ qq̄�j2 ¼ 210π3e2cαCACFnfα2sμ4ϵr ð1 − 2ϵÞ
ð2 − zÞ2ð1þ r − zÞs × ½x21 þ x22 − 2ð1þ r − zÞ − ϵðz2 − 4rÞ�; ð22Þ

where nf ¼ 3 represents the number of light flavors, where only u, d, and s are retained. The light quarks are treated as
massless. After integrating Eq. (22) over the energy fraction of the massless quark, x1, we obtain
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dσ̂ð8Þ;qq̄R

dz
¼ σ̂ð8ÞLO

αs
π

ð1 − rÞ−2ϵrϵ
Γð1 − ϵÞ

�
4πμ2r
s

�
ϵ

×
nf
6

��
−
1

ϵ
þ 2 ln

ffiffiffi
r

p
1þ ffiffiffi

r
p −

5

3

�
δð1þ r − zÞ

þ
�

1

1þ r − z

�
þ

ðz2 − 4rÞ3=2
ð1 − rÞð2 − zÞ2

	
: ð23Þ

Unlike the case for eþe− → cc̄ð1Sð8Þ0 Þ þ gg, here only the
single pole arises, originating from the configuration where
the light quark and antiquark become collinear.

The integrated expression for σ̂ð8Þ;qq̄R turns out to be

σ̂ð8Þ;qq̄R ¼ σ̂ð8ÞLO
αs
π

ð1 − rÞ−2ϵrϵ
Γð1 − ϵÞ

�
4πμ2r
s

�
ϵ

×
nf
6

�
−
1

ϵ
−
20 − 8r − 9 ln r

3ð1 − rÞ

−
2

ð1 − rÞ3=2 ln
1 −

ffiffiffiffiffiffiffiffiffiffi
1 − r

p

1þ ffiffiffiffiffiffiffiffiffiffi
1 − r

p
�
: ð24Þ

B. Virtual correction

In order to render finite predictions, one should further

consider the virtual correction to eþe− → cc̄ð1Sð8Þ0 Þ þ g,
which also contains IR singularities that serve to cancel
those IR singularities encountered in the real correction, as
encoded in Eqs. (19) and (23).
One typical one-loop diagram is depicted in Fig. 1. The

partial fraction in the one-loop amplitudes is conducted
with the aid of the package $Apart [48], and the integration-
by-part reduction is facilitated by the package FIRE [49].
The resulting master integrals (MIs) are then calculated
analytically, whose correctness is also numerically verified
by the package LOOPTOOLS [50]. After the renormalization
of the charm quark mass as well as the QCD coupling
constant, the UV divergences in the one-loop QCD
amplitude will be eliminated.
Squaring the amplitudes and integrating over the two-

body phase space, we obtain

σ̂ð8ÞV ≡
Z

1þr

2
ffiffi
r

p dz
dσ̂ð8ÞV

dz
¼ 2πα

3s2

Z
dΦ2

X
Pol;Col

2RefMð0Þ½γ� → cc̄ð1Sð8Þ0 Þ þ g�Mð1Þ½γ� → cc̄ð1Sð8Þ0 Þ þ g�g; ð25Þ

where Mð0Þ denotes the tree-level amplitude for γ� → cc̄ð1Sð8Þ0 Þ þ g, and Mð1Þ represents the order-αs one-loop QCD
amplitude. After substituting the analytical expressions for the MIs, and including the counterterm diagrams, we are able to
deduce the differential expression analytically for the virtual correction:

dσ̂ð8ÞV

dz
¼ σ̂ð8ÞLO

αs
π

ð1 − rÞ−2ϵrϵ
Γð1 − ϵÞ

�
4πμ2r
s

�
ϵ
�
−
CA

2ϵ2
−
2CA þ β0

4ϵ
þ β0

4
ln

μ2r
m2

c
þ CAð2 − rÞ − 2CFð2þ rÞ

8ð1 − rÞ ln2
1 −

ffiffiffiffiffiffiffiffiffiffi
1 − r

p

1þ ffiffiffiffiffiffiffiffiffiffi
1 − r

p

þ 3ðCA − 2CFÞ
2

ffiffiffiffiffiffiffiffiffiffi
1 − r

p ln
1 −

ffiffiffiffiffiffiffiffiffiffi
1 − r

p

1þ ffiffiffiffiffiffiffiffiffiffi
1 − r

p þ CAð1 − rÞ þ 2CF

4ð1 − rÞ
�
ln2

r
2 − r

þ 2Li2
r

2 − r

�

þ −2CAð2 − rÞ þ 4CFð3 − 2rÞ þ ð2 − rÞ2β0
2ð2 − rÞ2 ln

r
2ð1 − rÞ þ

CAð9þ 4π2Þ
6

−
CF½π2ð2 − rÞ þ 6ð1 − rÞð9 − 5rÞ�

6ð2 − rÞð1 − rÞ
	

× δð1þ r − zÞ; ð26Þ

where β0 ¼ 11
3
CA − 2

3
nf is the one-loop coefficient of the

QCD β-function, and μr refers to the renormalization scale.
Note here that the 1=ϵ2 and 1=ϵ poles, which sit exactly at
z ¼ 1þ r, are entirely of infrared origin.

C. Summing real and virtual corrections

We proceed to infer the net NLO radiative correction to

eþe− → γ� → cc̄ð1Sð8Þ0 Þ þ g, by adding up the real correc-

tion contributions, Eq. (19) from the cc̄ð1Sð8Þ0 Þ þ gg channel

and Eq. (23) from the cc̄ð1Sð8Þ0 Þ þ qq̄ channel, together with
the virtual correction in Eq. (26):

dσ̂ð8ÞNLO

dz
≡ dσ̂ð8ÞLO

dz
þ dσ̂ð8ÞR

dz
þ dσ̂ð8ÞV

dz

¼ dσ̂ð8ÞLO

dz
þ dσ̂ð8Þ;ggR

dz
þ dσ̂ð8Þ;qq̄R

dz
þ dσ̂ð8ÞV

dz
:

ð27Þ
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As anticipated, all the double and single IR poles indeed cancel, and we end up with the differential NLO SDC for the color-
octet channel:

dFNLO
8

dz
¼ dFLO

8

dz
þ FLO

8

αs
π

�
β0
4
ln

μ2r
m2

c
þ CAð2 − rÞ − 2CFð2þ rÞ

8ð1 − rÞ ln2
1 −

ffiffiffiffiffiffiffiffiffiffi
1 − r

p

1þ ffiffiffiffiffiffiffiffiffiffi
1 − r

p

þ 3ðCA − 2CFÞ
2

ffiffiffiffiffiffiffiffiffiffi
1 − r

p ln
1 −

ffiffiffiffiffiffiffiffiffiffi
1 − r

p

1þ ffiffiffiffiffiffiffiffiffiffi
1 − r

p þ CAð1 − rÞ þ 2CF

4ð1 − rÞ
�
ln2

r
2 − r

þ 2Li2
r

2 − r

�

þ −2CAð2 − rÞ þ 4CFð3 − 2rÞ þ ð2 − rÞ2β0
2ð2 − rÞ2 ln

r
2ð1 − rÞ −

CF½π2ð2 − rÞ þ 6ð1 − rÞð9 − 5rÞ�
6ð2 − rÞð1 − rÞ

− 2CAln2
ffiffiffi
r

p
1þ ffiffiffi

r
p þ −23CA þ 2nf

6
ln

ffiffiffi
r

p
1þ ffiffiffi

r
p þ 121CA þ 15π2CA − 10nf

36

	
δð1þ r − zÞ

þ FLO
8

αs
π

��
1

1þ r − z

�
þ
CA

�
2 ln

2 − zþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 4r

p

2
− ln

z −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 4r

p

zþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 4r

p −
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 4r

p

1 − r

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 4r

p
ð6þ 2r − 6zþ z2Þ
12ð1 − rÞ3

�
− CA

�
ln ð1þ r − zÞ
1þ r − z

�
þ
þ nf

6

�
1

1þ r − z

�
þ

ðz2 − 4rÞ3=2
ð1 − rÞð2 − zÞ2

	

þ FLO
8

αs
π

CA

12ð1 − rÞ3ðz − 2rÞ3ð2 − zÞ2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 − 4r
p

½16rð3 − 9rþ 9r2 þ 24r3 − 28r4 þ 9r5Þ

− 8ð3 − 3r − 9r2 þ 120r3 − 94r4 þ 27r5Þzþ 4ð6 − 15rþ 162r2 − 75r3 þ 22r4Þz2
− 2ð3þ 90rþ 23r2 þ 4r3Þz3 þ 2ð12þ 25rþ 3r2Þz4 − ð9þ 5rÞz5 þ z6�

þ 12ð1 − rÞ2 ln z − 2r −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 4r

p

z − 2rþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 4r

p ½4rð1 − 2r − 6r2 þ 2r3 − 3r4Þ þ 8r2ð6þ rþ 3r2Þz

− 2ð1þ 12rþ 15r2 þ 12r3Þz2 þ 2ð3þ 9rþ 8r2Þz3 − 2ð2þ 3rÞz4 þ z5�
	
; ð28Þ

where FLO
8 is given in Eq. (11).

After integrating Eq. (28) over the entire range of z, we then get the integrated NLO color-octet SDC:

FNLO
8 ¼ FLO

8 þ FLO
8

αs
π

�
β0
4
ln

μ2r
m2

c
þ CAð6 − 5rÞ − 4CFð2þ rÞ

16ð1 − rÞ ln2
1 −

ffiffiffiffiffiffiffiffiffiffi
1 − r

p

1þ ffiffiffiffiffiffiffiffiffiffi
1 − r

p

þ CAð28 − 27rÞ − 36CFð1 − rÞ − 4nf
12ð1 − rÞ3=2 ln

1 −
ffiffiffiffiffiffiffiffiffiffi
1 − r

p

1þ ffiffiffiffiffiffiffiffiffiffi
1 − r

p þ CALi2

�
−
1 − r
r

�

þ CAð1 − rÞ þ 2CF

4ð1 − rÞ
�
ln2

r
2 − r

þ 2Li2
r

2 − r

�
þ CAð1 − 6 ln rÞ

6ð1 − rÞ −
nfð20 − 8r − 9 ln rÞ

18ð1 − rÞ

þ −2CAð2 − rÞ þ 4CFð3 − 2rÞ þ ð2 − rÞ2β0
2ð2 − rÞ2 ln

r
2ð1 − rÞ

−
CF½π2ð2 − rÞ þ 6ð1 − rÞð9 − 5rÞ�

6ð2 − rÞð1 − rÞ þ CAð289þ 9π2Þ
36

	
: ð29Þ

We note that the NLO radiative correction to eþe− → γ� → cc̄ð1Sð8Þ0 Þ þ g was already computed by Zhang et al. [51]
about a decade ago. Those authors employed a purely numerical recipe and only presented the integrated partonic cross
section. In contrast, we have presented the analytical expressions for both differential and integrated NLO color-octet SDCs
[see Eqs. (28) and (29)]. When taking the same input parameters, our numerical prediction from Eq. (29) is consistent with
theirs.
In the

ffiffiffi
s

p
≫ mc limit, the correction for the color-octet SDC δF8 ≡ FNLO

8 − FLO
8 reaches the following asymptotic form:
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δF8jAsym ¼ FLO
8

αs
π

�
β0
4
ln

μ2r
m2

c
þ CA

8
ln2r − ð2CA − CFÞ ln 2 ln rþ

16CA − 9CF − nf
6

ln r

þ 7CA − 6CF

4
ln22 −

12CA − 9CF − 2nf
2

ln 2þ 295CA − 162CF − 40nf þ 3ðCA − 2CFÞπ2
36

�
: ð30Þ

In contrast to the asymptotic form of FLO
1 ðμΛÞ in

Eq. (13), which is dominated by α2smc ln r=s2, here it
is the double logarithm ln2 r that accompanies the
α2smc=s2 factor. Since ln2 r ≫ j ln rj in asymptotically
high energy, one may conclude that the color-octet
channel dominates the inclusive hc production rate over
the color-singlet one, at sufficiently high energy. The
occurrence of ln2 r at NLO strongly suggests that, in
order to improve the reliability of the fixed-order pre-
dictions, it seems desirable to resum these types of
double logarithms to all orders in αs in the color-octet
channel. We believe that the appropriate formalism to
achieve this goal is to combine the double-parton
fragmentation approach [52–54] and NRQCD factoriza-
tion, where the large logarithms can be resummed by
invoking the corresponding evolution equation. Practi-
cally speaking, at B factory energy,

ffiffiffi
s

p
≈ 10.6 GeV, ln r

is not particularly large, so resummation does not sound
absolutely necessary. Nevertheless, in the next-generation
eþe− colliders, as exemplified by CEPC and ILC, withffiffiffi
s

p
≈ 250 GeV, the logarithms become so huge that one

is forced to carry out this kind of resummation.

IV. END-POINT RESUMMATION FOR
COLOR-OCTET CHANNEL

When we reach the end-point region in which z → 1þ r
and the hc carries its maximally allowed energy, fixed-order
calculations are plagued with large end-point logarithms of
the form

P
j<iα

i
s½ln2i−jð1þ r − zÞ=ð1þ r − zÞ�þ. This is

clearly visible from those “+” distributions in our NLO
color-octet prediction to the hc energy spectrum in Eq. (28).
To provide reliable predictions, these threshold logarithms
have to be resummed to all orders. In this section we resum
those logarithms to the NLL accuracy within the SCET
framework [34–39].
Following Ref. [33], the factorization theorem for the

color-octet hc production is found to take the form

dσ
dz0

¼ σ̂ð8ÞLOH½μH; μ�
Z

1

z0
dxS½x; μS; μr�

× J½sð1þ rÞðx − z0Þ; μJ; μr�; ð31Þ

where we have introduced

z0 ¼ Ehc

Emax
hc

¼ z
1þ r

: ð32Þ

Here H is the hard function normalized to 1. The hard
function which encodes the virtual corrections can be
calculated perturbatively. Its one-loop results and anoma-
lous dimension γH can be extracted from Eq. (26). S and J
stand for the shape and jet functions, respectively.
The shape function Sð8;1S0ÞðlþÞ is defined in terms of

ultrasoft fields that carry OðΛQCDÞ momentum:

SðlþÞ ¼ h0jχ†Taψa†hcahcδðlþ − in ·DÞψ†Taχj0i
4mchOhc

8 ð1S0Þi
: ð33Þ

Its normalization is written as
R
dlþSðlþÞ ¼ 1. The ultra-

soft covariant derivative can be expressed as Dμ ¼ ∂μ −
igsA

μ
us and the lightlike vectors are defined as nμ ¼

ð1; 0; 0;−1Þ and n̄μ ¼ ð1; 0; 0; 1Þ. χ and ψ are the Pauli
spinors as previously introduced in Eq. (2), and a†hcahc is
the projector to project onto the final hc state.
The jet function describes the collinear radiation’s recoil

against the hc in the threshold region. The jet function is
independent of the state of the charm quark–antiquark pair
and is defined as

Jðn̄ · pn · kþ p2⊥Þ

¼ −
sð1þ rÞ

4π
Im

�
i
Z

d4yeik·yh0jTfTr½TaBð0Þβ
⊥ ðyÞ�

× Tr½TaBð0Þ
⊥βð0Þ�gj0i

�
; ð34Þ

where the subscript ⊥ denotes the perpendicular direction;
the superscript (0) denotes the bare field; and Bμ

⊥ is the
collinear gauge invariant effective field, which can be
written as

Bμ
⊥ ¼ 1

gs
W†ðPμ

⊥ þ gsðAμ
n;qÞ⊥ÞW; ð35Þ

with a collinear gluon field Aμ
n;q and a collinear Wilson

line WnðxÞ ¼
P

perms exp ð−gs 1
P̄
n̄ · An;qðxÞÞ. Here P is the

projection operator which picks out the large component of
the momenta to its right [35].
The one-loop anomalous dimension γJ for the jet

function can be found in Ref. [33], while the anomalous
dimension for the soft function can be inferred from the
consistency condition γS þ γH þ γJ ¼ 0.
To resum the large end-point logarithms, all components

H, J, and S in the factorization theorem will be evolved

INCLUSIVE hc PRODUCTION AND ENERGY … PHYS. REV. D 98, 014039 (2018)

014039-9



from their natural scales μH, μJ, and μS to a common scale
μr to evaluate the cross section, following the RGE

dFi

d ln μ
¼ γiFi; ð36Þ

where i runs over the hard (H), collinear (J), and soft (S)
modes. The scales μH, μJ, and μS set the initial condition for
the RG running and are chosen to minimize the logarithms
in the higher order corrections to H, J, and S, respectively,
which are found to be of order

μH ∼
s
M

ð1− rÞ; μS ∼M
1þ r
1− r

ð1− z0Þ; μJ ∼
ffiffiffiffiffiffiffiffiffiffi
μHμS

p
;

ð37Þ

where we have introduced the mass of the heavy quark
pair M ≡ 2mc. After combining all pieces and assuming
μJ ¼ ffiffiffiffiffiffiffiffiffiffi

μHμS
p

, we arrived at a compact form for the NLL
cross section, which reads

dσNLLpert

dz0
¼ σð8ÞLOe

h

�
μHM

sð1 − rÞ
�
2CAAγ ½μH;μJ ��μS

M
1 − r
1þ r

�
ω

×
eωγE

Γ½1 − ω� ð1 − z0Þ−ω; ð38Þ

where γE is the Euler constant. We define the auxiliary
parameters

h ¼ 2CAS̄ðμH; μrÞ − AHðμH; μrÞ þ 2CAS̄ðμS; μrÞ
− ASðμS; μrÞ − 4CAS̄ðμJ; μrÞ − AJðμJ; μrÞ;

ω ¼ 2CAAγ½μS; μJ� < 0: ð39Þ

In Eq. (39), S̄ and Ai are found to be

S̄ðμi; μfÞ ¼
�

4π

αsðμiÞ
�
1 −

1

ρ
− ln ρ

�
þ β1
2β0

ln2ρ

þ ð1 − ρþ ln ρÞ
�
γ1
γ0

−
β1
β0

��
γ0
4β20

; ð40aÞ

Aγðμi;μfÞ¼
γ0
2β0

�
lnρþαsðμiÞ

4π

�
γ1
γ0
−
β1
β0

�
ðρ−1Þ

�
; ð40bÞ

where

ρ ¼ αsðμfÞ
αsðμiÞ

; ð41aÞ

β0 ¼
11

3
CA −

2

3
nf; ð41bÞ

β1 ¼
34

3
C2
A −

20

3
CATFnf − 4CFTFnf; ð41cÞ

γ0 ¼ 4; ð41dÞ

γ1 ¼
�
67

9
−
π2

3

�
CA −

20

9
TFnf: ð41eÞ

Up to NLL accuracy, AH, AJ, and AS are obtained by
truncating out the αs term and replacing γ0 in Aγ with γH0 ,
γJ0, or γ

S
0:

γH0 ¼−
34

3
CAþ

4

3
nf; γJ0 ¼ 2β0; γS0 ¼−γ0H− γJ0 ¼ 4CA:

ð42Þ

Last we note that when ð1 − z0Þ ∼OðΛQCD=MÞ, the
process-independent shape function becomes nonperturba-
tive and therefore a nonperturbative model Snon−pert.. is
required for describing the nonperturbative soft radiation,
and the resummed cross section is modified as

dσNLL

dz0
¼

Z
1

z0

dx
x

dσNLLpert

dx
Snon−pert

�
z0

x

�
; ð43Þ

where the nonperturbative shape function is adopted by
a modified version of a model used in the decay of B
mesons [55],

Snon−pertðlþÞ ¼ 1

Λ̄
AAB

ΓðABÞ ðx − 1ÞAB−1e−Aðx−1Þ; ð44Þ

with x ¼ lþ=Λ̄ and Λ̄ ∼OðΛQCDÞ. Due to a lack of data,
the parameters A and B have large uncertainties. However,
the moments of the shape function can be expressed by the
NRQCD operators and can be ordered by the power
counting rules. The Nth moment of the shape function is
OðΛN

QCDÞ. According to the above model for the non-
perturbative shape function, we have

Z
∞

Λ̄
dlþSnon−pertðlþÞ ¼ 1; ð45Þ

Z
∞

Λ̄
dlþSnon−pertðlþÞlþ ¼ Λ̄ðBþ 1Þ; ð46Þ

Z
∞

Λ̄
dlþSnon−pertðlþÞðlþÞ2¼ðΛ̄Þ2

�
B
A
þðBþ1Þ2

�
: ð47Þ

Thus the parameters A and B can be ordered as
A ∼ B ∼Oð1Þ. Future measurements shall be helpful to
fit these two parameters.

V. NUMERICAL RESULTS

In this section, we present the numerical predictions
for the differential and integrated cross sections for the
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inclusive hc production at the Belle II experiment,ffiffiffi
s

p ¼ 10.58 GeV. We adopt the running QED coupling
constant αð ffiffiffi

s
p Þ ¼ 1=130.9 [56]. We take the charm

quark mass mc ¼ 1.5 GeV and the characteristic hadronic
scale ΛQCD ¼ 332 MeV [7]. For the process under con-
sideration, we take the QCD renormalization scale μr ¼ffiffiffi
s

p
=2 ¼ 5.29 GeV, and we take the default value of the

strong coupling constant αsðμrÞ ¼ αsð
ffiffiffi
s

p
=2Þ ¼ 0.19,

which is determined by the two-loop RGE formula [57,58].
By definition in Eq. (1), the total cross section σtotal is

obtained by summing the contributions from both color-
singlet and octet channels, where the NLO QCD correction
is included for the latter. For the LDMEs in Eq. (1), we take

hOhcð1PÞ
1 ð1P1Þi ¼ 0.32 GeV5 [10,59] in the color-singlet

hcð1PÞ production. In contrast, the color-octet LDME

hOhcð1PÞ
8 ð1S0Þi is poorly known, which bears a large

uncertainty. In Table I, we present some benchmark choices

for the color-octet LDME hOhcð1PÞ
8 ð1S0Þi and the corre-

sponding integrated cross sections from different channels.
In Fig. 2, we also show the dependence of the integrated
(total) cross section on the renormalization scale μr and
the color-octet LDME. In other places of the paper, we will

fix the value of this color-octet LDME as hOhcð1PÞ
8 ð1S0Þi ¼

0.98 × 10−2 GeV3 [60], defined at the NRQCD factoriza-
tion scale μΛ ¼ mc.
From Table I and Fig. 2, we find that the hcð1PÞ

production cross section at
ffiffiffi
s

p ¼ 10.58 GeV is rather
sensitive to the color-octet LDME. Therefore, the future
measurements of the inclusive hcð1PÞ production at
Belle II may provide a good place to unearth the value
of this color-octet LDME.
In Fig. 3, we also show the scale dependence of the

integrated cross sections from each production channel, at
various perturbative levels. The scale μr is varied from 2mc

to
ffiffiffi
s

p
. From Table I and Fig. 3, one sees that the NLO QCD

correction to the color-octet channel is important, with a
K-factor of about 1.8, and the color-octet contribution
dominates the total production rate. It is noteworthy that the
color-singlet contribution in the M̄S scheme even becomes
negative.
To date, the Belle I experiment has accumulated an

integrated luminosity about 711 fb−1 at
ffiffiffi
s

p ¼ 10.58 GeV.
Thus, from our calculation, around ð0.8 − 2Þ × 105 hcð1PÞ
events should have already been produced. Furthermore,
we expect that roughly ð6 − 14Þ × 106 hcð1PÞ events will
be produced, when the designed luminosity reaches
50 ab−1 at

ffiffiffi
s

p ¼ 10.58 GeV in the forthcoming Belle II
experiment.
Such a huge data set of hcð1PÞ events may allow

experimentalists to accurately measure the hcð1PÞ differ-
ential energy spectrum. The hcð1PÞ energy distribution
from the fixed-order prediction is plotted in Fig. 4, where
the endpoint enhancement near z → 1þ r can be readily
visualized, indicating the breakdown of the fixed-order
perturbative prediction near the maximal energy of hcð1PÞ.
For the color-octet channel, the large end-point loga-

rithms have been resummed to the NLL accuracy within
the SCET framework, as expounded in Sec. IV, and the

FIG. 2. The dependence of total cross section σtotal on the

renormalization scale μr and color-octet LDME hOhcð1PÞ
8 ð1S0Þi.

The scale μr is varied from 2mc to
ffiffiffi
s

p
and the band represents

the theoretical uncertainty due to the variation of the
color-octet LDME.

FIG. 3. The dependence of the inclusive hcð1PÞ production
cross sections on the renormalization scale μr, at various levels of
perturbative orders. μr ranges from 2mc to

ffiffiffi
s

p
. We have fixed the

color-octet LDME hOhcð1PÞ
8 ð1S0Þi ¼ 0.98 × 10−2 GeV3.

TABLE I. Numerical results for the integrated cross sections
(fb) at

ffiffiffi
s

p ¼ 10.58 GeV, from various perturbative levels. To
assess the impact of the color-octet LDME on the cross sections,

we list different results by varying the value of hOhcð1PÞ
8 ð1S0Þi.

Refs. hOhcð1PÞ
8 ð1S0Þi ðGeV3Þ σð1ÞLO σð8ÞLO σð8ÞNLO σtotal

[61,62] 0.7 × 10−2 −9.73 69.41 127.09 117.36
[60] 0.98 × 10−2 97.17 177.92 168.20
[59] 1.6 × 10−2 158.64 290.49 280.76
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end-point divergence problem can be resolved accordingly.
Away from the end-point region, we merge the scales
μS ¼ μH ¼ μJ ¼ μr to turn off the resummation effect.
While near the end point, we truncate the soft scale μS to
around 1 GeV, to avoid the Landau pole. To account for the
nonperturbative effects, we implement the shape function

model following Refs. [33,55]. To merge all the scales
to μ at small values of z, we adopted a “profile function”
which smoothly turns on resummation when z is small
and turns off resummation by setting all the scales equal to

μ. The profile function are chosen as 1�tanhð15ðz0−z0thÞÞ
2

[63].

The explicit form of μHðzÞ and μSðzÞ become μHðzÞ ¼
1−tanhð15ðz0−z0thÞÞ

2
μr þ 1þtanhð15ðz0−z0thÞÞ

2
s

2mc
ð1 − rÞ and μsðzÞ ¼

1−tanhð15ðz0−z0thÞÞ
2

μr þ 1þtanhð15ðz0−z0thÞÞ
2

, where z0 ¼ ð1þ rÞz
and z0th is set to 0.85. We further match the NLL resum-
mation with the NLO results to obtain the prediction for the
full spectrum. The NLOþ NLL differential cross section
is plotted in Fig. 5, where four sets of parameters for
the shape function are adopted, ðA ¼ 5=2; B ¼ 3=2Þ;
ðA ¼ 3; B ¼ 2Þ; ðA ¼ 5; B ¼ 3Þ; and ðA ¼ 6; B ¼ 4Þ,
respectively. We can see that the unphysical enhancement
near the kinematic end point is removed after taking the
resummation and shape function into account.
It is curious whether and how the hcð2PÞmeson, the first

radially excited spin-singlet P-wave charmonium, could
be observed at the super B factory. To reconstruct the
potential hcð2PÞ events, one potentially useful decay chain
is hcð2PÞ → ηcð2SÞγ, followed by ηcð2SÞ → hcð1PÞγ,
hcð1PÞ → ηcγ, and ηc → KþK−π0. The decay chain,
hcð2PÞ → ηcð2SÞγ, followed by ηð2SÞ → KK̄π, may be

FIG. 4. The hcð1PÞ energy spectrum at
ffiffiffi
s

p ¼ 10.58 GeV from
the fixed-order calculation. In addition to their sum, we have also
shown the contributions from the color-singlet channel at LO and
the color-octet channel at NLO, all of which are normalized by
the LO color-octet cross section σð8ÞLO.

FIG. 5. The NLOþ NLL predictions for the hcð1PÞ energy spectrum solely from the color-octet channel. We have taken different
numerical inputs for the parameters A and B first introduced in Eq. (44).
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another good channel for hunting the hcð2PÞ. These decay
channels are relatively clean, which hopefully will be
helpful for hunting the elusive hcð2PÞ state.
The theoretical formulas for hcð1PÞ can be readily

transplanted to predict the inclusive production rate of
the hcð2PÞ meson. We adopt the color-singlet LDME

hOhcð2PÞ
1 ð1P1Þi ¼ 0.438 GeV5 [20,64]. It is rather difficult

to accurately pin down the value of the color-octet LDME
for hcð2PÞ. We follow the very rough estimation based

on the RGE in Refs. [10,20] and take hOhcð2PÞ
8 ð1S0Þi≈

0.013 GeV3. With these input parameters, and ignoring the
small difference in phase space integration, we then
estimate the total cross section of hcð2PÞ to be around
224 fb at

ffiffiffi
s

p ¼ 10.58 GeV. When the integrated luminos-
ity reaches 711 fb−1 (50 ab−1) at this specific energy,
around 1.6 × 105 (1.1 × 107) hcð2PÞ events are expected
to be produced. The energy spectrum of the hcð2PÞ state
assumes a similar shape as plotted in Fig. 5.

VI. SUMMARY

In this paper, we evaluate the NLO perturbative correc-
tion to the color-octet hc inclusive production in eþe−
annihilation at the super B factory, within the NRQCD
factorization framework. We are able to deduce the analytic
NLO color-octet SDC in a closed form. The NLO correc-
tion from the color-octet channel is found to be positive
and important. Around 107 hcð1PÞ and hcð2PÞ events are
expected with the projected 50 ab−1 luminosity at

ffiffiffi
s

p ¼
10.58 GeV in the forthcoming Belle II experiment. It will
be interesting to observe these P-wave spin-singlet states in
the inclusive production process.

Nevertheless, the hc energy spectrum predicted from the
NLO calculation is plagued with the end-point singularity,
which implies the failure of the fixed-order calculation
near the maximal energy of hc. With the aid of the SCET
formalism, these large end-point logarithms are resummed
to the NLL accuracy. Consequently, in conjunction with
the nonperturbative shape function, we obtain the well-
behaved predictions for the hc energy spectrum in the entire
kinematic range, which are awaiting close examination by
the forthcoming Belle II experiment.
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APPENDIX: ANALYTIC INTEGRATION OVER
THE THREE-BODY PHASE SPACE

In this Appendix, we explain how we derive the differ-
ential color-octet cross sections in Eq. (19) in DR. Recall

that the three-body phase space for eþe− → cc̄ð1Sð8Þ0 Þ þ
ggðqq̄Þ in d ¼ 4 − 2ϵ dimensions can be expressed as [20]

Z
dΦ3 ¼

cϵð4πÞϵ
Γð1 − ϵÞ

�
s
2

�
1−2ϵ 1

ð4πÞ3
Z

1þr

2
ffiffi
r

p dz
Z

aþb

a−b
dx1x−2ϵ1 ðz2 − 4rÞ−ϵð1 − cos2θÞ−ϵ

¼ cϵð4πÞϵ
Γð1 − ϵÞ

�
s
2

�
1−2ϵ 1

ð4πÞ3
Z

1þr

2
ffiffi
r

p dz
Z

aþb

a−b
dx12−2ϵð1þ r − zÞ−ϵðx1 − aþ bÞ−ϵðaþ b − x1Þ−ϵ

¼ cϵð4πÞϵ
Γð1 − ϵÞ

s1−2ϵ

2

1

ð4πÞ3
Z

1þr

2
ffiffi
r

p dzð1þ r − zÞ−ϵ
Z

b

−b
dηðbþ ηÞ−ϵðb − ηÞ−ϵ; ðA1Þ

where cϵ is introduced in Eq. (6), and θ is the polar angle
between k1 and P:

cos θ ¼ 2ð1þ r − zÞ − x1ð2 − zÞ
x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 4r

p : ðA2Þ

In Eq. (A1), we have introduced three auxiliary variables
a, b, and η,

a¼2−z
2

; b¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2−4r

p

2
; and η¼x1−a; ðA3Þ

which satisfy a2 − b2 ¼ 1þ r − z.
First, let us concentrate on the soft term ISðxi; zÞ in

Eq. (16a). Upon integrating over the energy fraction of
gluon 1, it will result in a single IR pole. For the sake of
clarity, we discard the irrelevant perfectors in Eq. (A1) and
consider the following integral:
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AS ≡
Z

aþb

a−b
dx1

ð1þ r− zÞ−ϵðx1 − aþ bÞ−ϵðaþ b− x1Þ−ϵ
ð1þ r− z− x1Þ2

;

¼ 1

ð1þ r− zÞ1þ2ϵ

Z
aþb

a−b
dt
ð1− a−b

t Þ−ϵðaþb
t − 1Þ−ϵ

ð1− tÞ2 :

ðA4Þ

In the second line, we change the integration variable from
x1 to t [20],

t ¼ 1þ r − z
x1

; ðA5Þ

which lies in the range

0 < a − b < t < aþ b < 1 − r: ðA6Þ

To explicitly identify the IR pole inAS, we can rewrite [20]

1

ð1þ r − zÞ1þ2ϵ ¼ −
δð1þ r − zÞ
2ϵð1 − ffiffiffi

r
p Þ4ϵ þ

�
1

1þ r − z

�
þ

− 2ϵ

�
ln ð1þ r − zÞ
1þ r − z

�
þ
þOðϵ2Þ; ðA7Þ

where the “+”-function is defined in Eq. (20).

Now the integration over t in Eq. (A4) is convergent,
therefore one can expand the integrand in powers of ϵ.
Through the order-ϵ0, AS bears the following form:

AS ¼
�
−
1− r
2rϵ

þ ð1− rÞ½4 ln ð1− ffiffiffi
r

p Þþ ln r�
2r

	
δð1þ r− zÞ

þ
�

1

1þ r− z

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 4r

p

r
þOðϵÞ: ðA8Þ

The soft-collinear term ISCðxi; zÞ in Eq. (16c) would
result in a double IR pole upon phase space integration. To
facilitate the extraction of the IR poles, we first observe that
ISC contains the following term:

1

ð1þ r − zÞð1þ r − z − x1Þ
¼ 1

x1ð1þ r − z − x1Þ
−

1

x1ð1þ r − zÞ ; ðA9Þ

which can be decomposed into two pieces through a partial
fraction.
The first term in Eq. (A9) only leads to a soft singularity.

Following the trick of changing the variable in Eq. (A4), we
can readily work out the following integration in DR:

A0
S ¼

Z
aþb

a−b
dx1

ð1þ r − zÞ−ϵðx1 − aþ bÞ−ϵðaþ b − x1Þ−ϵ
x1ð1þ r − z − x1Þ

¼ 1

ð1þ r − zÞ1þ2ϵ

Z
aþb

a−b
dt

ð1 − a−b
t Þ−ϵðaþb

t − 1Þ−ϵ
t − 1

¼
�
−
ln r
2ϵ

þ ln r
4

½ln rþ 8 ln ð1 − ffiffiffi
r

p Þ�
	
δð1þ r − zÞ þ

�
1

1þ r − z

�
þ
ln
z −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 4r

p

zþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 4r

p þOðϵÞ: ðA10Þ

The second term in Eq. (A9) would lead to a double IR pole upon integration over x1. We then face the following integral:

ASC ¼
Z

aþb

a−b
dx1

ð1þ r − zÞ−ϵðx1 − aþ bÞ−ϵðaþ b − x1Þ−ϵ
x1ð1þ r − zÞ

¼ 1

ð1þ r − zÞ1þϵ

Z
aþb

a−b
dx1

ðx1 − aþ bÞ−ϵðaþ b − x1Þ−ϵ
x1

¼ 1

ð1þ r − zÞ1þϵ

Z
b

−b
dη

ðηþ bÞ−ϵðb − ηÞ−ϵ
ηþ a

: ðA11Þ

In the last step, we have switched the integration variable from x1 to η, as specified in the last line of Eq. (A1).
The integration over η can be done in a straightforward way:

Z
b

−b
dη

ðηþ bÞ−ϵðb − ηÞ−ϵ
ηþ a

¼
ffiffiffi
π

p
b1−2ϵΓð1 − ϵÞ2F1ð12 ; 1; 32 − ϵ; b

2

a2Þ
aΓð3

2
− ϵÞ

¼
ffiffiffi
π

p
b1−2ϵΓð−ϵÞ2F1ð12 ; 1; 1þ ϵ; 1 − b2

a2Þ
aΓð1

2
− ϵÞ þ π csc ðπϵÞða2 − b2Þ−ϵ; ðA12Þ
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where 2F1 represents the Gauss hypergeometric function. The singularity associated with the ϵ → 0 limit can be readily
traced in this format, which stems from Γð−ϵÞ and cscðπϵÞ. With the aid of the package HypExp [65], we find the following
expansion formula particularly useful:

2F1

�
1

2
; 1; 1þ ϵ; 1 −

b2

a2

�
¼ a

b

�
1þ 2ϵ ln

2b
aþ b

�
þOðϵ2Þ: ðA13Þ

Combining the distribution identity in Eq. (A7), we can get

1

ð1þ r − zÞ1þϵ

ffiffiffi
π

p
b1−2ϵΓð−ϵÞ2F1ð12 ; 1; 1þ ϵ; 1 − b2

a2Þ
aΓð1

2
− ϵÞ

¼
�
1

ϵ2
−
2 ln ½ð1 − ffiffiffi

r
p Þð1 − rÞ�
ϵ

þ 2ln2½ð1 − ffiffiffi
r

p Þð1 − rÞ� − π2

6

	
δð1þ r − zÞ

þ
�
−
1

ϵ
þ 2 ln

2 − zþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 4r

p

2

��
1

1þ r − z

�
þ
þ
�
lnð1þ r − zÞ
1þ r − z

�
þ
þOðϵÞ; ðA14aÞ

1

ð1þr−zÞ1þϵ πcscðπϵÞða2−b2Þ−ϵ

¼
�
−

1

2ϵ2
þ2 lnð1− ffiffiffi

r
p Þ

ϵ
−4ln2ð1− ffiffiffi

r
p Þ−π2

12

	
δð1þr−zÞþ1

ϵ

�
1

1þr−z

�
þ
−2

�
lnð1þr−zÞ
1þr−z

�
þ
þOðϵÞ: ðA14bÞ

Adding these two pieces together, we arrive at the final expression for ASC:

ASC ¼
�

1

2ϵ2
−
2 lnð1 − rÞ

ϵ
− 4ln2ð1 − ffiffiffi

r
p Þ þ 2ln2½ð1 − ffiffiffi

r
p Þð1 − rÞ� − π2

4

	
δð1þ r − zÞ

þ 2 ln

�
2 − zþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 4r

p

2

��
1

1þ r − z

�
þ
−
�
ln ð1þ r − zÞ
1þ r − z

�
þ
þOðϵÞ: ðA15Þ

The occurrence of a double IR pole is as anticipated, by examining the pole structure of Eq. (16c).
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