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We provide a first calculation of the complete next-to-leading order QCD corrections for heavy flavor
contributions to the inclusive structure function g1 in longitudinally polarized deep-inelastic scattering. The
results are derived with largely analytical methods and retain the full dependence on the heavy quark’s
mass. We discuss all relevant technical details of the calculation and present numerical results for the heavy
quark scaling functions. We perform important crosschecks to verify our results in the known limit of
photoproduction and for the unpolarized electroproduction of heavy quarks. We also compare our
calculations to the available, partial results in the polarized case, in particular, in the limit of asymptotically
large photon virtualities, and analyze the behavior of the scaling functions near threshold. First steps
towards phenomenological applications are taken by providing some estimates for inclusive charm
production in polarized deep-inelastic scattering at a future electron-ion collider and studying their
sensitivity to the polarized gluon distribution. The residual dependence of heavy quark electroproduction
on unphysical factorization and renormalization scales and on the heavy quark mass is investigated.
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I. INTRODUCTION AND MOTIVATION

Heavy quarks (HQ) are an important and versatile
laboratory for probing different aspects of quantum
chromodynamics (QCD) [1] ranging from the heavy
flavor content of nucleons and the hadronization of
heavy quarks into heavy mesons or baryons to particular
details of the dynamics of QCD hard scattering proc-
esses. The heavy quark mass m acts as a natural
regulator in perturbative calculations of otherwise sin-
gular kinematic configurations and renders, for example,
the notion of a total heavy quark production cross
section meaningful. On the other hand, keeping the
full dependence on the heavy quark’s mass throughout
higher order calculations within perturbative QCD
(pQCD) significantly complicates, for instance, analyti-
cal phase-space integrations. Unlike for massless QCD
processes, HQ cross sections start to depend on at least
two energy scales, the HQ’s mass and some other
kinematic quantity characterizing the process such as
the virtuality Q of the exchanged virtual photon γ� in

deep-inelastic scattering (DIS) or the HQ’s transverse
momentum pT in hadron-hadron collisions.
Multiscale problems demand extra care as they may

require all-order resummations in certain regions of phase-
space depending on the hierarchy of the relevant scales.
In case of HQ production in DIS, which we consider in
this paper, this is intimately linked with the question of
how to define and treat HQ parton densities properly in
the entire range of Q2 [2,3] from the threshold, Q2 ≃m2,
to the asymptotic regime, Q2 ≫ m2. In general, one
deals with the question of how to match a theory with
nlf light quark flavors and one HQ to a theory with nlf þ 1

massless flavors by resumming logarithms of the type
αlslnkðQ2=m2Þ, 1 ≤ k ≤ l in each order of perturbation
theory. Thereby one introduces a HQ parton density at
some matching scale μ. In order to achieve a unified
description for HQ production for all values ofQ2, different
types of general-mass variable flavor number schemes
(GM-VFNS) have been proposed [2,3] and adopted in
the various global fits of unpolarized parton distribution
functions (PDFs) that are currently available. No such
schemes have been considered and invoked so far in case of
helicity-dependent PDFs that can be accessed, for instance,
in the DIS of longitudinally polarized lepton beams off
longitudinally polarized nucleons. The kinematics of
existing data [4] is such that even the charm contribution
is negligible, albeit nonzero, and, hence, sets of helicity
PDFs are usually extracted with either nlf ¼ 3 light quarks
only or within a naive zero-mass variable flavor number
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scheme (ZM-VFNS) that neglects all mass effects for heavy
flavors [5,6]. In addition, the required theoretical expres-
sions for HQ production in helicity-dependent DIS with the
full dependence on the HQ mass are still lacking, a gap that
will be closed in this paper.
In quantitative, phenomenological studies of the nucleon

structure in terms of PDFs, data on HQ production draw
their particular relevance from the pronounced dominance
of gluon-induced production processes already at the
lowest order (LO) approximation in pQCD. In case of
DIS, only photon-gluon fusion (PGF) contributes at the
Born approximation, which makes it particularly sensitive
to the gluon distribution. Therefore, data on the charm
contribution to the DIS structure function F2 taken at the
DESY-HERA lepton-proton collider [7] are utilized in all
global analyses of unpolarized PDFs [2,3]. At small
momentum fractions x the charm contribution to the DIS
cross section amounts to about 25% and, hence, must be
treated properly in phenomenological analyses of PDFs,
i.e., at least the full next-to-leading order (NLO) QCD
corrections are required.
In case of spin-dependent PDFs [5,6], the gluon helicity

density Δgðx;Q2Þ is still completely unconstrained at low
momentum fractions x due to the lack of data, which
prevents one from answering one of the most topical
questions in nuclear physics, namely what is the net
contribution of gluons to the spin of the proton, i.e., what
is the value of its first moment

R
1
0 Δgðx;Q2Þdx. Recent data

from polarized proton-proton collisions at BNL-RHIC [8]
have revealed first evidence for a sizable contribution to the
integral at medium-to-large values of x [9], but nothing can
be said about Δgðx;Q2Þ for x values smaller than about
0.01. Among other measurements, data on HQ production
in polarized DIS at small x, i.e., to the relevant spin-
dependent structure function g1ðx;Q2Þ, would prove to be
very useful in addressing this question further. The
planned, high-luminosity electron-ion collider (EIC) in
the U.S. [10], whose physics case and technical realization
is currently under scrutiny, would uniquely offer, for the
first time, access to a broad kinematic regime of small-to-
medium momentum fractions x in a range of Q2, where
heavy quark, in particular, charm, contributions to g1 in
polarized DIS could be sizable and, hence, experimentally
accessible within meaningful uncertainties.
Expected helicity-dependent data from the EIC in the

phenomenologically relevant small-x regime, say, below
x ≃ 0.01 would be available at rather modest values of Q2,
i.e., far from the asymptotic regime Q2 ≫ m2 for HQ
production in DIS. Hence, to describe HQ electroproduc-
tion in polarized DIS at an EIC reliably in pQCD the exact
dependence on the HQ mass m must retained. In addition,
the full NLO QCD corrections have to be computed and
taken into account in quantitative analyses. In general,
NLO corrections to processes involving heavy quarks are
often known to be sizable and not uniform in the relevant

kinematic variables x, Q2, or pT. In any case, they are
needed to accurately estimate HQ yields quantitatively and
to turn them into useful constraints onto PDFs by reducing,
e.g., the theoretical uncertainties associated with unphys-
ical renormalization and factorization scales.
In this paper we complete the suite of NLO calculations

of heavy flavor production with longitudinally polarized
beams and targets. While complete NLO results for both
photo- [11–13] and hadroproduction [14] are available in
the literature for quite some time now, NLO corrections for
the heavy contribution to the inclusive DIS structure
function g1 are still lacking apart from the known analytic
expressions in the asymptotic limit Q2 ≫ m2 [15] and
analytic results for the genuine NLO Compton-like light
quark-induced subprocess [15,16]. We note that the LO
expression for polarized photon-gluon fusion has been
computed in [17,18] a long time ago.
To perform our NLO calculations that retain the full

dependence on the HQ massm, we follow closely the semi-
analytical methods used in the computation of the corre-
sponding unpolarized inclusive HQ electroproduction at
NLO accuracy in Ref. [19]. Angular phase-space integra-
tions for the partonic subprocesses are performed largely
analytically but, in general, two remaining integrations as
well as the convolution with the helicity parton densities
have to be done numerically. Singularities in intermediate
steps of the calculations are made manifest in dimensional
regularization as poles in 1=ϵ2 and 1=ϵ, i.e., we choose
to work in n ¼ 4þ ϵ dimensions and only take the limit
ϵ → 0 in the end to arrive at the final, finite expressions for
the NLO HQ coefficient functions for polarized inclusive
electroproduction. The Dirac matrix γ5 and the Levi-Civita
tensor that appear throughout the calculations are dealt with
in the commonly used ’t Hooft-Veltman-Breitenlohner-
Maison (HVBM) prescription [20] which leads to some
well-known subtleties in n-dimensional phase-space
integrals [18].
As an important check on the correctness of our new

NLO expressions, we rederive also the HQ coefficient
functions relevant for the unpolarized DIS structure func-
tions F2 and FL and compare them to the known results in
the literature [19]. To this end, we introduce a notation
throughout the paper that covers both polarized and
unpolarized coefficient functions in a compact way. In
the polarized case, we shall compare the results of our full
NLO calculation to the above mentioned partial, analytical
results, namely the partonic cross section for γ�-light quark
Compton scattering [15,16] and the expressions in the limit
Q2 ≫ m2 [15]. We also take the limit Q2 → 0 whenever
possible to check our expressions against the known results
in the limit of photoproduction given in Ref. [11].
At the partonic level, we will present numerical results

for all virtual photon-parton cross sections at Oðα2sÞ,
i.e., the HQ scaling functions at NLO accuracy in the
strong coupling αs, as a function of the available partonic
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center-of-mass system (c.m.s.) energy s for various values
of the ratio ξ≡Q2=m2. Compact analytical expressions are
given whenever possible, otherwise results are available
upon request. In addition, we compare numerically to the
known results for both polarized photoproduction [11] and
the unpolarized HQ scaling functions. The latter are
relevant for the computation of the DIS structure functions
F2 and FL [19,21,22]. The behavior of the HQ scaling
functions close to threshold is analyzed in some detail, and
analytical expressions are provided up to the sublead-
ing level.
As we have already mentioned, our results will be of

particular relevance for studies of longitudinally polarized
DIS at a future EIC, in particular, for global QCD analyses
aiming at a much improved extraction of the elusive
gluon helicity density in the small x regime. As a first
phenomenological application, we provide some numerical
estimates for the charm contribution to g1 and the exper-
imentally relevant double-spin asymmetry A1 in the kin-
ematic domain accessible to a future EIC and shall
comment on their sensitivity to Δgðx;Q2Þ. To get an idea
of the theoretical uncertainties inherent to the polarized
electroproduction of HQ at NLO accuracy, we investigate
the residual dependence of our results on the unphysical
factorization and renormalization scales as well as on the
choice of the HQ mass m. The obtained NLO expressions
for HQ production in spin-dependent DIS will help to
revisit and supplement existing studies of the expected
impact of EIC data on furthering our knowledge of the spin
structure of nucleons in terms of helicity PDFs [23].
Finally, as an outlook, we mention further extensions of
our NLO calculations to more exclusive HQ distributions
and correlations [24], again, performed along the lines of
already existing computations for the corresponding unpo-
larized expressions [22,25].
The remainder of the paper is organized as follows: in

Sec. II we present the necessary technical framework and
notation adopted in our calculations. We discuss the various
γ�-gluon and γ�-light quark induced contributions to the
polarized electroproduction of HQs comprising real emis-
sion and virtual one-loop corrections and how the renorm-
alization and mass factorization are performed. In Sec. III
we show numerical results for the polarized HQ scaling
functions and discuss comparisons to various existing
results in the literature. We also elaborate a bit on the
threshold and high energy limits of the partonic coefficient
functions. Some first phenomenological studies relevant for
an EIC are presented in Sec. IV including discussions of
theoretical uncertainties due to variations of the renormal-
ization and factorization scales and the actual value of the
HQ mass used in the calculations. We summarize the main
results in Sec. V and present an outlook to related work in
progress. Finally, the two Appendices collect some analytic
expressions that are too lengthy for the main body of
the paper.

II. TECHNICAL FRAMEWORK

A. General remarks, kinematics, and notation

We will study heavy flavor production in longitudinally
polarized deep-inelastic lepton-nucleon scattering, more
specifically, the NLO QCD corrections to the relevant,
underlying virtual photon-parton scattering cross sections
and, in particular, the corresponding, HQ contributions to
the inclusive, spin-dependent DIS structure function
g1ðx;Q2Þ. We limit ourselves to the neutral current process
mediated by the exchange of a virtual photon γ�ðQ2Þ,
where Q2 ≡ −q2 ≪ M2

Z with MZ the mass of the Z boson.
Therefore, we need to compute the partonic processes

γ�ðqÞ þ iðk1Þ → Qðp1Þ þ Q̄ðp2Þ þ jðk2Þ; ð1Þ
where q, k1, k2, p1, and p2 label the four-momenta of the
virtual photon scattering off a parton i and producing a heavy
quark-antiquark pair, Q and Q̄, and, at NLO accuracy, up to
one additional parton j. In (1), i and j can be both either a
gluon g or a light (anti)quark q (q̄). As is customary, we
adopt the on-shell scheme for the mass of the HQs, hence m
denotes their pole mass, i.e., p2

1 ¼ p2
2 ¼ m2. In this paper, as

in Ref. [19], we are interested in the single-inclusive DIS
cross section for a detected heavy antiquark Q̄ðp2Þ, hence,
all other final-state particles in Eq. (1) are integrated out. The
corresponding cross section for an observed heavy quark Q
can be derived from our results by some appropriate
substitutions as we shall discuss later.
The usual kinematical variables for HQ electroproduc-

tion (1) are

s ¼ ðqþ k1Þ2
t1 ¼ t −m2 ¼ ðk1 − p2Þ2 −m2;

u1 ¼ u −m2 ¼ ðq − p2Þ2 −m2; ð2Þ
and, for convenience, we also define s0 ≡ s − q2 and
u01 ≡ u1 − q2. The relevant virtual photon-parton scattering
cross sections schematically read

d2σkðs; t1; u1; q2; m2Þ
dt1du1

¼ b̃kðnÞP̂γ
k;μμ0W

μμ0 ; ð3Þ

where b̃kðnÞ is the required normalization factor to
be specified below. The d2σk can derived from the
helicity-dependent partonic tensor Wμμ0, see, for instance,
Ref. [18,26], by applying appropriate projection operators
[18,19] P̂γ

k;μμ0 , k ∈ fG;L; Pg:

P̂γ
G;μμ0 ¼ −gμμ0 ;

P̂γ
L;μμ0 ¼ −

4q2

s02
k1;μk1;μ0 ;

P̂γ
P;μμ0 ¼ iεμμ0ρρ0

qρkρ
0

1

s0
: ð4Þ
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The Lorentz indices μ and μ0 in (3) and (4) refer to the
virtual photon originating from the scattered lepton l0 in
inclusive DIS lðlÞ þ NðPÞ → l0ðl0Þ þ X, which deter-
mines both the momentum q ¼ l − l0 exchanged by the
virtual photon as well as the Bjorken scaling variable
x ¼ −q2=ð2P · qÞ where P is the four-momentum of the
nucleon N.
The operators in Eq. (4) project onto the different

partonic cross sections or Lorentz structures that appear
in the partonic tensor Wμμ0 when the helicity of the
incoming parton i in (1) is not averaged over. k ¼ G
and k ¼ L refer to the usual unpolarized cross sections
for HQ electroproduction that have been calculated up to
NLO accuracy in Ref. [19]. The related transverse (k ¼ T)
partonic cross section is then obtained by

d2σT ¼ d2σG þ b̃GðnÞd2σL: ð5Þ

For k ¼ P one projects onto the helicity-dependent par-
tonic cross section d2σP that appears in the antisymmetric
part of Wμμ0 , for which we will compute the full NLO
corrections for the first time in this paper. We note that d2σP
is usually denoted as d2Δσ in the literature as it actually
refers to the measuring the difference of parallel and
antiparallel alignments of the lepton and nucleon spins
in DIS.
Upon further integration over t1 and u1 the different

projections k in (3) lead to the HQ contributions to the
customary unpolarized and polarized hadronic DIS struc-
ture functions, F1;2;Lðx;Q2Þ and g1ðx;Q2Þ, respectively,
which can be measured in experiment and dependent only
on the DIS variables x andQ2. More specifically, k ¼ T, L,
and P correspond to 2xF1, FL, and 2xg1, respectively,
and F2 ¼ 2xF1 þ FL.
To compute the double-differential and total γ�-parton

cross sections in (3) we choose to work in n ¼ 4þ ϵ
dimensions to regulate the soft/infrared (IR), collinear/
mass, and ultraviolet (UV) divergencies in intermediate
steps of our calculation. Unfortunately, dimensional regu-
larization is known to be nontrivial for spin-dependent
processes, as they involve the Dirac-matrix γ5 and the Levi-
Civita tensor εμνρσ to project onto fermion and bosons states
of definite helicity, respectively, see, for instance, Ref. [27],
which both are genuinely four-dimensional objects. To this
end, we adopt the commonly used HVBM prescription [20]
to define them, which leads to the nuisance of (n − 4)-
dimensional “hat-momenta” in phase-space calculations,
apart from appearance of the ordinary n-dimensional scalar
products of momenta [18].
In addition to the projection (4) onto the various Lorentz

structures k in Wμμ0 , one has to control also the helicity of
the incoming parton i, gluon or (anti)quark, when comput-
ing d2σk. The final-state spins in (1) are always summed
over, and the initial-state helicities of the parton i are
averaged over if k ∈ fG;Lg but for k ¼ P we need to

project onto the helicity difference that is probed by d2σP.
For incoming gluons this is achieved by [27]

P̂g
G;νν0 ¼ P̂g

L;νν0 ¼ −gνν0 ; P̂g
P;νν0 ¼ 2iενν0ρρ0

kρ1q
ρ0

s0
ð6Þ

where ν and ν0 refer to the Lorentz indices of the gluon. By
choosing just −gνν0 for k ∈ fG;Lg instead of the full
physical polarization sum, we decided to include also
contributions from incoming external ghosts in our
calculations to cancel unphysical polarizations of the
gluon; see, for instance, Ref. [11] on how this was handled
in the corresponding calculation of (un)polarized HQ
photoproduction.
As all initial-state (anti)quarks in (1) are taken as

massless partons, the relevant projection operators onto
definitive helicity states are given by [27]

P̂q
G;aa0 ¼ P̂q

L;aa0 ¼ ð=k1Þaa0 ; P̂q
P;aa0 ¼ −ðγ5=k1Þaa0 ;

P̂q̄
G;bb0 ¼ P̂q̄

L;bb0 ¼ ð=k1Þbb0 ; P̂q̄
P;bb0 ¼ ðγ5=k1Þbb0 ; ð7Þ

where a and a0 (b and b0) refer to the Dirac-index of the
initial (anti)quark spinor in the relevant matrix elements
given below.
For completeness, the normalization factors b̃kðn¼4þϵÞ¼

bkðϵÞ in Eq. (3) are given by

bGðϵÞ ¼
1

2þ ϵ
; bLðϵÞ ¼ bPðϵÞ ¼ 1: ð8Þ

In the computations of the Feynman diagrams at NLO
accuracy, the derivations of the necessary phase space
integrals, and for finding compact analytical expressions
we have extensively made use of the computer algebra
program Mathematica [28] and the packages TRACER [29]
and HEPMATH [30].

B. Born cross section in n dimensions

For HQ electroproduction at LO accuracy in pQCD we
only have to consider the photon-gluon-fusion (PGF)
process,

γ�ðqÞ þ gðk1Þ → Qðp1Þ þ Q̄ðp2Þ; ð9Þ
depicted in Fig. 1, and where the four-momenta are labeled
by q, k1, p1, and p2.
The relevant LO matrix elements for the PGF process

Mð0Þ;j
μν , j ¼ 1, 2, summed and squared, and properly

projected onto the polarizations of both the photon and
the gluon, see Sec. II A, can be written as

P̂γ;μμ0
k P̂g;νν0

k

X2
j;j0¼1

Mð0Þ;j
μν ðMð0Þ;j0

μ0ν0 Þ�

¼ 8g2μ−ϵD e2e2HNCCFBk;QED: ð10Þ
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g and e denote the strong and electromagnetic coupling,
respectively, and eH is the charge of the heavy quark Q in
units of e. NC ¼ 3 is the number of colors and CF ¼
ðN2

C − 1Þ=ð2NCÞ the Casimir constant of the SUðNCÞ
gauge group. We need to compute (10) in n ¼ 4þ ϵ
dimensions as the full Born cross section will be needed,
e.g., for mass factorization at NLO accuracy. Hence, an
arbitrary mass scale μD is introduced in Eq. (10) to keep the
strong coupling dimensionless in n dimensions. The
quantities Bk;QED in Eq. (10) represent the QED analogues
of the LO PGF process (9) for each projection k and, up to
Oðϵ2Þ, are given by

BG;QED ¼ t1
u1

þ u1
t1

þ 4m2s0

t1u1

�
1 −

m2s0

t1u1

�
þ 2s0q2

t1u1

þ 2q4

t1u1
þ 2m2q2

t1u1

�
2 −

s02

t1u1

�

þ ϵ

�
−1þ s02

t1u1
þ s0q2

t1u1
−

q4

t1u1
−
m2q2s02

t21u
2
1

�

þ ϵ2
s02

4t1u1
; ð11Þ

BL;QED ¼ −
4q2

s0

�
s
s0
−
m2s0

t1u1

�
; ð12Þ

BP;QED ¼ 1

2

�
t1
u1

þ u1
t1

��
2m2s0

t1u1
− 1 −

2q2

s0

�
: ð13Þ

The required n-dimensional phase space dPS2 is
straightforwardly obtained in the center-of-mass system
(c.m.s) of the produced HQ pair, i.e., p1 þ p2 ¼ qþ k1 ¼
ð ffiffiffi

s
p

; 0⃗Þ, utilizing the mass-shell conditions p2
1 ¼ p2

2 ¼ m2,
and reads [11,19]

dPS2 ¼
2πSϵ

s0Γ½ðn − 2Þ=2� δðs
0 þ t1 þ u1Þ

×

�ðt1u01 − s0m2Þs0 − q2t21
s02

�ðn−4Þ=2
dt1du1

≡ h2ðnÞδðs0 þ t1 þ u1Þdt1du1; ð14Þ

where the Gamma function is represented by Γ and
Sϵ ¼ ð4πÞð−n=2Þ. Combining dPS2 with the matrix element

squared in Eq. (10) and the necessary prefactors, i.e., spin
average and flux factor, the double-differential partonic
cross section for the PGF process at LO in n ¼ 4þ ϵ
dimensions can be written as

s02
d2σð0Þk;g

dt1du1
¼ ααsKgγbkðϵÞ

26π3Sϵ
Γð1þ ϵ=2Þ

×EkðϵÞ
�
μ2D
m2

�−ϵ=2�ðt1u01 − s0m2Þs0 − q2t21
m2s02

�
ϵ=2

× e2HNCCFBk;QEDδðs0 þ t1 þ u1Þ: ð15Þ

Note that here and in what follows, we suppress the

arguments of d2σð0Þk;g on the left-hand side (l.h.s.) of
Eq. (15) unless indicated otherwise. The color average
for the incoming gluon is given by Kgγ ¼ 1=ðN2

C − 1Þ,

EGðϵÞ ¼ ELðϵÞ ¼
1

1þ ϵ=2
; EPðϵÞ ¼ 1; ð16Þ

properly accounts for additional degrees of freedom in n
dimensions for initial-state bosons, and α≡ e2=ð4πÞ and
αs ≡ g2=ð4πÞ. From Eq. (15) one can easily obtain ana-
lytical expressions for the total partonic cross section, i.e.,
integrated over dt1du1, and its threshold limit s → 4m2, for
each projection k at LO accuracy. We shall get back to this
point in Sec. III when we have derived also the complete
NLO corrections to HQ electroproduction.

C. One-loop virtual corrections

The one-loop virtual corrections to the PGF process are
displayed in Fig. 2. At NLO accuracy only all possible

interferences of the two Born diagrams Mð0Þ
j0;μ0ν0 with the

one-loop virtual amplitudesMð1Þ;V
j;μν contribute. It is custom-

ary in HQ photo- and electroproduction to organize the
results into the Abelian QED and non-Abelian OK parts
[11,19,31], i.e., their color structure. The contribution at
NLO, summed over all amplitudes and properly projected
onto the polarizations of both the photon and the gluon,
can be written as

P̂γ;μμ0
k P̂g;νν0

k

X
j;j0

2Re½Mð1Þ;V
j;μν ðMð0Þ

j0;μ0ν0 Þ
��

¼ 8g4μ−ϵD e2e2HNCCFCϵðCAVk;OK þ 2CFVk;QEDÞ ð17Þ

where

Cϵ ¼
1

16π2
exp

�
ϵ

2
½γE − lnð4πÞ�

�
ð18Þ

with γE the Euler-Mascheroni constant.
As in [11,19,31] the computation of the one-loop virtual

amplitudes in (17) proceeds as follows: all divergencies are

FIG. 1. PGF process γ�g → QQ̄ at LO accuracy. A second
Feynman diagram (not shown) is obtained by reversing the heavy
quark lines.
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regulated in n ¼ 4þ ϵ dimensions, internal gluon propa-
gators are calculated in Feynman gauge, light quark masses
are all put to zero, and the tensorial loop integrals are
reduced to scalar ones using an adapted Passarino-Veltman
decomposition method [32], which is described in detail
in Refs. [11,33]. The required one-loop scalar one-, two-,
three-, four-point functions can be all found in the literature.
For instance, App. A of Ref. [34] collects all well-tested

scalar integrals without dependence on the virtual photon
momentum q, and those that carry a q-dependence are listed
in App. A of Ref. [19]. We have performed extensive checks
of the latter set of integrals both analytically and with the
help of LOOPTOOLS [35] and fully agree with the results
given in [19] except for the four-point functionD0 with three
massive propagators. Here we find, using the notation of
LOOPTOOLS for the arguments of D0

D0ðm2; 0; q2; m2; t; s; 0; m2; m2; m2Þ ¼ iCϵ

βst1
×

�
−
2

ϵ
lnðχÞ − 2 lnðχÞ ln

�
−t1
m2

�
þ Li2ð1 − χ2Þ − 4ζð2Þ

þ ln2ðχqÞ þ 2Li2ð−χχqÞ þ 2Li2

�
−χ
χq

�
þ 2 lnðχχqÞ

× lnð1þ χχqÞ þ 2 ln

�
χ

χq

�
ln

�
1þ χ

χq

��
; ð19Þ

which also agrees with Box 16 in Ref. [36]. Here, we have adopted a set of additional partonic variables

0 ≤ ρ ¼ 4m2

s
≤ 1; ρq ¼

4m2

q2
≤ 0;

0 ≤ β ¼
ffiffiffiffiffiffiffiffiffiffiffi
1 − ρ

p
≤ 1; 1 ≤ βq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρq

q
;

0 ≤ χ ¼ 1 − β

1þ β
≤ 1; 0 ≤ χq ¼

βq − 1

βq þ 1
≤ 1 ð20Þ

that will be extensively used in the following in order to optimize the analytical expressions. In order to have 0 ≤ χq ≤ 1, we
had to introduce an additional minus sign into the definition of χq as compared to that for χ.
The complicated structure of (19) already suggests that it is an impossible task to give compact analytical expressions for

Vk;OK and Vk;QED in (17). Here, we quote only their singular parts that, as they should, are proportional to the Born result for
each projection k ∈ fG;L; Pg:

Vk;OK ¼ −2Bk;QED

�
4

ϵ2
þ 2

ϵ

�
ln

�
−t1
m2

�
þ ln

�
−u1
m2

�
þ s − 2m2

sβ
lnðχÞ

��
þOðϵ0Þ; ð21Þ

Vk;QED ¼ −2Bk;QED

�
1 −

s − 2m2

sβ
lnðχÞ

�
2

ϵ
þOðϵ0Þ: ð22Þ

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 2. Examples for Feynman diagrams contributing to the one-loop virtual corrections to the PGF process. The dotted line in the
gluon self-energy correction (e) can represent either a quark, gluon, or ghost loop. Remaining diagrams are obtained by appropriate
crossing.
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The double poles in Vk;OK originate from diagrams where soft and collinear singularities can coincide.
Collecting all prefactors, the bare double differential partonic one-loop virtual PGF cross section can be written as

s02
d2σð1Þ;Vk;g

dt1du1

				
bare

¼ αα2sKgγbkðϵÞ
28π4Sϵ

Γð1þ ϵ=2Þ

× δðs0 þ t1 þ u1ÞCϵ

�
μ2D
m2

�−ϵ=2�ðt1u01 − s0m2Þs0 − q2t21
m2s02

�
ϵ=2

× EkðϵÞNCCFe2HðCAVk;OK þ 2CFVk;QEDÞ: ð23Þ
AllUVdivergencies in the one-loop amplitude (23) are removed bymass and coupling constant renormalization forwhichwe
choose the same,modifiedMSprescription as inRefs. [11,19,31]. Specifically, the heavy (anti)quark is renormalizedon-shell,
and the HQmassesm are defined as polemasses. Note that the self-energies on external legs are not included yet in the results
given inEqs. (21) and (22). The strong coupling is renormalized in such away that theHQ loop to thegluon self-energy, shown
in Fig. 2(e), is removed. This leads to a fixed-flavor number schemewith nlf ¼ nf − 1 light quark flavors active in the running
of αs and the evolution of the PDFs. Hence, the UV-renormalization of the bare, one-loop partonic cross section at a
renormalization scale μR is achieved by, see Refs. [11,19,31,37] for further details,

d2σð1Þ;Vk;g

dt1du1
¼ d2σð1Þ;Vk;g

dt1du1

				
bare

þ 4παsðμ2RÞCϵ

�
μ2D
m2

�−ϵ=2��2
ϵ
þ ln

�
μ2R
m2

��
βf0 þ

2

3
ln

�
μ2R
m2

��
d2σð0Þk;g

dt1du1
: ð24Þ

Here, the first term in the square bracket corresponds to the
usual MS scheme and the second term removes the HQ
loop from the gluon self-energy. βf0 ¼ ð11CA − 2nfÞ=3 is
the first order coefficient of the QCD beta function. In what
follows, we will often drop the scale in the strong coupling,
i.e., αs has to be understood as αsðμ2RÞ.

D. Single gluon radiation corrections

Apart from the virtual corrections to the Born PGF
process considered in the previous subsection, we also need
to compute at NLO accuracy the Oðα2sÞ corrections from
real gluon emission, i.e., the 2 → 3 process

γ�ðqÞ þ gðk1Þ → Qðp1Þ þ Q̄ðp2Þ þ gðk2Þ: ð25Þ

A selection of contributing Feynman diagrams is depicted
in Fig. 3.
As before, we split the results according to their color

structure into QED and OK parts [11,19,31]. Only the latter
contribution will develop singularities from collinear gluon
emissions originating from diagram (d) in Fig. 3 as we shall
see below. The relevant NLO matrix element squared for
(25), properly projected onto the polarizations of both the
photon and the gluon, can be written as

P̂γ;μμ0
k P̂g;νν0

k

X
j;j0

Mð1Þ;g
j;μν ðMð1Þ;g

j0;μ0ν0 Þ
�

¼ 8g4μ−2ϵD e2e2H NCCF½CARk;OK þ 2CFRk;QED�: ð26Þ

Apart from the Mandelstam variables s, t1, and u1 already
used for the Born and virtual contributions, it is convenient
to introduce in addition

s3 ¼ ðk2 þ p2Þ2 −m2;

s4 ¼ ðk2 þ p1Þ2 −m2;

s5 ¼ ðp1 þ p2Þ2 ¼ −u5;

t0 ¼ ðk1 − k2Þ2;
u0 ¼ ðq − k2Þ2;
u6 ¼ ðk1 − p1Þ2 −m2;

u7 ¼ ðq − p1Þ2 −m2; ð27Þ

out of which only five are independent due to momentum
conservation k1 þ q ¼ p1 þ p2 þ k2.

(a) (b)

(c) (d)

FIG. 3. Selected Feynman diagrams contributing to the real
gluon emission process in (25). Remaining diagrams are obtained
by appropriate crossing.
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The derivation of the 2 → 3 phase space dPS3 in n ¼
4þ ϵ dimensions with two equal masses m is standard
[11,34] but some extra care is needed in our case for k ¼ P
since the matrix element squared in (26) will depend on
(n − 4)–dimensional scalar products of momenta (usually
labeled as “hat momenta”), see, e.g., Ref. [11]. The
momenta in (25) are most conveniently parametrized in
the c.m.s. frame of the two outgoing, unobserved partons
[38], i.e., in our case, where Q̄will be observed, p1 þ k2 ¼
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s4 þm2

p
; 0⃗Þ. Then, only one (n − 4)–dimensional scalar

product, say p̂2
1, remains in the matrix elements squared,

and the phase space calculations can be organized in such a
way, that the additional integration over the hat momenta
space yields unity whenever hat momenta are not present in
(26), i.e., for k ¼ fG;Lg and most of the terms for k ¼ P.
We use

dPS3 ¼
1

ð4πÞnΓðn − 3Þs0
sn−34

ðs4 þm2Þn=2−1

×

�ðt1u01 − s0m2Þs0 − q2t21
s02

�ðn−4Þ=2
dt1du1dΩndÎ

≡ h3ðnÞdt1du1dΩndÎ ; ð28Þ

where dΩn ¼ sinn−3ðθ1Þdθ1sinn−4ðθ2Þdθ2 and

dÎ ¼ 1

B½1=2; ðn − 4Þ=2�
xðn−6Þ=2ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p dx ð29Þ

with x≡ p̂2
1=p̂

2
1;max, the Euler Beta function B½a; b�, and

p̂2
1;max ¼

s24
4ðs4 þm2Þ sin

2ðθ1Þsin2ðθ2Þ: ð30Þ

The integration over the hat momenta space dÎ yields only
two possible results, depending on whether or not the term
to be integrated in the matrix element squared is propor-
tional to p̂2

1, i.e.,

Z
dÎp̂2

1 ¼ ϵp̂2
1;max þOðϵ2Þ or

Z
dÎ1 ¼ 1: ð31Þ

As it should, the contribution from the p̂2
1 integration is of

OðϵÞ. Nevertheless, when accompanied by collinear diver-
gent angular integrals∝ 1=t0 in Eq. (26) they will contribute
to the final result for k ¼ P. For the discussions below, it is
instructive to compare the n-dimensional 2 → 2 and 2 → 3
phase space factors h2ðnÞ and h3ðnÞ defined in Eq. (14) and
(28), respectively. One finds

h3ð4þ ϵÞ
h2ð4þ ϵÞ ¼

Sϵ
2π

Γð1þ ϵ=2Þ
Γð1þ ϵÞ

s1þϵ
4

ðs4 þm2Þ1þϵ=2

¼ Cϵ

2π

�
1 −

3

8
ζð2Þϵ2

�
s1þϵ
4

ðs4 þm2Þ1þϵ=2 þOðϵ3Þ;

ð32Þ

where ζ denotes the Riemann Zeta function.
Putting everything together, the double differential

partonic PGF cross section with one additional real (R)
gluon emission reads

s02
d2σð1Þ;Rk;g

dt1du1

¼ αα2sKgγbkðϵÞ
27π3S2ϵ
Γð1þ ϵÞ

�
μ2D
m2

�−ϵ s4
s4 þm2

×

�ðt1u01 − s0m2Þs0 − q2t21
m2s02

�
ϵ=2

�
s24

m2ðs4 þm2Þ
�

ϵ=2

× EkðϵÞNCCFe2H

Z
dΩndÎðCARk;OK þ 2CFRk;QEDÞ:

ð33Þ

Analytical results for the phase space integrals in θ1
and θ2 appearing in Eq. (33) are conveniently tabulated
in Refs. [34,11]. The few additional integrals originating
from the extra powers sin2ðθ1Þsin2ðθ2Þ in

R
dÎ p̂2

1 are
straightforward to evaluate. Following most previous cal-
culations of HQ production [11,19,31,34], we proceed by

splitting the real emission cross section d2σð1Þ;Rk;g into a hard
(H) and soft (S) gluon radiation part based on s4 > Δ and
s4 ≤ Δ, respectively. The auxiliary parameter Δ is chosen
small enough to be negligible in comparison with all
kinematic quantities s0, t1, u1, and m2; a typical choice
being Δ=m2 ≃ 10−6. In the hard regime, Δ effectively cuts
off all IR singularities, and only collinear singularities
remain. The soft part will be combined with the virtual
corrections to the PGF process computed in the previous
subsection.
In general, the analytical results after phase space

integration are way too lengthy to report here, except for
the collinear and soft limits of Eq. (33). Only the non-
Abelian OK part contains mass singularities originating
from collinear gluon splittings in diagram (d) in Fig. 3,
i.e., from terms proportional to 1=t0 in Rk;OK. They yield

s4
4πðs4 þm2Þ

Z
dΩndÎCARk;OK

¼ −
1

u1
Bk;QED

�
s0 → x1s0

t1 → x1t1

�
Pk;ð0Þ
gg;Hðx1Þ

2

ϵ
þOðϵ0Þ ð34Þ
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with x1 ¼ −u1=ðs0 þ t1Þ and, depending on the projection
k, the appropriate hard part of the LO gluon-gluon
splitting function [39]

PG;ð0Þ
gg;H ðxÞ ¼ CA

�
2

1 − x
þ 2

x
− 4þ 2x − 2x2

�
; ð35Þ

PL;ð0Þ
gg;H ðxÞ ¼ PG;ð0Þ

gg;H ðxÞ; ð36Þ

PP;ð0Þ
gg;H ðxÞ ¼ CA

�
2

1 − x
− 4xþ 2

�
: ð37Þ

The hard Abelian QED part is finite.
The soft gluon limit k2 → 0, i.e., s4, s3, and t0 → 0,

of the matrix element squared (26) is readily derived and
reads

lim
k2→0

ðCARk;OK þ 2CFRk;QEDÞ

¼ ðCASk;OK þ 2CFSk;QEDÞ þOð1=s4; 1=s3; 1=t0Þ; ð38Þ

where

Sk;OK ¼ 2

�
t1
t0s3

þ u1
t0s4

−
s − 2m2

s3s4

�
Bk;QED;

Sk;QED ¼ 2

�
s − 2m2

s3s4
−
m2

s23
−
m2

s24

�
Bk;QED: ð39Þ

Note that the eikonal factors multiplying the Born PGF
cross section Bk;QED in (39) neither depend on the photon’s
virtuality q2 nor on the spin projection k.
The phase space slicing introduced above allows one to

perform not only the angular but also the s4 integrations in
the soft limit of Eq. (26) analytically. Since dPS3 behaves
as s1þϵ

4 in the limit s4 → 0, let us consider a generic
functionHðs4Þ with a soft pole s−1þϵ

4 Sðs4Þ and a finite part
F ðs4Þ, to illustrate this point a bit further [11]. With the
help of the identity

s−1þϵ
4 ¼ Δϵ

ϵ
δðs4Þ þ ½s−1þϵ

4 �Δ; ð40Þ

which is completely analogous to the corresponding one for
the well-known “þ–distribution,” one easily derives for
small enough Δ thatZ

s4;max

0

Hðs4Þ ¼
Z

s4;max

0

½s−1þϵ
4 Sðs4Þ þ F ðs4Þ�

≃
Δϵ

ϵ
Sð0Þ þ

Z
s4;max

Δ
Hðs4Þ ð41Þ

where s4;max denotes the upper kinematic limit of the s4
integration; see also Sec. III below.
According to Eq. (41), we can thus perform all angular

integrations in the soft limit (39) analytically and obtain for
the QED and OK parts

lim
s4→0

s4
2πðs4 þm2Þ

�
1 −

3

8
ζð2Þϵ2

�
s4
ϵ

Z
dΩndÎSk;OK

¼ 2Bk;QED

�
4

ϵ2
þ 2

ϵ

�
ln

�
t1
u1

�
þ s − 2m2

sβ
lnðχÞ

�
− ln2ðχÞ − 3

2
ζð2Þ þ 1

2
ln2

�
u1χ
t1

�

þ Li2

�
1 −

t1
u1χ

�
− Li2

�
1 −

u1
t1χ

�
þ s − 2m2

sβ
½Li2ð1 − χ2Þ þ ln2ðχÞ�

�
þOðϵÞ; ð42Þ

and

lim
s4→0

s4
2πðs4 þm2Þ

�
1 −

3

8
ζð2Þϵ2

�
s4
ϵ

Z
dΩndÎSk;QED

¼ 2Bk;QED

�
−
2

ϵ

�
1þ s − 2m2

sβ
lnðχÞ

�
þ 1 −

s − 2m2

sβ
½lnðχÞ½1þ lnðχÞ� þ Li2ð1 − χ2Þ�

�
þOðϵÞ ð43Þ

respectively. The additional factors on the l.h.s. of Eqs. (43) and (42) originate from the difference between h3ðnÞ and h2ðnÞ
given in (32) since the limit s4 → 0 implies the use of 2 → 2 kinematics. For k ¼ fG;Lg our expressions fully agree with
those given in [19] except for a wrong sign in front of the lnðχÞ2 in their Eq. (3.25) (previously also found by [22]). Collecting
all prefactors, the double differential partonic PGF cross section with one additional soft gluon emission is given by

s02
d2σð1Þ;Sk;g

dt1du1
¼ αα2sKgγbkðϵÞ

28π4Sϵ
Γð1þ ϵ=2Þ

�
μ2D
m2

�−ϵ�ðt1u01 − s0m2Þs0 − q2t21
m2s02

�
ϵ=2

Cϵ

�
Δ
m2

�
ϵ

δðs0 þ t1 þ u1Þ

× NCCFEkðϵÞe2H
s4

2πðs4 þm2Þ
s4
ϵ

�
1 −

3

8
ζð2Þϵ2

� Z
dΩndÎðCASk;OK þ 2CFSk;QEDÞ ð44Þ
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with the expressions for Sk;OK and Sk;QED given in Eqs. (43)
and (42), respectively, to be inserted in the last line.
Upon adding the renormalized virtual cross section to
Eq. (44) all 1=ϵ2 and 1=ϵ singularities of IR origin cancel,
and the remaining collinear divergency in the OK part will be
removed by mass factorization to be discussed in Sec. II F
below.
As was mentioned above, our partonic cross sections

have been derived for an observed heavy antiquark Q̄.
Since the PGF cross section is symmetric under the
exchange of p1 and p2, the results do not change if the
heavy quark Q is observed instead.

E. Light quark initiated processes

At NLO accuracy, also light-quark initiated processes,

γ�ðqÞ þ qðk1Þ → Qðp1Þ þ Q̄ðp2Þ þ qðk2Þ; ð45Þ

have to be considered. The two contributing mechanisms
are depicted in Fig. 4 and differ by the electrical charge
coupling to the virtual photon. The Bethe-Heitler process is
proportional to the charge eH of the produced HQ whereas
the charge eL of the incoming light-quark is relevant for
Compton scattering. The NLO matrix element squared for
(45), properly projected onto the polarization k, Lorentz-,
and Dirac-structure, can be, hence, decomposed into three
pieces Ak;i, i ¼ 1, 2, 3, according to the electrical charges
eH and eL (in units of e):

P̂γ;μμ0
k P̂q;aa0

k

X4
j;j0¼1

Mð1Þ;q
j;μa ðMð1Þ;q

j0;μ0a0 Þ
�

¼ 8g4μ−2ϵD e2NCCF ðe2HAk;1 þ e2LAk;2 þ eLeHAk;3Þ:
ð46Þ

At this order, one encounters only collinear divergencies,
which can be solely attributed to the Bethe-Heitler process

Ak;1. With the n-dimensional 2 → 3 phase space given in
the previous subsection, the singularity structure of Ak;1

reads

s4
2πðs4 þm2Þ

Z
dΩndÎCFAk;1

¼ −
1

u1
Bk;QED

�
s0 → x1s0

t1 → x1t1

�
Pk;ð0Þ
gq ðx1Þ

2

ϵ
þOðϵ0Þ ð47Þ

with, as before, x1 ¼ −u1=ðs0 þ t1Þ and, depending on the
projection k, the appropriate LO splitting kernels [39]

PG;ð0Þ
gq ðxÞ ¼ PL;ð0Þ

gq ðxÞ ¼ CF

�
1

x
þ ð1 − xÞ2

x

�
; ð48Þ

PP;ð0Þ
gq ðxÞ ¼ CFð2 − xÞ: ð49Þ

Again, the 1=ϵ pole will be dealt with by mass factorization
as we shall discuss in Sec. II F below. Ak;2 does not develop
a collinear singularity as long as the probing photon is
virtual, i.e., q2 ≠ 0. In the limit of photoproduction, see
Refs. [11,31], an additional mass factorization is required
to arrive at a finite expression for the process (45).
The n-dimensional partonic cross section for (45) at

NLO accuracy, differential in t1 and u1, is given by

s02
d2σð1Þk;q

dt1du1

¼ αα2sKqγbkðϵÞ
27π3S2ϵ
Γð1þ ϵÞ

�
μ2D
m2

�−ϵ s4
s4 þm2

×

�ðt1u01 − s0m2Þs0 − q2t21
m2s02

�
ϵ=2

�
s24

m2ðs4 þm2Þ
�

ϵ=2

× NCCF

Z
dΩndÎðe2HAk;1 þ e2LAk;2 þ eHeLAk;3Þ

ð50Þ

with the color average Kqγ ¼ 1=NC. We note that the finite
interference contribution Ak;3 will only contribute to HQ
electroproduction as long as one does not fully integrate
over phase space, which is a consequence of Furry’s
theorem, i.e.,

R
dt1du1

R
dΩndÎAk;3 ¼ 0.

As was also stressed in case of photoproduction [11,31],
the Mandelstam variables t1 and u1 are defined for the
momentum transfer of an observed heavy antiquark Q̄ðp2Þ
with respect to the incoming virtual photon and light quark.
Detecting the heavy quark Qðp1Þ instead amounts to
interchanging t1 ↔ u1. Since both Ak;1 and Ak;2 are
symmetric in t1 and u1 nothing changes. However, one
needs to take into account an overall change of sign for the
interference term Ak;3 that is purely antisymmetric under
t1 ↔ u1. Replacing the incoming light quark in (45) by a

(a) (b)

(c) (d)

FIG. 4. Feynman diagrams (a), (b) and (c), (d) denote the light
quark initiated Bethe-Heitler and Compton process, respectively,
that start to contribute to HQ electroproduction at NLO accuracy.
Similar contributions arise for incoming light antiquarks.
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light antiquark is taken into account by the following
identities [11,31]

s02
d2σð1Þk;q

dt1du1

				
γ�q̄→Q̄

¼ s02
d2σð1Þk;q

dt1du1

				
γ�q→Q

; ð51Þ

s02
d2σð1Þk;q

dt1du1

				
γ�q̄→Q

¼ s02
d2σð1Þk;q

dt1du1

				
γ�q→Q̄

: ð52Þ

F. Mass factorization procedure

In the last step, one needs to remove the remaining
collinear singularities in the PGF and the Bethe-Heitler
processes that we have encountered in Secs. II D and II E in
Eqs. (34) and (47), respectively. To this end, a standard
mass factorization procedure at NLO needs to be applied,
which absorbs the remaining collinear divergencies into the
definition of the parton distribution functions at a factori-
zation scale μF, yielding finite (reduced) partonic cross
sections, where the limit ϵ → 0 can be taken.
In case of the PGF process, mass factorization

amounts to

s02
d2σð1Þk;gðs0; t1; u1; q2; μFÞ

dt1du1

¼ lim
ϵ→0

�
s02

d2σð1Þk;gðs0; t1; u1; q2; ϵÞ
dt1du1

−
Z

1

0

dx01
x01

Γk;ð1Þ
gg ðx01; μF; μD; ϵÞ

× ðx01s0Þ2
d2σð0Þk;gðx01s0; x01t1; u1; q2; ϵÞ

dðx1t1Þdu1

�
; ð53Þ

i.e., subtracting the convolution of the gluon-gluon tran-
sition function at NLO

Γk;ð1Þ
gg ðx; μF; μD; ϵÞ ¼

αs
2π

�
Pk;ð0Þ
gg ðxÞ 2

ϵ
þ fk;ð1Þgg ðx; μ2F; μ2DÞ

�
ð54Þ

and the n-dimensional Born cross section d2σð0Þk;g in Eq. (15)
at an appropriately rescaled kinematics x1s0 and x1t1 off the
collinear singular NLO cross section; to avoid any con-
fusion with the shifted collinear kinematics, we keep in this
section the relevant arguments in all expressions for
partonic cross sections whenever necessary, such as in

Eq. (53). In Eq. (54), the finite function fk;ð1Þgg carries the
choice of factorization scheme, i.e., the finite term that will
be subtracted along with the 1=ϵ pole, and the dependence
on the factorization scale μF. In the conventional MS
scheme, which we adopt, it reads

fk;ð1Þgg ðx; μ2F; μ2DÞ

¼ Pk;ð0Þ
gg ðxÞ

�
γE − lnð4πÞ þ ln

�
μ2F
m2

�
− ln

�
μ2D
m2

��
ð55Þ

with the LO gluon-to-gluon splitting function

Pk;ð0Þ
gg ðxÞ ¼ Θð1 − δ − xÞPk;ð0Þ

gg;HðxÞ

þ δð1 − xÞ
�
2CA lnðδÞ þ

βlf0
2

�
ð56Þ

where βlf0 ¼ ð11CA − 2nlfÞ=3. Here, we have introduced
another infrared cutoff δ to separate soft (x ≥ 1 − δ) and
hard (x < 1 − δ) collinear gluons. Δ is related to δ by
simple kinematics through the relation δ ¼ Δ=ðs0 þ t1Þ;
see, also Ref. [19]. The hard part Pk;ð0Þ

gg;HðxÞ was already
given in Eq. (37) to specify the contribution of collinear
pole to Rk;OK in Eq. (40). δ is used to split the finite reduced
PGF cross section again into a hard and a virtual plus soft
contribution.
In general, the MS transition functions at NLO accuracy

take the following form for each projection k

Γk;ð1Þ
ij ðx; μF; μD; ϵÞ

¼ αs
2π

Pk;ð0Þ
ij ðxÞ

�
2

ϵ
þ γE − lnð4πÞ

þ ln

�
μ2F
m2

�
− ln

�
μ2D
m2

��

¼ 8παsP
k;ð0Þ
ij ðxÞCϵ

�
μ2D
m2

�−ϵ=2�2
ϵ
þ ln

�
μ2F
m2

��
; ð57Þ

which we use to regularize the collinear singularities in the
light-quark initiated Bethe-Heitler process, see Eq. (59),

s02
d2σð1Þk;qðs0; t1; u1; q2; μFÞ

dt1du1

¼ lim
ϵ→0

�
s02

d2σð1Þk;qðs0; t1; u1; q2; ϵÞ
dt1du1

−
Z

1

0

dx1
x1

Γk;ð1Þ
gq ðx1; μF; μD; ϵÞ

× ðx1s0Þ2
d2σð0Þk;gðx1s0; x1t1; u1; q2; ϵÞ

dðx1t1Þdu1

�
: ð58Þ

Here, the quark-to-gluon Pk;ð0Þ
gq splitting function, see

Eqs. (48) and (49), is needed.
We can now quote the final, finite expressions for the

gluon and light-quark initiated processes contributing to
HQ production in DIS at NLO accuracy for all spin
projections k ∈ fG;L; Pg. The PGF result, split into hard
and soft plus virtual contributions, reads
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s02
d2σð1Þ;Hk;g

dt1du1
¼ 1

2π
KgγααSe2HNCCFbkð0Þ

�
−

1

u1
Pk;ð0Þ
gg;Hðx1Þ

�
4πBð0Þ

k;QED

�
s0 → x1s0

t1 → x1t1

�

×

�
ln

�
s24

m2ðs4 þm2Þ
�
− ln

�
μ2F
m2

��
− 8πBð1Þ

k;QED

�
s0 → x1s0

t1 → x1t1

��

þ CA
s4

s4 þm2

�Z
dΩndÎRk;OK

�
finite

þ 2CF
s4

s4 þm2

Z
dΩ4dÎRk;QED

�
ð59Þ

and

s02
d2σð1Þ;SþV

k;g

dt1du1
¼ 4KgγααSe2HNCCFbkð0ÞBð0Þ

k;QEDδðs0 þ t1 þ u1Þ
�
CAln2

�
Δ
m2

�
þ ln

�
Δ
m2

�

×

�
CA

�
ln

�
−t1
m2

�
− ln

�
−u1
m2

�
− ln

�
μ2F
m2

��
− ðCA − 2CFÞ

2m2 − s
sβ

lnðχÞ − 2CF

�

þ CA ln

�
μ2F
m2

�
ln

�
−u1
m2

�
þ βlf0

4

�
ln

�
μ2R
m2

�
− ln

�
μ2F
m2

��
þ fkðs0; u1; t1; m2; q2Þ

�
; ð60Þ

respectively. Here, the BðlÞ
k;QED denote the OðϵlÞ coefficients to the n-dimensional Born cross section Bk;QED given in

Eqs. (11)–(13), i.e., we write

Bk;QED ¼ Bð0Þ
k;QED þ ϵBð1Þ

k;QED þ ϵ2Bð2Þ
k;QED: ð61Þ

Recall that for k ¼ fL;Pg there are no contributions proportional to ϵ, i.e., Bð1Þ
L;QED ¼ Bð1Þ

P;QED ¼ 0. As was mentioned
above, the QED part, Rk;QED in (59), does not require any mass factorization at this order. The functions fk in (60) contain

logarithms and dilogarithms with different, complicated arguments, but they do not depend on Δ, μ2F, μ2R nor on nf and β
lf
0 .

The corresponding finite, reduced partonic cross section for the light quark initiated Bethe-Heitler and Compton
processes reads

s02
d2σð1Þk;q

dt1du1
¼ 1

2π
KqγααSNCbkð0Þ

�
−

1

u1
e2HP

k;ð0Þ
gq ðx1Þ

�
2πBð0Þ

k;QED

�
s0 → x1s0

t1 → x1t1

�

×

�
ln

�
s24

m2ðs4 þm2Þ
�
− lnðμ2F=m2Þ þ 1 − δk;P

�
− 4πBð1Þ

k;QED

�
s0 → x1s0

t1 → x1t1

��

þ CF
s4

s4 þm2

��Z
dΩndÎe2HAk;1

�
finite

þ
Z

dΩ4dÎe2LAk;2 þ
Z

dΩ4dÎeHeLAk;3

��
; ð62Þ

where 1 − δk;P may also be written as −2∂ϵEkðϵ ¼ 0Þ as it
originates from the additional factor of EkðϵÞ hidden in the
subtraction piece in Eq. (58). Again, recall that neither Ak;2

nor Ak;3 require any mass factorization at NLO as long as
the photon is not on mass shell.
The finite expressions corresponding to Rk;OK and

Rk;QED in Eq. (59) and for fk in Eq. (60), differential in
t1 and u1, are too lengthy to be reproduced here, but they
are available upon request; similarly, for the light-quark
contributions Ak;1, Ak;2, and Ak;3 in Eq. (62). We note that
for unpolarized DIS, k ¼ fG;Lg, we fully agree with the
expressions given in Ref. [19]. The complete NLO result
for longitudinal polarization, k ¼ P, is new and for the first
time given in this paper. We shall comment on further

extensive comparisons to existing results, both analytically
and numerically, in the next section.

III. TOTAL PARTONIC CROSS SECTIONS

In the previous section we have obtained all the ingre-
dients to compute the double-differential partonic cross

sections d2σðnÞk;j =ðdt1du1Þ for HQ electroproduction at
NLO accuracy for all projections k ¼ fG;L; Pg. Upon
convolution with appropriate combinations of PDFs this
will yield, for instance, results for transverse momentum and
rapidity distributions of an observed heavy antiquark (or
quark) in DIS at a given x and Q2. We will pursue this type
of DIS observables further in a forthcoming publication [40].
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In this paper, we are mainly interested in the impact of
the NLO corrections for k ¼ P on the longitudinally
polarized inclusive DIS structure function gQ1 , and the
corresponding, experimentally relevant double-spin asym-
metry commonly defined as

AQ
1 ðx;Q2; m2Þ ¼ gQ1 ðx;Q2; m2Þ

FQ
1 ðx;Q2; m2Þ ; ð63Þ

with the unpolarized structure function FQ
1 in the denom-

inator. The ratio (63) has the virtue that some sources of
experimental uncertainties are conveniently expected to
drop out. Therefore, we proceed by computing the related
total partonic cross sections σk;jðs; q2; m2Þ up to NLO
accuracy, which are obtained by integrating the differential
expressions derived in the previous section over the entire
kinematic range for fixed s and q2. To this end, it is
convenient to trade, for instance, u1 for the Mandelstam
variable s4 ¼ s0 þ t1 þ u1 which controls the soft limit.
One obtains

σðnÞk;j ðs; q2; m2Þ ¼
Z

−s0ð1−βÞ=2

−s0ð1þβÞ=2
dt1

×
Z

s4;max

0

ds4
d2σðnÞk;j ðs0; t1; u1; q2Þ

dt1ds4
ð64Þ

where the upper limit of s4 is given by

s4;max ¼
s
s0t1

�
t1 þ

s0ð1 − βÞ
2

��
t1 þ

s0ð1þ βÞ
2

�
: ð65Þ

The total partonic cross section at NLO accuracy is then
obtained by adding the Born (n ¼ 0) result and the OðαsÞ
corrections (n ¼ 1), i.e.,

σk;jðs; q2; m2Þ ¼ σð0Þk;jðs; q2; m2Þ þ σð1Þk;jðs; q2; m2Þ: ð66Þ

As before, k denotes the projection G, L, and P onto the
relevant unpolarized and longitudinally polarized HQ cross
sections, respectively, and j ∈ fg; q; q̄g labels the flavor of
the incoming parton. Upon convolution of (66) with PDFs
one obtains the DIS HQ structure functions at NLO
accuracy, in particular, gQ1 for k ¼ P, as we shall discuss
in detail in Sec. IV.
At LO accuracy, the dt1du1 or dt1ds4 integrations in

Eq. (64) are straightforwardly performed, see also Eq. (15),
and one obtains for k ¼ fG;Lg and k ¼ P

σð0ÞL;gðs; q2; m2Þ ¼ 16πααse2HKgγNCCF

�
−q2s
s03

�

×

�
β þ 2m2

s
lnðχÞ

�
; ð67Þ

σð0ÞG;gðs; q2; m2Þ ¼ −4πααse2HKgγNCCF
1

s03

× ½ðs2 þ q4 þ 4m2sÞβ
þ ðs2 þ q4 − 4m2ð2m2 − s0ÞÞ lnðχÞ�;

ð68Þ

σð0ÞT;gðs; q2; m2Þ ¼ σð0ÞG;gðs; q2; m2Þ þ 1

2
σð0ÞL;gðs; q2; m2Þ; ð69Þ

σð0ÞP;gðs; q2; m2Þ ¼ 4πααse2HKgγNCCF

×
1

s02
½ð3sþ q2Þβ þ ðsþ q2Þ lnðχÞ�;

ð70Þ

in agreement with Ref. [19] and [17,18], respectively. As in
Eq. (5), the transverse partonic cross section is obtained
from the expressions for k ¼ G and k ¼ L.
At NLO accuracy, it is customary [19] to further

decompose Eq. (66) as follows

σk;jðs; q2; m2Þ ¼ ααs
m2

½fð0Þk;j ðη; ξÞ þ 4παsðfð1Þk;j ðη; ξÞ

þ lnðμ2F=m2Þf̄F;ð1Þk;j ðη; ξÞ
þ lnðμ2R=m2Þf̄R;ð1Þk;j ðη; ξÞÞ� ð71Þ

where each function fðnÞk;j only depends on the scaling
variables η ¼ 1=ρ − 1 and ξ ¼ −q2=m2. In addition, any
global dependence on the electrical charges eH and eL of
the heavy and light quarks scattering off the virtual photon,
respectively, is usually factored out, yielding

fðnÞk;gðη; ξÞ ¼ e2Hc
ðnÞ
k;gðη; ξÞ; ð72Þ

fk;qðη; ξÞ ¼ e2Hck;qðη; ξÞ þ e2Ldk;qðη; ξÞ; ð73Þ

with similar expressions for the functions f̄F;ð1Þk;j and f̄R;ð1Þk;j

in Eq. (71) in terms of c̄F;ð1Þk;j and d̄F;ð1Þk; . The latter multiply
the logarithmic dependence on the factorization and
renormalization scales, respectively, if μF and/or μR are
chosen different from the HQ mass m. Due to Furry’s
theorem, the quark coefficient proportional to eHeL,
present in differential cross sections, see Eq. (46), vanishes
when integrated over the entire phase space.
The renormalization scale dependence trivially arises

from the renormalization of the strong coupling. The

corresponding coefficient function c̄R;ð1Þk;g at NLO accuracy

is proportional to the Born coefficient cð0Þk;g and the QCD
beta function evaluated with nlf light flavors, i.e., one finds
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c̄R;ð1Þk;g ¼ βlf0
16π2

cð0Þk;g: ð74Þ

In what follows, we always present results for the sum

c̄ð1Þk;g ¼ c̄F;ð1Þk;g þ c̄R;ð1Þk;g ð75Þ

instead of the individual pieces. This yields the shortest
expressions for the usual choice of common factorization
and renormalization scales, i.e., μF ¼ μR, since in this case
the dependence on the QCD beta function βlf0 cancels in the
sum (75). Since the quark coefficients are genuine NLO
corrections, they do not carry any renormalization depend-

ence at this order in pQCD, i.e., c̄R;ð1Þk;q ¼ d̄R;ð1Þk;q ¼ 0. In

addition, dð1Þk;q is also free of collinear singularities, yielding

d̄F;ð1Þk;q ¼ 0, as long as Q2 ≠ 0, i.e., away from the limit of
photoproduction. In Appendix A, we give, whenever
possible, compact analytic results for the partonic scaling
functions. Otherwise, results are available upon request
from the authors.
At this point, a brief digression about the numerical

implementation of the phase space slicing method is in
order. The technique was adopted in the analytical calcu-
lations to split the PGF cross section into contributions
from hard (s4 > Δ) and soft (s4 < Δ) gluon radiation, with
the latter being added to the virtual contributions to cancel
all IR singularities analytically. One needs to ensure that Δ
is sufficiently small with respect to the 2 → 2 Mandelstam
variables and the HQ mass m2 to be negligible. In practice,
see also Refs. [11,19,31],Δ ≃ ð10−5…10−7Þm2, guarantees
numerically stable results, i.e., the cancellation of
logarithms in Δ=m2. This is further enforced by rewriting
the soft plus virtual cross section, expanded in powers
of lniðΔ=m2Þ, i ¼ 0, 1, and 2, with the help of the
identity [11,41]

δðs4Þ
X2
i¼0

αilni
�
Δ
m2

�
¼ Θðs4 − ΔÞ

X2
i¼0

Aiαijs4¼0 ð76Þ

with expansion coefficients

A0 ¼
1

s4;max − Δ
;

A1 ¼
lnðs4;max=m2Þ
s4;max − Δ

−
1

s4
;

A2 ¼
ln2ðs4;max=m2Þ
s4;max − Δ

−
2 lnðs4=m2Þ

s4
; ð77Þ

before being added to the hard gluon part.
To ensure the correctness of our new results for longi-

tudinally polarized DIS, i.e., for k ¼ P, relevant for the
computation of the HQ structure function gQ1 at NLO

accuracy, we have performed extensive comparisons, both
analytically and numerically, to the mainly unpolarized
results for the HQ scaling functions already available in the
literature [19,21,22]. These checks include results for the
threshold [19,42–44] and high-energy [45] limit, η → 0 and
η → ∞, respectively, and the limit Q2 ≫ m2 [15,46] that is
relevant for the construction of GM-VFNS [47] in PDF
analyses. Both, in the unpolarized and the polarized case,
we can also compare our results to the known limit of
photoproduction [11,31] except for the light-quark scaling

function dð1Þk;q, which is singular for ξ → 0 and would
require an additional mass factorization into a contribution
from the hadronic structure of real photons for ξ ¼ 0.
Unless stated otherwise below, we fully agree with the
literature. We note that our results for the Compton process,

dð1Þk;qðη; ξÞ, see Appendix A, match for all projections k
analytically with the corresponding expressions recently
derived in Ref. [16].
Figures 5 and 6 show the polarized (k ¼ P) gluonic and

light-quark scaling functions defined in Eqs. (72) and (73),
respectively, relevant for the calculation of gQ1 in Sec. IV.
Results for k ¼ T, needed for computing the denominator
FQ
1 in the double-spin asymmetry AQ

1 , are also given for
comparison for the dominant PGF process. In case of the
light-quark scaling functions shown in Fig. 6, the unpo-
larized results for k ¼ T turn out to be numerically
significantly larger than those for k ¼ P. Hence, it is
impossible to display them together. Here, and in general
for the scaling functions for k ¼ L, we refer the reader to
Ref. [19] for the corresponding plots. We note, that we fully
agree numerically with all the results for the unpolarized
scaling functions given in Ref. [19] except for some of the

curves for dð1ÞL;q shown in their Fig. 11(b) which seem to be
mislabeled (this error has also been found in Ref. [22]). As
in Ref. [19], our results in Figs. 5 and 6 are shown as
function of η for a fixed HQmass ofm ¼ 4.75 GeV and for
several representative values of Q2, which approximately
span the range of 0.44 × 10−3 ≤ ξ ¼ Q2=m2 ≤ 44.
In general, all scaling functions exhibit a rather non-

trivial dependence on η that has been discussed at some
length in the unpolarized case in Ref. [19]. Let us only add
few observations concerning the similarities and
differences in the behavior of the polarized results derived
for the first time in this paper. Most importantly, one finds
for the PGF process, shown in Fig. 5, that in the threshold
limit, s → 4m2 or η → 0, the results for k ¼ P (solid
squares) approach those for k ¼ T (open squares). The
higher the Q2 the earlier in η → 0 this happens. Hence, for
η → 0 the corresponding total partonic spin asymmetry
σP;g=σT;g approaches unity. If one recalls the definition of
σT;g and σP;g as the sum and difference of cross sections for
the two possible relative helicity alignments of the photon
and the gluon, respectively, this implies that only the
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contribution for equal helicities can contribute near
threshold.
Moreover, in this kinematic regime, the NLO corrections

strongly dominate the behavior of the PGF scaling func-
tion. The LO result vanishes in the limit η → 0 due to the
diminishing phase space available, but the NLO contribu-
tion derived from Fig. 2(a) diverges as 1=β, which, along

with the suppression from phase space, leads to a constant.
In addition, inhibited phase space near threshold only
allows for soft gluon radiation originating from diagram
3(d). As is well known, this leads to a large logarithmic
enhancements, i.e., powers of log β, in each order of
perturbation theory that are amenable to all-order resum-
mation techniques if necessary, see, e.g., Refs. [42–44]. We
will elaborate on the threshold behavior of the scaling
functions a bit further at the end of this section and in

FIG. 6. The top, middle, and lower panel show the light-quark

scaling functions cð1ÞP;q, c̄ð1ÞP;q, and dð1ÞP;q, respectively, at NLO
accuracy for three different values of Q2 and fixed
m ¼ 4.75 GeV.

FIG. 5. The top, middle, and lower panel show the Born cð0Þk;g,

and the NLO cð1Þk;g and c̄ð1Þk;g contributions, respectively, to the total
cross section σk;g at NLO in Eq. (71) as a function of η for three
different values of Q2 and fixed HQ mass m ¼ 4.75 GeV. The
open and closed symbols denote the projections k ¼ T and
k ¼ P, respectively.
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Appendix B, where also compact analytical expressions
can be found.
Far above threshold, at large η, the partonic cross

sections σP;g and σT;g exhibit a very different behavior
as can be also inferred from the PGF scaling functions
shown in Fig. 5. All unpolarized projections receive
large perturbative corrections, as the NLO contributions

cð1Þk;g and c̄ð1Þk;g both approach a constant value, depending
on ξ, for η → ∞ [19]. This behavior can be traced back
to real gluon emission with a gluon exchange in the t-
channel, i.e., Fig. 2(d), which is absent, of course, at the
Born approximation. As in the case of HQ photo-
production [11], such large corrections are not found
for the spin-dependent total partonic cross section σP;g.
Apparently, they cancel in the difference of the two
possible relative helicity alignments of the photon and

gluon, and both cð1ÞP;g and cð0ÞP;g approach zero as η → ∞.
As a consequence, if the hadronic DIS structure func-
tions, obtained as the convolution of the scaling func-
tions and the PDFs, see Sec. IV below, predominantly
sample the kinematic regime far above threshold, one
has to anticipate very large NLO corrections for the
double-spin asymmetry AQ

1 .
The genuine NLO light-quark scaling functions cð1Þk;q,

c̄ð1Þk;q, and dð1Þk;q for the Bethe-Heitler and Compton proc-
esses, shown for k ¼ P in the upper, middle, and lower
panels of Fig. 6, respectively, are numerically much
smaller than the scaling functions for the PGF mechanism.
They only exhibit a nontrivial, oscillatory behavior,
rapidly decreasing with increasing ξ, in the range 0.1≲
η≲ 100 and tend to zero both at threshold and for
asymptotically large values of η. Nevertheless, depending
on the size of the still only purely constrained gluon
helicity distributionΔg, the contribution of the light-quark
initiated processes to gQ1 can be much more significant
than in the unpolarized case, which is known to be
strongly gluon dominated.
Next, we return to the behavior of the gluonic scaling

functions cðnÞk;gðη; ξÞ and c̄ðnÞk;gðη; ξÞ near threshold, i.e., for
η → 0, or, equivalently, s → 4m2, in a bit more detail. At
LO we reproduce the well-known result [19]

cð0Þ;thrT;g ¼ cð0Þ;thrP;g ¼ π

2

ρq
ρq − 1

β þOðβ3Þ ð78Þ

cð0Þ;thrL;g ¼ −
4π

3

ρ2q
ðρq − 1Þ3 β

3 þOðβ5Þ ð79Þ

that the longitudinal partonic cross section vanishes by two
powers of β faster than the transverse one, with the latter

being identical to the polarized cð0Þ;thrP;g . At NLO accuracy
we find

cð1Þ;thrk;g ¼ cð0Þ;thrk;g
1

π2

�
CA

�
að1;2Þk ln2ðβÞ þ að1;1Þk lnðβÞ

−
π2

16β
þ að1;0Þk;OK

�
þ 2CF

�
π2

16β
þ að1;0Þk;QED

��
ð80Þ

with

að1;2ÞT ¼ að1;2ÞP ¼ að1;2ÞL ¼ 1;

að1;1ÞT ¼ að1;1ÞP ¼ 3 lnð2Þ − 5

2
;

að1;1ÞL ¼ að1;1ÞT −
2

3
: ð81Þ

The somewhat lengthy expressions for the subleading að1;0Þk;OK

and að1;0Þk;QED are given in Appendix B along with some brief
remarks on how to derive them. We stress that these
subleading coefficients are crucial in order to obtain a
smooth matching between the threshold approximation

in Eq. (80) and the exact scaling functions cð1Þk;g in the

threshold region below η ≈ 10−3. Keeping just the leading-

logarithmic (LL), að1;2Þk , and next-to-LL (NLL), að1;1Þk ,
approximations in Eq. (80) is not sufficient for phenom-
enological applications. Our results at LL and NLL
accuracy for k ¼ fT; Lg fully agree with the corresponding
expressions given in Ref. [19] except not for að1;1ÞL , where
some piece is missing in Eq. (5.7) of Ref. [19]. We are not
aware of a correction of this typo in the literature so far.
Moreover, the derivation of the results in the threshold limit
in Ref. [19] contains some but not all of the subleading

contributions to að1;0Þk;OK and að1;0Þk;QED. We note that our results

for að1;0ÞT;OK=QED agree to expressions given in Ref. [44], and

for að1;0ÞP;OK=QED they agree in the photoproduction limit,

Q2 → 0, also given for completeness in Appendix B, with
corresponding expressions given in Ref. [48].
The threshold limit of the scaling functions c̄ð1Þk;g is

given by

c̄ð1Þ;thrk;g ¼ cð0Þ;thrk;g
1

π2
CAðāð1;1Þk lnðβÞ þ āð1;0Þk Þ; ð82Þ

where

āð1;1ÞT ¼ āð1;1ÞP ¼ āð1;1ÞL ¼ −
1

2
;

āð1;0ÞT ¼ āð1;0ÞP ¼ −
3

4
lnð2Þ þ 1

2
þ 1

4
ln

�ð1þ χqÞ2
2χq

�
;

āð1;0ÞL ¼ āð1;0ÞT þ 1

6
; ð83Þ

in agreement with the results at LL given in Ref. [19].
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Finally, the high-energy limit s → ∞, i.e., η → ∞, our

unpolarized results for cð1ÞT;g and c
ð1Þ
L;g agree numerically with

the formulas given in Ref. [45]. Analytic results have been
obtained in Refs. [15,46] for all three projections k ¼
fG;L; Pg in the asymptotic limit Q2 ≫ m2. Our analytic

expressions for c̄ð1Þk;g, c̄
F;ð1Þ
k;q , and dð1Þk;q listed in Appendix A

match with these results. For the other scaling functions we
find perfect numerically agreement for all projections k.

IV. PHENOMENOLOGICAL APPLICATIONS: HQ
DIS STRUCTURE FUNCTIONS AND THE

DOUBLE-SPIN ASYMMETRY

Finally, we turn to some first phenomenological appli-
cations of our higher-order corrections. Since HQ produc-
tion in longitudinally polarized DIS has not been measured
yet, we concentrate in this paper on inclusive structure
functions, in particular, on the charm contribution to
g1ðx;Q2Þ that will be accessible at a future EIC [10]
and, most likely, of significant phenomenological relevance
in determining Δg at small values of momentum fraction x.
In a forthcoming publication [40], we will study more
exclusive observables in helicity-dependent DIS such as
differential distributions in the rapidity and transverse
momentum of the produced HQ as well asQQ̄ correlations.

The experimentally accessible HQ contributions to
hadronic structure functions in terms of the standard DIS
variables x and Q2 are related to the total partonic HQ
production cross sections σk;j computed up to NLO order
accuracy in Eq. (71) through some kinematic prefactors and
a convolution in z ¼ Q2=s0 with appropriate combinations
of unpolarized (k ¼ T, L) or polarized (k ¼ P) gluon,
quark, and antiquark PDFs fk;j:

FQ
k ðx;Q2; m2Þ ¼ Q2

4π2α

X
j¼g;q;q̄

Z
zmax

x

dz
z

�
fk;j

�
x
z
; μ2F

�

× σk;j

�
s; q2; m2;

μ2F
m2

;
μ2R
m2

��
; ð84Þ

where zmax ¼ Q2=ð4m2 þQ2Þ. For k ¼ fT; Lg the usual
unpolarized, i.e., helicity-averaged, PDFs appear in (84).
We note that for k ¼ P the relevant helicity-dependent
PDFs fP;j are usually denoted as Δfj in the literature [5,6],
as they refer to the difference of densities for the two
helicity alignments of the parton spins with respect to the
direction of the nucleon spin.
In terms of the gluon and quark scaling functions

introduced in Sec. III, Eq. (84) can be written more
explicitly as

FQ
k ðx;Q2; m2Þ ¼ αsðμ2RÞ

4π2
Q2

m2

Z
zmax

x

dz
z

�
fk;g

�
x
z
; μ2F

�
e2Hc

ð0Þ
k;gðη; ξÞ

þ 4παsðμ2RÞ
�
fk;g

�
x
z
; μ2F

�
e2H

�
cð1Þk;gðη; ξÞ þ c̄F;ð1Þk;g ðη; ξÞ ln

�
μ2F
m2

�
þ c̄R;ð1Þk;g ðη; ξÞ ln

�
μ2R
m2

��

þ
Xnlf
q

½fk;qðx=z; μ2FÞ þ fk;q̄ðx=z; μ2FÞ�
�
e2H

�
cð1Þk;qðη; ξÞ þ ln

�
μ2F
m2

�
c̄F;ð1Þk;q ðη; ξÞ

�
þ e2qdk;qðη; ξÞ

���
; ð85Þ

where the first and second line denotes the LO contribution
and the NLO corrections to the PGF process, respectively,
and the third line represents the genuine NLO corrections
from the light-(anti)quark-initiated Bethe-Heitler and
Compton processes. In the latter case, the sum includes
only the nlf light-quark flavors, e.g., q ¼ u; d; s in case of
charm production. The partonic variable η ¼ s=ð4m2Þ − 1
in the scaling functions in (85) is given in terms of z by

η ¼ 1 − z
z

Q2

4m2
− 1 ð86Þ

for a given HQ mass m and fixed Q2.
The more commonly used DIS HQ structure functions

FQ
1 , F

Q
2 , F

Q
L , and gQ1 are readily expressed in terms of

the three projections k ∈ fT; L; Pg in Eq. (85) adopted
throughout our calculations:

FQ
1 ðx;Q2; m2Þ ¼ FQ

T ðx;Q2; m2Þ=ð2xÞ; ð87Þ

FQ
2 ðx;Q2; m2Þ ¼ FQ

T ðx;Q2; m2Þ þ FQ
L ðx;Q2; m2Þ; ð88Þ

gQ1 ðx;Q2; m2Þ ¼ FQ
P ðx;Q2; m2Þ=ð2xÞ; ð89Þ

i.e., FQ
L ¼ FQ

2 − 2xFQ
1 . In case of longitudinally polarized

lepton and nucleon beams, the experimentally relevant
quantity is the double-spin asymmetry AQ

1 already intro-
duced in Eq. (63).
In the remainder of the paper, we perform some first

phenomenological studies based on our NLO results for
charm quark electroproduction. We will focus on the
relevance of the higher order corrections for the inclusive
structure functions gc1 and Fc

1 and the corresponding
double-spin asymmetry Ac

1 in a kinematic range accessible
at a future EIC. We shall briefly discuss the prospects of
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further constraining the helicity gluon distribution
fP;g ¼ Δg. We leave, however, a detailed impact study
of future HQ electroproduction data based on a realistic
set of pseudodata for Ac

1, that is embedded in a global QCD
analysis framework for helicity PDFs [23], to a dedicated
future study. We shall also estimate the remaining theo-
retical uncertainties at NLO accuracy due to the choice of
factorization and renormalization scales, as well as the
actual value for the charm quark mass used in the
calculations.
Unless stated otherwise, we use the DSSV set of helicity

PDF [5,9] for all our studies of gc1. Since this set is only
available at NLO accuracy, we have to evaluate all LO
results also with NLO sets of PDFs. Likewise, for all
calculations of unpolarized quantities, we use the set of
NLO PDFs by the MSTW group [49], which was also
adopted in the DSSV global analysis as the unpolarized
reference set in ensuring the positivity limit for helicity
PDFs. To explore the range of expectations for future
measurements of gc1 or A

c
1 at an EIC, we also make use of

the uncertainty sets for helicity PDFs provided by DSSV
[9]. The resulting bands will give a rough estimate of how
well such future experiments have to be performed in order
to make an impact on constraining Δg further with
inclusive, deep-inelastic charm quark production. For our
studies, we assume, that in the kinematic range covered by
an EIC, uncertainties in the unpolarized PDFs are negli-
gible, i.e., the obtained bands only reflect our current
ignorance of helicity PDFs, in particular, of the gluon
density Δg. For the factorization scale and the pole mass
of the charm quark our default choice is μ2F ¼ μ2R ¼
4m2 þQ2 and m ¼ mc ¼ 1.5 GeV, respectively.
Figure 7 shows the DIS charm structure functions 2xFc

1

and 2xgc1 at LO and NLO accuracy as a function of x for
two different values of Q2. The lower panels display the

respective K-factors, defined, as usual, as the ratio of the
NLO and the LO approximations to Eq. (85). First of all,
one notices that gc1 is significantly smaller in magnitude
than Fc

1, which will be even more apparent in the
corresponding double-spin asymmetry to be discussed
below. Also, due to its oscillatory behavior, gc1 has to be
displayed on a linear scale, and the zeros near x ≃ 7 × 10−3

explain the kink in the corresponding K-factor. In the
small-x region, the NLO corrections to both Fc

1 and g
c
1 turn

out to be moderate. In the unpolarized case, the K-factor is
always larger than unity and decreases for all values of x
with increasing virtuality Q2. There is no such simple
systematics for gc1. For x≳ 0.1, the NLO corrections for Fc

1

and gc1 are very similar and both grow rapidly with
increasing x, i.e., when getting closer to threshold. This
is readily understood from the behavior of the partonic
scaling functions for η → 0, discussed in Sec. III, that
becomes more and more relevant at large x.
In Fig. 8 we allow for variations of the helicity PDFs

within the uncertainty bands estimated by the DSSV group
[9]. As can be seen, the resulting spread in gc1 (shaded
bands) is very large, in particular, for small values of
momentum fraction x. In the lower panels, we show
separately the gluon and light-quark induced NLO con-

tributions, gc;ð1Þ1;g and gc;ð1Þ1;q , evaluated from the second and
third row of Eq. (85) respectively. As expected, the
uncertainties in the poorly constrained gluon helicity
PDF cause a much bigger variation in gc1 than those
stemming from all the light quark PDFs together. It is
also worth noticing, that for the optimum set of DSSV
(solid lines) the light-quark induced processes are roughly
of the same size as the NLO contribution from PGF. This is
very much at variance of what is known in the unpolarized
case, which is strongly gluon dominated [19]. Present
uncertainties in Δg still allow, however, for a PGF
dominance also for gc1. In the region around x ≃ 0.1,
where the PGF process is positive, light quarks contribute
to gc1 with the opposite sign, which will diminish the
experimentally relevant double-spin asymmetry Ac

1 in this
kinematic regime.
Ac
1, defined in Eq. (63), is shown in Fig. 9 as a function of

x at LO and NLO accuracy for Q2 ¼ 10 GeV2. The range
around x ≃ 10−3 is expected to be accessible at a future EIC
at this particular value of Q2 [10]. Again, the shaded bands
reflect the estimates of uncertainties for the DSSV set of
helicity PDFs. Since the spin asymmetry, like gc1, changes
sign, it has to be displayed on a linear scale. To better
visualize the behavior of Ac

1 in the regime of phenomeno-
logical interest to an EIC, the inset in the upper panel of
Fig. 9 zooms into the small x-region. At x ≃ 10−3 the
spread in Ac

1 due to current uncertainties in Δg ranges from
about −0.005 to þ0.004, which implies that a future
measurement of Ac

1 at an EIC should aim for an exper-
imental precision at the level of Oð10−3Þ or better in order

FIG. 7. The DIS charm structure functions 2xFc
1 (left-hand

side) and 2xgc1 (right-hand side) at LO and NLO accuracy as a
function of x for two different values of Q2. The lower panels
show the respectiveK-factors, see text; the result for gc1 is difficult
to display because of the zero near x ¼ 7 × 10−3. All results were
obtained for m ¼ mc ¼ 1.5 GeV and μ2F ¼ μ2R ¼ 4m2 þQ2.
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to make an impact in further constraining helicity PDFs
from HQ electroproduction. The lower panel of Fig. 9
shows the K-factor, which, at Q2 ¼ 10 GeV2, is always
smaller than unity but roughly constant for 10−4≲x≲10−3.
This finding is readily understood from the individual K-
factors for the DIS structure functions Fc

1 and g
c
1, presented

in Fig. 7. As for gc1, the node at x ∼ 5 × 10−3 in Ac
1 explains

the kink in the K-factor.
Next, we turn to some estimates of residual theoretical

uncertainties in HQ quark electroproduction from varia-
tions of the factorization and renormalization scales and
the charm quark mass. Figure 10 shows the dependence
of Fc

1, g
c
1, and Ac

1 on simultaneous variations of scales,
μ2 ¼ μ2F ¼ μ2R, in the broad range μ20=10 ≤ μ2 ≤ 10μ20 for
two pairs of x and Q2 values accessible at an EIC. All
results are normalized to those obtained with our default
choice of scale, μ20 ¼ 4m2 þQ2, used in Figs. 7–9. As can
be seen, the DIS structure functions Fc

1 and gc1 exhibit
significantly smaller variations with scale at NLO accuracy
than the corresponding LO results. In general, variations
in gc1 for μ

2 ≪ μ20 turn out to be smaller than those for Fc
1,

but differences between LO and NLO results are more

pronounced for μ2 ≫ μ20. Due to the different behavior of
Fc
1 and gc1 both with variations of scales and concerning

higher order corrections, the scale dependence of the
experimentally relevant double-spin asymmetry Ac

1 is non-
trivial. Again, we find considerably more stable results at
NLO accuracy for small values of x, but little or no
improvement for x ≃ 0.1.
In Fig. 11 we perform similar changes of scale for Ac

1 at
NLO accuracy for the same two pairs of x and Q2 values
used in Fig. 10 but now allowing for independent variations
of μF and μR. To guide the eye, we show contour lines of
constant ratio (dashed lines), evaluated as before with
respect to our default choice of scale, also at the base of
the plot. The solid line indicates the choice μ2F ¼ μ2R used in
Fig. 10. As one can anticipate, choosing μF and μR very
differently introduces large logarithms ∝ lnðμ2F=μ2RÞ in the
partonic cross sections that can lead to large variations of
Ac
1 as compared to the default choice μF ¼ μR ¼ μ0. This

can be observed, in particular, for the smaller value of
x ¼ 10−3, shown on the l.h.s. of Fig. 11, whereas the results
for x ¼ 0.1 and Q2 ¼ 100 GeV2 (r.h.s.) turn out to be con-
siderably more stable. It is interesting to notice, however,

FIG. 8. The shaded bands illustrate the spread in the predictions for 2xgc1 at NLO and LO accuracy (upper row) due to the uncertainties
of the DSSV helicity PDFs as a function of x for two different values ofQ2. The solid lines refer to the best fit of DSSV. The lower panels
show the gluon and light-(anti)quark initiated NLO contributions to gc1, evaluated from the second and third row of Eq. (85), respectively,
and their corresponding spread due to PDF uncertainties.
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that for x ¼ 10−3 the line at the base of the plot indicating
the choice μF ¼ μR is fairly close to the contour line for 1,
whereas the corresponding line for x ¼ 0.1 crosses the
contour lines almost perpendicular. The lesson is, that the
theoretical uncertainties for Ac

1 from scale variations have a
strong dependence on the kinematics probed, i.e., the actual
values of x and Q2, and cannot be simply approximated or
estimated. Most importantly, scale variations do not cancel
in the double-spin asymmetry as one may naively expect
for a ratio of two cross sections. The main reason is the
different behavior of the numerator and denominator of Ac

1

on variations of the scale and, in addition, also on the NLO
corrections.
Finally, the actual value for HQ pole mass m used in the

calculation of the DIS structure functions can also have an
impact on the experimentally relevant double-spin asym-
metry and, as for the variations of μF and μR discussed
above, might not cancel in the ratio (63). These two points
are addressed in Fig. 12 for the same two pairs of x and Q2

values used in Figs. 10 and 11 for variations of scales. Here,
we show the ratio of Ac

1 computed at NLO accuracy for a
range of charm quark masses m relative to the results
obtained for our default choice m ¼ mc ¼ 1.5 GeV. The
theoretical ambiguities introduced by these variations ofmc
are significantly smaller than those found for variations of
the factorization and renormalization scales shown in
Figs. 10 and 11. For the two selected kinematic points
the variations due to m rarely exceed �5%. Nevertheless,
the choice of different masses m in the calculation of DIS
structure functions does not cancel in Ac

1 and, as for the
variations of scales above, has a nontrivial dependence on
the selected values for x and Q2. For our selection of
kinematic points it even leads to different slopes with

FIG. 9. The spin asymmetry Ac
1 for charm quark electro-

production (upper panel) as defined in Eq. (63) at LO and
NLO accuracy for Q2 ¼ 10 GeV2. The shaded bands represent
the spread in predictions estimated from the uncertainties of the
DSSV set of helicity PDFs. The small inset zooms into the
phenomenologically interesting small-x region. The lower panel
gives the corresponding K-factor for the optimum set helicity
PDFs from the DSSV group.

FIG. 10. The scale dependence of Fc
1, g

c
1, and Ac

1 at LO and
NLO accuracy for two different pairs of x and Q2 values for
μ2 ¼ μ2F ¼ μ2R in the range μ20=10 ≤ μ2 ≤ 10μ20, where μ20 ¼
4m2 þQ2 is our default choice of scale. In each panel, the
results are normalized to the ones obtained for μ2 ¼ μ20.

FELIX HEKHORN and MARCO STRATMANN PHYS. REV. D 98, 014018 (2018)

014018-20



respect to variations of m. We note, that in the future, for
phenomenological studies of very precise EIC data it might
be advantageous to replace the traditionally used pole mass
by the running mass definition in the MS scheme in
calculations of gQ1 . In case of unpolarized DIS this trans-
formation was first applied in Ref. [50] and demonstrated to
lead to reduced theoretical uncertainties due to variations of
μF and μR.

V. SUMMARY AND OUTLOOK

In this paper we have completed the suite of NLO QCD
calculations of heavy flavor production with longitudinally

polarized beams and targets by performing the first
computation of the full NLO QCD corrections for
single-inclusive heavy flavor production in helicity-
dependent deep-inelastic scattering. All results were
derived with largely analytical methods and retain the full
dependence on the heavy quark’s mass. Whenever feasible,
compact analytic expressions have been presented for
the total partonic cross sections in terms of heavy quark
scaling functions, which are required to compute the heavy
flavor contribution to the helicity-dependent DIS structure
function g1.
As a byproduct, and as an important crosscheck, we have

rederived all known results for unpolarized heavy quark
electroproduction. In addition, we have verified our results
against the known limit of photoproduction in both the
unpolarized and the polarized case. The behavior of the
scaling functions was investigated also in various other
important limits, namely for asymptotically large photon
virtualities and close to threshold. In the latter case, the
leading and next-to-leading logarithmic terms have been
verified against known results. Moreover, analytic expres-
sions for the phenomenological important subleading
coefficients were presented and compared to the literature
if available.
We believe that our results are particularly timely and

important in view of the ongoing planning process toward
the realization of a future electron-ion collider, where
longitudinally polarized DIS will be studied with unprec-
edented precision even in the so far unexplored kinematic
regime of small momentum fractions x. Here, for the first
time, the charm quark contribution to the structure function
g1 will be experimentally accessible and, most likely, of

FIG. 11. Similar to Fig. 10 but now for independent variations of μ2F (on the “f-axis”) and μ2R (“r-axis”) in the computation of the
double-spin asymmetry Ac

1 at NLO accuracy for x ¼ 10−3 and Q2 ¼ 10 GeV2 (l.h.s.) and x ¼ 0.1 and Q2 ¼ 100 GeV2 (r.h.s.). Again,
all results are normalized to the one obtained for μ2F ¼ μ2R ¼ μ20 ¼ 4m2 þQ2. The base of each plot shows lines of constant ratio (dashed
lines), and the solid line indicates the choice μ2F ¼ μ2R adopted in Fig. 10.

FIG. 12. Dependence of the double-spin asymmetry Ac
1 for

charm electroproduction on the choice of m2 for two pairs of x
and Q2 values. All results are normalized to the one obtained for
our default choice of the charm quark pole mass m ¼ m0 ¼
1.5 GeV (vertical dotted line).
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significant phenomenological relevance when analyzing
data in terms of helicity-dependent parton densities, in
particular, due to its direct sensitivity to the gluon distri-
bution already at the Born approximation. All future global
QCD analyses will be aiming mainly at a much improved
extraction of the elusive gluon helicity density in the small
x regime.
Therefore, and as a first phenomenological application,

we provided some numerical estimates for the charm
contribution to g1 and the experimentally relevant dou-
ble-spin asymmetry in the kinematic domain accessible to
the planned EIC. We have demonstrated the sensitivity to
the polarized gluon distribution and commented on the
required experimental precision for such measurements
at an EIC. In addition, to get an idea of the residual
theoretical uncertainties inherent to the polarized electro-
production of heavy quarks at NLO accuracy, the depend-
ence of our results on variations of the unphysical
factorization and renormalization scales, as well as of
the choice of charm quark mass, have been studied.
Most importantly, neither these sources of theoretical
ambiguities nor the NLO corrections themselves cancel
in the double-spin asymmetry as one may naively expect. In
general, we find a nontrivial dependence on all these effects
on the actual DIS kinematics under consideration.
Adopting the full NLO expressions without approximation
in future global QCD analyses of helicity-dependent parton
densities is indispensable.
Further phenomenological applications and extensions

of our NLO results are currently under investigation. In
order to allow for flexible experimental cuts it would be
advantageous to combine our NLO matrix elements with a
Monte-Carlo sampling of the phase space, following
similar calculations already available in the unpolarized
case. This will enable us to study not only single-inclusive
but also exclusive distributions and correlations of the
produced heavy quark pair. It would be interesting to study
to what extent such observables would help to determine
helicity parton densities, in particular, the gluon density,
more precisely at an EIC.
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APPENDIX A: ANALYTIC EXPRESSIONS FOR
THE PARTONIC SCALING FUNCTIONS

In this Appendix, we give, whenever possible, compact
analytic results for the partonic scaling functions presented

in Sec. III. Unfortunately, the expressions for cð1Þk;j , j ¼
fg; qg are too complex (so far) to be presented here but
partial results are available upon request from the authors.

First, we introduce some auxiliary functions h1;2;3ðχ; χqÞ
with χ and χq defined in Eq. (20):

h1ðχ; χqÞ ¼ −ζð2Þ − 2Li2ð−χÞ þ Li2

�
1 − χq
1þ χ

�

þ Li2

�
−

1 − χq
ð1þ χÞχq

�
− Li2

�
χð1 − χqÞ
1þ χ

�

− Li2

�
−
χð1 − χqÞ
ð1þ χÞχq

�
þ 1

2
ln2ðχÞ

þ lnðχÞ½lnðχqÞ − lnðχ þ χqÞ − lnð1þ χχqÞ�;
ðA1Þ

h2ðχ; χqÞ ¼ −ζð2Þ þ 2Li2ðχÞ þ 2Li2ð−χÞ −
1

2
lnðχÞ

− lnðχÞ½lnðχqÞ − lnðχ þ χqÞ − lnð1þ χχqÞ�;
ðA2Þ

h3ðχ; χqÞ ¼ lnð1 − χÞ þ lnð1þ χÞ − 1

2
½lnðχÞ − lnðχqÞ

þ lnð1þ χχqÞ þ lnðχ þ χqÞ�: ðA3Þ

Instead of η ¼ 1=ρ − 1 and ξ ¼ −q2=m2, the gluonic

scaling functions, c̄ð1Þk;g, and the factorization scale depend-

ence of the quark scaling functions, c̄F;ð1Þk;q , given in
Appendices A 1 and A 2, respectively, below are most
conveniently expressed in terms of the variables β, βq, ρ,
and ρq defined in Eq. (20). Of course, all these variables can
be readily re-expressed in terms of η and ξ if needed.
Compact analytical expressions can be also found for the

light-quark scaling functions dð1Þk;q, i.e., the Compton proc-
ess, for all projections k. They are listed in Appendix A 3.
Our results, when reexpressed in terms of η and ξ, match
exactly with those given in Ref. [16] for all k. We note

again that dð1ÞP;q is the only coefficient function for longi-
tudinal polarization at NLO accuracy that was known prior
to the calculations presented in this paper.
Again, we find that it is more convenient to express

dð1Þk;qðη; ξÞ in terms of auxiliary variables to arrive at very
compact expressions. To this end, we introduce an addi-
tional set of variables ρ0, β0, and χ0,

0 ≤ ρ0 ¼ 4m2

s0
≤

ρq
ρq − 1

≤ 1;

0 ≤ β0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρ0

p
≤

1

βq
≤ 1;

0 ≤ χ0 ¼ 1 − β0

1þ β0
≤ χq ≤ 1; ðA4Þ

which obey the additional inequalities
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0 ≤ ρ0 ≤ ρ ≤ 1; 0 ≤ β ≤ β0 ≤ 1; 0 ≤ χ0 ≤ χ ≤ 1

ðA5Þ

with respect to ρ, β, and χ given in Eq. (20). Again, the new
variables are readily reexpressed in terms of η and ξ. We
also define another auxiliary function which reads

h4ðχ; χ0Þ ¼ Li2

�
1þ χ0

1þ χ

�
− Li2

�
χ
1þ χ0

1þ χ

�

− Li2

�
χ0

1þ χ

1þ χ0

�
þ Li2

�
χ0ð1þ χÞ
χð1þ χ0Þ

�

þ 1

2
ln2ðχÞ þ lnðχÞ½lnð1þ χÞ þ lnð1þ χ0Þ

− lnðχ − χ0Þ − lnð1 − χχ0Þ�: ðA6Þ

We note that the three sets of ρ-, β- and χ-type variables
defined in Eqs. (20) and (A4), which we use to present our
results for the coefficient functions, are linked by the
simple, reciprocal relation

1

ρ0
¼ 1

ρ
−

1

ρq
ðA7Þ

that follows from s0 ¼ s − q2 and leads to rather nontrivial
relations for the corresponding β- and χ-type variables due
to radicals like β ¼ ffiffiffiffiffiffiffiffiffiffiffi

1 − ρ
p

.
It might be illuminating to elaborate a bit more on

usefulness of the χ-type variables. As was noted in

Ref. [51] in case of unpolarized hadroproduction of
HQs, the introduction of χ maps the three types of high-
energy, threshold, unphysical singularities of the relevant
partonic variables, in their case s and m, onto the points
χ ¼ ð0; 1;−1Þ, which allows one to express the partonic
results almost entirely in terms of harmonic polylogarithms
[52]. In our calculation, the analytic structure of the results
is further complicated by the appearance of the additional
scale q2, which explains the need for more than one set of
variables. We find that the most compact analytic expres-

sions for the partonic coefficient functions c̄F=R;ð1Þk;g and

c̄F;ð1Þk;q given in Appendices A 1 and A 2, respectively, are

obtained in terms of the variables χ and χq, whereas for d
ð1Þ
k;q,

listed in Appendix A 3, the sets containing χ and χ0 are
more appropriate.
As was already mentioned in Sec. III, analytic results

have been obtained in the literature for all three projections
in the asymptotic limit Q2 ≫ m2, k ¼ fG;Lg in Ref. [46]

and k ¼ P in Ref. [15]. Our analytic expressions for c̄ð1Þk;g,

c̄F;ð1Þk;q , and dð1Þk;q given in Appendices A 1–A 3 below match

with the corresponding results in [15,46]. In case of cð1Þk;g and

cð1Þk;q, we have checked numerically, that our expressions
agree with those given in [15,46] for all k.

1. Gluonic scaling functions c̄ð1Þk;g

For the three projections k ¼ fG;L; Pg we find

c̄ð1ÞG;gðη; ξÞ ¼
ρq

8πðρq − 1Þðρq − ρÞ3
�
3ρðρ − ρqÞð−1þ ρqÞ½−ρq þ ρð5þ 2ρqÞ�h1ðχ; χqÞ

þ 3

2
ρð−1þ ρqÞ½−2ρ2q − 2ρρ2q þ ρ2ð−2þ ρqð2þ ρqÞÞ�h2ðχ; χqÞ þ 6βρð−1þ ρqÞðρ2 þ ð1þ ρÞρ2qÞh3ðχ; χqÞ

þ 1

8
βρq½4ð4 − 7ρqÞρ2q þ 2ρρqð−31þ 43ρqÞ þ ρ2ð200 − ρqð117þ 95ρqÞÞ�

þ 1

16
ρð−1þ ρqÞ½48ρ2q − 48ρρqð5þ 2ρqÞ þ ρ2ð−8þ ρqð96þ 59ρqÞÞ� lnðχÞ

þ ðρ − ρqÞ2
4βq

½ð−2þ ρqÞρqð−4þ 7ρqÞ þ ρð−8þ 11ρ2qÞ� ln
�
χ þ χq
1þ χχq

��
; ðA8Þ

c̄ð1ÞL;gðη; ξÞ ¼
ρq

8πðρq − 1Þðρq − ρÞ3
�
−6ρ3ð−1þ ρqÞρqh2ðχ; χqÞ þ 24βρ2ð−1þ ρqÞρqh3ðχ; χqÞ

þ βρqð36ρ2 − 35ρ2ρq − 2ð1þ ρÞρ2q þ 3ρ3qÞ − 4ρ2ð−1þ ρqÞ½3ρq þ ρð−6þ 5ρqÞ� lnðχÞ

þ ðρ − ρqÞ
2βq

½2ρρ2q þ ρ3qð−4þ 3ρqÞ þ ρ2ð−6þ 5ρqÞð−8þ 9ρqÞ� ln
�
χ þ χq
1þ χχq

��
; ðA9Þ
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c̄ð1ÞP;gðη; ξÞ ¼
ρq

8πðρq − 1Þðρq − ρÞ3
�
6ρð−1þ ρqÞð2ρ2 − 3ρρq þ ρ2qÞh1ðχ; χqÞ

þ 3ρð−1þ ρqÞð−ρ2 þ ρ2qÞh2ðχ; χqÞ þ 6βρðρ − ρqÞð−1þ ρqÞðρþ 3ρqÞh3ðχ; χqÞ

− 48βρðρ − ρqÞð−1þ ρqÞρq −
3

2
ρðρ − ρqÞð−1þ ρqÞ½11ρq þ ρð−13þ 4ρqÞ� lnðχÞ

− 6βqρð−1þ ρqÞð3ρ2 − 4ρρq þ ρ2qÞ ln
�
χ þ χq
1þ χχq

��
: ðA10Þ

The decomposition into the factorization part c̄F;ð1Þk;g and the renormalization part c̄R;ð1Þk;g has been defined in Eqs. (74)
and (75).

2. Light-quark scaling functions c̄F;ð1Þk;q

The light-quark scaling functions appear for the first time at NLO accuracy and, hence, only carry a dependence on the
factorization scale, which reads for the three projections k ¼ fG;L; Pg:

c̄F;ð1ÞG;q ðη; ξÞ ¼ ρq
36πðρq − 1Þðρq − ρÞ3

�
3ρðρ − ρqÞð−1þ ρqÞ½−2ρq þ ρð4þ ρqÞ�h1ðχ; χqÞ

þ βρq½ð4 − 7ρqÞρ2q þ 2ρρqð−7þ 10ρqÞ þ ρ2ð14 − ρqð15þ 2ρqÞÞ�
þ ρð−1þ ρqÞ½−3ρρq þ 3ρ2q þ ρ2ð−4þ ρ2qÞ� lnðχÞ

þ ðρ − ρqÞ2
2βq

½ð−2þ ρqÞρqð−4þ 7ρqÞ þ ρð−8þ 11ρ2qÞ� ln
�
χ þ χq
1þ χχq

��
; ðA11Þ

c̄F;ð1ÞL;q ðη; ξÞ ¼ ρq
18πðρq − 1Þðρ− ρqÞ3

�
βρqð2ρρ2q þ ð2− 3ρqÞρ2q þ ρ2ð−6þ 5ρqÞÞ þ 2ρ2ð−1þ ρqÞðρð−3þ ρqÞ þ 3ρqÞ lnðχÞ

þ ð−ρþ ρqÞ
2βq

ð2ρρ2q þ ρ3qð−4þ 3ρqÞ þ ρ2ð12þ ρqð−22þ 9ρqÞÞÞ ln
�
χ þ χq
1þ χχq

��
; ðA12Þ

ðA13Þ

c̄F;ð1ÞP;q ðη; ξÞ ¼ ρqρ

6πðρq − 1Þðρq − ρÞ3
�
ð−1þ ρqÞð2ρ2 − 3ρρq þ ρ2qÞh1ðχ; χqÞ − 6βðρ − ρqÞð−1þ ρqÞρq

−
1

2
ðρ − ρqÞð−1þ ρqÞðρð−6þ ρqÞ þ 7ρqÞ lnðχÞ − βqð−1þ ρqÞð3ρ2 − 4ρρq þ ρ2qÞ ln

�
χ þ χq
1þ χχq

��
: ðA14Þ

3. Light-quark scaling functions dð1Þk;q

The light-quark scaling functions dð1Þk;q at NLO accuracy for the Compton-like process are given for the three projections
k ¼ fG;L; Pg by the following expressions:

dð1ÞG;qðη; ξÞ ¼
1

2592πρ

�
18½8ρρ0 − 4ρ02 þ ρ2ð−8þ 3ρ02Þ�h4ðχ; χ0Þ

þ β½5ρ3 þ ρ2ð718 − 596ρ0Þ þ 32ρρ0ð−26þ 5ρ0Þ þ 8ρ02ð43þ 15ρ0Þ� þ 9

2
ρ½16ρ0 þ 3ρð−8þ ρ2 − 4ρρ0Þ� lnðχÞ

þ 12β0½ρ2ð38 − 23ρ0Þ þ ρρ0ð−38þ 5ρ0Þ þ ρ02ð16þ 5ρ0Þ� ln
�
χ − χ0

1 − χχ0

��
; ðA15Þ
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dð1ÞL;qðη; ξÞ ¼
1

216πρ

�
27ρ03ð−ρþ ρ0Þh4ðχ; χ0Þ þ βρ0½23ρ2 þ 2ð25 − 93ρ0Þρ0 þ 19ρð−2þ 7ρ0Þ�

þ 9

2
ρρ0ðρ2 þ 3ρρ0 − 6ρ02Þ lnðχÞ þ 6β0ðρ − ρ0Þρ0ð−2þ 11ρ0Þ ln

�
χ − χ0

1 − χχ0

��
; ðA16Þ

dð1ÞP;qðη; ξÞ ¼
1

2592πρ

�
18½−4ρ02 þ ρρ0ð8 − 3ρ02Þ þ ρ2ð−8þ 3ρ02Þ�h4ðχ; χ0Þ

þ β½5ρ3 þ ρ2ð718 − 458ρ0Þ þ 8ð109 − 75ρ0Þρ02 þ 20ρρ0ð−53þ 41ρ0Þ�

þ 9

2
ρ½16ρ0 þ 3ρð−8þ ρ2 − 2ρρ0 þ 4ρ02Þ� lnðχÞ

− 12β0½2ρð22 − 19ρ0Þρ0 þ ρ2ð−38þ 23ρ0Þ þ ρ02ð−28þ 25ρ0Þ� ln
�
χ − χ0

1 − χχ0

��
: ðA17Þ

APPENDIX B: THRESHOLD BEHAVIOR OF THE
SCALING FUNCTIONS

In this Appendix, we list the subleading coefficients

að1;0Þk;QED and að1;0Þk;OK appearing in the threshold limit of cð1Þk;g in
Eq. (80). We start, however, with briefly outlining of how to
infer the threshold behavior of the gluonic scaling function

from our exact expressions for cð1Þk;gðη; ξÞ.
The starting point is the phase space integration in

Eq. (64) over the partonic variables s4 and t1, which we
generically write as

I ¼
Z

t1;max

t1;min

dt1

Z
s4;max

Δ
ds4fðt1; s4Þ: ðB1Þ

The limits of integration are explicitly given by

t1;min ¼ −
s0

2
ð1þ βÞ ¼ −

s0
ffiffiffi
ρ

p
2

1ffiffiffi
χ

p ;

t1;max ¼ −
s0

2
ð1 − βÞ ¼ −

s0
ffiffiffi
ρ

p
2

ffiffiffi
χ

p
;

s4;max ¼
s
s0t1

�
t1 þ

s0ð1 − βÞ
2

��
t1 þ

s0ð1þ βÞ
2

�

¼ sþ st1
s0

þ s0m2

t1
: ðB2Þ

Next, one performs a series of straightforward but
cumbersome transformations of variables and integration
limits and interchanges the order of integrations to finally
arrive at

I ¼ −
Z

amax

amin

da
Z

1

−1
dbJ ða; bÞfðt1ða; bÞ; s4ðaÞÞ ðB3Þ

where the Jacobian is given by

J ða; bÞ ¼ −
s0

2s
β4ðaÞðsð1 −

ffiffiffi
ρ

p Þ − ΔÞ½s − s4ðaÞ�: ðB4Þ

s4 and t1 are related to the new variables of integration by

s4ðaÞ ¼ aðsð1 − ffiffiffi
ρ

p Þ − ΔÞ;

t1ða; bÞ ¼ −
s0

2s
½s − s4ðaÞ�ð1þ bβ4ðaÞÞ ðB5Þ

with

β4ðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2s
½s − s4ðaÞ�2

s
ðB6Þ

and β4ð0Þ ¼ β. The limits of integration in (B3) are
given by

amin ¼
Δ

sð1 − ffiffiffi
ρ

p Þ − Δ
¼ Δ

sð1 − ffiffiffi
ρ

p Þ þOðΔ2Þ;

amax ¼
sð1 − ffiffiffi

ρ
p Þ

sð1 − ffiffiffi
ρ

p Þ − Δ
¼ 1þOðΔÞ: ðB7Þ

Near threshold, one finds amin ¼ Δ
2m2β2

þOðβ0Þ.
Depending on the value of s4, i.e., s4 > Δ or s4 < Δ, the

kernel fðt1ða; bÞ; s4ða; bÞÞ in Eqs. (B1) and (B3) can be
further decomposed into contributions from hard and soft
gluon radiation. This leads to

I ¼
Z

t1;max

t1;min

dt1

×
Z

s4;max

0

ds4½fHðt1; s4ÞΘðs4 − ΔÞ þ fSðt1;ΔÞδðs4Þ�

¼
Z

1

0

da
Z

1

−1
db

s0

2
ð1 − ffiffiffi

ρ
p Þðs − s4Þβ4

×

�
fHðt1; s4ÞΘ

�
a −

Δ
2m2β2

�
þ fSðt1;ΔÞ

δðaÞ
sð1 − ffiffiffi

ρ
p Þ

�
:

ðB8Þ
The threshold limit is obtained by expanding the kernel
in β before the integrations in Eq. (B8) are performed.
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The results are then organized as in Eq. (80) into LL, NLL,

and subleading contributions, að1;2Þk;OK=QED, a
ð1;1Þ
k;OK=QED, and

að1;0Þk;OK=QED, respectively.
To proceed, we define three auxiliary functions

g1ðχqÞ ¼ Li2

�
−

2χq
1þ χ2q

�
þ 1

2
ln2

�
2χq

1þ χ2q

�

−
π2

2
−
3

2
ln2ðχqÞ − 2βq lnðχqÞ; ðB9Þ

g2ðχqÞ ¼ lnð1þ χqÞ½lnð1þ χqÞ − lnðχqÞ − lnð2Þ�

− lnð2Þ
�
2 lnð2Þ − 1

2
lnðχqÞ

�
; ðB10Þ

g3ðχqÞ ¼ lnð1þ χqÞ −
1

2
lnðχqÞ −

1

2
lnð2Þ; ðB11Þ

which allow us to write the OK and QED parts of the
subleading coefficients að1;0Þk;OK and að1;0Þk;QED as follows:

að1;0ÞT;OK ¼ að1;0ÞP;OK ¼ 25

8
þ 1

8
g1ðχqÞ − g2ðχqÞ þ

3 − ρq
2ð2 − ρqÞ

g3ðχqÞ −
15

4
lnð2Þ þ 5 − 2ρq

8βq
lnðχqÞ

þ ρq
32ð1 − ρqÞ

½π2 þ ln2ðχqÞ�; ðB12Þ

að1;0ÞL;OK ¼ 137

36
þ 1þ 2ρq
8ð1 − ρqÞ2

g1ðχqÞ − g2ðχqÞ −
1 − ð2 − ρqÞρq
ð2 − ρqÞð1 − ρqÞ

g3ðχqÞ −
19

4
lnð2Þ

þ ð4 − ρqÞρq
24ð1 − ρqÞ2

½π2 þ 3 lnðχqÞ2�; ðB13Þ

að1;0ÞT;QED ¼ að1;0ÞP;QED ¼ 1

8ð1 − ρqÞ
�
g1ðχqÞ − βq lnðχqÞ −

2π2

3

�
þ ð3 − 5ρq þ 2ρ2qÞ
2ð2 − ρqÞ2ð1 − ρqÞ

þ 4 − ρq
32ð1 − ρqÞ

½π2 þ lnðχqÞ2�

þ 9 − 5ρq
8ð2 − ρqÞ

ðB14Þ

að1;0ÞL;QED ¼ ð1 − 6ρqÞ
8ð1 − ρqÞ2

�
g1ðχqÞ þ

π2

3
þ ln2ðχqÞ

�
þ 3þ 2ρqð5 − ð5 − ρqÞρqÞ

2ð2 − ρqÞ2ð1 − ρqÞ
g3ðχqÞ þ

3þ ρq
βq

lnðχqÞ

−
3 − 2ρq
8ð2 − ρqÞ

: ðB15Þ

Finally, for completeness, in the limit of photoproduction, q2 → 0−, the expressions in Eqs. (B12) and (B14) reduce to

lim
q2→0−

að1;0ÞT;OK ¼ 1

48
½150 − 5π2 − 168 lnð2Þ þ 96ln2ð2Þ�;

lim
q2→0−

að1;0ÞT;QED ¼ 1

32
½−20þ π2�: ðB16Þ

Although Eqs. (B13) and (B15) formally have a nonvanishing limit q2 → 0−, there is, of course, no longitudinal partonic

cross sections for real photons, i.e., limq2→0−cL;g ¼ 0 to all orders, including cð0Þ;thrL;g in Eq. (80).
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