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Three-body systems with short-range interactions display universal features that have been extensively
explored in atomic physics, but apply to hadron physics as well. Systems composed of two noninteracting
identical particles (species H) of massM and a third particle (species P) of massm that interacts attractively
with the other two have the property that they are more likely to bind for larger values of the mass ratio
M=m. This is particularly striking if the HHP system is in P-wave (while the interacting pair is in S-wave),
in which case one would not normally expect the formation of a three-body state. If we assume that the B�K̄
binds to form the B�

s1 heavy meson and notice that the mass ratio of the B� to K̄ is M=m ¼ 10.8, concrete
calculations indicate that there should be a three-body B�B�K̄ bound state between 30–40 MeV below the
B�
s1B

� threshold. For the ΞbbΞbbK̄ system the mass imbalance is about M=m ¼ 20.5 and two bound states
are expected to appear, a fundamental and an excited one located at 50–90 and 5–15 MeV below the
ΞbbΩ�

bb1
2

threshold (where Ω�
bb1

2

denotes the ΞbbK̄ bound state). We indicate the possibility of analogous

P-wave three-body bound states composed of two heavy baryons and a kaon or antikaon and investigate the
conditions under which the Efimov effect could appear in these systems.

DOI: 10.1103/PhysRevD.98.014022

I. INTRODUCTION

The three boson system in the unitary limit shows a
geometric spectrum of shallow bound states, the Efimov
effect [1]. In this limit, there is a geometric tower of three-
body bound states for which the ratio of the binding
energies of the nth and (nþ 1)-th excited state is given
by En=Enþ1 ≃ 512, a prediction that has been experimen-
tally confirmed with cesium atoms [2]. The existence of a
geometric spectrum extends to other three-body systems
where only two of the three particles interact resonantly
[1,3,4]. Recently it has been found that a similar geometric
spectrum might also arise in specific two-body hadronic
systems, for instance ΣcD̄� − Λc1D̄ and ΣcΞ0

b − Λc1Ξb [5].
Particularly interesting are three-body systems with a mass
imbalance in which we have two-identical particles of the
species H with massM and a third particle of the species P
with mass m. When the HH subsystem is noninteracting
and the HP subsystem is resonant, the three-body system
will eventually display a geometrical Efimov-like spectrum

if the ratio M=m is big enough [3,4], as observed in
experiments with lithium and cesium atoms [6]. This is not
such a surprise if the system is in S-wave, where there will
always be a geometric spectrum.1 But the cases in which
the system is in P-wave or higher is much more interesting,
as they are less trivial. For P-wave this happens for
M=m ≥ 13.6 while for D-wave the threshold is M=m ≥
38.6 [7]. Kartavtsev and Malykh also made the remarkable
discovery [8] that in the P-wave case there is a universal
three-body state for M=m ≥ 8.176 and a second one for
M=m ≥ 12.917. By universal it is meant that the binding
energies of these three-body bound states depend only on
the two-body binding energy.
The bottom-line is that three-body systems with large

mass imbalances are more likely to bind. This is particu-
larly interesting in view of the recent renaissance of heavy
hadron spectroscopy triggered by the discovery of the
Xð3872Þ [9] (which has been theorized to be a shallow two-
body bound state [10–12]). The DK and D�K systems
display a strong s-wave attraction that generates a bound
state at about 45 MeV below threshold [13–17]. These
bounds states are suspected to be the D�

s0ð2317Þ and
D�

s1ð2460Þ charmed mesons, partly because the DK and
D�K bind at the right location partly because of other
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reasons, like the fact that the masses of the D�
s0=D

�
s1 are

similar to (instead of markedly heavier than) those of the
D0=D1 charmed mesons or the analysis of the D�

s0=D
�
s1

wave function from lattice data [18,19]. Owing to heavy
flavor symmetry this idea extends to the BK̄ and B�K̄ cases,
which form the B�

s0 and B�
s1 mesons. Last, if we consider

heavy antiquark-diquark symmetry (HADS) [20–22] then a
new set of bound states involving ΞccK̄, Ξ�

ccK̄, ΞbbK̄ and
Ξ�
bbK̄ should appear, which we will call theΩ�

cc1
2

,Ω�
cc3

2

,Ω�
bb1

2

and Ω�
bb3

2

in analogy with the D�
s0, D

�
s1 notation. Owing to

the slightly larger reduced masses the binding energies are
also a bit bigger than in theDK andD�K cases, of the order
of 60–70 MeV [23]. In particular, if we consider the B�B�K̄
and ΞbbΞbbK̄=Ξ�

bbΞ�
bbK̄; the masses’ imbalances are

remarkable, 10.8 and 20.5, respectively (where for the
mass of the doubly bottom baryons we have used the lattice
QCD determination of Ref. [24]). This points out to the
possibility of P-wave three-body bound states. Concrete
calculations show that this is, indeed, the case for the
bottom hadrons, with B�B�K̄ binding about 30–40 MeV
below the B�

s1B
� threshold, where it is interesting to notice

that this state can also be predicted in a two-body
description involving the B�

s1B
� mesons interacting by

means of a one antikaon exchange potential [25]. For
the ΞbbΞbbK̄=Ξ�

bbΞ�
bbK̄ two bound states appear, a

shallow one with a binding of 5–15 MeV below the
Ω�

bb1
2

Ξbb=Ω�
bb3

2

Ξ�
bb threshold and a second one at 50–

90 MeV. Meanwhile the charmed mesons and doubly
charmed baryons are unlikely to bind in P-wave as a
consequence of the insufficient mass imbalance. Yet they
will likely bind in S-wave [25], as happen in other S-wave,
mass-imbalanced three hadron systems like the ρD�D̄�

[26], ρB�B̄� [27] and KD�D̄� [28] systems.
This idea also applies to other P-wave HHP hadron

systems with large masses imbalances. If we consider the H
hadron to be a bottom baryon and the P hadron to be a kaon
or antikaon, the HP interaction is of a Weinberg-Tomozawa
type and in a few cases might be strong enough as to bind
the HP subsystem [29]. If this is the case, this will likely
imply the existence of HHP bound states. At this point the
natural question arises of whether the P-wave Efimov effect
will be present in these systems if the HP interaction is
resonant. The answer is negative for two bottom baryon
plus a kaon/antikaon because the mass imbalance is not
large enough. However, from HADS [20], we expect the
existence of doubly heavy tetraquark partners of the heavy
baryons. If these doubly heavy tetraquarks are stable they
will be the perfect candidates. In this regard, we notice that
the recent discovery of a doubly charmed baryon by the
LHCb [30] strongly points towards the stability of doubly
heavy tetraquarks in the bottom sector [31,32].
The manuscript is structured as follows: after the

introduction, we explain the Faddeev equations for the
B�B�K̄ system in Sec. II. We discuss the conditions for

the appearance of the P-wave Efimov effect in Sec. III.
Then we show the predictions for B�B�K̄ and
ΞbbΞbbK̄=Ξ�

bbΞ�
bbK̄ P-wave three-body states in Sec. IV.

Finally, we present our conclusions at the end.

II. FADDEEV EQUATIONS FOR THE HHP
SYSTEM IN P-WAVE

Here we present the Faddeev equations for solving the
HHP bound state problem for the P-wave case. This is done
for the particular case of contact interactions. If the HP
system is B�K̄, ΞbbK̄ or Ξ�

bbK̄, the binding momentum of
the antikaon lies on the vicinity of 200 MeV. This is com-
parable with the mass of the antikaon, mK ¼ 495 MeV,
which means that relativistic kinematics might have a
moderate impact on the calculations. For this reason we
will present first the standard nonrelativistic Faddeev
equations and then we will explain how to include
corrections coming from the relativistic antikaon kinemat-
ics. Concrete calculations show that though relativistic
corrections are not negligible, they are not required at the
level of accuracy at which the HHP bound states can be
computed now.

A. The Equations

We begin with the Faddeev decomposition of the HHP
wave functions

Ψ3B ¼ ½ϕðk⃗23; p⃗1Þ − ϕðk⃗31; p⃗2Þ�
����1 ⊗

1

2

�
1=2

; ð1Þ

with particles 1, 2 and 3 corresponding to species H, H and
P (particles 1 and 2 are identical). This decomposition
indicates that the HH subsystem is antisymmetric in the
spatial coordinates, which implies it has odd orbital angular
momentum L12 ¼ 1; 3; 5;… with the L12 ¼ 1 component
dominant at low momenta. It also assumes that there is no
interaction in the HH subsystem, a hypothesis that we will
review in a few lines. The Jacobi momenta k⃗ij and p⃗k are
defined as usual,

k⃗ij ¼
mjk⃗i −mik⃗j
mi þmj

; ð2Þ

p⃗k ¼
1

MT
½ðmi þmjÞk⃗k −mkðk⃗i þ k⃗jÞ�; ð3Þ

with m1, m2, m3 the masses of particles 1, 2, 3 (we take
m1 ¼ m2 ¼ M and m3 ¼ m), MT ¼ m1 þm2 þm3 the
total mass and ijk an even permutation of 123. The ket
refers to the isospin wave function of the system in the
notation

jI12 ⊗ I3iIT ; ð4Þ
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where I12 is the isospin of particles 1 and 2, I3 the isospin
of particle 3 and IT the total isospin. The choice I12 ¼ 1,
IT ¼ 1

2
is the combination with the biggest overlap into the

I ¼ 0 channel of the HP subsystem, where the B�
s1 bound

state is expected to happen. The spin wave function is not
explicitly indicated: the B�’s are bosons, their isospin wave
function is symmetric and the spatial wave function is
antisymmetric, from which we deduce that S12 ¼ 1. The
coupling of the spin of the B� mesons with their orbital
angular momentum L12 ¼ 1 leads to the conclusion that the
quantum numbers of the three-body bound states are
JP ¼ 0þ, 1þ and 2þ. The same logic applies if we consider
the Ξbb and Ξ�

bb baryons, though in this case we have spin
1
2

and 3
2
fermions: we end up with S12 ¼ 1 or S12 ¼ 1, 3 for

the spin wave function, where the quantum numbers of the
states are JP ¼ 0þ, 1þ and 2þ for ΞbbΞbbK̄ and JP ¼ 0þ,
1þ, 2þ, 3þ and 4þ for Ξ�

bbΞ�
bbK̄.

The interaction in the HH subsystem is not zero but it is
expected to be small. The orbital angular momentum is
L12 ≥ 1, which effectively suppresses the short-range
components of the interaction (rho- and omega-exchange,
for instance). If we consider the long-range interaction
instead, which is given by the one pion exchange (OPE)
potential, we notice that the isospin of the HH subsystem is
I12 ¼ 1. The OPE potential is known to be weak in the
isovector configurations of the B�B� and B�B̄� systems, as
already pointed out in the seminal work of Törnqvist [33].
For the ΞbbΞbb system the strength of OPE is 1=9 of that of
the B�B� system, a result which can derived from HADS
(see Ref. [34] for instance). That is, OPE is suppressed for
the HH configurations we are considering here. This in turn
implies that the HH interaction is likely to be a perturbative
effect that we can neglect owing to the exploratory
character of the current calculations.
The HP interaction is of a short-range type. We can write

it as

V23 ¼ CgðkÞgðk0Þ; ð5Þ

where k, k0 are the initial and final relative momenta of
particles 2 and 3, while gðkÞ is the regulator function we are
using. From this potential the T-matrix is given by the
ansatz

T23ðZÞ ¼ τ23ðZÞgðkÞgðk0Þ; ð6Þ

where Z refers to the energy. The coupling C is determined
from the condition that τ23ðZÞ has a pole at the location of
the B�

s1 strange-bottom meson. For the Faddeev component
of the wave function there is the well-known ansatz

ϕðk⃗; p⃗Þ ¼ gðkÞ
Z − k2

2μ23
− p2

2μ1

a1ðpÞY1mðp̂Þ; ð7Þ

where Y1m is a spherical harmonic and μij and μk are
reduced masses defined as

1

μij
¼ 1

mi
þ 1

mj
; ð8Þ

1

μk
¼ 1

mk
þ 1

mi þmj
: ð9Þ

The wave function is fully determined by a1ðpÞ, for which
the Faddeev equations can be reduced to2

a1ðp1Þ ¼ −
3

4
τ23ðZ23Þ

Z
d3p⃗2

ð2πÞ3 B
1
12ðp⃗1; p⃗2Þa1ðp2Þ; ð10Þ

where Z23 ¼ Z − p2
1

2m1

MT
m2þm3

and B1
12 is given by

B1
12ðp⃗1; p⃗2Þ ¼

gðq1Þgðq2Þ
Z − p2

1

2m1
− p2

2

2m2
− p2

3

2m3

P1ðp̂1 · p̂2Þ; ð11Þ

where P1ðxÞ is a Legendre polynomial. We have that
p⃗1 þ p⃗2 þ p⃗3 ¼ 0 and

q⃗i ¼
mjp⃗k −mkp⃗j

mj þmk
; ð12Þ

with ijk an even permutation of 123. Once we have all the
pieces we can solve the eigenvalue equation by discretiza-
tion and obtain the energy of the bound states.

B. Inclusion of relativistic effects

Previously we have considered the kaons to behave
nonrelativistically. The binding momentum of the typical
HP bound states is close to 200 MeV. This indicates that
relativistic corrections to the kaon kinematics might
have a moderate impact on the three-body binding. The
derivation of relativistic Faddeev equations for systems
with contact-range interactions is not unique, a situation
which is analogous to what happens in the two-body
system [35–39]. Here we choose to follow the prescription
of Garcilazo and Mathelisch [40,41], which reproduces the
Kadyshevsky equation [35] for the two-body sector. We
adapt this prescription to the problem at hand, where the
only nonrelativistic particle is the kaon and the mass of the
heavy hadrons is considerably larger than the kaon energy.
This amounts to the following change in the two-body
propagator for the calculation of the two-body T-matrix,

2Notice that the integral equation for a1ðp1Þ does not include
the integration on the p̂1 angular variable. The reason is that it is
not required: the integrand on the right hand side of Eq. (10)
depends only on the angle between p⃗1 and p⃗2, which is already
taken care of by the integration on the p̂2 angular variable.
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1

Z − p2
2

2m2
− p2

3

2m3

→
m3

ω3ðp3Þ
1

Z − p2
2

2m2
− ϵ3ðp3Þ

; ð13Þ

plus the analogous modification for B1
12,

B1
12ðp⃗1; p⃗2Þ →

m3

ω3ðp3Þ
gðq1Þgðq2ÞP1ðp̂1 · p̂2Þ
Z − p2

1

2m1
− p2

2

2m2
− ϵ3ðp3Þ

; ð14Þ

with ω3ðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

3 þ q2
p

, where m3 ¼ mK is the kaon
energy and ϵ3ðqÞ ¼ ω3ðqÞ −m3. The advantage of this
prescription is that the changes are easy to implement from
the computational point of view.
Besides kinematics, another relativistic effect is that the

HP interaction is of a Weinberg-Tomozawa type, which is
not momentum independent as previously assumed. The
correct momentum dependence is indeed

V23 ¼ C

�
ω3ðkÞ þ ω3ðk0Þ

2m3

�
gðkÞgðk0Þ: ð15Þ

This potential can also be rewritten as

V23 ¼ C½1þ fðkÞ þ fðk0Þ�gðkÞgðk0Þ; ð16Þ

where fðkÞ ¼ ðω3ðkÞ −m3Þ=2m3. The T-matrix for this
potential admits a well-known ansatz

T23ðZÞ ¼ gðkÞgðk0Þ½τA23ðZÞ þ τB23ðZÞðfðkÞ þ fðk0ÞÞ
þ τC23ðZÞfðkÞfðk0Þ�; ð17Þ

plus the following ansatz for the Faddeev component,

ϕðk⃗; p⃗Þ ¼ gðkÞ½a1ðpÞ þ b1ðpÞfðkÞ�
Z − p2

1

2m1
− p2

2

2m2
− ϵðp3Þ

Y1mðp̂Þ; ð18Þ

where p1 ¼ p, p2 ¼ k −m2p=ðm2 þm3Þ and p3 ¼ −k−
m3p=ðm2 þm3Þ. This leads to a different set of Faddeev
equations:

a1ðp1Þ ¼ −
3

4

Z
d3p⃗2

ð2πÞ3 ½τ
A
23 þ τB23fðq1Þ�B1

12ðp⃗1; p⃗2Þ

× ða1ðp2Þ þ b1ðp2Þfðq2ÞÞ; ð19Þ

b1ðp1Þ ¼ −
3

4

Z
d3p⃗2

ð2πÞ3 ½τ
B
23 þ τC23fðq1Þ�B1

12ðp⃗1; p⃗2Þ

× ða1ðp2Þ þ b1ðp2Þfðq2ÞÞ; ð20Þ

where the τðA;B;CÞ23 components of the T-matrix are evaluated
at Z ¼ Z23.

III. THE EFIMOV EFFECT IN THE
HHP SYSTEM

Now we consider the Faddeev equations in the unitary
limit, i.e., when the binding energy of the HP state
approaches zero. For Z → 0 and momenta p1, p2 well
below the cutoff we have the simplifications

τ23ðZ23Þ → −
2π

μ23

ffiffiffiffiffiffiffi
μ23
μ1

r
1

p1

; ð21Þ

Z
d2p̂2

4π
B1
12 → þ m

p1p2

Q1

�
M þm
2M

p2
1 þ p2

2

p1p2

�
; ð22Þ

where Q1ðzÞ is a Legendre function of the second kind,

Q1ðzÞ ¼
z
2
log

zþ 1

z − 1
− 1: ð23Þ

If we ignore the purely polynomial terms in p1 and p2, we
end up with the equation

p3
1aðp1Þ ¼

3

4

1

π

ffiffiffiffiffiffiffi
μ1
μ23

r �
M þm
2M

�
2
Z

∞

0

dp2aðp2Þ

× ðp2
1 þ p2

2Þ log
�
p2
1 þ p2

2 þ 2M
Mþmp1p2

p2
1 þ p2

2 − 2M
Mþmp1p2

�
: ð24Þ

If we assume a solution of the type aðpÞ ¼ bðpÞ=p3 with
bðpÞ ¼ ps, we find the eigenvalue equation

1 ¼ 3

4

1

π

ffiffiffiffiffiffiffi
μ1
μ23

r �
M þm
2M

�
2

×
Z

∞

0

dxxs−3ð1þ x2Þ log
�
1þ x2 þ 2M

Mþm x

1þ x2 − 2M
Mþm x

�

¼ 3

4
I1EðsÞ: ð25Þ

The integral I1EðsÞ is analytically solvable [7],

I1EðsÞ ¼
1

2sin2α cos α

�
1

is − 1

sin ½ðis − 1Þα�
cos ½ðis − 1Þ π

2
�

þ 1

isþ 1

sin ½ðisþ 1Þα�
cos ½ðisþ 1Þ π

2
�
�
; ð26Þ

where α is

α ¼ asin
�

1

1þ δ

�
; ð27Þ

with δ ¼ m=M the inverse of the mass imbalance. For
M=m ≥ 20.587 the eigenvalue equation admits complex
solutions of the type s ¼ �is1, indicating the existence of
an Efimov geometric spectrum.
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If we consider the BK̄ and ΞbbK̄ cases, the existence
of a geometrical spectrum is a theoretical possibility rather
than a practical one: these systems are too tightly bound to
show this type of universality. Yet there are many hadrons
in with the Weinberg-Tomozawa interaction with a kaon
or antikaon might result in a bound state [42–46]. The
isospin structure can be different, leading to the eigenvalue
equation

1 ¼ cII1EðsÞ; ð28Þ

where cI is an isospin factor that depends on the particular
case under consideration. A few examples with a strongly
attractive Weinberg-Tomozawa term include the Ξ0

QK,
ΩQK and ΣQK̄ [29]. The isospin factors and masses
imbalances required for the P-wave Efimov effect are listed
in Table I, where the relative strength of the Weinberg-
Tomozawa term has also been included. For the Ξ0

bΞ0
bK

system the isospin factor is identical to that of BBK and

ΞbbΞbbK̄, i.e., cI ¼ 3
4
. For the ΩQΩQK system the isospin

factor is cI ¼ 1 and the mass imbalance required for a
geometrical spectrum is the standard 13.6. This is to be
compared with a mass imbalance of 12.1 for the ΩbK case.
For the ΣQΣQK̄ system the isospin factors are 2

3
and 5

6
for

total isospin I ¼ 1
2
and I ¼ 3

2
, respectively, which require

mass imbalances of 24.5 and 17.7. This limit is, however,
not reached forQ ¼ b, in which case the mass imbalance is
11.7 for both the Σb and Σ�

b. Notice that the previous HP
molecules are expected to have a finite width: the Ξ0

QK
system can decay into ΣQπ, while the ΣQK̄ and ΩQK can
both decay into Ξ0

Qπ. Their corresponding HHP bound
states will also have a finite width.
From HADS [20], we naively expect the existence of

doubly heavy tetraquark TQQ partners of the TQ ¼ ΛQ=ΞQ
and SQ ¼ ΣQ=Ξ0

Q=ΩQ heavy baryons. The Weinberg-
Tomozawa interactions for the doubly heavy tetraquarks
will be identical to those of the heavy baryons, but their
mass imbalances will be about twice as high as the ones
listed in Table I. This means that the TQQTQQP system is a
possible candidate for the P-wave Efimov effect in hadronic
physics. However, the existence of strongly and electro-
magnetically stable tetraquarks is not guaranteed, as it
depends on their locations being below the relevant open
charm/bottom thresholds [48]. In this regard, it has been
pointed out that the actual location of the doubly charmed
Ξþþ
cc baryon, recently observed by the LHCb Collabora-

tion [30], suggests the stability of the doubly bottomed
tetraquarks [31,32].

IV. THREE-BODY B�B�K̄ STATES

Now we calculate the location of the HHP bound states
for H ¼ B=Ξbb=Ξ�

bb and P ¼ K̄. For that we need to know
the location of the HP bound states, which is not available
experimentally except for the DK and D�K cases (unfortu-
nately these two systems do not have a large enough mass
imbalance to form a P-wave bound state). From heavy
flavor symmetry, we expect, however, the BK̄ and B�K̄
potential to be identical to that of the DK and D�K. The
same is true for ΞbbK̄ if we consider HADS. Besides, the
strength of the Weinberg-Tomozawa terms should also be
identical in all these HP systems, thus cementing the
previous conclusions obtained from heavy quark sym-
metry. The only difference with the DK and D�K systems
is that the reduced mass is a bit larger, approaching the kaon
mass in the mQ → ∞ limit. There are a few theoretical
calculations of the masses of the aforementioned HP
systems, which are usually inside the 60–70 MeV window
[14,15,23]. Here, for consistency wewill simply recalculate
the location of the HP partners of theDK andD�K systems
from the assumption that the binding energies of the later
are known. We will do two calculations, a nonrelativistic
and a relativistic one. For the nonrelativistic one, we use the
potential

TABLE I. P-wave HHP three-body systems with large mass
imbalances where the Weinberg-Tomozawa interaction of the HP
subsystem might be able to produce binding. The relative strength
of the Weinberg-Tomozawa is denoted by CWT. This leads to the
coupling C ¼ CWT=2f2π in the potentials of Eqs. (5) and (15). The
approximate binding energy—if known—of the HP system is
shown in the column BHP: the NK̄ value is taken from Ref. [42],
the B�K̄ from Ref. [23] and the ΞbbK̄ value is deduced from
HADS. For the masses of the experimentally observed heavy
hadrons we use the isospin average of the values listed in the PDG
[47], i.e., MðB�Þ ¼ 5325 MeV, MðΞ0

bÞ ¼ 5935 MeV, MðΣbÞ ¼
5813 MeV andMðΩbÞ ¼ 6046 MeV. For the mass of the doubly
bottom baryon Ξbb we use the central value of the lattice
calculation of Ref. [24], i.e., MðΞbbÞ ¼ 10127 MeV. We con-
sider the HHP and HP systems to have isospin IT and I12,
resulting in the isospin factor cI. If the HP system happens to bind
near the threshold and the mass imbalance (M=m) of the H
hadron and the P pseudo Nambu-Goldstone boson is larger than
the critical value ðM=mÞcrit, the HHP system might display the P-
wave Efimov effect. Even though for the heavy hadrons listed
above the mass imbalance does not reach the critical value, it is
probable for these systems to have three-body bound states as the
ones we have computed for the B�B�K and ΞbbΞbbK̄=Ξ�

bbΞ�
bbK̄

systems. From HADS, we expect the Ξ0
Q, ΣQ and ΩQ heavy

baryons to have doubly heavy tetraquark partners TQQ, leading to
mass imbalances twice as big as the ones listed in this table.

HHP CWT BHP (MeV) IT I12 cI (M=m) ðM=mÞcrit
NNK̄ −3 8 1

2
1 3

4
1.9 20.6

B�B�K −2 60–70 1
2

1 3
4

10.8 20.6
ΞbbΞbbK̄ −2 60–70 1

2
1 3

4
20.5 20.6

Ξ0
bΞ0

bK −2 N=A 1
2

1 3
4

12.0 20.6
ΣbΣbK̄ −3 N=A 1

2
1 2

3
11.7 24.5

3
2

2 5
6

11.7 17.7
ΩbΩbK −2 N=A 1

2
0 1 12.1 13.6
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VNR ¼ CðΛÞgΛðk0ÞgΛðkÞ; ð29Þ

where CðΛÞ is a running coupling constant and gΛðkÞ ¼
e−ðk2=Λ2Þn is a gaussian regulator with n ¼ 2. For the
relativistic calculation we will include the correct
Weinberg-Tomozawa energy dependence

VR ¼ CðΛÞωKðkÞ þ ωKðk0Þ
2mK

gΛðk0ÞgΛðkÞ; ð30Þ

with ωKðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K þ q2
p

, where we also modify the two-
body propagator in line with Eq. (13). We choose the cutoff
to float in the Λ ¼ 0.5–1.0 GeV window, i.e., a cutoff
around the breakdown scale of the previous description
(which is set by the vector meson mass mρ ¼ 0.77 GeV).
Now if we fix the DK and D�K binding to 45 MeV, in
the nonrelativistic case we obtain a binding energy of
57–74 MeV and 60–83 MeV for the B�K̄ and ΞbbK̄
molecules. In the relativistic case, these numbers increase
a bit to 59–81 MeV and 66–93 MeV, respectively. For the
three-body system, we define the binding energy with
respect to the particle-dimer threshold, that is, with respect
to 2M þm − B2. This means that the location of the
three-body bound states is

MðHHPÞ ¼ 2M þm − B2 − B3: ð31Þ

With this definition the B�B�K̄ binding energy lies in the
range of 32–42 MeVand 32–33 MeV for the nonrelativistic
and relativistic cases, respectively. For the ΞbbΞbbK̄ mol-
ecules we find a fundamental and excited state at 50–90
and 8–14 MeV for nonrelativistic antikaons and 52–83 and
2–14 MeV for relativistic antikaons. These results are
summarized in Table II.

In the previous calculations, we have treated CðΛÞ as a
running coupling constant. Yet its strength is expected to be
given by

C ¼ CWT

2f2π
; ð32Þ

with CWT ¼ −2, where we take the fπ ¼ 132 MeV nor-
malization. This suggest a different approach: to treat the
couplingC as known and to choose a cutoff that reproduces
the location of the DK and D�K poles. In this case, we
obtain ΛWT ¼ 0.892 and 0.823 GeV for the relativistic and
nonrelativistic cases. If we redo the calculations for this
“privileged” cutoff, the B�K̄ and B�B�K̄ lie now at

BNR
2 ¼ 71 MeV and BNR

3 ¼ 40 MeV; ð33Þ
BR
2 ¼ 72 MeV and BR

3 ¼ 30 MeV; ð34Þ
depending on whether we are using relativistic or non-
relativistic kinematics. Meanwhile, for the ΞbbK̄ and
ΞbbΞbbK̄ systems, we have

BNR
2 ¼ 78 MeV and BNR

3 ¼ 9=81 MeV; ð35Þ
BR
2 ¼ 79 MeV and BR

3 ¼ 4=67 MeV; ð36Þ
where we remind that there is an excited and a fundamental
ΞbbΞbbK̄ state.
For comparison purposes, we can consider the case of

the Λð1405Þ, which is traditionally considered to be a NK̄
bound state. The strength of the WT term is CWT ¼ −3 for
this system. The Λð1405Þ is known to have a double pole
structure [43,44], which comes from the fact that the NK̄
channel mixes with the Σπ channel and where the two
channels are attractive enough to generate a pole with the
quantum numbers of the Λð1405Þ. One of the poles is
mostly an NK̄ bound state. If we ignore the Σπ channel, we
end up with a standard bound state which is estimated to be
located at 1427 MeV [42], i.e., a binding energy of 8 MeV.
The cutoffs for which this Λð1405Þ pole is reproduced
with the formalism presented here are ΛWT ¼ 0.596 and
0.571 GeV for nonrelativistic and relativistic antikaon
kinematics, which are markedly lower than in the DK
and D�K systems. The conclusion is that we are not really
sure about what is the exact cutoff to use in the Ξ0

QK, ΣQK̄
and ΩbK systems, but we can expect it to be somewhere in
between the two values that we have deduced from the NK̄
and DK=D�K systems. That is, we expect the cutoff to be
somewhere in the Λ ¼ 0.6–0.9 GeV window. As a matter
of fact, for Λ ¼ 0.6 MeV all the HP two-body system of
Table I (Ξ0

bK, ΣbK̄ and ΩK) bind and the same is true for
the HHP P-wave three-body systems. For Λ ¼ 0.9 GeV the
binding energies can in a few cases—in particular the ΣbK̄
system—be of the order of a few hundred MeV, clearly
outside the expected range of validity of the type of

TABLE II. Two- and three-body binding energies in MeV for
the B�B�K̄ and ΞbbΞbbK̄=Ξ�

bbΞ�
bbK̄ for different values of the

cutoff and depending on the kinematics (nonrelativistic and
relativistic, indicated by the superscripts NR and R). The
two-body binding energy B2 refers to the hadron-antikaon
system, while the three-body binding energy B3 is computed
with respect to the two-body binding threshold, i.e., with respect
to (2M þm − B2) with M the mass of the hadron and m the
mass of the antikaon. We make no difference between the
ΞbbΞbbK̄=Ξ�

bbΞ�
bbK̄ systems as there is no noticeable change

in the predicted binding energies owing to the similar masses of
the Ξbb and Ξ�

bb baryons, MðΞbbÞ ¼ 10127 MeV and MðΞ�
bbÞ ¼

10151 MeV according to Ref. [24].

HHP BNR
2 BNR

3 BR
2 BR

3

B�B�K̄ 57–74 32–42 59–81 32–33
ΞbbΞbbK̄ 60–83 8–14 66–93 2–14

50–90 52–83
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description we are using. The conclusion is that the spread
generated by the cutoff variation is excessively large:
reliable predictions cannot be done until we find a suitable
heavy baryon and kaon/antikaon bound state from which to
fix the contact interaction or the cutoff. For this reason we
will refrain to do concrete predictions about these systems
in this work, except noting their probable existence.

V. CONCLUSIONS

In this work, we have considered the P-wave three-body
B�B�K̄ system. In this system, the B�K̄ interaction is strong
enough as to generate a bound state, the B�

s1. In addition,
the mass imbalance between the B� and the K̄ is remark-
able, a feature that points out to the possibility of P-wave
three-body bound states. Concrete calculations indicate that
there are indeed P-wave B�B�K̄ bound states with quantum
numbers JP ¼ 0þ, 1þ and 2þ located at 30–40 MeV below
the B�Bs1 threshold. Owing to heavy antiquark-diquark
symmetry [20–22] this idea can be easily extended to the
ΞbbΞbbK̄ system, where there are two bound states as a
consequence of the larger mass imbalance. In this latter
case, the excited and fundamental states are located about
5–15 and 50–90 MeV below the ΞbbΩ�

bb1
2

threshold, where

Ω�
bb1

2

refers to the theorized ΞbbK̄ bound state. In general,

the antikaon can be treated nonrelativistically in these
three-body systems, with relativistic corrections playing
a minor role, as we have explicitly checked with calcu-
lations. As a consequence of the isospin and angular
momentum of the B�B�, ΞbbΞbb and Ξ�

bbΞ�
bb subsystems,

the possible interaction between the heavy hadrons is
expected to have a very limited impact on the location
of the three-body states. It is interesting to notice that the
B�B�K̄ state can also be predicted in a complimentary two-
body description, in which case we consider a B�Bs1 pair
interacting by means of a one antikaon exchange potential
[25]. In this interpretation, the location of the bound states
is a bit more shallow, about half the binding energy
computed here. Nonetheless these figures are still compat-
ible with the calculations presented here.
This idea could also apply to other HHP systems,

particularly if we consider that the Weinberg-Tomozawa
interaction between a hadron and a pseudo Nambu-
Goldstone boson can be strong in some cases. A few
candidate HP systems include the Ξ0

QK,ΩQK and the ΣQK̄.
If we consider heavy antiquark-diquark symmetry and the
observation that the recent discovery of the Ξþþ

cc doubly
charmed baryon [30] probably implies the existence of
doubly heavy tetraquarks in the bottom sector [31,32],
there is the possibility of a tetraquark-tetraquark-kaon/
antikaon three-body system capable of fulfilling the con-
ditions for the P-wave Efimov effect.
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