
 

Dense instanton-dyon liquid model: Diagrammatics
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We revisit the instanton-dyon liquid model in the confined phase by using a nonlinear Debye-Huckel
(DH) resummation for the Coulomb interactions induced by the moduli, followed by a cluster expansion.
The organization is shown to rapidly converge and yields center symmetry at high density. The dependence
of these results on a finite vacuum angle is also discussed. We also formulate the hypernetted chain (HNC)
resummation for the dense instanton-dyon liquid and use it to estimate the liquid pair correlation functions
in the DH limit. At very low temperature, the dense limit interpolates between chains and rings of
instanton–anti-instanton dyons and a bcc crystal, with strong topological and magnetic correlations.
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I. INTRODUCTION

This work is a continuation of our earlier studies [1] of
the gauge topology in the confining phase of a theory with
the simplest gauge group SUð2Þ. We suggested that the
confining phase below the transition temperature is an
“instanton dyon” (and antidyon) plasma which is dense
enough to generate strong screening. The dense plasma is
amenable to standard mean-field methods.
The basic ingredients of the instanton-dyon liquid

model are Kraan-van-Baal-Lee-Lu (kvBLL) instantons
with finite holonomies [2]. Diakonov and Petrov [3,4]
have argued that the KvBLL instantons split into instanton
dyons in the confined phase below the critical temperature,
and recombine above it in the deconfined phase. These
observations have also been checked numerically [5]. The
dissociation of instantons into constituents was advocated
originally by Zhitnitsky and others [6], and more recently
by Unsal and collaborators [7] using controlled semi-
classical approximations. When light quarks are added,
center symmetry and chiral symmetry are found to be tied
[1,8–10].
To put the present investigation into perspective, we

recall that detailed lattice simulations using cooling tech-
niques have shown that the dominant gauge configurations
to the light hadronic correlators stem from correlated
instantons and anti-instantons [11], in agreement with most

predictions from the instanton liquid model [12] (and
references therein). Yet the instanton liquid model does
not confine. So what changes are needed in this model to
achieve confinement? Are these changes substantial
enough to modify the established successes of this model?
More than a decade ago, it was noted that since the

deconfinement transition through the Polyakov line requires
a nonzero holonomy, all semiclassical configurations includ-
ing instantons and anti-instantons need to be modified. The
answer was the KvBLL instanton which was found to
interpolate between a pair of instanton dyons at low temper-
ature and an instanton at high temperature. The instanton
dyons carryAbelian electric andmagnetic charges, and in the
confined phase form a plasmalike state. This description
accounts for the correct gluino condensate in supersymmetric
Yang-Mills theory [13] and qualitatively explains the
confinement-deconfinement transition in pure Yang-Mills
theory [4]. Recently, we have carried several studies of
instanton-dyon ensembles using mean-field approximations
without and with light quarks in the confined phase for a
center-symmetric phase with holonomy fixed at 1

2
[1].

The purpose of this paper is to revisit the instanton-dyon
liquid model without quarks, at low temperature in the
confined or center-symmetric phase, by improving on the
mean-field approximation through the use of many-body
resummations pertinent to dense liquids. This resummation
will allow us to probe higher densities or lower temper-
atures which will bring us closer to a description of the
vacuum state for Yang-Mills. In particular, we will show
that the resummation
(1) Provides a specific interpolation between bionlike

correlations in the dilute phase, and mostly screened
interactions in the dense phase. The bionlike corre-
lations are in support of the semiclassical approx-
imations used in [7], while the screened correlations
are in support of the mean-field analysis [1];
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(2) Allows for the derivation of the free energy
for arbitrary holonomy with a maximum for the
1
2
-holonomy in support of the arguments in [1];

(3) Yields a specific dependence of the free energy on
the vacuum angle, that indicates a decrease of the
critical temperature with vacuum angle. For a small
vacuum angle it is in agreement with current lattice
estimates [14];

(4) Suggests the possibility of a (disordered) crystal in
the very dense regime. By Poisson duality, the crystal
can be viewed either as an arrangement of topological
charges (instantons) or magnetic charges (monop-
oles), implying a dual role for the instantons and
monopoles in the description of the vacuum state.

In Sec. II we briefly review the salient aspects of the
instanton-dyon liquid model. We perform a nonlinear
Debye-Huckel resummation of the Coulomb interactions
stemming from the moduli space, and combine them with a
cluster expansion of the Coulomb interactions originating
from the streamlines. We show that the expansion is rapidly
converging and the phase center is symmetric already in the
second cluster approximation. In Sec. III we also show how
the multichain and rings can be further resummed beyond
the leading clusters and make them explicit with some
applications. In Sec. IV, we extend our arguments to a finite
vacuum angle θ. In Sec. V, we discuss a larger class of
resummation pertinent for dense systems referred to as a
hypernetted chain (HNC) resummation. In Sec. VI, we
suggest that a melted crystal of instanton dyons and anti-
instanton dyons may provide a semiclassical description of
a Yang-Mills ensemble at very low temperature. Our
conclusions are in Sec. VII. In the Appendix we outline
the elements for a future molecular dynamics simulation.

II. THERMAL YANG-MILLS

The chief aspects of the instanton-dyon liquid model
have been discussed in [1,3,4] to which we refer the reader
for more details. Here, we briefly recall the key elements
which will be useful in setting up the statistical Coulomb
analysis using many-body techniques. For two-colors the
KvBLL instanton (anti-instanton) splits into L, M (L̄; M̄)
instanton dyons for large holonomies.M carries ðþ;þÞ and
L carries ð−;−Þ for (electric-magnetic) charges, with
fractional topological charges ν and ν̄ ¼ 1 − ν. The holon-
omy is fixed by the large x-asymptotics limx→∞hA3

4i ¼
2πTντ3=2 at fixed temperature T. In the confined phase
with ν ¼ 1

2
and moderate gauge coupling αs ≤ 1 the instan-

ton-dyon actions SL ¼ 2πν=αs and SM ¼ 2πν̄=αs are still
large, justifying their use in a semiclassical description of the
thermal Yang-Mills phase. Throughout, the instanton and
anti-instanton dyons will carry a finite core size which we
will specify below.
A semiclassical ensemble of instanton–anti-instanton

dyons can be regarded as a statistical ensemble of

semiclassical charges interacting mostly through their
moduli space for like instanton or anti-instanton dyons
and through streamlines for unlike instanton–anti-instanton
dyons. The grand partition function for such an ensemble is
of the form (zero vacuum angle)

Z½T; f�≡X
½K�

YKL

iL¼1

YKM

iM¼1

YKL̄

iL̄¼1

YKM̄

iM̄¼1

×
Z

fd3xLiL
KL!

fd3xMiM

KM!

fd3yL̄iL̄
KL̄!

fd3yM̄iM̄

KM̄!

× e−Vðx−yÞþln detðG½x�G½y�Þ: ð1Þ

The streamline interactions V are large and of order 1=αs.
They are attractive between likeDD̄ and repulsive between
unlike DD̄ [15]. Their relevant form for our considerations
will be detailed below. In contrast, the moduli induced
interactions captured in the ðKL þ KMÞ2 matrix G½x� and in
the ðKL̄ þ KM̄Þ2 matrix G½y� are of order α0s. While the
explicit form of these matrices can be found in [3,4], it is
sufficient to note here that these induced interactions are
attractive between unlike instanton dyons and repulsive
between like instanton dyons. The bare fugacity f will be
regarded as an external parameter in what follows. Note
that in the absence of V, Z → ZDZD̄ where each factor
can be exactly rewritten in terms of a three-dimensional
effective theory.

A. Effective action

The streamline interaction part V can be bosonized using
the complex fields b� iσ through standard tricks. Here b, σ
refers to the Abelian magnetic and electric potentials
stemming from the instanton-dyon charges. Also, each
moduli determinant in (1) can be fermionized using ghost
fields, and the ensuing Coulomb factors bosonized using
complex w, w̄ fields also through standard tricks as detailed
in [3,4]. The net result of these repeated fermionization-
bosonization procedures is an exact three-dimensional
effective action (p-space)

−SB½b; σ; w; w̄� ¼
Z

d3p

�
1

4
ðb − iσÞV−1ðpÞðbþ iσÞ

þ 4πðνfew þ ν̄fe−wÞ

þ 4πðνfew̄ þ ν̄fe−w̄Þ
�

ð2Þ

subject to the constraint from the moduli (x-space)

−
T
4π

∇2ðwÞ þ 4πf sinhðwÞ ¼ T
4π

∇2ðb − iσÞ

−
T
4π

∇2ðw̄Þ þ 4πf sinhðw̄Þ ¼ T
4π

∇2ðbþ iσÞ: ð3Þ

LIU, SHURYAK, and ZAHED PHYS. REV. D 98, 014023 (2018)

014023-2



Equations (2) and (3) allow us to rewrite exactly the
partition function (1) in terms of a three-dimensional
effective theory. In [1] we have analyzed this partition
function using the Debye-Huckel (one-loop) approxima-
tion. Here we will seek a more systematic organization of
the dense phase described by (2) and (3) that is more
appropriate for the description of the confined phase at low
temperature.

B. Cluster expansion

Our starting point is the linearization of (3) aroundw ¼ 0
which amounts to the solution

wðpÞ ¼ p2

p2 þM2
ðb − iσÞðpÞ ð4Þ

with the squared screening mass M2 ¼ 16πf
T . Inserting (4)

into (2), we can carry the cluster expansion for the 4πf
terms by integrating over the b, σ fields as the measure is
Gaussian in the partition function defined now in terms of
the three-dimensional effective action (2). The result at
second order is

lnZ
V3

¼ 8πf þ ð4πfÞ2ðν2 þ ν̄2Þ
Z

d3rðe−V1ðrÞ − 1Þ

þ ð4πfÞ2ð2νν̄Þ
Z

d3rðe−V2ðrÞ − 1Þ ð5Þ

with

V1ðpÞ ¼ −V2ðpÞ ¼ −
p4VðpÞ

ðp2 þM2Þ2 : ð6Þ

While the instanton–anti-instanton dyon interaction is
accessible numerically, for simplicity we will use here
only its Coulomb asymptotic form VðpÞ ≈ 4πCD

αsp2 with

CD ¼ 2, so that

V1ðrÞ ¼ −V2ðrÞ ≈
MCD

2αs

�
−

2

Mr
þ 1

�
e−Mr: ð7Þ

The large r-interaction between the pairs with magnetic
charge 0 (M̄M and L̄L) turns repulsive at large r, while that
between the pairs with magnetic charge 2 (M̄L and L̄M)
turns attractive. Remarkably, the sign of the induced
interaction between the pairs in (7) is flipped in comparison
to the unscreened or bare interaction between the pairs, a
sign of overscreening.
The chief effect of the moduli constraint in (3) and (4) is

to induce a nonlinear Debye-Huckel screening effect
between the charged instanton and anti-instanton dyons
through the Mayer functions e−V1;2 − 1. This is a rear-
rangement of the many-body dynamics that does not
assume diluteness. In contrast, the cluster expansion in (5)

is limited to the second cumulant and subsume diluteness
in the ensemble of D, D̄ but with nonlinear Debye-
Huckel effective interactions. This shortcoming will be
addressed later.
For small r, we need to set a core for the attractive pair

with magnetic charge 2. We choose the core to be a ¼ 1
T. As

a result (5) plus the perturbative contribution reads

zbðm; νÞ ¼ lnZ
V3T3

−
4π2

3
ν2ν̄2

¼ m2

2
þ Fðm; νÞ − 4π2

3
ν2ν̄2 ð8Þ

with m ¼ M
T and VðxÞ ¼ ð−2=xþ 1Þe−x and

Fðm; νÞ ¼ πm
4

ðν2 þ ν̄2Þ
Z
1

x2ðe−mCD
2αs

VðxÞ − 1Þ

þ πm
2

νν̄

Z
c1
x2ðemCD

2αs
VðxÞ − 1Þ: ð9Þ

For CD ≈ 2 and αs ¼ 1, the transition from a center-
symmetric (confining) to a center-asymmetric (deconfin-
ing) phase occurs for mc ≈ 2.1, 2.3 for the two choices of
the cutoff parameter c1 ¼ 1, 0. The choice c1 ¼ 0 corre-
sponds to the formal argument presented in [7]. In terms of
the density of charged particles n ¼ 8πf, the transition
occurs for n ≈ 2T3. For large density, the screening length
scales like

ffiffiffiffi
T

p
=

ffiffiffi
n

p
, while the average separation scales like

1=n
1
3. Our expansion is therefore justified. In Fig. 1 we

show the behavior of the Polyakov line versus m for the
cutoff choice c1 ¼ 1.

III. OPEN AND CLOSED CHAINS

To go beyond the second cumulant approximation in (3)
with bare fugacities, we will discuss in this section a
systematic way for resumming all tree diagrams between
the charged particles, and also all ring diagrams with an
arbitrary number of trees at the charged vertices. One of the

FIG. 1. Polyakov line P ¼ j cosðπνÞj versus m.
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chief effects of the resummation of all the trees is a
redefinition of the fugacities of the charged particles as
we will show below.

A. Diagrammatics

A systematic book-keeping procedure for the resumma-
tion of all the trees and the rings with redefined fugacities
follows from a semiclassical treatment of the Coulomb-like
field theory

L¼−
1

2
ϕTV−1ϕþf1ðeiϕ1 þeiϕ3Þþf2ðeiϕ2 þeiϕ4Þ ð10Þ

with f1 ¼ 4πfν, f2 ¼ 4πfν̄, the effective fields in three
dimensions ϕ ¼ ðϕ1;ϕ2;ϕ3;ϕ4ÞT ,

V ¼
�

0 V

V 0

�
V ¼

�
F1 F2

F2 F1

�
ð11Þ

and the Mayer functions −F1;2 ¼ e−βV1;2 − 1. The 4 × 4

block structure follows from the fact that the statistical
ensemble consists of four species of charged particles
D ¼ L, M (filled circle) and D̄ ¼ L̄, M̄ (open circle).
The block off-diagonal character of V follows from the fact
that the Mayer functions −F1;2 resum the nonlinear Debye
screening induced by the moduli between like instanton
dyons and are left acting only between unlike DD̄
instanton–anti-instanton dyons. It can be checked that
(10) reproduces all Coulomb diagrams with the correct
symmetry and weight factors as Feynman graphs when the
vertices are linked by single lines only as illustrated in
Figs. 2 and 3.
A resummation of all trees and rings with arbitrary trees

at the vertices amounts to a one-loop expansion around the
saddle point approximation to (10) which is given by

ϕT
c ¼ iVðp ¼ 0Þðf1eiϕ1c ; f2eiϕ2c ; f1eiϕ3c ; eiϕ4cÞ: ð12Þ

Because of symmetry, the solution satisfies ϕ1 ¼ ϕ3,
ϕ2 ¼ ϕ4. If we define α1 ¼ iϕ1c, α2 ¼ iϕ2c and use the
symmetry, then (12) reads

α1 ¼ c1f1eα1 þ c2f2eα2

α2 ¼ c1f2eα2 þ c2f1eα1 : ð13Þ

Here

c1;2 ¼
Z

d3xðe−βV1;2 − 1Þ ð14Þ

are the integrated Mayer functions. The saddle point
contribution which resums all connected trees yields the
pressure

Ωtree ¼
lnZtree

V3

¼ f1eα1ð2 − α1Þ þ f2eα2ð2 − α2Þ ð15Þ

with α1;2 solutions to the nonlinear classical equations (13).
The resummed rings with arbitrary trees follow by expand-
ing (12) around the classical solution (13) to one loop. The
result is

Ωring ¼ −
1

2

Z
d3p
ð2πÞ3 ðlnð1þAÞ − AÞ ð16Þ

with in p-space

A ¼ −ðf̃21 þ f̃22ÞF2
1 þ 2f̃1f̃2F2

2 þ f̃21f̃
2
2ðF2

1 − F2
2Þ2: ð17Þ

In the special case with F≡ F1 ≈ −F2, the one-loop result
simplifies to

A ¼ −ðf̃1 þ f̃2Þ2F2 ð18Þ

where f̃1;2 ¼ f1;2eα1;2 are the tree-modified fugacities.

B. Approximations

The preceding expansion around the small fugacities
follows by seeking the classical solution to (13) in powers
f1;2 or α1 ≈ c1f1 þ c2f2, α2 ≈ c1f2 þ c2f1. The tree con-
tributions to the pressure in (15) to quadratic order are

FIG. 2. Typical open chain contributions to Ωtree (a) and closed
chain or ring contributions to Ωring (b). The filled circle refers to
D ¼ L, M and open circle refers to D̄ ¼ L̄, M̄.

FIG. 3. Examples of two-loop contributions not included in the
fugacity redefined one-loop or ring resummation.
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Ωtree ≈ 2ðf1 þ f2Þ þ c1ðf21 þ f22Þ þ 2c2f1f2 ð19Þ

in agreement with (5). For large fugacities f1;2 and for
c1 ¼ −c2 ¼ −c < 0, the solution to (16) satisfies α1 ¼
−α2 ¼ α with νeα ¼ ν̄e−α ¼ ffiffiffiffiffi

ν̄ν
p

. As a result, the leading
contribution in (5) is now changed to

8πf → 8πf̃ ≡ 8πf
ffiffiffiffiffiffiffi
4ν̄ν

p
: ð20Þ

The resummation of all the trees for large bare fugacities
amounts to dressing the bare fugacities through f → f̃ in a
cluster expansion for the rings with no trees attached as
illustrated in Fig. 2(b). Some of the diagrams not included
in the dressed fugacity expansion with ring diagrams are
illustrated in Fig. 3 which are of the two-loop types. The
first appear in the fifth cumulant, and the second in the
sixth cumulant. So this reorganization resums a large class
of diagrams. The resumation is exact up to the fifth
cumulant, but approximate beyond. Remarkably, in the
center-symmetric phase with ν ¼ ν̄ ¼ 1

2
, (20) amounts to

the fugacity of noninteracting instanton and anti-instanton
dyons, as all Coulomb interactions from the (linearized)
moduli and the streamlines average out.
In general, the solution to (13) for intermediate fugacities

is not amenable analytically. One way to go beyond the
second cumulant approximation (19) at low density is to
insert the leading solutions α1 ≈ c1f1 þ c2f2, α2 ≈ c1f2 þ
c2f1 in (15) without expanding the exponent,

Ωtree ≈ 4πf
�
1

2
þ b

�
ð2Kbþ 2Þe−2Kb þ ðb → −bÞ ð21Þ

where we have set ν ¼ 1
2
þ b, K ¼ 4πfc, and noted that

c1 ¼ −c2 ¼ −c < 0. Equation (21) resums all tree con-
tributions with charge vertices that include an arbitrary
number of two-body links. Equation (19) follows by
expanding the exponents to first order in f. We note that
(21) always has a maximum at b ¼ 0 or ν ¼ 1

2
for positive c

which is center symmetric (confining). This conclusion
remains unchanged when the ring contributions are added.
Indeed, we note that the ring contribution (16) is an
increasing function of the combination f̃1 þ f̃2 or more
specifically

f̃1 þ f̃2 ≈ 8πf

�
1

2
þ b

�
e−2Kb þ 8πf

�
1

2
− b

�
e−2Kb ð22Þ

with

2K ¼ 8πfc ¼ 2π

m

Z
dxx2ðemCD

2αs
VðxÞ − 1Þ ð23Þ

using the previous notations. For 2K > 4 or cf > 1
2π, this

combination has a maximum away from 0 and competes

against the classical contribution towards the center-sym-
metric solution. For m < 10 we have 2K < 4. The ring
contribution preserves center symmetry.
The center-symmetric phase can be probed more accu-

rately by setting ν ¼ 1
2
− b. The semiclassical equation (22)

reads

α ¼ −K
�
1

2
þ b

�
eα þ K

�
1

2
− b

�
e−α: ð24Þ

At b ¼ 0 we have α ¼ 0. We now can solve (24) by
expanding exactly around b ¼ 0. Since α is an odd function
of b, we seek a solution to (24) using α ¼ x1bþ x2b3 þ
� � �, with x1 satisfying

x1 ¼ −2K − Kx1: ð25Þ
Since the leading contribution to the pressure is given by

lnZ
V3

≈ 4πfνeα
�
1 −

α

2

�
þ 4πfν̄e−α

�
1þ α

2

�
þ c:c: ð26Þ

its expanded form to order Oðb4Þ reads
lnZ
V3

≈ 8πf − 8πf
2K

K þ 1
b2 þOðb4Þ

→ 8πf

�
1þ K

ffiffiffiffiffiffiffi
4νν̄

p

1þ K

�
ð27Þ

where the last relation follows after restoring the full ν
dependence. Equation (27) shows that only the open chains
with no treelike-star insertions contribute to the leading
b2 and therefore

ffiffiffiffiffi
νν̄

p
in the pressure. Note that (27) is

independent of the integratedMayer function c inK ¼ 4πfc
in the center-symmetric phase and/or large fugacities, in
agreement with (20).

IV. FINITE VACUUM ANGLE θ

At finite vacuum angle θ, the bare fugacities for ϕ1;2

are now complex and given by f1 ¼ 4πfνe
iθ
2 and

f2 ¼ 4πfν̄e
iθ
2 , while the bare fugacities for ϕ3;4 are their

conjugate f†1;2. For c1 ¼ c2 ¼ −c < 0, we first note that the
solution to the analogue of the classical equations (13) at
finite θ satisfies α3;4 ¼ α†1;2, and α1 ¼ −α2 ¼ α, with α
complex and satisfying

α ¼ −Ke−i
θ
2ν̄eα

† þ Ke−i
θ
2νe−α

†
: ð28Þ

The solution for small or large fugacities can be obtained
analytically. We now discuss them sequentially.

A. Large K

For large fugacities or large K, the solution to (28) in
leading order gives eα ¼ ffiffiffiffiffiffiffi

ν=ν̄
p

independently of K. In this
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limit, the summation of all the tree diagrams amounts to a
dressed fugacity with a leading (dimensionless) pressure

lnZ
V3T3

→
m2

2

ffiffiffiffiffiffiffi
4νν̄

p
cos ðθ=2Þ − 4π2

3
ν2ν̄2 ð29Þ

with m2 ¼ 2n
T3 and including the perturbative contribution.

Equation (29) resums all the tree cumulant contributions
at finite θ and is to be compared to (8) and (9) with only
the second cumulant retained. Equation (29) implies a
transition from the center-symmetric (confined) phase to
the center-asymmetric (deconfined) phase at a critical
temperature

TcðθÞ
Tcð0Þ

¼
�
cos

�
θ þ 2kπ

Nc

��1
3 ð30Þ

with T3
cð0Þ ¼ 12n

π2
for Nc ¼ 2. Although our derivation was

for Nc ¼ 2, our arguments for the resummation of the trees
extend to any Nc. Also, (29) and (30) were derived for
jθj < π in a 2π-branch with k ¼ 0. The general result is
multibranch and 2π-periodic following the substitution
θ → θ þ 2kπ. Numerical lattice simulations have estab-
lished that the transition temperature TcðθÞ decreases with
θ as (k ¼ 0 branch)

TcðθÞ
Tcð0Þ

¼ 1 − Rθθ
2 þOðθ2Þ ð31Þ

with Rθ ¼ 0.0175ð7Þ for Nc ¼ 3 [14], in good agreement
with Rθ ¼ 1=6N2

c ¼ 0.0185 from (30). Our result (30) is
predictive of the Nc dependence of Rθ and of the higher θ
coefficients, with a cusp at TcðπÞ=Tcð0Þ ¼ 1=23 at the CP
symmetric point. This point is actually a tricritical point
where the CP breaking first order transition line at θ ¼ π
meets the first order transition cusp from (30). Although
(30) suggests that the CP transition line reduces to a point
for Nc ¼ 2, this conclusion requires further amendments as
it occurs at 0 temperature where the liquid is very dense,
requiring additional resummations, some of which will be
detailed below.

B. Intermediate K

The onset of the center-symmetric phase depends on the
details of the arrangement of the parameters K, θ, as (29)
was only established for large K or high density. The
center-symmetric phase can be probed more accurately for
different densities or K by again setting ν ¼ 1

2
− b in (28),

and solving exactly around b ¼ 0. The result for the
pressure to order Oðb4Þ is

lnZ
V3

¼ 8πf cos
θ

2
− 8πf2K

K cos θ
2
− 1

K2 − 1
b2 þOðb4Þ ð32Þ

which is seen to reduce to (27) at θ ¼ 0. At finite vacuum
angle θ, the expanded result (32) develops a singularity at
K ¼ 4πfc ¼ 1, the origin of which requires a more careful
analysis.
In general, we have α1 ¼ −α2 and α3 ¼ −α4. At finite θ,

all α1;2;3;4 are complex and satisfy the coupled equations

α1 ¼ −Ke−i
θ
2νeα3 þ Ke−i

θ
2ν̄e−α3

α3 ¼ −Keþiθ
2νeα1 þ Keþiθ

2ν̄e−α1 : ð33Þ

At small θ, these equations can be analyzed numerically by
analytically continuing θ → −iθ, so that

α1 ¼ −Ke−
θ
2

�
1

2
þ b

�
eα3 þ Ke−

θ
2

�
1

2
− b

�
e−α3

α3 ¼ −Keþθ
2

�
1

2
þ b

�
eα1 þ Keþθ

2

�
1

2
− b

�
e−α1 ; ð34Þ

with α1;2;3;4 now all real. If we define

fðb;K; θ; xÞ ¼ −Ke−
θ
2

�
1

2
þ b

�
ex þ Ke−

θ
2

�
1

2
− b

�
e−x

ð35Þ

then α3 ¼ x satisfies the transcendental equation

fðb;K;−θ; fðb;K; θ; xÞÞ − x ¼ 0: ð36Þ

A numerical analysis of (36) reveals a solution with a
three-branch structure in the parameter space. In the region
b ≪ 1 around the center-symmetric state, it turns out that
for K sufficiently close to 1 but less than 1 there exists a
critical bcðK; θÞ. For b < bcðK; θÞ, the expansion leading
to (32) is valid. However for b > bcðK; θÞ, the branch
which leads to (32) no longer exists, and the solution to (36)
jumps to a third branch. For K ≥ 1 and small b only the
third branch exists and will lead to the expansion (32) for
K > 1. For K ¼ 1, the solution is more tricky. In Fig. 4 we
show the solution xðbÞ at θ ¼ 0.1 and K ¼ 1. In terms of
the pressure, it is interesting to see if a “window” appears
for K ¼ 1. For imaginary θ, we can see a window for
ð1= coshðθ=2ÞÞ < K < 1 numerically. Indeed, for θ ¼ 0.01
and K ¼ 0.99999 we show in Fig. 5 the pressure lnZ

V3
versus

b, with no maximum at b ¼ 0. In contrast, forK outside the
window, we always have b ¼ 0 as the maximum, which
corresponds to the center-symmetric phase. The window
disappears for θ ¼ 0. Its occurrence at finite θ signals the
incompleteness of the tree resummation for K in the range
ð1=cosðθ=2ÞÞ < K < 1 after analytical continuation.
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V. HYPERNETTED CHAINS

The static properties of a strongly coupled fluid
are usually expressed in terms of few-body reduced
distribution functions of which the two-body distribution
gðr⃗1; r⃗2Þ or radial distribution gðr12Þ is the standard
example. The radial distribution function describes how
the fluid density varies as a function of distance from a
reference particle, providing a link between the micro-
scopic content of the fluid and its macroscopic structure.
gðr12Þ can be obtained either from simulations using

molecular dynamics (see below) or by solving the
Ornstein-Zernicke (OZ) equation [16] subject to an addi-
tional closure relation. In this section we discuss such a
closure in the form of the well-known hypernetted chain
resummation adapted to our dense dyon liquid. For that, we
will provide a diagrammatic derivation based on our
effective field theory (10).

A. Diagrammatic derivation

In the dense instanton-dyon liquid, the radial distribution
following from the many-body analysis of (10) is a 4 × 4

matrixwith instanton-dyon entries gijðr12Þ. It is related to the
irreducible density two-point correlation function through

hijðrÞ ¼ gijðrÞ − 1≡ e−βV
ijðrÞþχijðrÞ − 1 ð37Þ

where the use of the barometric form in (37) defines χijðrÞ,
and the 4 × 4 matrix V is given in (11). χij obeys a set of
formal matrix equations

χij ¼ χija þ χijb

χija ¼ cilρlclj þ cilρlclmρmcmj þ � � � :
cij ¼ hij − χija ð38Þ

whereρij ¼ ρiδij is a diagonalmatrixwith species density ρi.
We now provide a diagrammatic derivation of (38) using the
effective formulation (10).
The total pair correlation function hij follows from

summing all irreducible graphs with two external vertices
fixed between 0⃗ and r⃗. Between these two vertices we can
hang an arbitrary number of independent two-point func-
tions as illustrated in Fig. 6(a). The minimal insertion that
cannot be decomposed into such a hanging structure is
denoted by −βV þ χ with β ¼ 1

T. The diagrams contribut-
ing to χ can be separated into type (a) and type (b). Type (a)
have at least one cutting point, i.e., a vertex that one can cut
to split the diagram into two disconnected pieces as
illustrated in Fig. 6(b), while type (b) have none as
illustrated in Fig. 6(c). For type (a), we can further count
by enumerating the number of cutting points and define a
summation over all possible two-point diagrams that can be
put between two nearest cutting points as cðrÞ, which
defines the direct correlation function. It is readily seen that
c ¼ h − χa. With these definitions in mind, simple dia-
grammatic arguments yield (38). The HNC approximation
amounts to setting χb ¼ 0. In this case, (38) can be cast in
the more standard form

hij ¼ cij þ cikρk ⋆ hkj

cij ¼ −βVij þ hij − lnð1þ hijÞ ð39Þ

where ⋆ means convolution in x-space. The first of these
equations is known as the Ornstein-Zernicke equation,

FIG. 4. xðbÞ as a function of b for K ¼ 1, θ ¼ 0.1 (upper) and
K ¼ 1.01, θ ¼ 0.1 (lower).

FIG. 5. Pressure lnZ
V3

versus b for θ ¼ 0.01 and K ¼ 0.99999.
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while the second equation as the HNC closure condition.
The interaction energy per three-volume and therefore the
pressure can be reconstructed using the pair correlation
function, for instance

E
V3

¼
�
2N
V3

�
1

2

X
i;j

Z
d3rβVijðrÞhijðrÞ: ð40Þ

B. Linear and nonlinear DH approximations

The linear Debye-Huckel (DH) approximation follows
by performing one iteration in the OZ equation with
the initial condition h ¼ 0 or c ≈ −βV, to obtain formally
in p-space

hDH ¼ −βV
1þ βρV

: ð41Þ

For the instanton-dyon ensemble we have ρ ¼ ρ1 ¼ ρ2 ¼
M2T=8 and V1 ¼ −V2 ¼ −VðpÞ ¼ − 8πp2

ðp2þM2Þ2 in V, so that

hDH ¼ βV
1 − ð2βρVÞ2

�
2βρV 1

1 2βρV

�
⊗ ð1 − σ1Þ: ð42Þ

Here σ1 is a Pauli matrix. Equation (42) defines two
independent pair correlation functions in p-space

hMM ¼ hLL ¼ −hML ¼ 2ρð8πβÞ2p4

ðp2 þM2Þ4 − ð16πβρÞ2p4

hMM̄ ¼ hLL̄ ¼ −hML̄ ¼ ð8πβÞp2ðp2 þM2Þ2
ðp2 þM2Þ4 − ð16πβρÞ2p4

: ð43Þ

For ρ ¼ M2T=8 the denominator

ðp2 þM2Þ4 − 4π2p4M4 ð44Þ

is negative for p > Mffiffiffiffiffiffiffiffi
2π−1

p ≈ M
2
. The spatial cutoff a ¼ 1

T used

earlier translates to a p-cutoff of T. Since M ≈ 2T, the
negative range is physically not relevant. These observa-
tions are similar to the ones encountered in the DH analysis
of the electric and magnetic correlation functions in [1]
(first reference).
The HNC equations (39) allow us to go beyond the DH

approximation in the dense ensemble, but require a
numerical calculation. Here, we only mention that a simple
nonlinear correction to the DH result follows from (39) by
retaining the leading correction to the direct correlation
function, namely cij ≈ −βVij þ 1

2
ðhijÞ2, and we use it to

iterate the OZ equation after the substitution h → hDH. The
net effect is a nonlinear correction to the DH result (41) in
p-space:

hDH2 ¼
−βV þ 1

2
h2DH

1þ ρðβV − 1
2
h2DHÞ

: ð45Þ

VI. INSTANTON-DYON CRYSTAL

At even higher fugacity or density, the instanton and anti-
instanton dyons are expected to crystallize. A typical bcc
cubic crystal arrangement with low energy is illustrated in
Fig. 7. Recall that the resummed MM̄ interactions and LL̄
interactions are repulsive, while the LM and L̄M inter-
actions are attractive. In the bcc crystal structure, we note
that the nearest neighbor LM vertices are close to an
instanton configuration, while their alternate nearest neigh-
bors L̄M vertices are close to a magnetically charged two-
bion. We will refer to this as crystal duality. We note that
holographic dyonic crystals composed only of L, M in
saltlike or popcornlike crystal configurations were sug-
gested in [17] for a holographic description of dense matter.
The instanton and anti-instanton dyons considered

throughout are the lightest of a Kaluza-Klein tower with
higher winding numbers which carry larger actions (more
massive). We expect them to crystallize following a similar
pattern, albeit with higher windings. We expect this tower
of three-dimensional crystal arrangements along the extra
winding direction to be dual to a four-dimensional crystal
arrangement of monopoles and antimonopoles (or instan-
tons and anti-instantons by crystal duality), using the
Poisson duality suggested in [7]. Remarkably, the resulting
four-dimensional and semiclassical description at very low
temperature can be either described as instantonlike (topo-
logically charged) or monopolelike (magnetically charged)
as the two descriptions are tied by crystal duality.
The crystal is an idealized description of the strongly

coupled and dense phase as both the low temperature and
the quantum fluctuations cause it to melt. The melted form
of Fig. 7 resembles an ionic liquid with four species of ions

FIG. 6. (a) Typical diagrammatic contribution to the pair
correlation function hðrÞ where each hanging ring is −βV þ χ.
(b) Typical contribution to χa. (c) Typical contribution to χb.
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with strong local order. This semiclassical description of
the Yang-Mills state at very low temperature appears to
reconcile the instanton liquid model without confinement,
with the ’t Hooft–Mandelstam proposal with confinement.
In the former, the low temperature thermal state is com-
posed of a liquid of instantons and anti-instantons, while in
the latter it is a superfluid of monopoles and antimonopoles
with bions as precursors [7]. The dual descriptions allow
for a center-symmetric thermal state with both strong and
local topological and magnetic correlations.

A. Crystal energy

To assess the crystal contribution to the pressure at high
density, we first evaluate the interaction energy for the
crystal structure in Fig. 7. Consider the L instanton dyon
sitting in the center of the M cell. The interaction
summation within the L-lattice reads

2EL ¼
X

n1;n2;n3≠0
ð1 − ð−1Þn1þn2þn3ÞVðr⃗n1;n2;n3Þ: ð46Þ

The mutual interaction between the L- and M-lattice is

−2EML ¼
X

n1;n2;n3

ð1 − ð−1Þn1þn2þn3ÞV
�
1

2
r⃗111 þ r⃗n1;n2;n3

�
:

ð47Þ

In momentum space, these sums can be cast using the dual
lattice b⃗n ¼ 2π

a n⃗, using the identity

X
an

eip·an ¼
X
n

δðp − bnÞ: ð48Þ

The results are

2EL ¼
X
n

�
VðbnÞ−V

�
bnþ

π

a
ð1;1;1Þ

��

−2EML ¼
X
n

ð−1Þn
�
VðbnÞ−V

�
bnþ

π

a
ð1;1;1Þ

��
ð49Þ

where we made use of

eibn·
r111
2 ¼ ð−1Þn1þn2þn3 ¼ ð−1Þn: ð50Þ

Both the x-space sums (46) and (47) and the p-space sums
(49) can only be carried numerically. However, we note that
the x-sum is converging exponentially and can be approxi-
mated by the leading contribution involving only the
nearest neighbors,

EL ≡MELðãÞ ≈M

�
6VðãÞ − 4V

� ffiffiffi
3

p
ã

2

��
ð51Þ

with VðxÞ ¼ 1
αs
ð− 2

x þ 1Þe−x from (7) with CD ¼ 2. Here

we have set ã ¼ Ma, withM2 ¼ 2n
T and n ¼ 8πf. Note that

the total energy of the crystal is extensive:

EðN;MÞ ≈ 2NMEL

�
ã≡Ma ¼

�
M3V3

2N

�1
3

�
: ð52Þ

In Fig. 8 we show the behavior of (51) for αs ¼ 1. The bcc
configuration is bound for ã ¼ Ma ≈ 5, but the binding
energy is very small: EL=M ≈ −0.004.

B. Disordered crystal pressure

The pressure for a disordered crystal follows from the
corresponding partition function

ΩbccðãÞ ¼
X
N

ðV32πf̃Þ4N
ðN!Þ4 e−

2NM
T ELðãÞ ð53Þ

where we used the quantum and dressed fugacity 2πf̃ ¼
2πf

ffiffiffiffiffiffiffi
4νν̄

p
from (20). In the large N limit, the pressure

P ¼ lnΩbcc=V3 can be cast in the form

FIG. 7. Three-dimensional bcc crystal composed of the in-
stanton and antinstanton dyons with the lowest winding, for two
colors.

4 5 6 7 8 9 10
Ma

–0.004

–0.002

0.002

0.004

EL

M

FIG. 8. Crystal energy for the bcc arrangement EL=M versus
Ma as given in (51) with αs ¼ 1.
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PðãÞ
T3

≈ −
m4

ã3
ELðãÞ þ

2m3

ã3

�
1þ ln

�
ã3

ffiffiffiffiffi
νν̄

p

2m

��
ð54Þ

with m ¼ M=T (the ratio of the screening mass to the
temperature). The first contribution in (54) is the crystal
energy, and the second contribution is the entropy of the
competing trees at large density as discussed in Sec. IVA.
For large m (very low temperature) the pressure is domi-
nated by the crystal contribution, while for small m
(intermediate temperature) the pressure is dominated by
the entropy of the trees. In Fig. 9 we show the behavior of
the pressure PðãÞ versus ã for m ¼ 20 for the center-
symmetric case with ν ¼ 1

2
in the upper solid curve, while

the crystal contribution is shown as the lower solid curve,
and the tree contribution as the dashed curve. The pressure
is maximum at

Pmax

T3
¼ m2

2

ffiffiffiffiffiffiffi
4νν̄

p
e−

m
2
ðELðã⋆Þ−ã⋆3E0

Lðã⋆ÞÞ

×

�
1 −

mã⋆3
2

E0
Lðã⋆Þ

�
ð55Þ

with ã⋆ the solution to the transcendental equation

ã3⋆
ffiffiffiffiffi
νν̄

p

2m
¼ e

m
2
ðELðã⋆Þ−ã3⋆E0

Lðã⋆ÞÞ: ð56Þ

If we were to assume EL fixed at the crystal minimum and
constant as in Fig. 8, i.e., EL min ≈ −0.004, then (55)
simplifies

Pmax

T3
→

m2

2

ffiffiffiffiffiffiffi
4νν̄

p
e−

m
2
EL min ð57Þ

which is seen to interpolate between the resummed tree
contribution (29) at smallm (intermediate temperature) and
the crystal at large m (very low temperature). Due to the

small binding energy of the crystal shown in Fig. 8, the
crystal contribution takes over only when m

2
is large or very

high density (very low temperature). This is confirmed
numerically. Note that in both (54) and (57) the ratio m

2

plays the role of the Coulomb factor. It is rather large with
m
2
¼ 500 for the onset of the crystal.

VII. CONCLUSIONS

We have provided a many-body analysis of the instan-
ton-dyon liquid model in the center-symmetric phase. The
starting point of the analysis was a linearization of the
moduli interactions between like instanton dyons DD and
anti-instanton dyons D̄D̄, followed by a cluster expansion.
This reorganization of the many-body physics was shown
to be captured exactly by a three-dimensional effective
theory between charged particles. A semiclassical treatment
of this effective theory amounts to resumming the tree
contributions in the form of effective fugacities, while the
one-loop correction amounts to resumming all ring or
chain diagrams with effective fugacities. The tree or chain
contributions are found to yield a center-symmetric phase
even at a finite vacuum angle. They are dominant in the
range 1 ≤ m

2
≤ 10.

At very low temperature or large fugacities, an even
larger class of diagrams needs to be resummed. In this vein
we have carried the HNC resummation, as is commonly
used for dense and charged liquids, and used it to estimate
the pair correlation function around the DH approximation
in the dense instanton-dyon liquid. The very low temper-
ature phase is argued to be a melted bcc crystal with strong
local topological and magnetic correlations. A simple
description of the thermodynamics of an ensemble com-
posed of trees and bcc crystals shows that the treelike
contributions are dominant for most temperatures, with the
exception of the very low temperature regime where the
crystal arrangement is more favorable owing to its very
small binding.
In sum, our analysis supports the bionlike description in

[7] at low densities, and confirms the existence of a strongly
screened phase at higher densities in line with our earlier
investigations [1]. However, in contrast to [1], the present
analysis allows for a dynamical determination of the
confining holonomy in the dense regime to be 1

2
as assumed

in [1]. The resummation allowed for an explicit derivation
of the critical temperature as a function of the vacuum
angle, which for small angles is in agreement with currently
reported lattice results [14]. The (disordered) crystal
arrangement suggested in the very dense regime close to
the vacuum state at zero temperature implies dual roles for
instantons and monopoles as further detailed in [18].
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FIG. 9. Pressure (54) versus ã for m ¼ 20 and ν ¼ 1
2
(upper

solid curve). The separate contributions from the crystal [first
term in (54)] are shown as the lower solid curve, and the entropy
of the resummed trees [second term in (54)] is shown as the
dashed curve.
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APPENDIX: MOLECULAR DYNAMICS

Equation (1) describes a four-species ensemble of
charged particles in three spatial dimensions. For fixed
fugacity, the statistical ensemble described by (1) can be
recovered from ensembles of classically evolved electri-
cally and magnetically charged particles in three dimen-
sions by sampling over random initial conditions. All the
particles carry equal (dimensionless) mass mD ¼ f

2
3=2πT2

and move classically following the Newtonian paths
fixed by

mDẍn ¼ −
∂
∂xn

X
½i;ī�

ðVðxi − yīÞ − ln detG½xi�Þ

mDÿn̄ ¼ −
∂
∂yn̄

X
½i;ī�

ðVðxi − yīÞ − ln detG½yī�Þ: ðA1Þ

The first contribution is the Coulomb force stemming from
the streamline potential, while the second contribution
is the Coulomb force following from the moduli. The
latter is of the form TrðG−1∂nGÞ. It requires inverting G at
each time step, which may prove numerically costly for
molecular dynamics (MD) simulations. It also requires that
detG ≠ 0 for the inversion to be valid. For this the role of
the initial conditions is important [1].

To remedy some of these shortcomings, we recall that a
linearization of the effects induced by the moduli inter-
actions amounts to nonlinear Debye-Huckel interactions
between the pair D, D̄ as captured by (10), leading to
simpler MD equations

�
mDẍD
mD̄ẍD̄

�
¼

�− ∂
∂xD

− ∂
∂xD̄

� X
i¼1;2;DD̄

ViðxD − xD̄; θÞ: ðA2Þ

Here the massmD is for the pair D ¼ L,M andmD̄ ¼ m†
D

for the pair D̄ ¼ L̄, M̄ at finite vacuum angle

mD ≡ ðmL;mMÞ ¼ mDe
iθ
3 ðν2

3; ν̄
2
3Þ: ðA3Þ

The potentials in (A2) generalize (7) to finite vacuum angle

V1ðr; θÞ ¼ −V2ðr; θÞ

¼ −
CD

2αsr
ðe−Mreiθ=4þiθ þ e−Mre−iθ=4−iθÞ: ðA4Þ

Note that the MD analysis of (A2) for θ ≠ 0 is more
challenging as it generates complex trajectories.
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