
 

Rotating Dirac fermions in a magnetic field in 1 + 2 and 1 + 3 dimensions

Yizhuang Liu* and Ismail Zahed†

Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA

(Received 6 April 2018; published 12 July 2018)

We consider the effects of an external magnetic field on rotating fermions in 1þ 2 and 1þ 3

dimensions. The dual effect of a rotation parallel to the magnetic field causes a net increase in the fermionic
density by centrifugation, which follows from the sinking of the particle lowest Landau level in the Dirac
sea for free Dirac fermions. In 1þ d ¼ 2n dimensions, this effect is related to the chiral magnetic effect in
2n − 2 dimensions. This phenomenon is discussed specifically for both weak and strong interfermion
interactions in 1þ 2 dimensions. For QCD in 1þ 3 dimensions with Dirac quarks, we show that in the
strongly coupled phase with spontaneously broken chiral symmetry, this mechanism reveals itself in the
form of an induced pion condensation by centrifugation. We use this observation to show that this effect
causes a shift in the chiral condensate at leading order in the pion interaction, and to discuss the possibility
for the formation of a novel pion superfluid phase in off-central heavy-ion collisions at collider energies.

DOI: 10.1103/PhysRevD.98.014017

I. INTRODUCTION

The combined effects of rotations and magnetic fields on
Dirac fermions are realized in a wide range of physical
settings ranging from macroscopic spinning neutron stars
and black holes [1], all the way to microscopic anomalous
transport in Weyl metals [2]. In any dimensions, strong
magnetic fields reorganize the fermionic spectra into
Landau levels, each with a huge planar degeneracy that
is lifted when a parallel rotation is applied. The past decade
has seen a large interest in the chiral and vortical effects
and their relationship with anomalies (see Ref. [3] and
references therein).
Perhaps, a less well-known effect stems from the dual

combination of a rotation and magnetic field on free or
interacting Dirac fermions. Recently, it was noted that
this dual combination could lead to novel effects for
composite fermions at half filling in 1þ 2 dimensions
under the assumption that they are Dirac fermions [4], and
more explicitly for free and interacting Dirac fermions
in 1þ 3 dimensions [5–7]. Indeed, when a rotation is
applied along a magnetic field, the charge density was
observed to increase in the absence of a chemical potential.
A possible relationship between this phenomenon and the

Chern-Simons term in odd dimensions, and the chiral
anomaly in even dimensions was suggested.
The purpose of this paper is to revisit these issues in a

more explicit way in 1þ 2 and 1þ 3 dimensions. The case
of 1þ 2 dimensions is of interest to planar materials in the
context of solid state physics, while the case of 1þ 3
dimensions is of more general interest with relation to
QCD. Recently, there have been a few studies along these
lines using effective models of the Nambu–Jona-Lasino
(NJL) type in 1þ 3 dimensions, where the phenomenon of
charge density enhancement was also confirmed with new
observations [6,7]. The chief difference with the analyses in
Refs. [5–7] is the centrifugal deformation induced by the
rotation on the currents and their densities. Also, recent
analyses using pion effective descriptions have suggested
the possibility of Bose condensation in strong magnetic
fields [8] and dense matter with magnetism or rotations [9].
This paper consists of a number of new results: 1) a full

analysis of the combined effects of a rotation and magnetic
field on free and interacting Dirac fermions in 1þ 2
dimensions, both at weak and strong coupling; 2) a
correspondence with anomalies in arbitrary dimensions;
3) a deformation of the current densities by centrifugation
in the presence of a magnetic field; 4) a depletion of the
QCD chiral condensate at leading order in the pion
interaction; and 5) a charge pion condensation induced
by centrifugation in a magnetic field.
The outline of the paper is as follows. In Sec. II we detail

the Landau level problem for free Dirac fermions in 1þ 2
dimensions in the presence of an arbitrary rotation
described using a local metric. In Sec. III we explore the
effects of the interaction on the free results through a four-
Fermi interaction both in the weak and strong coupling
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regimes. In Secs. IV and V we extend our chief observa-
tions to 1þ 3 dimensions for the free and interacting
fermionic cases with particular interest in the shift in the
chiral condensate in QCD. In Sec. VI, we discuss the
possibility for the formation of a pion Bose-Einstein
condensate (BEC) phase in off-central heavy-ion collisions.
Our conclusions are presented in Sec. VII. We record
in the Appendices useful details regarding some of the
calculations.

II. DIRAC FERMIONS IN 1 + 2

In this section we will outline how to implement a global
rotation through a pertinent metric. We will then use it to
derive explicit results for massless Dirac fermions with a
global Uð2Þ symmetry in the presence of a parallel
magnetic field in 1þ 2 dimensions. The basic mechanism
of the shift caused by the rotation on the lowest Landau
level (LLL) will be clearly elucidated, and both the scalar
and vector densities will be evaluated.

A. Metric for a rotating frame

To address the effects of a finite rotation Ω in 1þ 2
dimensions we define the rotating metric

ds2 ¼ ð1 − Ω2ρ2Þdt2 þ 2yΩdxdt − 2xΩdydt: ð1Þ

The frame fields or vielbeins are defined as gμν ¼
eμaeνaηab with signature

ffiffiffiffiffiffi−gp ¼ 1, in terms of which
the comoving frame is θa ¼ eaμdxμ and ea ¼ eμa∂μ are
explicitly given by

ðθ0; θ1; θ2Þ ¼ ðdt; dx − yΩdt; dyþ xΩdtÞ;
ðe0; e1; e2Þ ¼ ð∂t þ yΩ∂x − xΩ∂y; ∂1; ∂2Þ; ð2Þ

with the spin connections

ω1
0 ¼ ω0

1 ¼ þΩðdy −ΩxdtÞ;
ω2
0 ¼ ω0

2 ¼ −Ωðdxþ ΩydtÞ: ð3Þ

In a fixed area of size S ¼ πR2, the time-like nature of
the metric (1) and therefore causality are maintained for
ΩR ≤ 1. The importance of a finite size for rotating
fermions was emphasized in Ref. [7]. This will be
understood throughout.

B. Rotation plus magnetic field

The Lagrangian that describes free rotating Dirac fer-
mions in a fixed magnetic field in 1þ 2 dimensions, reads

L ¼ ψ̄ðiγμðDμ þ ΓμÞ −MÞψ
¼ ψ̄ðiγ0ð∂t − Ωðx∂y − y∂x þ iSzÞÞ þ iγiDi −MÞψ

ð4Þ

with the long derivative D ¼ ∂ − ieA, and the choice
of gamma matrices, γa as γ0 ¼ diagðσ3;−σ3Þ, γ1 ¼
diagðiσ1;−iσ1Þ, γ2 ¼ diagðiσ2;−iσ2Þ, to accommodate
both particles and antiparticles.
A thorough analysis of Eq. (4) for an external vector

potential in a rotationally nonsymmetric gauge was given in
Ref. [10]. Here we insist on preserving rotational symmetry
by choosing Aμ ¼ ð0; By=2;−Bx=2; 0Þ. As a result, the LL
spectrum is characterized explicitly by both energy and
angular momentum conservation which are described in
terms of the anticommutative harmonic oscillator a, b
operators

a ¼ iffiffiffiffiffiffiffiffi
2eB

p ðDx þ iDyÞ ¼ −
iffiffiffiffiffiffiffiffi
2eB

p
�
2∂̄ þ eBz

2

�
;

b ¼ 1ffiffiffiffiffiffiffiffi
2eB

p
�
2∂ þ eBz̄

2

�
: ð5Þ

Throughout, we will assume eB > 0 unless specified
otherwise. The rotating Landau levels are labeled by m,
n as

E� þΩ
�
m − nþ 1

2

�
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 2eBn

p
¼ �Ẽ ð6Þ

for particles and antiparticles. The corresponding normal-
ized scalar wave functions for the nth Landau level with
good angular momentum lz ¼ xpy − ypz ¼ b†b − a†a
with eigenvalue m − n, are

fnm ¼ ða†Þnðb†Þmffiffiffiffiffiffiffiffiffiffi
n!m!

p f00 ð7Þ

with the LLL f00 ∝ e−
1
4
eBðx2þy2Þ. Note that for n ¼ 0, we

have only one positive energy state with spin up, and one
negative energy state with spin down, each with degeneracy
N ¼ eBS=2π. For Ω ¼ 0 and n > 0 all LLs have degen-
eracy 2N ¼ eBS=π. The degeneracy is lifted by centrifu-
gation for Ω ≠ 0.
In terms of Eq. (7) the quantized Dirac fields follow in

the form

ψðt; x⃗Þ ¼
X
nmi

ðuinmðx⃗Þe−iEþtainm þ vinmðx⃗Þe−iE−tbi†nmÞ ð8Þ

where ainm annihilates a particle with positive energy Eþ

and spin i ¼ � 1
2
, and bi†nm creates a hole with negative

energy E− and spin i ¼ ∓ 1
2
. Their corresponding wave

functions are
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u0m ¼ ðf0m; 0; 0; 0Þ;
v0m ¼ ð0; 0; f0m; 0Þ;

uþnm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ẼþM

2Ẽ

s �
fnm;

i
ffiffiffiffiffiffiffiffi
2eB

p

ẼþM
fn−1;m; 0; 0

�
;

u−nm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ẽ −M

2Ẽ

s �
0; 0; fnm;−

i
ffiffiffiffiffiffiffiffi
2eB

p

Ẽ −M
fn−1;m

�
;

vþnm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ẽ −M

2Ẽ

s �
fnm;−

i
ffiffiffiffiffiffiffiffi
2eB

p

Ẽ −M
fn−1;m; 0; 0

�
;

v−nm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ẼþM

2Ẽ

s �
0; 0; fnm;

i
ffiffiffiffiffiffiffiffi
2eB

p

ẼþM
fn−1;m

�
: ð9Þ

C. Scalar density

For M ¼ 0, Eq. (4) exhibits a Uð2Þ symmetry as the set
(1, γ5,−iγ3, γ1þ2 ¼ −iγ0γ1γ2) leavesEq. (4) unchanged.This
symmetry rotates particles to antiparticles. The mass upsets
this symmetry, and is onlyUð1Þ ×Uð1Þ symmetric under the
action of ð1; γ1þ2Þ. In Ref. [10] it was noted, that for Ω ¼ 0,
Eq. (4) breaks spontaneously Uð2Þ → Uð1Þ × Uð1Þ with a
finite condensate hψ̄ψi ¼ −N=S without fermionic inter-
actions. This is readily understood from the illustration in
Fig. 1(a), where only the LLL for particle states with spin up
andmassþM, andantiparticle stateswith spindownandmass
−M are shown. Each level isN degenerate. The vacuum state
consists of filling the antiparticle states only. Clearly, for finite
M the Uð2Þ symmetry is explicitly broken. However, as
M → 0 the explicit breaking is removed, but the antiparticle
states remain still occupied even though they have the same
zero energy as the particle states. The state breaks sponta-
neously the balance between particles and antiparticles or
Uð2Þ → Uð1Þ ×Uð1Þ. We now show that this free scalar
condensate disappears for any finite rotation Ω.
For a heuristic argument for the role of a finite rotationΩ

along the magnetic field, we show in Fig. 1(b) its effect on

the LLL with maximum orbital angular momentum N.
Both the particle and antiparticle states are shifted down
and below the zero energy mark even for M ¼ 0. This
means that in the rotating vacuum, the particle LLL needs
to be filled. Since typically the unordered scalar condensate
operator is ψ̄ψ ∼ ða†aþ b†b − 1Þūu, it follows from
Fig. 1(b) that ψ̄ψ ∼ ð1þ 0 − 1Þūu ¼ 0.
Formally, the scalar condensate carried by the rotating

LLL can be explicitly constructed using the fermionic field
operator (8). At finite temperature 1=β and Ω, it is readily
found in the form

hψ̄ψiðrÞ ¼ eB
2π

X e−
eBr2
2

m!

�
eBr2

2

�
m

× ðnFð−βΩðmþ 1=2ÞÞ
þ nFðβΩðmþ 1=2ÞÞ − 1Þ ¼ 0 ð10Þ

which is identically zero even for zero temperature β ¼ ∞.
So any finite rotation, however infinitesimal will cause the
scalar density to vanish for free rotating fermions at finite B
in 1þ 2 dimensions.

D. Vector density

The local density of Dirac fermions in the rotating frame
in 1þ 2 dimensions is readily found using Eq. (8) in the
current density

hj0ðxÞi ¼ h∶ψ̄γ0ψ∶i ¼
X
n¼0

j0nðxÞ: ð11Þ

The normal ordering is carried with respect to the true
vacuum at finite Ω. Each LL in Eq. (11) including the
LLL contribute through a tower of rotational states −n <
m < N − n for both particles and antiparticles. This finite
range in the angular momentum is further detailed in
Appendix A. Specifically, and for finite temperature 1=β,
the contributions of the LL and the LLL are respectively

j0n>0ðxÞ ¼
X
m

jfnmj2 þ jfn−1;mj2

× ðnFðEþ
nmÞ − nFðE−

nmÞÞ;

j0n¼0ðxÞ ¼
eB
2π

X
m

e−
eBr2
2

m!

�
eBr2

2

�
m

×
sinhðβΩðmþ 1

2
Þ=2Þ

coshðβΩðmþ 1
2
Þ=2Þ ð12Þ

with the definition

E�
nm ¼ En ∓

�
m − nþ 1

2

�
Ω

¼
ffiffiffiffiffiffiffiffiffi
eBn

p ∓
�
m − nþ 1

2

�
Ω: ð13Þ

FIG. 1. The particle (þM) and antiparticle (−M) LLL for
Ω ¼ 0 are shown in panel (a) each with degeneracy N. For Ω ≠ 0
the degeneracy is lifted. In panel (b) we illustrate how the
centrifugation lifts the degeneracy on the states with angular
momentum N by shifting them down by �M−ΩðNþ1

2
Þ. The

rotating vacuum now includes the particle LLL which needs to
be filled.
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We first note that the particle density is inhomogeneous in
the plane and peaks at the edge of the disc S ¼ πR2 under
the effects of centrifugation. For small βΩ ≪ 1, i.e. small
rotations or high temperature, the inhomogeneous particle
density carried by the LLL is

j00jΩðrÞ ¼ βΩ
eB
4π

X
m

e−
eBr2
2

m!

�
eBr2

2

�
m
�
mþ 1

2

�

¼ βΩeB
4π

1þ eBr2

2
: ð14Þ

Under the combined effect of the rotation and the magnetic
field the particle density undergoes a centrifuge effect with
a maximum at the edge of the rotational plane. This effect
will persist even in the presence of interactions as we will
discuss below (see Fig. 6).
The total number of particles follow from Eqs. (11)–(13)

by integration over S ¼ πR2. The results for the LL and
LLL are respectively

nn ¼ 2
X
m

ðnFðEþ
nmÞ − nFðE−

nmÞÞ;

n0 ¼
X
m

sinhðβΩðmþ 1
2
Þ=2Þ

coshðβΩðmþ 1
2
Þ=2Þ : ð15Þ

For small βΩ, which is similar to small Ω or large
temperature, the results in Eq. (15) simplify to

nnjΩ ¼ 4βΩ
X
m

�
m − nþ 1

2

�
eβEn

ð1þ eβEnÞ2 ;

¼ 4βΩ
�
N2 þ 2N

2
− n

�
eβEn

ð1þ eβEnÞ2

n0jΩ ¼ 1

2
βΩ

X
m

�
mþ 1

2

�
¼ βΩðN2 þ 2NÞ

4
: ð16Þ

We note that in 1þ 2 dimensions, the LLL generates a net
density at βΩ ≪ 1. For strictly zero temperature Eq. (15)
gives the exact result

n0jβ¼∞ ¼ sgnðΩÞN ð17Þ

which can be understood from Fig. 1(b) for M → 0. Since
the normal-ordered density operator ∶ψ†ψ∶ ∼ ða†a −
b†bÞu†u ∼ ð1 − 0Þu†u which precisely gives N. Note that
for a rotation opposite to the magnetic field, the LLL shifts
up and above the zero energy mark. Therefore, we have
instead ∶ψ†ψ∶ ∼ ða†a − b†bÞu†u ∼ ð0 − 1Þu†u which pre-
cisely gives −N, as expected from Eq. (17).
These observations are not restricted to only finite

temperature. Indeed, at zero temperature but finite chemical
potential, the rotation induces changes in the population of
the LLL. This can seen through the substitution [7,11]

βΩ
�
mþ 1

2

�
→ β

�
μþΩ

�
mþ 1

2

��
ð18Þ

in Eq. (15), with the result

n0ðμÞ ¼ N; μ ≥ −
Ω
2
;

n0ðμÞ ≈ N þ 1þ 2μ

Ω
; −

�
N þ 1

2

�
Ω ≤ μ ≤ −

Ω
2
;

n0ðμÞ ¼ −N; μ ≤ −
�
N þ 1

2

�
: ð19Þ

III. INTERACTING FERMIONS IN 1+ 2

Consider now fermions in 1þ 2 dimensions interacting
via four-Fermi interactions, as a way to model QCD1þ2 in
strong and rotating magnetic fields. The advantage of this
reduction is that it will allow for closed-form results with
physical lessons for QCD1þ3 dimensions, which even when
modeled with four-Fermi interactions is only tractable
numerically. Following Refs. [10,12], we now consider
Nc copies of the preceding Dirac fermions, interacting via
local four-Fermi Uð2Þ symmetric interactions

Lint ¼
G
2
ðjψ̄ψ j2 þ jψ̄iγ5ψ j2 þ jψ̄γ3ψ j2Þ: ð20Þ

Standard bosonization gives

Lint → −ψ̄ðσ þ γ3τ þ iγ5πÞψ −
1

2G
ðσ2 þ π2 þ τ2Þ ð21Þ

with the scalar fields

−
1

G
ðσ; τ; πÞ ¼ ðψ̄ψ ; ψ̄γ3ψ ; iψ̄γ5ψÞ ð22Þ

For large Nc, Eq. (B13) can be analyzed in the leading
1=Nc approximation using the loop expansion for the
effective action. Explicit Uð2Þ symmetry makes the effec-
tive action only a function of σ2 þ τ2 þ π2, so it is sufficient
to search for saddle points with τ ¼ π ¼ 0, as others follow
by symmetry.
The effective potential stemming from Eq. (B13) can be

organized into three parts

V ¼ V0 þ VT ¼ σ2

2G
þ VΛ þ VT: ð23Þ

The zero-temperature (vacuum) contribution from the
fermion loop is

VΛ ¼ −
Nc

4π
3
2

Z
∞

1

Λ2

ds

s
3
2

e−sσ
2

eB cothðeBsÞ ð24Þ

YIZHUANG LIU and ISMAIL ZAHED PHYS. REV. D 98, 014017 (2018)

014017-4



which is cut off in the UV by 1=Λ2, while the thermal
contribution is

VT ¼ −
NcT
S

X
j¼1;−1

XN
n¼0

XN−n

l¼−n
lnð1þ e−βðEn−jΩðlþ1

2
ÞÞÞ ð25Þ

with En ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 þ 2eBn

p
and N=S ¼ eB=2π. A comple-

mentary but numerically useful approximation to Eq. (25)
is given in Appendix B using the proper time formalism.

A. Weak coupling regime

At zero temperature and in the absence of B, Ω, the
effective potential (B15) for the interacting Dirac fermions
in 1þ 2 dimensions simplifies to

V →
σ2

2G
−
Nc

4π
3
2

Z
∞

1

Λ2

ds

s
5
2

e−sσ
2

: ð26Þ

If we set g ¼ GΛ
π , then Eq. (26) exhibits a minimum at

σ ¼ Λ=gr with 1=gr ¼ 1=g − 1=gc, only for sufficiently
strong coupling g > gc ¼

ffiffiffi
π

p
. The minimum breaks spon-

taneously Uð2Þ → Uð1Þ ×Uð1Þ with a finite hψ̄ψi ¼
−Ncσ=G. The putative chargeless Goldstone mode
signals a Berezinskii-Kosterlitz-Thouless (BKT) phase at
any finite Nc.
At zero temperature and zero rotation Ω ¼ 0 but with

B ≠ 0, the effective potential (B15) can be made more
explicit by rescaling and expanding in 1=Λ. For small σ and
large Λ the dominant contributions are

VΛ ¼ þNcΛ3

4π
3
2

Z
∞

1

dx

s
3
2

eBx
Λ

coth

�
eBx
Λ

�

−
NcΛσ2

2π
3
2

þ Ncσ
3

3π

þ Nc

4π
3
2

Z
ds

s
5
2

ðe−sσ2 − 1ÞðeBs cothðeBsÞ − 1Þ

þO
�
1

Λ

�
: ð27Þ

The first contribution is independent of σ, so we will ignore
it. Therefore, the vacuum contribution to the effective
potential combines the first term in Eq. (B15) and the
second and third contributions in Eq. (27)

V0

Nc
≈

Λσ2

2πgr
−
eB
2π

σ þ σ3

3π
: ð28Þ

In the weak-coupling regime

0 ≤
�
1

gr
≡ 1

g
−

1

gc

�
−1

≤
Λ
eB

ð29Þ

we can ignore the cubic contribution in Eq. (28). A
minimum of Eq. (28) always exists for arbitrarily weak
coupling, with a mass gap σ ¼ πgrN=SΛ and a finite chiral
condensate hψ̄ψi ¼ −NcN=Sð1 − g=gcÞ ≈ −NcN=S. The
latter is in agreement with the result for free Dirac fermions.
This is the phenomenon of magnetic catalysis [10], with the
effect of a chemical potential discussed in Ref. [13]. The
possibility of a transition to an inhomogeneous phase was
explored in Ref. [14].

1. Vacuum with Ω ≠ 0

At zero temperature, the effective potential for rotating
Dirac particles in a strong magnetic field is given by the
first two contributions in Eq. (B15) plus the contribution
from the rotating antiparticles in the LL,

V
Nc

¼ þ Λσ2

2πgr
−
eB
2π

σ

−
eB
2πN

XN
l¼0

��
lþ 1

2

�
Ω − σ

�
θ

��
lþ 1

2

�
Ω − σ

�
:

ð30Þ

For small rotation the summation can be approximated by a
continuous integration with the result

V
Nc

≈
Λσ2

2πgr
−
eB
2π

σ −
1

2ΩS
θðEΩ − σÞðEΩ − σÞ2 ð31Þ

with EΩ ¼ ðN þ 1
2
ÞΩ. For σ > EΩ, the effective potential is

independent of Ω, and develops a minimum for

σ2 ¼ þ πgr
Λ

eB
2π

;

V2

Nc
¼ −

πgr
2Λ

�
eB
2π

�
2

: ð32Þ

In contrast, for σ < EΩ, Eq. (31) depends on Ω through

V
Nc

≈
�

Λ
2πgr

−
eB

4πNΩ

�
σ2þ eB

4πN
σ−

eBΩ
4π

�
Nþ 1

2

�
ð33Þ

and prefers always

σ1 ¼ 0;

V1

Nc
¼ −

EΩ

2

eB
2π

: ð34Þ

For EΩ < πgr
Λ

eB
2π the 2-minimum (34) is dominant. The

rotating vacuum develops a scalar condensate hψ̄ψi ≠ 0

with finite σ2 but zero fermion density hψ̄γ0ψi ¼ 0. In the
opposite case, with EΩ > πgr

Λ
eB
2π, the 1-minimum (34) takes

over. The rotating vacuum prefers a gapless solution with
σ1 ¼ 0 and zero scalar condensate hψ̄ψi ¼ 0, but a finite
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fermion density hψ̄γ0ψi ≠ 0. At large N, the critical value
for which this occurs is

Ωc ¼
gr

2N þ 1

eB
Λ

: ð35Þ

This is the phenomenon of rotational inhibition of the
magnetic catalysis noted in 1þ 3 dimensions in Ref. [7]. At
finite but large N and without the use of the continuum
approximation and keeping the σ3 term, the results remain
quantitatively almost the same, with one exception that the
local minimum σ1 ¼ 0 can overtake the finite local mini-
mum σ2 slightly before the Ωc. For Λ ¼ 10

ffiffiffiffiffiffi
eB

p
and

N ¼ 100, Eq. (35) yields Ωc ¼ 0.000497
ffiffiffiffiffiffi
eB

p
. We note

that in the free case with Λ → ∞, Eq. (35) yieldsΩc → 0 in

agreement with the observation in Eq. (10). Any finite
rotation destroys the free scalar condensate.
In Fig. 2 we show the behavior of the effective potential

for finite but small Ω with the two local minima (32) and
(34). We use Λ=

ffiffiffiffiffiffi
eB

p ¼ 10, N ¼ 100 and gr ¼ 1. A
transition sets in numericallyΩc ¼ 0.000488

ffiffiffiffiffiffi
eB

p
in agree-

ment with Eq. (35). In Fig. 3 we display the effective mass
as a function of

ffiffiffiffiffiffi
eB

p
andΩ in units of Λ, for gr ¼ 1 (weak-

coupling regime) and T ¼ 0. While the mass gap is seen to
increase slightly faster than linearly with

ffiffiffiffiffiffi
eB

p
atΩ ¼ 0, the

effect of the rotation is to cause it to disappear at the critical
value (35) through a first-order transition at weak coupling.

2. Thermal state with Ω ≠ 0

First we note that the existence of a mass gap for any
finite temperature does not contradict the Mermin-Wagner-
Coleman theorem, since the thermal state is in a BKT phase
rather than a spontaneously broken or Goldstone phase.
Having said that, at finite temperature and weak coupling,
we note that since σ2 ≪

ffiffiffiffiffiffi
eB

p
, the temperatures of interest

for the vanishing of the mass gap, are in the low range with
T ≪

ffiffiffiffiffiffi
eB

p
. Therefore, only the j ¼ �1 LLLs contribute in

Eq. (25). For T ≈ Tc ≈ σ2, the potential flattens out and the
centrifugation near σ ¼ 0 becomes visible leading to a
small value for the critical Ωc.
In Fig. 4 we show the behavior of the effective potential

for Λ=
ffiffiffiffiffiffi
eB

p ¼ 10, N ¼ 100 and gr ¼ 1 (weak coupling)
for β ¼ 80=

ffiffiffiffiffiffi
eB

p
and β ¼ 43=

ffiffiffiffiffiffi
eB

p
. For β ≥ 80=

ffiffiffiffiffiffi
eB

p
the

transition occurs at Ωc≈0.0005
ffiffiffiffiffiffi
eB

p
, and for β¼43=

ffiffiffiffiffiffi
eB

p
,

the transition is aroundΩc ¼ 0.0001
ffiffiffiffiffiffi
eB

p
. The critical tem-

perature is numerically in the range βc≈ð40−43Þ= ffiffiffiffiffiffi
eB

p
.

The behavior of the effective mass is shown in Fig. 5 as a
function of β and Ω, for the ranges 50 < β

ffiffiffiffiffiffi
eB

p
< 80

and 0.0003 ≤ Ω
ffiffiffiffiffiffi
eB

p
≤ 0.0006.

0.02 0.04 0.06 0.08 0.10

–0.004

–0.003

–0.002

–0.001

Ω

V

0.02 0.04 0.06 0.08 0.10

–0.004

–0.003

–0.002

–0.001

0.01 0.02 0.03 0.04 0.05 0.06

–0.00405

–0.00400

–0.00395

–0.00390

–0.00385

–0.00380

FIG. 2. Effective potential V as a function of σ in units of
ffiffiffiffiffiffi
eB

p
at T ¼ 0: Ω ¼ 0.0001

ffiffiffiffiffiffi
eB

p
(top), Ω ¼ 0.00049

ffiffiffiffiffiffi
eB

p
(middle),

and Ω ¼ 0.0005
ffiffiffiffiffiffi
eB

p
(bottom).

FIG. 3. Effective mass as a function of
ffiffiffiffiffiffi
eB

p
andΩ in units ofΛ.

The mass gap disappears forΩ ≥ Ωc as given by Eq. (35) through
a first order transition.
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In Fig. 6 we show the analogue of the profile density (14)
in units of

ffiffiffiffiffiffi
eB

p
, in the weak-coupling regime with gr ¼ 1

and for 1=β ≪ Ω as a function of x ¼ eBr2=2. The first
figure from the top is for Ω ¼ 0.00005

ffiffiffiffiffiffi
eB

p
for 1=β ¼ 0. It

is roughly constant and drops sharply at the edge of the
causality disc fixed by ΩR ¼ 1. However, for Ω ≪ 1=β ≪ffiffiffiffiffiffi
eB

p
a linear behavior sets in the middle of the disc, to drop

FIG. 4. Finite-temperature effective potential V as a function of
σ in units of

ffiffiffiffiffiffi
eB

p
: β ¼ 100=

ffiffiffiffiffiffi
eB

p
and Ω ¼ 0.0003

ffiffiffiffiffiffi
eB

p
(top);

β ¼ 43=
ffiffiffiffiffiffi
eB

p
and Ω ¼ 0.0001

ffiffiffiffiffiffi
eB

p
(bottom).

FIG. 5. Effective mass as a function of β and Ω in units of
ffiffiffiffiffiffi
eB

p
at T ≠ 0.

FIG. 6. The current density in the weak-coupling regime with
gr ¼ 1, as a function of x ¼ eBr2

2
in units of eB

2π at T ¼ 0 and

Ω ¼ 0.0005 (in units of
ffiffiffiffiffiffi
eB

p
) (first), β ¼ 100, Ω ¼ 0.0001

(second), β ¼ 100, Ω ¼ 0.0005 (third), and β ¼ 40, Ω ¼
0.0001 (fourth).
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only sharply at the edge. The second and third figures from
the top are for β ¼ 100=

ffiffiffiffiffiffi
eB

p
and Ω ¼ 0.0001

ffiffiffiffiffiffi
eB

p
and

Ω ¼ 0.0005
ffiffiffiffiffiffi
eB

p
respectively. The fourth figure is for β ¼

40=
ffiffiffiffiffiffi
eB

p
at Ω ¼ 0.0001

ffiffiffiffiffiffi
eB

p
. As we indicated in Sec. II D

for the free case, this centrifugation effect holds for the
interacting case as well and carries to higher dimensions as
we show below. We will suggest a possible physical
application in 1þ 3 dimensions. Finally, the occurrence
of surface or edge modes was noted recently in Ref. [15].
We show in Appendix B that they do not alter our current
discussion for large N.

3. Dense state with Ω ≠ 0

For completeness, we now explore the effects of a finite
chemical potential μ on the mass gap for ψ̄ψ pairing. Just as
a caution, we note that a more complete treatment would
require the inclusion of the competing ψψ channel as well.
However, we note that at leading order in 1=Nc the ψψ
channel is 1=Nc suppressed in comparison to the ψ̄ψ
channel and can be ignored. With this in mind, the effect
of a finite chemical potential follows from Eq. (B3) through
the substitution Ωðlþ 1

2
Þ → μþ Ωðlþ 1

2
Þ, which we now

briefly address.
In Fig. 7 we show the behavior of the effective potential

V for β ¼ 80=
ffiffiffiffiffiffi
eB

p
and μ ¼ 0.007=

ffiffiffiffiffiffi
eB

p
as a function of σ

in units of
ffiffiffiffiffiffi
eB

p
. The top panel is for Ω ¼ 0 and the bottom

panel is for Ω ¼ 0.0003
ffiffiffiffiffiffi
eB

p
. The increase in the rotation

causes the loss of the gapped solution. In particular,
for gr ¼ 1 (weak coupling), β ¼ 80=

ffiffiffiffiffiffi
eB

p
and Ω ¼ 0,

the critical value is μc ¼ 0.02
ffiffiffiffiffiffi
eB

p
, while for Ω ¼

0.0003
ffiffiffiffiffiffi
eB

p
, the critical value is μc ¼ 0.007

ffiffiffiffiffiffi
eB

p
.

Finally and for completeness, we discuss in Appendix B 1
the dense state with negative μ. Since the model under
consideration can be viewed as an effective description of
planar condensed matter systems [12], a negative chemical
potential is experimentally accessible.

B. Strong-coupling regime

In the opposite regime of strong coupling with g > gc,
a mass gap also forms. In the regime where the ratio Λffiffiffiffi

eB
p is

large and g > gc or gr < 0, the minimum of the effective
potential is now controlled by the first and third contribu-
tions in Eq. (28) namely

V0

Nc
≈ −

Λσ2

2πjgrj
þ σ3

3π
ð36Þ

with a mass gap σ̄ ¼ Λ=jgrj. For
ffiffiffiffiffiffi
eB

p
=Λ < 1, the leading

contribution shifts the mass and the scalar condensate
quadratically,

FIG. 7. Finite-temperature effective potential VðσÞ at β ¼
80=

ffiffiffiffiffiffi
eB

p
and μ ¼ 0.007=

ffiffiffiffiffiffi
eB

p
as a function of σ in units offfiffiffiffiffiffi

eB
p

: Ω ¼ 0 (top) and Ω ¼ 0.0003
ffiffiffiffiffiffi
eB

p
(bottom).

FIG. 8. Mass gap σ=Λ in the strong-coupling regime with
gr ¼ −4, as a function of Ω=ð10−4ΛÞ for Λ= ffiffiffiffiffiffi

eB
p ¼ 5 (top) and

Λ=
ffiffiffiffiffiffi
eB

p ¼ 3 (bottom).
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hψ̄ψiB
hψ̄ψi0

− 1 ≈
ðeBÞ2

12ðΛ=grÞ4
: ð37Þ

We note that the ratio of the mass gap to the LL gap σ̄=
ffiffiffiffiffiffi
eB

p
can be very large. Therefore, the critical Ωc for which the
mass gap can be depleted is much larger for strong coupling
than for weak coupling. For fixed Ω, the mass σ̄ decreases
as the ratio Λ=

ffiffiffiffiffiffi
eB

p
decreases. For instance, for gr ¼ −4

and Λ=
ffiffiffiffiffiffi
eB

p ¼ 5, Ωc ≈ 0.008Λ, but for Λ=ð ffiffiffiffiffiffi
eB

p jgrjÞ ¼ 3,
Ωc ≈ 0.009Λ. In Fig. 8 we show the behavior of the
mass gap for strong coupling with gr ¼ −4 versus σ in
units of Λ as a function of Ω expressed in units of Λ=104.
The top panel is for Λ=

ffiffiffiffiffiffi
eB

p ¼ 5 and the bottom panel is
for Λ=

ffiffiffiffiffiffi
eB

p ¼ 3.

IV. FREE DIRAC FERMIONS IN 1+3

The extension of the previous analysis to 1þ 3 dimen-
sions for free Dirac fermions is straightforward. In
Appendix B 2 we detail the rotating wave functions in
the presence of a magnetic field, for the free case. The
interacting case is more challenging than say the case of
QCD which is strongly coupled and gapped in the vacuum.
Below, we will focus on the combined effects of a rotation
and magnetic field on the QCD chiral condensate in the
spontaneously broken phase using mesoscopic arguments,
and leading-order chiral perturbation.

A. Free left currents

We now extend the analysis for the left or L currents to
show the generic nature of the observations made in 1þ 2
dimensions above. From Appendix B 2, the L wave
functions in 1þ 3 dimensions take the simplified forms

uLðn ¼ 0Þ ¼ vlðn ¼ 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Ẽ − p

2Ẽ

s
ðf0;m; 0Þ;

uLðn;mÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ẼðẼþ pÞ

p ð
ffiffiffiffiffiffiffiffiffiffiffi
2eBn

p
fnm; ðẼþ pÞfn−1;mÞ;

vLðn;mÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ẼðẼþ pÞ

p ð
ffiffiffiffiffiffiffiffiffiffiffi
2eBn

p
fnm;−ðẼþ pÞfn−1;mÞ:

ð38Þ
The left particle density at the origin is

2π

eB
nLð0Þ ¼ þ

Z
0

−∞

dp
2π

ðnFð−p − μ00Þ − nFð−pþ μ00ÞÞ

þ
X
n¼1

Z
∞

−∞

dp
4π

ðnFðEn − μ00Þ þ nFðEn − μ10ÞÞ

−
X
n¼1

Z
∞

−∞

dp
4π

ðnFðEn þ μ00Þ þ nFðEn þ μ10ÞÞ

ð39Þ

while the current density at the origin is

j3Lð0Þ ¼
eB
2π

�
J3L;0 þ

X
n¼1

J3L;n

�
ð40Þ

with

J3L;0 ¼ −
Z

0

−∞

dp
2π

ðnFð−p − μ00Þ − nFð−pþ μ00ÞÞ

¼ −
Ω
4π

−
μL
2π

;

J3L;n ¼ −
X
n¼1

Z
∞

−∞

dp
4π

ðnFðEn − μ00Þ − nFðEn − μ10ÞÞ

þ
X
n¼1

Z
∞

−∞

dp
4π

ðnFðEn þ μ00Þ − nFðEn þ μ10ÞÞ

ð41Þ
with μ00 ¼ Ω

2
þ μL and μ10 ¼ − Ω

2
þ μL. For small B and

zero μL, the summation in Eq. (40) gives

X eB
2π

f
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ 2gBn
q �

→
Z

kdk
2π

f
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ k2
q �

: ð42Þ

This reproduces the known result at B ¼ 0 [1]

−
TΩ
12π2

−
ðΩþ 2μLÞ3 þ ðΩ − 2μLÞ3

96π2
: ð43Þ

While the current density at the origin reproduces the
expected result, the distribution of the current density in the
radial direction is not homogeneous. Indeed, the centrifu-
gation causes it to peak at the edge as in 1þ 2 dimensions.
This is readily seen from the contribution of the LLL which
can be worked out explicitly with the result

J3Ln¼0 ¼−
eB
4π2

X
m¼0

e−
eBr2
2

�
eBr2

2

�
m ðmþ1=2ÞΩþμL

m!
: ð44Þ

The sum can be performed exactly with the result

J3Ln¼0ðrÞ ¼
eB
4π2

�
μL þΩ

�
1

2
þ πNr2

��
: ð45Þ

The centrifugal effect causes the current density to peak at
the edge of the rotational plane in 1þ 3 dimensions.
A possible application of this phenomenon may be in

current heavy-ion collisions at collider energies such as the
RHIC and LHC. Indeed, for semicentral collisions both the
rotational (orbital) and electromagnetic fields are sizable
with Ω ∼ eB ∼mπ which may induce partonic densities of
the type (45) that are largely deformed in the transverse
plane. While the rotation and magnetic fields tend to
separate the partonic charges in concert along the rotational
axis, the centrifugation causes this separation to peak in the
orthogonal direction where the observed particle flow is
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more important. If true, this effect should be seen as an
enhancement of v4 in the charged particle flow.

B. Number of free left particles

As we noted in 1þ 2 dimensions, the number of free left
particles increases in 1þ 3 dimensions due to the sinking
of the particle LLL in the Dirac sea. More explicitly, we
have

nL ¼
Z

dxdyh∶ψ̄Lγ
0ψL∶i

¼
X
m

Z
0

−∞

dp
2π

ðnFð−p − μmÞ − nFð−pþ μmÞÞ

þ
X
n¼1;m

Z
∞

−∞

dp
2π

ðnFðEn − μnmÞ − nFðEn þ μnmÞÞ:

ð46Þ

Here μnm¼ðm−nþ 1
2
ÞΩþμL and En¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þ2eBn

p
. The

flowing left current along the rotational-magnetic axis is

j3L ¼
Z

dxdyhψ̄Lγ
3ψLi

¼ −
X
m

Z
0

−∞

dp
2π

ðnFð−p − μmÞ − nFð−pþ μmÞÞ

¼ −
1

2π

XN
m¼0

�
mþ 1

2

�
Ωþ μL

¼ −
Ω
2π

�
N þ N2

2

�
−
μLN
2π

: ð47Þ

The first contribution in Eq. (47) was noted in Refs. [5,7].
Equations (46) and (47) generalize to arbitrary 1þ d
dimensions. In particular, for μL ¼ 0

nL0 ¼
2

d−3
2 Vd−2

ð2πÞd−2 sgnðΩÞjΩj
d−2

XN
m¼1

�
mþ 1

2

�
d−2

ð48Þ

with the volume Vd−2 ¼ π
d
2
−1=Γðd

2
Þ.

C. Relation to anomalies

These observations can be used to generalize Eq. (49) to
arbitrary 1þ d ¼ 2n dimensions. Consider the case with
nonvanishing and nonparallel magnetic fields B2k;2kþ1 ≠ 0

with 1 ≤ k ≤ n − 3. The general anomaly-induced chiral
magnetic effect for the left current is [16]

J2n−1LμL
¼ −

μL
2π

�
e
2π

�
n−1

B12B34…B2n−4;2n−3: ð49Þ

We now observe from Eq. (45) that the role of the rotation is
to tag μL in 2n ¼ 4 dimensions as

eB
2π

�
μL þΩ

�
1

2
þ πNr2

��
≡ μL

eB
2π

þ ΩJðrÞ: ð50Þ

The anomalous result (49) relates to the rotationally
induced current by a similar substitution in 2n dimensions,
namely

J2n−1LΩ ðrÞ ¼ −
1

2π

�
e
2π

�
n−2

B12B34…B2n−6;2n−5ðΩ; JðrÞÞ

ð51Þ
where JðrÞ refers to the current spin density in the radial
direction within the 2n − 4, 2n − 3 plane

J2n−4;2n−3ðrÞ ¼
eB2n−4;2n−3

2π

�
1

2
þ B2n−4;2n−3

r2

2

�
: ð52Þ

The rotational contribution to the current density (51) in 2n
dimensions is related to the chiral magnetic effect (49) in
2n − 2 dimensions.

D. Charge-neutral volume

Most of the analyses for the fermions presented above
hold for the absolute ground state with overall charge
conservation not enforced (open volume V). If we require
total charge neutrality of the system (closed volume V) then
we expect an induced charge chemical potential μin such
that (Ω⃗ · B⃗ > 0)

XN
n;m¼0

Z
dp
2π

nF

�
En − μin −Ω

�
1

2
þm − n

��

¼
XN
n;m¼0

Z
dp
2π

nF

�
En þ μin þΩ

�
1

2
þm − n

��
ð53Þ

where the number of πþ (first contribution) balances the
number of π− (second contribution). For large eB or small
temperature T, only the n ¼ 0 term survives as before. In
this case, the solution for μin follows by inspection

μin ¼ −
Ω
2
−
NΩ
2

: ð54Þ

The ground state consists of negative charge filling the LLL
with m ¼ 0 to m ¼ N

2
, and positive charge filling the LLL

with m ¼ N
2
to N. The corresponding charge density for

massless fermions is

hJ0L;n¼0ðxÞi ¼
eB
4π2

X½N2 �
m¼0

e−
eBr2
2

�
eBr2

2

�
m ðm − N

2
ÞΩ

m!

þ eB
4π2

XN
m¼½N

2
�þ1

e−
eBr2
2

�
eBr2

2

�
m ðm − N

2
ÞΩ

m!
:

ð55Þ
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The first line is the contribution from all negative-charge
contributions, and the second line is from all positive-
charge contributions. After integration, the total negative
charge density is

�Z
d2xJ0L;n¼0ðxÞ

�
negative

¼ 1

2π

X½N2 �
m¼0

�
m −

N
2

�
Ω ð56Þ

and similarly for the positive charge density. In Fig. 9 we
display the charge density in the LLL in a closed volume
V ¼ SL with total charge neutrality as given by Eq. (55).
We expect the same distribution of charge around a fluid
vortex when overall charge neutrality is enforced, which is
to be contrasted with a vortex with only positive (negative)
charge accumulation when the charge neutrality constraint
is not enforced [5].

V. INTERACTING DIRAC FERMIONS IN 1 + 3

Now we consider the case of interacting Dirac fermions
in the context of QCD in 1þ 3 dimensions at strong
coupling. In this regime, a mass gap forms and chiral
symmetry is spontaneously broken with a triplet of charged
Goldstone modes. They play the role of diffusons in the
vacuum [17]. We will not quantify these statements by
evaluating the QCD vacuum energy density shift caused by
a finite Ω, B and use it to extract the chiral condensate.

A. Diffusion with B, Ω = 0

The spontaneous breaking of the symmetry is manifest
though a finite scalar condensate, which in the chiral limit
relates to the quark return probability in proper time τ as [17]

hψ̄ψi0;0 ¼ − lim
m→0

lim
V4→∞

1

V4

Z
∞

0

Pð0; τÞdτ ð57Þ

with

Pð0; τÞ ¼ hjuþðτÞuð0Þ þ dþðτÞdð0Þj2i ð58Þ

for two light u, d flavors. The averaging in Eq. (58) is over
the QCD vacuum in Euclidean four-dimensional space. In
the absence of magnetism, the vacuum is isospin symmetric
and the correlator in Eq. (58) is dominated by the lightest
Goldstone modes π0;�

Pð0; τÞ ¼ 2ðP0ð0; τÞ þ P�ð0; τÞÞ ≈
X
Q

e−τDð0;0ÞQ2

: ð59Þ

The sum is over the pions or diffusons with momenta Qμ ¼
nμ2π=L in a periodic V4 ¼ L4 Euclidean box. The vacuum
diffusion constant is Dð0; 0Þ ¼ 2F2

π=jhψ̄ψi0;0j [17].

B. Diffusion with B, Ω ≠ 0

Under rotations all π0;� are affected by centrifugation,
while only the π� are affected by magnetism. As a result,
the squared and Euclideanized pion spectra are

Q2
0 ¼ p2

r þ p2
3 þ ðp4 þ iΩlÞ2 þm2

π;

Q2
j¼� ¼ eBð2nþ 1Þ þ p2

3 þ ðp4 þ iΩjlÞ2 þm2
π: ð60Þ

Each chargeless mode carries l ¼ 0;�1;…, while each
charged mode is in a LL n where −n ≤ l ≤ N − n with
degeneracy N. Note that the rotational energy shift in
Euclidean space is purely imaginary. The change in each
of the return probabilities in Eq. (59) following from
Eq. (60) is

P0ðΩ; τÞ ¼
X

nr;n3;n4

Xþ∞

l¼−∞
e−τDðΩ;BÞðp2

rþp2
3
þðp4þiΩlÞ2þm2

πÞ;

Pj¼�ðB;Ω; τÞ

¼
X
n3;n4

XN
n¼0

X
−n≤l≤N−n

e−τDðΩ;BÞðeBð2nþ1Þþp2
3
þðp4þiΩjlÞ2þm2

πÞ

ð61Þ

with p3;4 ¼ n3;4ð2π=LÞ in a Euclidean box of cylindrical
4-volume with V4 → πR2L2 and the causal constraint
ΩR < 1. In general, in the rotating vacuum with magnetism
the diffusion constant DðΩ; BÞ is Ω, B dependent.
The change in the quark return probability is the change

in the charged diffuson modes and is captured by the
difference

I ¼
Z

∞

0

½PðΩ; B; τÞ − Pð0; 0; τÞ�dτ: ð62Þ

In the chiral limit, replacing the sums over free momenta by
integrals allows to get rid of the explicit Ω dependence in
Eq. (61) by shifting p4. So the dependence on Ω, B in P0 is
only through DðΩ; BÞ. Clearly, in the absence of B a

FIG. 9. The charge distribution (55) in the LLL in a closed
volume V with overall charge neutrality, for N ¼ 1000 as a
function of r and in units of eB.
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rotation Ω alone cannot change the return probability, and
therefore the chiral or scalar condensate as the vacuum is
rotationally symmetric. This is not the case in the presence
of an externally fixed magnetic field B as rotational
symmetry is broken. Indeed, the LL dependence in P�
does not drop out but it can be resummed exactly with the
result

I ¼ eBV4

16π2D

Z
∞

0

�
1

z sinh z
−

1

z2

�
dz ¼ −

ln 2
16π2

eBV4

DðΩ; BÞ :

ð63Þ

Using the value of the diffusion constant we arrive at

hψ̄ψiΩ;B
hψ̄ψi0;0

− 1 ¼ ln 2
16π2

eB
F2
π

Dð0; 0Þ
DðΩ; BÞ : ð64Þ

For Ω ¼ 0 and B ≠ 0, Eq. (64) is in agreement with chiral
perturbation theory at leading order [18]. This linear
magnetic catalysis is supported by lattice simulations [19].
Equation (64) is the analogue of Eq. (37) in 1þ 2

dimensions at strong coupling, with the difference that it
grows linearly rather than quadratically. The quadratic
growth follows from the absence of charged Goldstone
modes. As indicated earlier, in 1þ 2 dimensions the
gapped phase is a BKT phase rather than a Goldstone
phase. We now give an independent determination that
fixes DðΩ; BÞ in Eq. (64).

C. Energy densities of a BEC of chiral pions

Assessing the dual action of Ω⃗ · B⃗ > 0 in the QCD
vacuum energy requires vacuum loops in the presence ofΩ,
B. When the magnetic field is sufficiently weak, i.e. jeBj ≪
ð4πFπÞ2 where Fπ is the pion decay constant, the loop
momenta are small and QCD is well described by an
effective theory of chiral pions. At leading order, the
pion interactions which are soft can be ignored. The Ω,
B-dependent parts in the QCD vacuum energy follow from
a one-pion loop with arbitrary Ω, B insertions at leading
order, with the rotation acting as an effective chemical
potential.
In the presence of a fixed magnetic field in the þz

direction B ¼ Bẑ, the charged π� pion spectrum is char-
acterized by highly degenerate LLs with energies

Enp ¼ ðjeBjð2nþ 1Þ þ p2 þm2
πÞ12: ð65Þ

Each LL n for fixed pion 3-momentum p carries a
degeneracy N, labeled by the z component of the angular
momentum Lz ¼ l with −n ≤ l ≤ N − n as detailed in
Appendix B 2. When a rotation Ω parallel to the magnetic
field is applied, the spectrum (65) shifts so that in the
rotating frame we have (Ω⃗ · B⃗ > 0)

Enp → Enp − ΩLz ≡ Enp − jΩl: ð66Þ

Here j ¼ þ1 for positively charged pions (particles) and
j ¼ −1 for negatively charged pions (antiparticles). As a
result, the degeneracy of each LL is lifted. The mechanism
of π� splitting by a rotation can cause πþ pion condensa-
tion [20]. We now explore this condensation in the vacuum
and also matter for different overall charge constraints.

1. Open volume

We first consider the open volume V ¼ SL case, where
charge is free to move in and out of V. At leading order in
the pion interaction, the QCD vacuum energy per unit
volume in V is the sum of a purely B-dependent contri-
bution EπB and a mixed B, Ω-dependent contribution EπΩ

EπðΩ; BÞ ¼ EπB þ EπΩ: ð67Þ

If we denote by n the number of condensed πþ per unit
length L along the rotational axis, then

EπB ¼ 2
N
S

Z þ∞

−∞

dp
2π

X∞
n¼0

1

2
ϵnðpÞ;

EπΩ ¼ −
n
S
ðNΩ −m0Þ þ cN

n2

S
ð68Þ

with ϵ2nðpÞ ¼ p2 þm2
n and m2

n ¼ ð2nþ 1ÞeBþm2
π . The

first contribution stems from the pion loop with charged π�
pions, while the second contribution stems from the Bose
condensation of the πþ in the LLL when the rotationally
induced chemical potential μN ¼ ΩN exceeds the effective
pion mass m0. In the open-volume case, the accumulation
of the charge at the edge of V is compensated by a deficit
outside of V to maintain overall charge conservation. The
last contribution in EπΩ is the Coulomb repulsion in the
condensed droplet of πþ by centrifugation.
To assess the Coulomb contribution, we note that the

two-dimensional charge distribution in this state is given by
ρNðx̃Þ ¼ e2jf0Nðx; yÞj2 where f0Nðx; yÞ is the Nth Landa
level

f0Nðx; yÞ ≈
�

1ffiffiffiffiffiffiffiffi
2eB

p
�
2
∂
∂zþ

eBz̄
2

��
N
e−

1
4
eBzz̄ ð69Þ

with z ¼ xþ iy and valued in S ¼ πR2. The condensate
lies at the edge of the rotational plane with a Coulomb
factor

cN ¼ e2

2L

Z
L×S

d3xd3x0ρNðx̃Þ
1

jx − x0j ρNðx̃
0Þ: ð70Þ

In the large degeneracy N limit, we can approximate this
distribution by a uniform radial distribution within the area
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N −
ffiffiffiffi
N

p
≤ eBr2

2
≤ N þ ffiffiffiffi

N
p

with total charge e. It follows
that the Coulomb factor is cN ≈ e2=12π

ffiffiffiffi
N

p
.

The condensate density n is fixed by minimizing the
energy density EπΩ in Eq. (68), with the result

n ¼ θðNΩ −m0Þ
NΩ −m0

2cN
ð71Þ

for which the energy density in Eq. (68) is

EπΩ → −
3π

ffiffiffiffi
N

p

e2S
ðNΩ −m0Þ2θðNΩ −m0Þ: ð72Þ

For eB ¼ 0.1m2
π, and N ¼ 1000, the threshold for devel-

oping nonzero n is Ωmin ¼ 0.001mπ . For Ω ¼ 0.0015mπ,
we have n ¼ 268mπ , and for Ω ¼ 0.002mπ, we have
n ¼ 566mπ .
The condensation of charged pions by rotation in a

magnetic field is for bosons, what the accumulation of
vector charge in a vortex threaded by a magnetic field is for
fermions [5], and in general in any rotating frame with a
magnetic field [5–7,20]. For Dirac fermions this phenome-
non is related to spectral flow and therefore to anomalies
[5,20], of which the charged pionic condensate is its low-
energy manifestation in the QCD vacuum. In both cases,
the charge accumulation in the finite volume V ¼ LS is
compensated by a deficiency of opposite charge outside of
the volume V. Overall charge conservation is maintained by
allowing the charge to move in or out of V as also suggested
in Ref. [5] for fermions.

2. Closed volume

If the volume V ¼ SL is closed with no charge allowed
to flow in or out, then charge conservation is to be enforced
strictly in V [20]. Let μ be the charged chemical potential in
the comoving frame. Charge neutrality at finite T, μ
requires

XN
l¼0

Z
dp
2π

1

e
1
TðE0p−lΩ−μÞ − 1

¼
XN
l¼0

Z
dp
2π

1

e
1
TðE0pþlΩþμÞ − 1

ð73Þ

with the pion spectrum (65). Equation (73) is solved for
μ ¼ − NΩ

2
at any temperature T. Therefore, the l ¼ N −m

and l ¼ m states for πþ and π− will have the same
occupation number. For NΩ > 2m0 simultaneous conden-
sation occurs for m ¼ 0, i.e. πþ with l ¼ N and π− with
l ¼ 0. For ðN − 2ÞΩ > 2m0 the condensation involves both
m ¼ 0, 1. As we increaseΩ allm ≤ N

2
will condense, i.e. πþ

with N
2
≤ l ≤ N and π− with 0 ≤ l ≤ N

2
.

An alternative way to see this without solving for μ is to
note that for all terms in Eq. (73) to be meaningful, the
inequalities

… ≤ −m0 ≤ μ ≤ m0 − NΩ ≤ … ð74Þ

must hold. Thus, as long as m0 − NΩ < −m0 or
NΩ > 2m0, the occupation number of the l ¼ N state
for πþ and the l ¼ 0 state for π− are no longer meaningful,
and condensation may follow. For increasing Ω such that
m0 − NΩþ Ω < −m0 − Ω or ðN − 2ÞΩ > 2m0, the con-
densation for the l ¼ N − 1 state of πþ and the l ¼ 1 state
for π− will also follow, which is consistent with the above
argument based on the solution for μ. We note that in the
charge-conserving case, the critical Ω is twice the critical Ω
in the nonconserving case.
Now consider the rotating ground state with T ¼ 0 and

NΩ > 2m0 but ðN − 2ÞΩ < 2m0, so that only the l ¼ N
state for πþ and l ¼ 0 state for π− condense. The analogue
of Eq. (68) is then

EπΩ ¼ −nðNΩ − 2m0Þ þ dNn2 ð75Þ

with the new Coulomb factor

dN ≈
e2

2

Z
R

lM

2πrdr

�
1

2πr

�
2

¼ e2

4π
ln
R
a
≈
e2

8π
lnN ð76Þ

where dN is the electric field energy stored between two
charged rings with radius lM ∼ 1=

ffiffiffiffiffiffi
eB

p
and charge −1 (π−),

and radius R ≫ lM and chargeþ1 (πþ). The Coulomb self-
energy is now subleading as cN=dN at large N and omitted.
The pion condensate density that minimizes Eq. (75) is
the same as Eq. (71) with the substitution m0 → 2m0

and cN → dN .

3. Magnetic backreaction

To order α ¼ e2=4π, the charged pion condensate at the
edge of the volume V induces a magnetic field that adds to
the applied external magnetic field, for both the open and
closed cases. To assess it, consider the QED part of the
charged pion Lagrangian at leading order

L ¼ −
f2

4
þ jðdþ ieðAþ aÞÞΠj2 ð77Þ

in form notations with f ¼ da. Here A is the external vector
potential for the background magnetic field, and a is a
fluctuation which is 0 at leading order. At next-to-leading
order a ¼ a½Jμ� ¼ a½n�, where Jμ ¼ hnjĴμjni is the current
induced by the pion condensation with

jnia ¼ ða†p¼0;n¼0;l¼NÞnLðb†p¼0;n¼0;l¼0ÞnLj0i;
jnib ¼ ða†p¼0;n¼0;l¼NÞnLj0i: ð78Þ

More details regarding the quantization of free pions at
finite Ω, B can be found in Appendix B 2. The sublabel a
refers to the closed-volume case with charge conservation,
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while b refers to the open-volume case. For both cases, the
induced current is azimuthal

Jθ½n� ¼ hnjĴθjni ¼ enN
m0r

jf0N j2

≈
eNn

2m0πR2
δðr − RÞ ¼ e2Bn

4πm0

δðr − RÞ ð79Þ

where f0N is the LLL. Equation (79) sources a uniform
magnetic field in V ¼ SL in the z direction,

bz½n� ¼
e2Bn
4πm0

ð80Þ

which adds to the applied external magnetic field
B → Bþ bz½n�. We can solve anew the LL problem in
the modified magnetic field Bð1þ e2n

4πm0
Þ, which amounts to

the following substitutions:

m2
0 → m2

0½n� ¼ m2
π þ eB

�
1þ e2n

4πm0

�
;

N → N½n� ¼ N

�
1þ e2n

4πm0

�
: ð81Þ

In addition, Eq. (79) induces a magnetic energy per unit
length in V

b2

2
πR2 ¼ n2e4B2R2

32πm2
0½n�

¼ e3BNn2

16πm2
0½n�

: ð82Þ

The Coulomb factors in the backreacted case are

now cN ¼ e2

12π
ffiffiffiffiffiffi
Nðn

p
Þ (open volume) and dN ¼ e2 lnNðnÞ

8π

(closed volume). With all this in mind, the pion energies
per unit volume for the closed (a) and open case (b) are
respectively

Ea
πΩ½Ω;n�

¼−ðNðnÞΩ−2m0ðnÞÞnþn2e2
�

eBN
16πm2

0½n�
þ lnNðnÞ

8π

�
;

Eb
πΩ½Ω;n�

¼−ðNðnÞΩ−m0ðnÞÞnþn2e2
�

eBN
16πm2

0½n�
þ 1

12π
ffiffiffiffiffiffiffiffiffi
Nðnp Þ

�
:

ð83Þ

We have checked that the dependence ofm0½n� andN½n� on
n is rather weak, and the threshold for pion condensation
remains the same in both cases.

D. Shift in the chiral condensate

At leading order in ðeBÞ=ð4πFπÞ2, the chiral condensate
can be extracted from Eqs. (67) and (68) as hψ̄ψiΩ;B ¼
∂EπðΩ; BÞ=∂mmodulo vacuum renormalization. Using the
Gell-Mann-Oakes-Renner relation m2

πF2
π ¼ −mhψ̄ψi0;0 in

the absence ofΩ, B, we can trade the derivativewith respect
to the current mass m for the derivative with respect to the
pion mass mπ. For the Ω-independent pion contribution in
Eq. (67) we explicitly have

∂EπB

∂m ¼ hψ̄ψi0;0
ð4πFπÞ2

Z
ds

eBe−sm
2
π

s sinhðeBsÞ : ð84Þ

The corresponding shift in the chiral condensate for Ω ¼ 0
but finite B is

hψ̄ψiB
hψ̄ψi0;0

− 1 ¼ ln 2
16π2

eB
F2
π

ð85Þ

in agreement with chiral perturbation theory at leading
order [18]. This linear magnetic catalysis is supported by
lattice simulations [19]. The quadratic magnetic catalysis in
NJL-type models at strong coupling, was initially proposed
in Ref. [10]. A rerun of the same arguments for the
Ω-dependent contribution in Eq. (68), yields the net shift
of the chiral condensate for the open case (no backreaction)

hψ̄ψiΩ;B
hψ̄ψi0;0

− 1

¼ 1

2

eB
F2
π

�
ln 2
8π2

−
3

e2
ffiffiffiffi
N

p
�
NΩ
m0

− 1

�
θðNΩ −m0Þ

�
ð86Þ

and for the closed case (no backreaction)

hψ̄ψiΩ;B
hψ̄ψi0

− 1

¼ eB
2F2

π

�
ln 2
8π2

−
4

e2N lnN

�
NΩ
m0

− 2

�
θðNΩ − 2m0Þ

�
ð87Þ

at leading order in the pion interaction.
Finally, the backreacted energy densities (83) can be

used to correct Eqs. (86) and (87). A rerun of the preceding
arguments yield in the closed case with backreaction

hψ̄ψiB;Ω
hψ̄ψi0

− 1 ¼ eB ln 2
16π2F2

π
þ θðNΩ − 2m0Þ

B
NF2

πm0e

×

�
8m0 − 4NΩ
2 lnN þ eBN

m2
0

þ 2eBNð2m0 − NΩÞ2
m3

0ð2 lnN þ eBN
m2

0

Þ2
�

ð88Þ
and in the open case with backreaction

hψ̄ψiB;Ω
hψ̄ψi0

− 1 ¼ eB ln 2
16π2F2

π
þ θðNΩ −m0Þ

B
NF2

πm0e

×

�
2m0 − 2NΩ

4
3
ffiffiffi
N

p þ eBN
m2

0

þ 2eBNðm0 − NΩÞ2
m3

0ð 4
3
ffiffiffi
N

p þ eBN
m2

0

Þ2
�
:

ð89Þ
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The change of the chiral condensate under the combined
effects of a magnetic field and a rotation was initially
suggested using arguments from random matrix theory and
anomalies [4,21]. Itwas clarified and detailed in the context of
the NJL model in Refs. [6,7]. The effect of the rotation is to
inhibit the so-called magnetic catalysis as emphasized in
Ref. [7]. Note that all the shifts are of orderN−1

c andwould be
missed in an effective calculationwith constituentquarks such
as in theNJLmodel in the leading-loop orN0

c approximation.
A critical rotation can compensate the increase induced by the
magnetic field. The shifted condensates (86) (open volume),
(87) (closed volume) and (88)–(89) (backreaction) when
compared to the diffusive result (64) fix the ratio of the
diffusionconstants for thedifferent chargeconservationcases,
with or without magnetic backreaction.

VI. PION SUPERFLUID IN
HEAVY-ION COLLISIONS

In a heavy-ion collision at collider energies, very large
angular momenta l ∼ 103–105ℏ [22–24] and large magnetic
fields B ∼m2

π [25] are expected in off-central collisions, in
the early parts of the collision. Assuming that they persist in
the freeze-out part where the constituents are hadrons, i.e.
R ∼ 10 fm and still with eB ∼m2

π , this would translate to a
LL degeneracy N ¼ eBR2=2 ∼ ðmπ × 10 fmÞ2 ∼ 100=4
and a rotational chemical potential μN ¼ NΩ ∼ 1.25mπ .
The pion chemical potentials at freeze-out are μf ∼ 0.5mπ

at the RHIC, and μf ∼ 0.70mπ at the LHC [26]. When
combined with the rotationally induced chemical potential,
we have μπ ¼ μN þ μf ∼ 1.75mπ and 1.96mπ respectively.
These chemical potentials may induce charged pion con-
densation, in the form of a rotating BEC of pions at the
edge of the fire ball. The specifics of this BEC depend on
whether the volume V is open or closed as we now detail.
In the open-volume case without magnetic backreaction,

the mean number of condensed πþ is

Nþ ¼
P∞

n¼0 ne
n
NΩþμf−m0

T − n2

12π
ffiffi
N

p
TLP∞

n¼0 e
n
NΩþμf−m0

T − n2

12π
ffiffi
N

p
TL

: ð90Þ

For L ∼ 10 fm, eB ∼m2
π and N ≈ 25, we show in Fig. 10

the average number of condensed πþ for temperatures in
the range 0.5mπ ≤ T ≤ 1.5mπ and rotations in the range
0.03mπ ≤ Ω ≤ 0.04mπ . As Ω exceeds the critical Ωmin, the
number of πþ increases.
For the closed-volume case without magnetic backreac-

tion, the mean number of condensed π� is

N� ¼
P∞

n¼0 ne
nðNΩþ2μf−2m0Þ

T −n2 lnN
8πTLP∞

n¼0 e
nðNΩþ2μf−2m0Þ

T −n2 lnN
8πTL

: ð91Þ

For eB ¼ m2
π, Ωc ¼ 2

ffiffi
2

p
N

ffiffiffiffiffiffi
eB

p
and R

ffiffiffiffiffiffi
eB

p ¼ ffiffiffiffiffiffiffi
2N

p
, so that

ΩcR ¼ 4ffiffiffi
N

p . In this case, we must have N ≥ 16 for the

critical rotation to be within the causality bound. In Fig. 11
we show N� for N ¼ 50 and L ¼ 10 fm ≈ 7m−1

π , in the
range 0.5mπ ≤ T ≤ 1.5mπ and 0.05mπ ≤ Ω ≤ 0.08mπ .
When the magnetic backreaction is taken into account

for both the closed (a) and open (b) volume cases, the mean
number of condensed pions is

Nþ;a;b ¼
P∞

n¼0 ne
−1
TðLEa;bπΩ ½Ω;nL�−κa;bnμfÞP∞

n¼0 e
−1
TðLEa;bπΩ ½Ω;nL�−κa;bnμfÞ

ð92Þ

with κa ¼ 2 (closed volume) and κb ¼ 1 (open volume). In
Fig. 12 we plot the mean number of condensed pions for
N ¼ 50, L ¼ 10 fm, in the range 0.03mπ ≤ Ω ≤ 0.09mπ.
Finally, we note that this pion superfluid phase may be

substantial in neutron stars. Indeed, for a star of size
R ≈ 10 km with a moderate magnetic field B ≈ 10−6m2

π ,
and a typical period T ¼ 1 ms, the degeneracy N ¼
eBR2=2 ≈ 1031 is very large. For a rotational velocity
Ω ¼ 2π=T ≈ 10−22mπ, the induced pion chemical potential
in a neutron star is large with μN ¼ NΩ ≈ 107mπ in
comparison to the LLL gap of 2m0 ≈ 2mπ . Such a phase
is likely to form in a neutron star, and clearly in a magnetar
where the magnetic field is even larger, e.g. B ≈ 10−3m2

π . It
would be interesting to explore its effects on the bulk
neutron star properties, transport and magnetism.

FIG. 10. The mean number of superfluid pions Nπ� in the range 0.5mπ ≤ T ≤ 1.5mπ , μf ¼ 0.5mπ and 0.03mπ ≤ Ω ≤ 0.04mπ .
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VII. CONCLUSIONS

We analyzed the combined effects of a rotation and a
magnetic field on free and interactingDirac fermions in 1þ 2

dimensions.Our results show that the rotationcausesmassless
positive states in the LLL to sink into the Dirac sea, followed
by an increase in the density of particles. The scalar density of

particles does not change in the free case, but it is modified in
the interacting case. These results strengthen our earlier
observation that an increase in the density of composite
fermions in the quantum Hall effect at half filling under
rotationwould signal their Dirac nature [4]. Theymay also be
of relevance to planar condensedmatter systemswhen subject
to a parallel rotation plus a magnetic field.

FIG. 12. The mean number of superfluid pions Nπ� in the range 0.5mπ ≤ T ≤ 1.5mπ and 0.03mπ ≤ Ω ≤ 0.05mπ , for case (a) (upper)
and case (b) (lower).

FIG. 11. The mean number of superfluid pions Nπþ in the range 0.5mπ ≤ T ≤ 1.5mπ and 0.03mπ ≤ Ω ≤ 0.08mπ , for μf ¼ 0.8mπ.
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We showed that the mechanism behind the sinking of the
LLL for free Dirac fermions, holds in any dimension,
leading to a finite increase in the density of particles that is
related to anomalies. For QCD in the spontaneously broken
phase with Dirac fermions, this mechanism manifests itself
in a novel way through the condensation of charged pions.
We used this observation to derive the shift in the chiral
condensate at leading order in the pion interaction.
In a more speculative way in QCD, the charged sepa-

ration caused by the dual combination of a rotation parallel
to a magnetic field, may impact the flow of charged
particles in semicentral collisions of heavy ions at present
collider energies, provided that the magnetic field is still
strong in the freeze-out region. While both the rotation and
the magnetic field separate charges along the rotational axis
as known through the standard chiral vortical and magnetic
effect, the combined effect causes them to centrifuge. The
resulting charge separation is quadrupolar as opposed to
polar with some consequences for the charged particle flow.
Also, the possibility of an induced and coherent charge
accumulation by rotation in a magnetic field, whether in the
form of partons or pions, may affect the fluctuations in the
charge and pion number, the transport coefficients such as
the viscous coefficients, and potentially the electromagnetic
emissivities in the prompt and intermediate parts of the
collision, especially their distribution and flow in the low-
mass region. These issues are worth further investigations.
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APPENDIX A: RANGE OF l

To better understand the nature of the range in the orbital
angular momentum l for each LL, we recall that for l ≥ 0
the wave function is typically of the form

zle−
eBr2
4 Ll

nðeBr2=2Þ: ðA1Þ
The requirement that Eq. (A1) stays within the area S ¼ πR2

implies that lþ n < N, meaning that both l; n < N.
Conversely, for l < 0 the wave functions are of the form

zjlje−eBr2
4 Ljlj

n−jljðeBr2=2Þ ðA2Þ
which requires n ≤ N. But for this case, we always have
n ≥ −l. These observations imply that the orbital angular
momentum is bracketedwith−n ≤ l ≤ N − n. This range of
l helps keep the angular shift Ωn smaller than the magnetic
shift

ffiffiffiffiffiffiffiffiffi
eBn

p
for large n. Indeed, this requirement together

with the causality bound ΩR < 1, implies thatffiffiffiffiffiffiffiffiffiffiffi
2eBn

p
−Ωjlj ≥ 1

R

� ffiffiffiffiffiffiffiffi
4N2

p
− N

�
≈

ffiffiffiffiffiffiffiffiffiffi
NeB

p
: ðA3Þ

APPENDIX B: ALTERNATIVE VT

The one-loop finite-temperature contribution to the
effective potential is related to the scalar condensate
through

∂VT

∂σ ¼ −
Z

d2xhψ̄ψijβ: ðB1Þ

Using the quantized fields (8) and the proper time con-
struction, we have

∂VT

∂σ ¼ −4σ
Z

dω
2π

X
l

fFðω; lÞ

× Im
Z

∞

0

idse−isðω2−σ2−iϵÞ
�X

nmin

ð2 − δn;0Þei2eBns
�
:

ðB2Þ
For positive l, the constraint is l ≤ N − n, and thus the
upper bound for l is N and for a given l the upper bound
for n is N − l. For negative l, we also have jlj ≤ N and
jlj≤n≤N. Thus, the summation over n gives for positive l

1þ e2ieBs

1 − e2ieBs
− 2

e2ieBsðN−lÞ

1 − e2ieBs
: ðB3Þ

Since we have

fFðω; lÞ ¼
θðωÞ

eβðω−Ωðlþ1=2Þ−μÞ þ
−θðωÞ

eβð−ωþΩðlþ1=2ÞþμÞ ðB4Þ

it is clear that jfFj ≤ 2. Thus the summation of the second
term in Eq. (B3) is of order

1 − e2ieBðNsÞ

1 − e2ieBs
: ðB5Þ

After analytical continuation to the imaginary axis, this
contribution vanishes in the thermodynamical limit. The
only contribution is to the residue which is l independent.
For negative l we have

e2iNeBs − e2iNeBsjlj

1 − e2ieBs
: ðB6Þ

After analytic continuation, neither the residue nor the
integrand part survive. With all this in mind, the result
is now

∂VT

∂σ ¼ −4σ
Z

dω
2π

XN
l¼0

fFðω; lÞIm
Z

∞

0

idse−isðω2−σ2−iϵÞ

×

�
1þ e2ieBs

1 − e2ieBs
− 2

e2ieBsðN−lÞ

1 − e2ieBs

�
: ðB7Þ

For ω2 − σ2 ≤ 0, the analytical continuation of the inte-
grand to the positive imaginary axis yields a zero imaginary
part. For ω2 − σ2 ≥ 0 the analytical continuation of the first
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and second contributions to the negative and positive real
axes respectively, results in adding residues with a net
imaginary part. The result is

∂VT

∂σ ¼ −4σ
Z

dω
eB

θðω2 − σ2Þ
XN
l¼0

fFðω; lÞ

×

�
1

2
þ
X∞
n¼1

cos

�
πn
eB

ðσ2 − ω2Þ
��

ðB8Þ

which integrates to

VT ¼
Z

dω
XN
l¼0

fFðl;ωÞθðω2 − σ2Þ

×

��
ω2 − σ2

eB

�
þ 2

π

X∞
n¼1

sinðπneB ðω2 − σ2ÞÞ
n

�
: ðB9Þ

Through a change of variable, we can recast each l
contribution in Eq. (B9) in the formZ

fFðl;ωÞθðω2 − σ2Þω
2 − σ2

eB

−
2

π

X∞
n¼0

Z
ω2−σ2≤2eBðnþ1Þ

ω2−σ2≥2eBn
fFðωÞ

πðω2−σ2Þ
eB − ð2nþ 1Þπ

2
:

ðB10Þ

By partial integration we found that the first term cancels
the last term, with only boundary terms left. The final result
for the thermal contribution to the effective potential takes
the canonical form

VT ¼ 1

β

X∞
l¼N

X∞
n¼0

X
j¼1;−1

lnð1þ e−βðEn−jðμþΩðlþ1
2
ÞÞÞ: ðB11Þ

This result is equivalent to Eq. (25) in the thermodynam-
ical limit.

1. Edge modes in 1 + 2

Recently, it was noted in Ref. [15] that for a negative
fermion mass and when the boundary condition at the
luminal radius R is enforced (for example through an MIT
bag boundary condition; see also Ref. [27]), there is one
imaginary solution to the radial wave number k⊥ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −M2

p
for each angular momentum m (in the infin-

ite-area case k2⊥ ¼ 2eBn). These solutions were referred to
as edge modes as they peak near the edge in the absence of
a magnetic field. For a finite magnetic field, the corre-
sponding wave function reads

e−
eBr2
4 rmeimϕ

1F1

�
−

k2⊥
2eB

;mþ 1;
eBr2

2

�
: ðB12Þ

The increasing hypergeometric function 1F1 may overcome

the prefactor e−
eBr2
4 rm, and become dominant at large r.

However, for large degeneracies with N ≫ 1 this does not
take place. Indeed, in the parameter range discussed here
withN¼ 100 andM ¼ −

ffiffiffiffiffiffi
eB

p
, the edge solution form ¼ 0

reads k2⊥ ≈ −10−42eB and for k⊥ this small, the hyper-
geometric function remains almost constant for all r. This

edge mode is simply the deeply confined LLL mode e−
eBr2
4 .

For m ¼ 80, the edge solution is about k2⊥ ≈ −0.4eB. The
1F1 function for this value at the edge is about 2 times the
value at the origin or r ¼ 0, which should be viewed as a
moderate enhancement of the LLL wave function with 1F1

set to 1. Specifically, as rme−
eBr2
4 for m ≈ N already peaks

near the boundary, the edge enhancement by 1F1 changes
nothing qualitatively. For large N, the LLL wave function
remains a good approximation for the low-lying modes and
needs no further amendment. The only effect is that the
energy of these edge states become slightly lighter (for the
case considered it is 0.8∶1), which could result in a
moderate statistical enhancement.

2. Negative μ in 1 + 2

The use of a negative potential μ may be more than
academic in 1þ 2 dimensions, since effective descriptions
of planar condensed matter systems are described by the
model we presented in the main text using Dirac fermions
[12]. In Fig. 13 we show the behavior of the effective
potential V as a function of σ for T ¼ 0 and Ω ¼ 0, but
large negative μ ¼ −0.031

ffiffiffiffiffiffi
eB

p
, where the gap solution is

lost (top). The critical value for which this happens is
μc ¼ −0.025

ffiffiffiffiffiffi
eB

p
. Amusingly, with increasing Ω, the mass

gap is recovered atΩc1, and then lost atΩc2 . For instance, at
T ¼ 0 and μ ¼ −0.03

ffiffiffiffiffiffi
eB

p
, we have Ωc1 ¼ 0.00011

ffiffiffiffiffiffi
eB

p
and Ωc2 ¼ 0.00096

ffiffiffiffiffiffi
eB

p
as illustrated in the middle and

bottom panels of Fig. 13 respectively. In Fig. 14 we show
the effective mass as a function of Ω also for T ¼ 0

and μ ¼ −0.03
ffiffiffiffiffiffi
eB

p
.

3. Free Dirac fermion in 1 + 3

In 1þ 3 dimensions, the rotating metric (1) is minimally
changed to ds2 → ds2 − dz2, with the pertinent changes to
the comoving coordinates. In the chiral Dirac basis for the
gamma matrices, the rotating LL levels (6) are now
changed to

�
E� þ Ω

�
m − nþ 1

2

��
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2 þ 2eBn

q
¼ �Ẽ

ðB13Þ

with the corresponding wave functions for particles
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uTnm1 ¼ e−iE
þtþipz 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ẼðẼþ pÞ
p

× ðMfnm; 0; ðẼþ pÞfnm;−
ffiffiffiffiffiffiffiffiffiffiffi
2eBn

p
fn−1;mÞ;

uTnm2 ¼ e−iE
þtþipz 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ẼðẼþ pÞ
p

× ð
ffiffiffiffiffiffiffiffiffiffiffi
2eBn

p
fnm; ðẼþ pÞfn−1m; 0;Mfn−1;mÞ

ðB14Þ

and antiparticles

vTnm1 ¼ e−iE
−t−ipz 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ẼðẼþ pÞ
p

× ðMfnm; 0;−ðẼþ pÞfnm;−
ffiffiffiffiffiffiffiffiffiffiffi
2eBn

p
fn−1;mÞ;

vTnm2 ¼ e−iE
−t−ipz 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ẼðẼþ pÞ
p

× ð
ffiffiffiffiffiffiffiffiffiffiffi
2eBn

p
fnm;−ðẼþ pÞfn−1m; 0;Mfn−1;mÞ:

ðB15Þ

The quantized fields are now

ψðt; x⃗Þ ¼
Z X

mni

dp
2π

ðe−iEþtþipzunmiðx⊥ÞanmiðpÞ

þe−iE
−t−ipzvnmiðx⊥Þb†nmiðpÞÞ ðB16Þ

with the anticommutation rules

½anmiðpÞ; apqjðp0�þ ¼ δnpδmqδij2πδðp − p0Þ: ðB17Þ

4. Free pion in 1 + 3

We now present an explicit derivation of the pion
spectrum in a rotating frame for infinite volume. The
rotating metric is the same as for the Dirac fermions in
1þ 3 dimensions. The comoving frame is defined similarly
with ea ¼ eμa∂μ and ðe0; eÞ ¼ ð∂t þ yΩ∂x − xΩ∂y;∇Þ.
In the rest frame, the circular vector potential reads

AR ¼ − Br2R
2
dθR in form notation. Using the coordinate

transformation to the rotating frame rM ¼ r, tM ¼ t,
θM ¼ θ þ Ωt yields

A ¼ −
Br2

2
dθ −

ΩBr2

2
dt: ðB18Þ

In the rotating frame there is in addition to the magnetic
field Bẑ, an induced electric field E⃗ ¼ ΩBr⃗. This is

FIG. 14. Effective mass at T ¼ 0 and μ ¼ −0.03
ffiffiffiffiffiffi
eB

p
in units

of
ffiffiffiffiffiffi
eB

p
as a function of Ω in units of 10−5

ffiffiffiffiffiffi
eB

p
.

FIG. 13. Effective potential VðσÞ at T ¼ 0 and μ ¼
−0.031=

ffiffiffiffiffiffi
eB

p
in units of

ffiffiffiffiffiffi
eB

p
: Ω ¼ 0 (top), Ω ¼ 0.00012

ffiffiffiffiffiffi
eB

p
(middle), and Ω ¼ 0.001

ffiffiffiffiffiffi
eB

p
(bottom).
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expected from a Lorentz transformation from the fixed
frame with Bẑ to the comoving frame Bẑ and E⃗ ¼ ΩBr⃗.
In the rotating frame, a charged scalar is described by the

Lagrangian

L ¼ jðDt þ yΩDx − xΩDyÞΠj2 − jDiΠj2 −m2
πΠ†Π

ðB19Þ

with the long derivative D ¼ ∂ þ ieA. The electric field
drops out in Eq. (B18), thanks to the identity

Dt þ yΩDx − xΩDy ¼ ∂t þ yΩ∂x − xΩ∂y: ðB20Þ

The comoving frame corresponds only to a frame change
with no new force expected. In the rotating frame, the
charged field satisfies

−ð∂t þ yΩ∂x − xΩ∂yÞ2Π −D†
i DiΠþm2

πΠ ¼ 0: ðB21Þ

In the infinite-volume case, we solve Eq. (B21) using the
ladder operators

a ¼ iffiffiffiffiffiffiffiffi
2eB

p ðDx þ iDyÞ;

a† ¼ iffiffiffiffiffiffiffiffi
2eB

p ðDx − iDyÞ;

b ¼ 1ffiffiffiffiffiffiffiffi
2eB

p
�
2∂ þ eB

2
z̄

�
;

b† ¼ 1ffiffiffiffiffiffiffiffi
2eB

p
�
−2∂̄ þ eB

2
z

�
: ðB22Þ

Hence, we have the identities

D†
xDx þD†

yDy ¼ eBð2a†aþ 1Þ;
Lz ¼ ið−x∂y þ y∂xÞ ¼ b†b − a†a: ðB23Þ

The general stationary solution to Eq. (B21) is of the form
Π ¼ eipz−iEtf with f solving

ðEþ ΩLzÞ2f ¼ ðm2
π þ p2Þf þ eBð2a†aþ 1Þf: ðB24Þ

The normalizable solutions form a tower of LLs of the form

fmn ¼
1ffiffiffiffiffiffiffiffiffiffi
m!n!

p ða†Þnðb†Þmf00;

ðEmn þ Ωðm − nÞÞ2 ¼ eBð2nþ 1Þ þm2
π ðB25Þ

with f00 ∼ e−
eB
4
ðx2þy2Þ as the LLL. Therefore, the quantized

charged field Π in the rotating frame takes the form

Π ¼
Z

dp
2π

X
nm

fmnffiffiffiffiffiffiffiffi
2Ẽn

p ðanmpe−iE
þtþipz þ b†nmpeiE

−t−ipzÞ

ðB26Þ

with the bosonic canonical rules

½bnmp; b
†
n0m0p0 � ¼ ½anmp; a

†
n0m0p0 � ¼ 2πδnn0δmm0δðp − p0Þ:

ðB27Þ

a†nmp creates a πþ with energy Eþ ¼ En −Ωðm − nÞ,
charge þe and l ¼ m − n. b†nmp creates a π− with energy
Eþ ¼ En þ Ωðm − nÞ, charge −e and l ¼ −mþ n. Hence,
the relation between the rotating frame and the rest frame
energies are Erotating¼Erest−ΩLz with Lz ¼ jl, l ¼ m − n.
In particular, j ¼ þ1 for πþ (particle) and j ¼ −1 for π−

(antiparticle) as in Eq. (66). For completeness, the solutions
to the Klein-Gordon equation can be found in Ref. [20].
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