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The anomalous decays f1ð1285Þ → ρ0πþπ− and a1ð1260Þ → ωπþπ− violating natural parity for vectors
and axial-vectors are studied in the framework of the Nambu–Jona-Lasinio model. We consider the
Lagrangian with Uð2ÞL × Uð2ÞR chiral symmetric four-quark interactions. The theory is bosonized, and
corresponding effective meson vertices are obtained in the leading order of 1=Nc and derivative expansions.
The uncertainties related with the surface terms of anomalous quark triangle diagrams are fixed by the
corresponding symmetry requirements. We make a numerical estimate of the decay widths Γðf1ð1285Þ →
ρ0πþπ−Þ ¼ 2.74 MeV and Γða1ð1260Þ → ωπþπ−Þ ¼ 293 keV. Our result on the f1ð1285Þ → ρ0πþπ−

decay rate is in good agreement with experiment. It is shown that a strong suppression of the a1ð1260Þ →
ωππ decay is a direct consequence of destructive interference between box and triangle anomalies.

DOI: 10.1103/PhysRevD.98.014037

I. INTRODUCTION

The QCD perturbation theory is not applicable to the
low-energy physics of hadrons (E < 2 GeV). As a rule, in
this region of energies, one applies various phenomeno-
logical models based on an approximate chiral symmetry of
strong interactions. The low-energy effective theory of
QCD, known as the chiral perturbation theory [1–5], is one
such successful approach at E < mρ. To extend the calcula-
tional scheme up to order Oðp6Þ, it incorporates the lowest
resonance spin-1 states implementing the appropriate QCD
short-distance constraints [6–8]. Another well-known
approach is the famous Nambu–Jona-Lasinio (NJL) model
[9,10], which incorporates the dynamical mechanism of
spontaneous chiral symmetry breaking in hadron matter.
Later on, this original idea of Nambu has been reinterpreted
in terms of quarks and successfully implemented to the
construction of the local effective meson Lagrangians
including not only spin-0 states, but also the vector and
axial-vector resonances [11–22].
Our study here is based on the NJL model approach. The

most successful results in this model are obtained for
pseudoscalar and vector mesons. The description of scalars

and axial-vectors is more problematic and still requires
additional theoretical efforts. The recent progress here is
related with the study of the anomalous radiative decays
of the axial-vector f1ð1285Þ and a1ð1260Þ mesons [23].
These vertices belong to the AVV-type and have several
restrictions from the QCD low-energy theorems: the Adler-
Bardeen theorem [24], the Landau-Yang theorem [25,26],
and so on. Presently, there is growing interest in their
theoretical and experimental investigations. This includes a
recent measurement of the branching fraction of the τ →
f1πντ decay [27] and its theoretical description given in the
different approaches [28–32]. In a number of works, the
electromagnetic vertices f1ργ and f1ωγ have been con-
sidered [33–35]. The vertex f1γγ is important in the study
of the hyperfine structure of muonic hydrogen [36]. There
are also predictions for the f1γ and a1γ production from the
eþe− primary beams [37]. All these studies should clarify
the nature of f1ð1285Þ and a1ð1260Þ mesons.
In this work, we calculate the f1ð1285Þ → ρ0πþπ− and

a1ð1260Þ → ωπþπ− decay widths assuming the qq̄ nature
of f1ð1285Þ and a1ð1260Þ. The first process has been
considered in [38] in the massive Yang-Mills approach, and
in [39] in the generalized hidden symmetry framework.
In both cases, the decay channel f1 → ρ0ρ0 → ρ0πþπ−
has been neglected. We take into account this mode here.
One of the purposes is to test the structure of an effective
AVV-vertex, obtained recently in [23], in the case when one
of the particles is off mass shell. The other goal is to study
the structure of the box anomalous diagrams. Their con-
tribution interferes with the triangle anomalies. We show
that the result of this interference is controlled by the QED
Ward identities through a mechanism of the vector meson
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dominance (VMD). The latter issue has been also
addressed in [40]. We are not aware of works where the
decay width of a1ð1260Þ → ωπþπ− has been obtained.
So, we hope that our study of this mode is helpful as a
benchmark for future measurements.
In our calculations, we use the effective meson

Lagrangian derived by bosonization of the NJL quark
model [15,16]. The local vertices of this Lagrangian arise
in the long wavelength regime through a gradient expan-
sion of the one-loop quark diagrams [41]. The coefficients
of the gradient expansion [masses and coupling constants]
are expressed in terms of the model parameters, i.e.,
are known. That is essentially different from [39] where
amplitudes of f1ð1285Þ → ρþπ−π0 and a1ð1260Þ →
ωπþπ− decays have been expressed in terms of unknown
coupling constants. To make progress here, one should
calculate these couplings. The NJL model gives such a
possibility. We restrict our consideration to the tree-level
Feynman diagrams, making conclusions valid to lowest
order in 1=Nc, where Nc is the number of colors in QCD.
Let us note that resonances are narrow for large Nc, with

widths of order 1=Nc [42–44]. This implies that one should
neglect widths in the tree-level amplitudes unless reso-
nances reach their on-shell peaks in the physical region.
Since the zero-width propagators do not lead to the one-
particle poles when one integrates over phase-space of the
f1ð1285Þ → ρ0πþπ− and a1ð1260Þ → ωπþπ− decays, we
may stay at leading 1=Nc order, and work in the zero-width
approximation. This approximation can be improved by
considering the next-to-leading-order corrections in 1=Nc.
Such a step certainly would allow us to take into account
the finite widths of resonances. However, it would also
require to take into account the one-loop meson diagrams.
This seems too complicated for an initial study of these
processes. That is why this issue will not be addressed here.
Canf1ð1285Þ → ρ0πþπ− decay be successfully described

in leading order of 1=Nc expansion? It is quite plausible
that this is possible. The reasoning is that a tree-level
approximation already has been used in [38,39]. The
derivation in [38] led to a rather low value for the decay
width Γðf1ð1285Þ → ρ0πþπ−Þ ≃ 1 to 1.167 MeV (for
ma1 ¼ 1275 MeV, andma1 ¼ 1200 MeV correspondingly)
compared to the experimental value quoted by the Particle
Data Group (PDG) [45]:

Γexpðf1ð1285Þ → ρ0πþπ−Þ ¼ 2.651þ0.169
−0.145 MeV: ð1Þ

However, this value is not actually a leading order 1=Nc
result (the authors took into account a finite width of
the a1ð1260Þ meson, which is a nonleading contribution).
The zero-width calculations made in [39] showed that 1=Nc
expansion can be relevant to the question.
Despite the obvious similarity of f1ð1285Þ → πþπ−γ

and f1ð1285Þ → ρ0πþπ− decays, the role of the intermedi-
ate vector ρð770Þ and axial-vector a1ð1260Þ states here

is different. In the radiative decay, the contribution of the
ρð770Þ exchange is dominated by the real pole in the
physical region [40]. On the contrary, a kinematic region
for the process f1ð1285Þ → ρ0πþπ− is such that a tree-level
amplitude has no one-particle pole. It makes the ρ-exchange
contribution to be rather small. On the contrary, a nearby
on-shell singularity of the a1 propagator enhances the
a1-exchange channel.
The paper is organized as follows. In Sec. II, we review

briefly the NJLmodel and establish our notations. In Sec. III,
we derive the decay width of f1ð1285Þ → ρ0πþπ−. The
different channels are analyzed in detail. Sec. IV is devoted
to the a1ð1260Þ → ωπþπ− mode. We follow here the same
strategy as for the f1ð1285Þ decay. We end with a short
summary and conclusions in Sec. V. The moral seems to be
that to describe decay widths of the processes considered
one can use the leading order of the large Nc expansion.
However, if one wants to obtain the detailed information
about other characteristics ofa1ð1260Þ andf1ð1285Þmesons
one should go beyond the leading order result. This step
would provide us not only the important additional infor-
mation on the masses and widths of the a1ð1260Þ and
f1ð1285Þ mesons, but could also shed light on the new
internal content of these states. These issues [the mixing
structure consisting of two components of qq̄ and hadronic
composites [46], the meson fusing structures [47], the
meson-triangle singularities [32], and so on] are widely
discussed in the literature and can be also addressed in the
framework of the NJL model taken at the next to leading
order in the 1=Nc expansion.

II. THE LAGRANGIAN OF THE NJL MODEL

Let us consider the extended NJL model with the
Uð2ÞL ×Uð2ÞR chiral symmetric four-quark interactions
[13]. The Lagrangian density

L ¼ q̄ðiγμ∂μ −MÞqþ LS þ LV; ð2Þ

LS ¼
GS

2
½ðq̄qÞ2 þ ðq̄iγ5τ⃗qÞ2�; ð3Þ

LV ¼ −
GV

2
½ðq̄γμτ⃗qÞ2 þ ðq̄γμγ5τ⃗qÞ2� ð4Þ

includes spin-0, GS, and spin-1, GV , four-quark couplings;
M ¼ m̂τ0, m̂ ¼ m̂u ¼ m̂d are the current quark masses
(the isospin symmetry is assumed); τ0 is a unit 2 × 2
matrix, τ⃗ are the SUð2Þ Pauli matrices; γμ are the standard
Dirac matrices in four-dimensional Minkowski space;
in the notation of the quark field q the color, isospin
and 4-spinor indices are suppressed.
After introducing bosonic variables in the corresponding

generating functional one obtains the equivalent bi-linear-
ized form of multiquark interactions, i.e., the Yukawa-type
vertices describing the couplings of the collective meson
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fields with the quark-antiquark pairs. For our purpose here,
we need only the following part of the Lagrangian density:

ΔLint ¼
gρ
2
q̄γμ½γ5ðf1μ þ τ⃗a⃗01μÞ þ ðωμ þ τ⃗ρ⃗μÞ�q

þ igπq̄γ5τ⃗ π⃗ q: ð5Þ

Here q is the constituent quark field with up and down
flavors; the π⃗, ρ⃗μ and ωμ are the field operators associated
with the iso-triplet of pions πð140Þ, vector ρð770Þ and
ωð782Þ-mesons; f1μ describes the iso-singlet axial-vector
f1ð1285Þ-meson (for simplicity we take f1ð1285Þ to be the
ideally mixed combination, corresponding to its status as an
axial ω), and a⃗01μ stands for the unphysical axial-vector
fields that should be redefined to avoid the π⃗ − a⃗01μ mixing.
Since the free part of the meson Lagrangian following

from evaluation of the one-quark-loop self-energy dia-
grams must preserve its canonical form, one should
renormalize the bare meson fields by introducing the
Yukawa coupling constants gπ and gρ in Eq. (5). To absorb
infinities of self-energy graphs, these couplings depend on
the divergent integral I2 which is regularized in a standard
way [15]

gρ ¼
ffiffiffiffiffiffiffi
3

2I2

s
; gπ ¼

ffiffiffiffiffiffiffi
Z
4I2

s
; ð6Þ

where

I2 ¼ −i
Nc

ð2πÞ4
Z

d4k
θðΛ2 þ k2Þ
ðm2 − k2Þ2

¼ Nc

ð4πÞ2
�
ln

�
1þ Λ2

m2

�
−

Λ2

Λ2 þm2

�
: ð7Þ

As usual, we assume that the quantum corrections are valid
only when the relevant momenta are less than the cut-off
momentum Λ, which also has the meaning of the character-
istic scale of spontaneous chiral symmetry breaking,
defining through the gap equation

m − m̂ ¼ mGSI1; ð8Þ

where

I1 ¼
Nc

2π2

�
Λ2 −m2 ln

�
1þ Λ2

m2

��
; ð9Þ

the masses m of constituent quarks q. It is assumed that the
strength of the quark interactions is large enough,

GS >
2π2

NcΛ2
; ð10Þ

to generate a nontrivial,m ≠ 0, solution ofEq. (8) [even if the
current quarkswould bemassless]. The nonzerovalue ofm is

held to signal the condensation of quark-antiquark pairs in
the vacuum, i.e., dynamical chiral symmetry breaking.
The parameter Z in (6) appears as a result of elimination

of the π⃗ − a⃗01 transitions. For that one should redefine the
axial-vector field

a⃗01μ ¼ a⃗1μ þ
ffiffiffiffiffiffi
2Z
3

r
κm∂μπ⃗; ð11Þ

where a⃗1μ represents a physical state a1ð1260Þ. A dimen-
sional parameter κ, related with Z by 1 − 2κm2 ¼ Z−1,
should be fixed by requiring that the meson Lagrangian
does not contain the π⃗ − a⃗1μ mixing. It gives

1

2κ
¼ m2 þ 1

16GVI2
¼ m2 þm2

ρ

6
¼ m2

a1

6
; ð12Þ

where the last two equalities are a consequence of the mass
formulas of the model.
The model has four parameters:GS,GV , m̂, and Λ. To fix

them we use the following empirical data. From the ρ → ππ
decay width we find that αρ ¼ g2ρ=ð4πÞ ¼ 3. It gives
I2 ¼ 1=ð8πÞ, and Λ=m ¼ 4.48. Using the mass of the ρ
meson as a second input value, mρ ¼ 775 MeV, we find
GV from the mass formula of the ρ meson

GV ¼ 3

8m2
ρI2

¼ 3π

m2
ρ
¼ 1.57 × 10−5 MeV−2: ð13Þ

The coupling constant gπ fulfilles at the quark level the
celebrated Goldberger-Treiman relation gπ ¼ m=fπ , where
fπ ¼ 93 MeV is a coupling of the π− → μ−ν̄μ weak decay
which we use as a third input. Then Eq. (6) gives

6m2 ¼ Zg2ρf2π: ð14Þ

Using (12), this equation can be transformed to the formula

m2
ρ ¼

�
Z

Z − 1

�
g2ρf2π ð15Þ

that gives Z ¼ 2.188, or 2κm2 ¼ 0.543. In this case, from
the relation (14), one finds m ¼ 344.8 MeV and Λ ¼
4.48m ¼ 1544.7 MeV.
Taking as the final input the value of the pion mass,

mπ ¼ 138 MeV, we are left with the system of two
equations, Eq. (8) and a pion mass formula

m2
π ¼

m̂g2π
mGS

¼ m̂m
GSf2π

; ð16Þ

to find the values of the current quark mass m̂, and the
coupling GS. Solving this system, we obtain
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GS ¼
m2

m2
πf2π þm2I1

¼ 3.24 × 10−6 MeV; ð17Þ

m̂ ¼ mð1 − GSI1Þ ¼ 1.55 MeV: ð18Þ

The obtained value of the covariant cutoff Λ ≃ 1.5 GeV
is somewhat larger than the values Λ ≃ 1.3 GeV and Λ ≃
1.4 GeV quoted in [15,16] correspondingly, and almost
twice larger the value Λ ¼ 653 MeV obtained in the three
dimensional cutoff scheme [18]. In fact, the values of Λ
both in covariant and noncovariant schemes are compa-
rable, bearing in mind that the covariant cutoff restricts the
absolute value of 4-momentum, whereas a noncovariant
cutoff restricts the absolute value of 3-momentum. The
latter is definitely smaller than the former.
The other appropriate question here is why the covariant

values ofΛ exceed the conventional scale of chiral symmetry
breakingΛχSB ¼ 4πfπ ≃ 1.2 GeV [48]?Apparently, this is a
πa1-mixing effect. Indeed, as we know from the work [18]
[see Table II there], the different covariant cutoff schemes,
in the NJL models without spin-1 mesons, yield Λ < ΛχSB

with the dynamically generated quark masses being of
order m ∼ 240 MeV. In the presence of spin-1 states, the
spontaneous chiral symmetry breaking is accompanied by
the πa1-mixing. This has many important consequences.
One of them is that m increases markedly, m ∼ 300 MeV.
The result is attractive from the phenomenological point
of view, because it is roughly one-third of the nucleon mass,
as expected. However, this makes the ratio Λ=ΛχSB of being
more than 1. We can see this as follows. Consider the
formula (10), which can be presented as

�
Λ

ΛχSB

�
2

>
m2

π

24m̂m
: ð19Þ

The procedure for determining Λ=ΛχSB involves the very
sensitive procedure of extracting a ratio m2

π=m̂ (it is a well-
known fact that the ratiom2

π=m̂ is an unusually large number
even in the chiral limit of exactly massless quarks [49]). It is
unfortunate that the value of m̂ which follows from the gap
equation at large m ∼ 300 MeV is quite low m̂ ∼ 2 MeV.
This increases the ratio (19) additionally. As a result, we find
ðΛ=ΛχSBÞ2 > 400 MeV=m. That makes Λ to be larger of
ΛχSB. Actually this does not forbid us [albeit with some
reservationsmade above] to considerΛ being a characteristic
scale of spontaneous chiral symmetry breaking.
It follows then that the mass of the a1 meson is given by

ma1 ¼
ffiffiffiffi
Z

p
mρ ¼ 1146 MeV. This result agrees well with

the Weinberg’s prediction ma1 ¼
ffiffiffi
2

p
mρ ¼ 1096 MeV [50]

made on the basis of spectral-function sum rules, which are
valid in QCD for mπ ¼ 0, and KSRF formula [51,52] for
the ρ coupling to the isospin current [in our case, there is a
similar relation (15)]. It also agrees with a theoretical
analysis of [53], where the excellent agreement with our

present experimental knowledge of τ → πππντ spectrum
and branching ratio [54] has been obtained and the
characteristics of a1 meson have been carefully extracted,
giving ma1 ¼ 1120 MeV, and Γa1 ¼ 483 MeV. On the
other hand, our result is a little low compared to the value
ma1 ¼ 1230� 40 MeV quoted by the Particle Data Group
[45]. About the larger value of the a1ð1260Þ mass has been
recently reported by the COMPASS collaboration: ma1 ¼
1298þ13

−22 MeV=c2 with Γa1 ¼ 400þ0
−100 MeV=c2 [55]. Notice

that their data are accumulated from the study of the channel
pþ π− → π−π−πþ þ precoil, for which COMPASS has
acquired the so far world’s largest dataset of roughly 50M
exclusive events using an 190 GeV=c π− beam.
In the following, the necessary effective meson vertices

[together with the corresponding coupling constants] will
be obtained from (5) by calculating the one-quark-loop
diagrams and taking out from them only the leading terms
in the derivative expansion which dominate in the long-
wavelength approximation. The decay amplitudes are given
by a sum of tree-level diagrams involving the exchange of
physical mesons. This approach is consistent with a picture
arising in the large Nc limit of QCD [42–44].

III. THE PROCESS f 1ð1285Þ → ρ0π +π −

The partial width for the observed decay mode of the
axial-vector meson f1ð1285Þ → ρ0πþπ− can be estimated
in the NJL model by considering the following tree-level
contributions: (a) the vector ρ0-meson exchange channel
f1 → ρ0ρ0 → ρ0πþπ−; (b) the axial-vector a�1 -meson
exchange channel f1 → π�a∓1 → π�π∓ρ0; (c) the direct
decay which is described by the quark box diagram.

A. Kinematic invariants, the physical region
and a structure of the amplitude

In the discussion of the decay f1ðlÞ→ρ0ðpÞþπþðpþÞ þ
π−ðp−Þ, we will use the standard invariant quantities which
can be constructed from 4-momenta of particles l; p; pþ
and p−, namely

s ¼ ðl − pÞ2 ¼ ðpþ þ p−Þ2;
t ¼ ðl − pþÞ2 ¼ ðpþ p−Þ2;
u ¼ ðl − p−Þ2 ¼ ðpþ pþÞ2: ð20Þ

Only two of them are independent variables, because of
the relation sþ tþ u ¼ h, where h ¼ m2

f þm2
ρ þ 2m2

π .
From the law of conservation of 4-momentum one finds
the intervals for physical values of these variables

4m2
π ≤ s ≤ ðmf −mρÞ2;

ðmρ þmπÞ2 ≤ t; u ≤ ðmf −mπÞ2: ð21Þ

The equation
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t2 − tðh − sÞ þ 1

4
½ðh − sÞ2 −DðsÞ� ¼ 0; ð22Þ

where

DðsÞ ¼ 1

s
ðs − 4m2

πÞλðs;m2
f; m

2
ρÞ; ð23Þ

λðx; y; zÞ ¼ ðx − y − zÞ2 − 4yz

¼ ½x − ð ffiffiffi
y

p þ ffiffiffi
z

p Þ2�½x − ð ffiffiffi
y

p
−

ffiffiffi
z

p Þ2�; ð24Þ

defines a curve which is the boundary of the physical region
for the decay channel. There are two positive values of t for
each value of s. These two roots of the quadratic Eq. (22)
are the endpoints of the closed interval for physically
permissible values of t− ≤ t ≤ tþ

t� ¼ 1

2

�
h − s�

ffiffiffiffiffiffiffiffiffiffi
DðsÞ

p �
: ð25Þ

Notice, that Dð4m2
πÞ ¼ Dððmf −mρÞ2Þ ¼ 0.

One can see that the ρ0-resonance exchange contribution
has no pole at physical values of meson masses: mπ ¼
138 MeV, mρ ¼ 775 MeV, mf1 ¼ 1282 MeV. Indeed, the
one-particle pole in the amplitude, if it is, comes out of
the factor ðm2

ρ − sÞ−1. However, the physical values of s
belong to the interval 2mπ ≤

ffiffiffi
s

p
≤ mf1 −mρ, or numeri-

cally 276 MeV ≤
ffiffiffi
s

p
≤ 507 MeV, which is quite distant

from the ρ-meson mass.
The a1 meson exchange amplitudes include one of the

factors ðm2
a1 − tÞ−1, or ðm2

a1 − uÞ−1. The physical region of
the kinematic variables t and u is such that 913MeV≤ffiffi
t

p
;

ffiffiffi
u

p
≤1144MeV. This certainly indicates that although

there is no real pole here the contribution is sensitive to the
mass of the a1 meson. In particular, this channel will
dominate if the mass of the a1 is about the model estimate
ma1 ¼ 1146 MeV. On the contrary, at large values of
ma1 ¼ 1230–1290 MeV the a1 exchange may lead approx-
imately to the same order contribution as the ρ exchange.
This reasoning show that the decaymode f1 → ρ0πþπ− may
supply us with interesting information on the a1-meson
characteristics.
The amplitude of the process [as it follows from the NJL

model calculations below] may be parametrized as

T ¼ ieμναβϵβðlÞϵ�γðpÞ½gαγðF1lμpνþ þ F2lμpν
− þ F3p

μ
þpν

−Þ
þ F4pαlγpμ

þpν
−�; ð26Þ

where ϵβðlÞ, ϵγðpÞ are the polarization vectors of the f1
and ρ mesons. In the following, we will obtain the explicit
expressions for the form factors Fa, a ¼ 1, 2, 3, 4 in the
framework of the NJL model at leading order of 1=Nc and
derivative expansions. The different channels contribute to
the sum independently

Fa ¼ FðρÞ
a þ Fða1Þ

a þ FðdÞ
a : ð27Þ

Here, FðρÞ
a is a contribution of the ρ0-exchange channel (a),

Fða1Þ
a describes the axial-vector a�1 exchange mode (b), and

the direct interaction (c) is presented by the form factor FðdÞ
a .

B. The ρ0ð770Þ exchange channel

The resonance exchange mode f1 → ρ0ρ0 → ρ0πþπ− in
the NJL model can be described by the following
Lagrangian densities.
The anomalous f1ρ0ρ0 vertex can be easily obtained

from the f1ρ0γ vertex [23]. For that one should replace the
electromagnetic field by the ρ0 field, electric charge e by
the coupling gρ, and introduce the factor 1=2 accounting for
identity of two ρ0-meson states in the Lagrangian. As a
result we obtain

Lf1ρ0ρ0 ¼
g3ρNc

3ð8πmÞ2 e
μναβρ0μνðρ0σα∂σ

↔
f1βÞ; ð28Þ

where ða∂μ

↔
bÞ ¼ a∂μb − ð∂μaÞb, and ρμν stands for the

field strength ρμν ¼ ∂μρν − ∂νρμ.
Notice, that the effective vertex Lf1ρ0ρ0 is given by the

next to the leading order term in the derivative expansion of
the anomalous quark triangle diagram f1ρ0ρ0 shown in
Fig. 1. Actually, one would expect here the contribution
linear in momenta. Bose symmetry requires that it would
have a form

L0
f1ρ0ρ0

∝ eαβμνf1αρ0μ∂βρ
0
ν: ð29Þ

This form, however, is not compatible with the idea of
vector dominance. In the real world with electromagnetic
interactions included, this vertex would generate the gauge
symmetry breaking contributions to the f1 → ρ0γ and f1 →
γγ amplitudes. So, in fact, (29) is not consistent with the

FIG. 1. The Feynman diagrams describing the ρ0 exchange
mode for the f1ð1285Þ → ρ0πþπ− decay. It is assumed [for all
figures in the text], that each pion line represents the sum of two
types of couplings of the pion with the quark-antiquark pair: the
pseudoscalar one q̄γ5πq and the axial-vector one q̄γμγ5∂μπq.
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QED Ward identities. Let us also notice, that a superficial
linear divergence appears in the course of evaluation of the
overall finite f1ρ0ρ0 triangle integral. Shifts in the internal
momentum variable of the closed quark loop integrals
induce an arbitrary finite surface term contribution of the
type (29). Thus, one can always choose the free coupling of
the surface term to vanish (29). This avoids contradiction
with Ward identities.
The nonanomalous ρππ vertex in Fig. 1 is described by

the Lagrangian density

Lρ0πþπ− ¼ −igρρ0μðπþ∂μ
↔
π−Þ þ igρ

Z − 1

m2
a1

ρ0μν∂μπþ∂νπ−;

ð30Þ
where one can neglect the second term in (30). The reasoning
for this is that it has a small factor sðZ − 1Þ=ð2m2

a1Þ ¼
sκm2=m2

ρ [compared with the factor 1 of the first term],
which varies from 0.03 to 0.1 in the kinematic region of s.
In the following, we will show this more clearly.
With the use of these Lagrangian densities we find the ρ0

exchange contribution to the amplitude of the process
shown in Fig. 1. The result is

FðρÞ
1 ¼ α2ρ

2m2

�
1 − s

Z − 1

2m2
a1

�
m2

f1
þm2

ρ − 2mf1ðε − ε−Þ
m2

ρ − s
;

FðρÞ
2 ¼ −α2ρ

2m2

�
1 − s

Z − 1

2m2
a1

�
m2

f1
þm2

ρ − 2mf1ðε − εþÞ
m2

ρ − s
;

FðρÞ
3 ¼ 2α2ρ

m2

�
1 − s

Z − 1

2m2
a1

�
m2

f1
þm2

ρ −mf1ε

m2
ρ − s

;

FðρÞ
4 ¼ −α2ρ

m2

�
1 − s

Z − 1

2m2
a1

�
1

m2
ρ − s

; ð31Þ

where ε; ε� are the energies of the rho meson and charged
pions in the rest frame of the f1ð1285Þ-meson.
Notice that this channel [through the ρ0 → γ transition]

gives the determining contribution to the decay width of
f1ð1285Þ → πþπ−γ [40]. Conversely, the diagram shown
in Fig. 1 is not so important for the f1ð1285Þ → ρ0πþπ−
decay. Indeed, its contribution to the decay width is
Γðf1ð1285Þ → ρ0πþπ−Þ ¼ 31 keV [it would be equal to
37 keV, if one would neglect a second term in the
Lagrangian density (30)]. We conclude that this channel
is strongly suppressed in comparison with a1 exchange
channel [as it will be shown in Sec. III C], but it is still
worth to be taken into account due to their constructive
interference.

C. The a1ð1260Þ exchange channel

To describe the a1 exchange modes f1 → π�a∓1 →
πþπ−ρ0, shown in Fig. 2, we use the nonanomalous
Lagrangian density [56]

La1πρ0 ¼ ifπg2ρZ

�
ρ0μa

−μ
1 πþ þ 1

m2
a1

ða−1μνρ0μ − a−μ1 ρ0μνÞ∂νπþ
�

þ H:c:; ð32Þ

and the vertex which describes the anomalous f1a1π
interaction

Lf1a1π ¼ gaeαβμνf1α∂μa⃗1β∂νπ⃗; ð33Þ

where

ga ¼
αρ

2πfπ
½1þ ð1 − 3aÞκm2�: ð34Þ

The second term in the square brackets is due to the
replacement (11). The derivative coupling q̄γμγ5∂μπ⃗ τ⃗ q
makes the corresponding triangle quark diagram linearly
divergent, although the result of its evaluation is finite. As a
consequence of this superficial divergence, an arbitrary
finite surface term contribution proportional to ð1 − 3aÞ
appears. Here a is a dimensionless constant, controlling the
magnitude of an arbitrary local part [57,58].
A corresponding contribution to the amplitude (26) is

given by

Tða1Þ ¼ −iga
�
2κm2

fπ

�
eμναβϵβðlÞϵ�αðpÞlμpνþ

×

�
1þ p2

m2
a1 − t

�
− ðpþ ↔ p−Þ: ð35Þ

One can see that the contact part of this amplitude [the first
term in the square brackets] would violate the gauge
invariance, if one, following the idea of vector-meson
dominance, switches to the related electromagnetic process
[notice, that the second term in the square brackets does
not contribute to the radiative decay f1ð1285Þ → πþπ−γ,
because p2 ¼ 0 for a real photon]. Indeed, introducing the
4-vector qν ¼ ðpþ − p−Þν, and using the four-momentum
conservation law l ¼ pþ pþ þ p−, one obtains

eμναβlμqν ¼ eμναβðpμqν − 2pμ
þpν

−Þ:

FIG. 2. Two Feynman diagrams describing the aþ1 and a−1
exchange modes for the f1ð1285Þ → ρ0πþπ− decay.
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If one replaces ϵ�αðpÞ → pα in (35), one finds that the term
∝ pμ

þpν
− survives. This violates Ward identities. The point

can be settled after considering the direct (box) part of the
amplitude shown in Fig. 3 [see Sec. III D].
To summarize, two diagrams with the a1 exchange yield

F
ða−

1
Þ

1 ¼ −
ga
fπ

ð2κm2Þ
�
1þ m2

ρ

m2
a1 − t

�
;

F
ðaþ

1
Þ

2 ¼ ga
fπ

ð2κm2Þ
�
1þ m2

ρ

m2
a1 − u

�
: ð36Þ

D. The direct channel

Let us consider now the contribution to the decay
amplitude f1ð1285Þ → ρ0πþπ− due to the quark box
diagrams shown in Fig. 3. As usual, we will extract only
the terms which are dominant at large distances, i.e., the
local effective vertices with the smallest number of deriv-
atives. This contribution contains information on the box
AAAV anomaly. The calculations performed in a way
explained above lead us to the amplitude

TðdÞ ¼ i
αρ

2πf2π
eμναβϵβðlÞϵ�αðpÞ½ð1 − 2κm2Þpμqν

− κm2ð4 − κm2Þpμ
þpν

−�: ð37Þ

It can be easily seen that if we again resort to the radiative
decay f1 → πþπ−γ amplitude the term ∝ pμ

þpν
− will break

the gauge symmetry. The most efficient way of dealing
with the issue is to sum all contact contributions and fix the
free parameter a by requiring the vanishing of the pμ

þpν
−

term. Combining contact terms of Eqs. (35) and (37), we
find

Tða1Þ
cont þ TðdÞ ¼ TðcÞ ¼ iαρ

2πf2π
eμναβ × ϵβðlÞϵ�αðpÞ

× ðA1pμqν þ A2p
μ
þpν

−Þ; ð38Þ

where

A1 ¼ 1 − 2κm2 − 2κm2½1þ ð1 − 3aÞκm2�;
A2 ¼ ðκm2Þ2ð5 − 12aÞ: ð39Þ

At a ¼ 5=12 one finds that A2 ¼ 0. This solves the
problem. This gives for A1

A1 ¼ 1 − 4κm2 þ 1

2
ðκm2Þ2 ¼ 2 − Z

Z
þ ðZ − 1Þ2

8Z2
: ð40Þ

Thus, the contact terms contribute to the amplitude as

FðcÞ
1 ¼ −FðcÞ

2 ¼ 1

2
FðcÞ
3 ¼ αρ

2πf2π
A1: ð41Þ

Correspondingly, the diagrams plotted in Figs. 2 and 3 give
the following contributions to the pertinent form factors

Fða1Þ
1 þ FðdÞ

1 ¼ FðcÞ
1 −

�
α2ρ
2

� ð4 − κm2Þ
m2

a1 − t
;

Fða1Þ
2 þ FðdÞ

2 ¼ FðcÞ
2 þ

�
α2ρ
2

� ð4 − κm2Þ
m2

a1 − u
;

Fða1Þ
3 þ FðdÞ

3 ¼ FðcÞ
3 ; ð42Þ

where the relation

ga¼ 5
12

2κm2

fπ
¼ α2ρ

2m2
ρ
ð4 − κm2Þ ð43Þ

has been used.
Before we will present the result of our calculations in

full detail, it is instructive to show here the dominant role of
the a1-exchange contribution. In fact, as it follows from
Eq. (41), the sum of contact contributions is negligible:
ΓðcÞðf1ð1285Þ→ρ0πþπ−Þ¼1.2keV. This is a consequence
of the strong cancellation between a contact term in (35)
and the contribution of the box diagram (37). One of the
reasons is the Ward identities which control the value of
a surface term fixing a ¼ 5=12. The size of this effect is
quite large. To understand how this works, let us compare
the a1-exchange (35), calculated with a ¼ 5=12,
Γða1Þðf1ð1285Þ → ρ0πþπ−Þ ¼ 3.87 MeV with Eq. (42),
which gives lower value Γðdþa1Þðf1ð1285Þ → ρ0πþπ−Þ ¼
2.22 MeV. The difference between these two numbers is an
effect of the box diagram, which is taken into account in
the latter case.

E. The f 1ð1285Þ → ρ0π +π − decay width

The rate of the three-body decay f1ð1285Þ → ρ0πþπ−
can be obtained from the standard formula

dΓ ¼ jTj2
24mf1ð2πÞ3

dεdεþ ð44Þ

where

FIG. 3. The box Feynman diagrams for the f1ð1285Þ →
ρ0πþπ− decay. We do not show the diagrams which can be
obtained by permuting the final states.
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jTj2 ¼
X
i≤j

ReðFiF�
jÞTij; ð45Þ

Fi ¼ FðρÞ
i þ Fða1Þ

i þ FðdÞ
i ; ð46Þ

and

T11 ¼ m2
f1
ð2p⃗2þ þ ΔÞ;

T22 ¼ m2
f1
ð2p⃗2

− þ ΔÞ;
T33 ¼ 2½ðpþp−Þ2 −m4

π� þ ðm2
f1
þm2

ρÞΔ;
T44 ¼ m4

f1
p⃗2Δ;

T12 ¼ 2m2
f1
ð2p⃗þp⃗− − ΔÞ;

T13 ¼ 4mf1 ½m2
πε− − ðpþp−Þεþ� − 2m2

f1
Δ;

T23 ¼ −4mf1 ½m2
πεþ − ðpþp−Þε−� þ 2m2

f1
Δ;

T14 ¼ −T24 ¼ −2m3
f1
εΔ;

T34 ¼ 2m2
f1
ðεmf1 −m2

ρÞΔ: ð47Þ

Notice that

m2
ρΔ ¼ ðp⃗þ × p⃗Þ2 ¼ ðp⃗− × p⃗Þ2 ¼ ðp⃗þ × p⃗−Þ2

¼ p⃗2þp⃗2 − ðp⃗þp⃗Þ2: ð48Þ

Here all kinematic variables are given in the rest frame of
the f1 meson. In this reference system, the invariant
variables are

s ¼ m2
f1
þm2

ρ − 2mf1ε;

t ¼ m2
f1
þm2

π − 2mf1εþ;

u ¼ m2
f1
þm2

π − 2mf1ðmf1 − ε − εþÞ: ð49Þ

Thus, the physical region for independent variables ε and
εþ is given by the inequalities

mρ≤ ε≤
1

2mf1

ðm2
f1
þm2

ρ−4m2
πÞ;

mf1 −ε−
ffiffiffiffiffiffiffiffiffiffi
ΩðεÞp

2
≤ εþ≤

mf1 −εþ ffiffiffiffiffiffiffiffiffiffi
ΩðεÞp

2
ð50Þ

where

ΩðεÞ ¼ ðε2 −m2
ρÞ
�
1 −

4m2
π

m2
f1
þm2

ρ − 2mf1ε

�
: ð51Þ

Integrating in (44) over energies taken in the given
intervals (50), we find that the decay width of the process
f1ð1285Þ → ρ0πþπ− is

Γðf1ð1285Þ → ρ0πþπ−Þ ¼ 2.74 MeV: ð52Þ

Thus, the picture can be summarized as follows. The
a1-exchange gives the major contribution because it is
enhanced by a nearby singularity of the a1 propagator. The
box diagram almost cancels the contact part of (35)
reducing decay width on 46%. The ρ-exchange (31) is
small but its interference with other channels increases the
result from Γðdþa1Þ ¼ 2.22 MeV to the final value (52)
[if one would neglect a second term in (30), the final result
would be 2.78 MeV; so the result is consistent with our
previous claim about a minor role of the three derivative
term in Eq. (30)]. This value is obtained in the leading order
of 1=Nc expansion and agrees well with empirical data (1).

IV. THE PROCESS a1ð1260Þ → ωπ +π −

The calculation of the decay amplitude a1ðlÞ → ωðpÞþ
πþðpþÞ þ π−ðp−Þ, where l; p; pþ; p− are the 4-momenta
of corresponding particles, can be carried out in a similar
way as was being done for the f1ð1285Þ → ρ0πþπ− decay
in Sec. III. The amplitude accumulates contributions from
three different processes: (a) the ρ0 exchange channel
a1 → ωρ0 → ωπþπ−; (b) the ρ� exchange a1 → π�ρ∓ →
πþπ−ω; and (c) the direct decay mode a1 → ωπþπ−.
The kinematic variables and the physical region can be
easily obtained from the expressions presented in Secs. III A
and III E.

A. The ρ0 exchange mode

On the theoretical side, the only difference between
f1ð1285Þ→ρ0ρ0→ρ0πþπ− and a1ð1260Þ→ωρ0→ωπþπ−

decay amplitudes is the replacement of f1ρ0ρ0 quark
triangle by the a01ωρ

0 one [compare Figs. 1 and 4]. These
vertices are originated by the same quark-loop diagram,
including an overall factor which comes out from the isospin
trace calculations. In the case of a01ωρ

0 vertex, we have tr
[ða01τ3Þðωτ0Þðρ0τ3Þ]=2a01ωρ0. That should be compared
with tr[ðf1τ0Þðρ0τ3Þðρ0τ3Þ]=2f1ρ0ρ0. Thus, for the channel
(a) one can write immediately

FIG. 4. A typical Feynman diagram describing the ρ0-exchange
mode for the a1ð1260Þ → ωπþπ− decay.
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Fðρ0Þ
1 ¼ α2ρ

2m2

�
1 − s

Z − 1

2m2
a1

�
m2

a1 þm2
ω − 2ma1ðεω − ε−Þ
m2

ρ − s
;

Fðρ0Þ
2 ¼ −α2ρ

2m2

�
1 − s

Z − 1

2m2
a1

�
m2

a1 þm2
ω − 2ma1ðεω − εþÞ
m2

ρ − s
;

Fðρ0Þ
3 ¼ 2α2ρ

m2

�
1 − s

Z − 1

2m2
a1

�
m2

a1 þm2
ω −ma1εω

m2
ρ − s

;

Fðρ0Þ
4 ¼ −α2ρ

m2

�
1 − s

Z − 1

2m2
a1

�
1

m2
ρ − s

; ð53Þ

where εω is the energy of the ωð782Þ meson in the rest
frame of a1ð1260Þ meson. In this reference frame, we have
s ¼ m2

ω −ma1ð2ϵω −ma1Þ (In the following, for simplicity,
we put mω ¼ mρ.) This channel gives rather low value
Γða1 → ωρ0 → ωπþπ−Þ ¼ 1.2 keV.

B. The ρ� exchange modes

The amplitude which describes the process shown in
Fig. 5 is the analog of the a�1 exchange modes (b) for the
f1 → ρ0πþπ− decay. Here, there is a common vertex a1ρπ,
where the a1ð1260Þ-meson is on-shell now

La1−mass
a1πρ ¼ i

�
2κm2

fπ

�
a0μ1 ð∂νρþμνπ− − ∂νρ−μνπ

þÞ: ð54Þ

Another vertex, ρωπ, which is responsible for the unnatu-
ral-parity decay process, is similar to the vertex a1f1π
[see Eq. (33)].

Lρωπ ¼ 3gaeαβμνων∂βρ⃗μ∂απ⃗; ð55Þ

where a coupling constant ga is given by Eq. (34).
From these Lagrangian densities we find the amplitude

Tðρ�Þ ¼ TðρþÞ þ Tðρ−Þ corresponding to the diagrams shown
in Fig. 5

Tðρ�Þ ¼ iga

�
6κm2

fπ

�
e··αβμν ϵβðlÞϵ�αðpÞpμpνþ

u
m2

ρ − u

− ðpþ ↔ p−Þ: ð56Þ

This result differs from the one we had previously, con-
sidering the a�1 exchange contributions to the f1 → ρ0πþπ−

amplitude. In particular, this amplitude vanishes if one
makes a replacement ϵ�αðpÞ → pα. Therefore the amplitude
is a gauge invariant expression, and it is not possible to
fix the ambiguity in ga by insisting that this symmetry is
preserved [the transition to the radiative decay amplitude
a01 → γπþπ− does not lead to any restrictions on the
parameter a]. However, one can fix a from the f1 →
ρ0πþπ− decay, as we did in Sec. III D. There we got
a ¼ 5=12. In doing this, we also improve the description of
ρ� → π�γ decay in the NJL model. Let us remind that
the decay width of this process is given by

Γðρ� → π�γÞ ¼ αg2a
96παρ

�
m2

ρ −m2
π

mρ

�
3

: ð57Þ

So, at a ¼ 5=12 we find that Γðρ� → π�γÞ ¼ 78 keV.
This is a little high compared to the experimental value
Γðρ� → π�γÞ ¼ 67.1� 7.4 keV [45] but is definitely bet-
ter than Γðρ� → π�γÞ ¼ 87 keV obtained in [15].
Finally, using Eqs. (56) and (43), we come to the

following form factors

Fðρ�Þ
1 ¼ 3α2ρ

2m2
ρ
ð4 − κm2Þ u

m2
ρ − u

Fðρ�Þ
2 ¼ −

3α2ρ
2m2

ρ
ð4 − κm2Þ t

m2
ρ − t

Fðρ�Þ
3 ¼ Fðρ�Þ

1 − Fðρ�Þ
2 : ð58Þ

It gives Γða1ð1260Þ → π�ρ∓ → ωπþπ−Þ ¼ 517 keV.

C. The box diagrams

In Fig. 6, there is drawn a typical diagram that describes
the direct decay mode. It depicts the process where pions
interact with quarks without derivative q̄γ5τ⃗ π⃗ q. There are
also diagrams which include the derivative coupling of
pions with quarks q̄γμγ5∂μπ⃗ τ⃗ q. In the corresponding
amplitude (59), the contribution of each coupling with a
derivative is proportional to κm2. We also do not show the
diagrams which can be obtained by permuting the final
states, although we take them into account. The result of

FIG. 5. Two Feynman diagrams describing the ρþ and ρ−

exchange modes for the a1ð1260Þ → ωπþπ− decay.

FIG. 6. The box Feynman diagram describing the direct mode
for the a1ð1260Þ → ωπþπ− decay. We do not show the diagrams
which can be obtained by permuting the final states.
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calculations of all box diagrams in the leading order of
derivative expansion is

TðdÞ ¼ i
αρNc

2πf2π
eμναβϵβðlÞϵ�αðpÞ½ð1 − 2κm2Þpμqν

þ ðκm2Þ2pμ
þpν

−�: ð59Þ

The corresponding form factors are

FðdÞ
1 ¼ −FðdÞ

2 ¼ αρNc

2πf2π
ð1 − 2κm2Þ;

FðdÞ
3 ¼ αρNc

πf2π

�
1 − 2κm2 þ 1

2
ðκm2Þ2

�
: ð60Þ

It follows then that Γða1ð1260Þ → ωπþπ−Þbox ¼ 52 keV.
As we already know from Sec. III D, the last term in (59)

can be a source of the gauge symmetry breaking [through
the VMD mechanism]. We have checked gauge invariance
for the a1 → γπþπ− decay amplitude. This symmetry is
protected by contributions, which are not generated by the
VMD mechanism. The details will be given in the separate
paper.

D. The a1ð1260Þ → ωπ +π − decay width

We have already shown that diagrams in Fig. 5 yield the
dominant contribution to the a1ð1260Þ → ωπþπ− decay
width. Our aim now is to clarify the interference effects.
Let us consider first the sum of diagrams plotted in

Figs. 5 and 6. The corresponding form factors can be
combined in the following structures

Fðρ�Þ
1 þ FðdÞ

1 ¼
�
3α2ρ
2

�
4 − κm2

m2
ρ − u

þ 3FðcÞ
1 ;

Fðρ�Þ
2 þ FðdÞ

2 ¼ −
�
3α2ρ
2

�
4 − κm2

m2
ρ − t

− 3FðcÞ
1 ;

Fðρ�Þ
3 þ FðdÞ

3 ¼ 3αρ
πf2π

½1 − 4κm2 þ ðκm2Þ2�

þ
�
3α2ρ
2

�
ð4 − κm2Þ

�
1

m2
ρ − u

þ 1

m2
ρ − t

�
;

ð61Þ

where FðcÞ
1 is given by (41). From that we deduce that there

is destructive interference between the amplitudes arising
from these two channels. As a result, their contribution to
the decay width turns out to be essentially suppressed
Γðρ�ÞþðdÞ ¼ ð517þ 52 − 326Þ keV ¼ 243 keV.

Finally, one should take into account a constructive
interference between the ρ0-exchange amplitude of
Fig. 4 and the sum of diagrams shown in Figs. 5 and 6.
This leads to a ultimate result Γða1 → ωπþπ−Þ ¼
ð1.2þ 243þ 48.8Þ keV ¼ 293 keV.

V. CONCLUSIONS

The purpose of this paper has been to use our knowledge
of the structure of the triangle quark f1ργ anomaly for
studying f1ð1285Þ → ρππ and a1ð1260Þ → ωππ anoma-
lous decays, where similar vertices f1ρρ and a1ρω arise as
a part of more sophisticated chiral dynamics. As a result, it
has been found that theoretical estimation for the f1 → ρππ
decay width [Γðf1 → ρ0πþπ−Þ ¼ 2.74 MeV] agrees well
with the experimental value (1). It has been also obtained
[for the first time] a theoretical prediction for the rate of the
a1 → ωππ decay, Γða1 → ωπþπ−Þ ¼ 293 keV.
Both processes receive contributions from the box

AAAV anomaly which is carefully calculated here. This
anomaly is less studied experimentally and can be an
interesting subject for future investigations. Our calcula-
tions indicate clearly that there is a large interference
between box and triangle anomalies. The strong suppres-
sion of the a1 → ωππ decay found in our work is a direct
consequence of such destructive interference. It would be
informative to measure the rate of this decay. From this one
could learn about the structure of the a1ð1260Þ state. If the
experimental result will support the value found in this
paper, one can conclude that qq̄ component is dominated in
a1ð1260Þ. If not, it will reinforce the idea of the dynamical,
or molecular, nature of the a1ð1260Þ meson [47,59,60].
In fairness, it has to be said that the internal structure of
the f1ð1285Þ meson is also not well understood. Thus, the
obtained agreement with the experimental result for its
decay ratio is a significant and nontrivial argument in favor
of qq̄ content of f1ð1285Þ.
Our estimates are based on the local vertices of the

effective meson Lagrangian of the NJL model where meson
states are treated as the nearly stable quark-antiquark
particles. Following the idea of 1=Nc expansion we
assumed that in the long-wavelength regime only local
contributions with minimal number of derivatives are
important. We suppose that the qualitative and quantitative
features that emerge in our simplified consideration would
persist in a more accurate calculation. This can be done in
the future as soon as new empirical data will be available.
Nonetheless, the undoubted merit of the described results,
as compared to the already known ones in the literature, is
that they are relied on the more detailed dynamical picture.
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