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Rotating Dirac fermions in a magnetic field in 1+2 and 1+ 3 dimensions
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We consider the effects of an external magnetic field on rotating fermions in 1+2 and 1+ 3
dimensions. The dual effect of a rotation parallel to the magnetic field causes a net increase in the fermionic
density by centrifugation, which follows from the sinking of the particle lowest Landau level in the Dirac
sea for free Dirac fermions. In 1 + d = 2n dimensions, this effect is related to the chiral magnetic effect in
2n — 2 dimensions. This phenomenon is discussed specifically for both weak and strong interfermion
interactions in 1 4+ 2 dimensions. For QCD in 1 4 3 dimensions with Dirac quarks, we show that in the
strongly coupled phase with spontaneously broken chiral symmetry, this mechanism reveals itself in the
form of an induced pion condensation by centrifugation. We use this observation to show that this effect
causes a shift in the chiral condensate at leading order in the pion interaction, and to discuss the possibility
for the formation of a novel pion superfluid phase in off-central heavy-ion collisions at collider energies.

DOI: 10.1103/PhysRevD.98.014017

I. INTRODUCTION

The combined effects of rotations and magnetic fields on
Dirac fermions are realized in a wide range of physical
settings ranging from macroscopic spinning neutron stars
and black holes [1], all the way to microscopic anomalous
transport in Weyl metals [2]. In any dimensions, strong
magnetic fields reorganize the fermionic spectra into
Landau levels, each with a huge planar degeneracy that
is lifted when a parallel rotation is applied. The past decade
has seen a large interest in the chiral and vortical effects
and their relationship with anomalies (see Ref. [3] and
references therein).

Perhaps, a less well-known effect stems from the dual
combination of a rotation and magnetic field on free or
interacting Dirac fermions. Recently, it was noted that
this dual combination could lead to novel effects for
composite fermions at half filling in 1+ 2 dimensions
under the assumption that they are Dirac fermions [4], and
more explicitly for free and interacting Dirac fermions
in 1+ 3 dimensions [5-7]. Indeed, when a rotation is
applied along a magnetic field, the charge density was
observed to increase in the absence of a chemical potential.
A possible relationship between this phenomenon and the

.*_yizhuang.liu @stonybrook.edu
‘ismail.zahed @ stonybrook.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2018,/98(1)/014017(21)

014017-1

Chern-Simons term in odd dimensions, and the chiral
anomaly in even dimensions was suggested.

The purpose of this paper is to revisit these issues in a
more explicit way in 1 + 2 and 1 + 3 dimensions. The case
of 1 4 2 dimensions is of interest to planar materials in the
context of solid state physics, while the case of 143
dimensions is of more general interest with relation to
QCD. Recently, there have been a few studies along these
lines using effective models of the Nambu—Jona-Lasino
(NJL) type in 1 + 3 dimensions, where the phenomenon of
charge density enhancement was also confirmed with new
observations [6,7]. The chief difference with the analyses in
Refs. [5-7] is the centrifugal deformation induced by the
rotation on the currents and their densities. Also, recent
analyses using pion effective descriptions have suggested
the possibility of Bose condensation in strong magnetic
fields [8] and dense matter with magnetism or rotations [9].

This paper consists of a number of new results: 1) a full
analysis of the combined effects of a rotation and magnetic
field on free and interacting Dirac fermions in 14 2
dimensions, both at weak and strong coupling; 2) a
correspondence with anomalies in arbitrary dimensions;
3) a deformation of the current densities by centrifugation
in the presence of a magnetic field; 4) a depletion of the
QCD chiral condensate at leading order in the pion
interaction; and 5) a charge pion condensation induced
by centrifugation in a magnetic field.

The outline of the paper is as follows. In Sec. II we detail
the Landau level problem for free Dirac fermions in 1 + 2
dimensions in the presence of an arbitrary rotation
described using a local metric. In Sec. III we explore the
effects of the interaction on the free results through a four-
Fermi interaction both in the weak and strong coupling
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regimes. In Secs. IV and V we extend our chief observa-
tions to 1+ 3 dimensions for the free and interacting
fermionic cases with particular interest in the shift in the
chiral condensate in QCD. In Sec. VI, we discuss the
possibility for the formation of a pion Bose-Einstein
condensate (BEC) phase in off-central heavy-ion collisions.
Our conclusions are presented in Sec. VII. We record
in the Appendices useful details regarding some of the
calculations.

II. DIRAC FERMIONS IN 1+2

In this section we will outline how to implement a global
rotation through a pertinent metric. We will then use it to
derive explicit results for massless Dirac fermions with a
global U(2) symmetry in the presence of a parallel
magnetic field in 1 + 2 dimensions. The basic mechanism
of the shift caused by the rotation on the lowest Landau
level (LLL) will be clearly elucidated, and both the scalar
and vector densities will be evaluated.

A. Metric for a rotating frame

To address the effects of a finite rotation Q in 1+ 2
dimensions we define the rotating metric

ds* = (1 — Q?p?)dt* + 2yQdxdt — 2xQdydt. (1)

The frame fields or vielbeins are defined as ¢** =
eheln,, with signature /—g =1, in terms of which
the comoving frame is 0 = ejdx* and e, = eﬁaﬂ are
explicitly given by
(6°,0',0%) = (dt, dx — yQdt, dy + xQdt),
(60’61762) = (8t +ygax _xgayval’GZ)’ (2’)

with the spin connections

0 =" = +Q(dy — Qxdt),

2 = 0 = —Q(dx + Qydt). (3)
In a fixed area of size S = zR?, the time-like nature of
the metric (1) and therefore causality are maintained for
QR < 1. The importance of a finite size for rotating

fermions was emphasized in Ref. [7]. This will be
understood throughout.

B. Rotation plus magnetic field

The Lagrangian that describes free rotating Dirac fer-
mions in a fixed magnetic field in 1 + 2 dimensions, reads
L= l/_/(i}’”(Dﬂ + Fﬂ) - M)l//

=y(iy°(0, — Q(x0y — y0, + iS%)) + iy'D; = M)y

(4)

with the long derivative D = 0 — ieA, and the choice
of gamma matrices, y* as y° = diag(cs,—03), y' =
diag(ic,, —io,), y* = diag(ic,,—ic,), to accommodate
both particles and antiparticles.

A thorough analysis of Eq. (4) for an external vector
potential in a rotationally nonsymmetric gauge was given in
Ref. [10]. Here we insist on preserving rotational symmetry
by choosing A, = (0,By/2,—Bx/2,0). As a result, the LL
spectrum 1is characterized explicitly by both energy and
angular momentum conservation which are described in
terms of the anticommutative harmonic oscillator a, b
operators

i i - eBz
— ' (D, +iD)=~— 20+ 2%,
“ \/ZeB( iDy) \/2€B< 2)
1 eBZ
b= 20 +—1. 5
\/ZeB< 2> )

Throughout, we will assume eB > 0 unless specified
otherwise. The rotating Landau levels are labeled by m,
n as

1 -
Ei+£2<m—n+§> =+VM? +2eBn=+E (6)

for particles and antiparticles. The corresponding normal-
ized scalar wave functions for the nth Landau level with
good angular momentum [, =xp, —yp, =b'b—a'a
with eigenvalue m — n, are

(a®)" (B")"

n'm!

Som = Soo (7)

with the LLL fqo « e #B(*") Note that for n = 0, we
have only one positive energy state with spin up, and one
negative energy state with spin down, each with degeneracy
N = eBS/2x. For Q =0 and n > 0 all LLs have degen-
eracy 2N = eBS/xz. The degeneracy is lifted by centrifu-
gation for Q # 0.

In terms of Eq. (7) the quantized Dirac fields follow in
the form

W(t.5) = 3 (o (R al + 0 (D) Eb)  (8)

nmi

where @', annihilates a particle with positive energy E™
and spin i = :I:%, and b)), creates a hole with negative
energy £~ and spin i = :F%- Their corresponding wave

functions are
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Uom = (mev 07 O’ 0)’
Vom = (07 0, mev O)v

E+M iv2e
urJer_ + nm> & | a2 . fn lvaO
2E E+M
/E—M iv2eB
nm = ~ <0101fnm’_ = fn lm)
E—
-M \2eB
UJF = nmv_l ¢ fn lmﬂO0
2E E -
E+M
i = = 0,0, nm» 7 n—1,m 9
Y 2F ( / E—i—Mf L > ©)

C. Scalar density

For M = 0, Eq. (4) exhibits a U(2) symmetry as the set
1,7, =iy’ y'*? = —iy%'y?)leaves Eq. (4) unchanged. This
symmetry rotates particles to antiparticles. The mass upsets
this symmetry, and is only U(1) x U(1) symmetric under the
action of (1, y'*2). In Ref. [10] it was noted, that for Q = 0,
Eq. (4) breaks spontaneously U(2) — U(1) x U(1) with a
finite condensate (yw) = —N/S without fermionic inter-
actions. This is readily understood from the illustration in
Fig. 1(a), where only the LLL for particle states with spin up
and mass +M, and antiparticle states with spin down and mass
—M are shown. Each level is N degenerate. The vacuum state
consists of filling the antiparticle states only. Clearly, for finite
M the U(2) symmetry is explicitly broken. However, as
M — 0 the explicit breaking is removed, but the antiparticle
states remain still occupied even though they have the same
zero energy as the particle states. The state breaks sponta-
neously the balance between particles and antiparticles or
U(2) - U(1) x U(1). We now show that this free scalar
condensate disappears for any finite rotation Q.

For a heuristic argument for the role of a finite rotation €
along the magnetic field, we show in Fig. 1(b) its effect on

+M

-_.------- +M—Q(N+%)

it -M

et -]\ —Q(N+%)

FIG. 1. The particle (+M) and antiparticle (—M) LLL for
Q = 0 are shown in panel (a) each with degeneracy N. For Q # 0
the degeneracy is lifted. In panel (b) we illustrate how the
centrifugation lifts the degeneracy on the states with angular
momentum N by shifting them down by £M—Q(N+1). The
rotating vacuum now includes the particle LLL which needs to
be filled.

the LLL with maximum orbital angular momentum N.
Both the particle and antiparticle states are shifted down
and below the zero energy mark even for M = 0. This
means that in the rotating vacuum, the particle LLL needs
to be filled. Since typically the unordered scalar condensate
operator is Yy ~ (a'a+ b'h — 1)iu, it follows from
Fig. 1(b) that yyw ~ (1 +0—1)au = 0.

Formally, the scalar condensate carried by the rotating
LLL can be explicitly constructed using the fermionic field
operator (8). At finite temperature 1/ and €, it is readily
found in the form

eB— ™% [eB\M
:ZZ m! ( 2 )
X (np(=pQ(m +1/2))
+ np(fQ(m +1/2)) —

() (r)

=0 (10)

which is identically zero even for zero temperature f = .
So any finite rotation, however infinitesimal will cause the
scalar density to vanish for free rotating fermions at finite B
in 1+ 2 dimensions.

D. Vector density

The local density of Dirac fermions in the rotating frame
in 1 + 2 dimensions is readily found using Eq. (8) in the

current density
)= ). (11)
n=0

(/°(x)) =
The normal ordering is carried with respect to the true
vacuum at finite Q. Each LL in Eq. (11) including the
LLL contribute through a tower of rotational states —n <
m < N — n for both particles and antiparticles. This finite
range in the angular momentum is further detailed in
Appendix A. Specifically, and for finite temperature 1/,
the contributions of the LL and the LLL are respectively

Z'fnmlz + |fn lm|2

X (nF(En+nz) nF(Enm))v

_eb? 2\ m
0 _ﬁ e 2 [eBr
J"ZO(X)_2H; m! < 2 )

Jn>0 x)

1

=+VeBn F <m—n+%>9. (13)
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We first note that the particle density is inhomogeneous in
the plane and peaks at the edge of the disc S = 7R* under
the effects of centrifugation. For small fQ <« 1, i.e. small
rotations or high temperature, the inhomogeneous particle
density carried by the LLL is

2
eB =% [eBr?\" 1
w2 (5) ()

_ pQeB1 + eBr?
4z 2

ila(r) = pQ
(14)

Under the combined effect of the rotation and the magnetic
field the particle density undergoes a centrifuge effect with
a maximum at the edge of the rotational plane. This effect
will persist even in the presence of interactions as we will
discuss below (see Fig. 6).

The total number of particles follow from Eqs. (11)—(13)
by integration over § = zR>. The results for the LL and
LLL are respectively

n, = ZZ(HF(Enij) - nF(E;m))’

no = Z sinh(BQ(m +1)/2)

cosh(BQ(m +1)/2)" (15)

m

For small pQ, which is similar to small Q or large
temperature, the results in Eq. (15) simplify to

eﬂEn

1
n,la —4ﬁQZ<m—n+§)(l+7n)2,

N? 42N elEn
“WQ(T— )W
1 1 Q(N? 4 2N
nolo _5ﬁ92<m +§> :%. (16)

We note that in 1 + 2 dimensions, the LLL generates a net
density at fQ < 1. For strictly zero temperature Eq. (15)
gives the exact result

nolp—co = sgn(Q)N (17)

which can be understood from Fig. 1(b) for M — 0. Since
the normal-ordered density operator :y'y: ~ (a'a -
b™h)u'u ~ (1 — 0)u’u which precisely gives N. Note that
for a rotation opposite to the magnetic field, the LLL shifts
up and above the zero energy mark. Therefore, we have
instead :yfy: ~ (a'a = b"b)u'u ~ (0 — 1)u’u which pre-
cisely gives —N, as expected from Eq. (17).

These observations are not restricted to only finite
temperature. Indeed, at zero temperature but finite chemical
potential, the rotation induces changes in the population of
the LLL. This can seen through the substitution [7,11]

ﬁg<m+%> —>ﬂ(ﬂ+9<m+%>> (18)

in Eq. (15), with the result

Q
nO(M):N7 /"2_59
2 1 Q
no(y)%N—i—l—i—E'u, —(N—i-E)QSﬂS—z,
1
no(u) =-N,  u< —<N+§> (19)

III. INTERACTING FERMIONS IN 1+2

Consider now fermions in 1 4 2 dimensions interacting
via four-Fermi interactions, as a way to model QCD, , in
strong and rotating magnetic fields. The advantage of this
reduction is that it will allow for closed-form results with
physical lessons for QCD , 3 dimensions, which even when
modeled with four-Fermi interactions is only tractable
numerically. Following Refs. [10,12], we now consider
N, copies of the preceding Dirac fermions, interacting via
local four-Fermi U(2) symmetric interactions

‘Cint =

NQ

(o + [wiry? + lirwl?).  (20)
Standard bosonization gives

1
Lin = —W(o+ e+ irny —5=(c* +a° +7°)  (21)

with the scalar fields

1
—glonm) = vy, ipry) (22)
For large N., Eq. (B13) can be analyzed in the leading
1/N, approximation using the loop expansion for the
effective action. Explicit U(2) symmetry makes the effec-
tive action only a function of 62 + 72 + 72, so it is sufficient
to search for saddle points with 7 = z = 0, as others follow
by symmetry.

The effective potential stemming from Eq. (B13) can be
organized into three parts

2

v:vo+vT:;—G+vA+vT. (23)

The zero-temperature (vacuum) contribution from the
fermion loop is

N, [»d
-—5 —f ¢ eB coth(eBs) (24)
4n2 % 52

VA:
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which is cut off in the UV by 1/A% while the thermal
contribution is

N

N,.T =2 o
Vr== D0 D) In(1 4 HERD) - (25)

j=1,—1 n=0 I=-n

with E, = V6* +2¢Bn and N/S = eB/2x. A comple-
mentary but numerically useful approximation to Eq. (25)
is given in Appendix B using the proper time formalism.

A. Weak coupling regime

At zero temperature and in the absence of B, Q, the
effective potential (B15) for the interacting Dirac fermions
in 1 4 2 dimensions simplifies to

6> N o (s )
v 2 He [TE e 26
726 4 ., P (26)

If we set g = %, then Eq. (26) exhibits a minimum at
c=A/g, with 1/g,=1/g—1/g,., only for sufficiently
strong coupling g > g. = /7. The minimum breaks spon-
taneously U(2) - U(1) x U(1) with a finite (py) =
—N_.o/G. The putative chargeless Goldstone mode
signals a Berezinskii-Kosterlitz-Thouless (BKT) phase at
any finite N..

At zero temperature and zero rotation € = 0 but with
B # 0, the effective potential (B15) can be made more
explicit by rescaling and expanding in 1/A. For small ¢ and

large A the dominant contributions are

N.A3 [odxeB B
Py = 4N / _iucoth(u)
1

A g A A
N.Ae> N,
2 3z
N, [d R
+ 2 [ S (e — 1)(eBs coth(eBs) - 1)
472 §2
1
+o(3) )

The first contribution is independent of &, so we will ignore
it. Therefore, the vacuum contribution to the effective
potential combines the first term in Eq. (B15) and the
second and third contributions in Eq. (27)

Vo Ac* eB o’
~ - —. 28
N, 2ng, 2= ot 3z (28)

In the weak-coupling regime

ostl—i.)_lsA (29)

we can ignore the cubic contribution in Eq. (28). A
minimum of Eq. (28) always exists for arbitrarily weak
coupling, with a mass gap ¢ = 7g,N/SA and a finite chiral
condensate (yy) =—-N.N/S(1 —g/g.)~—-N.N/S. The
latter is in agreement with the result for free Dirac fermions.
This is the phenomenon of magnetic catalysis [10], with the
effect of a chemical potential discussed in Ref. [13]. The
possibility of a transition to an inhomogeneous phase was
explored in Ref. [14].

1. Vacuum with Q # 0

At zero temperature, the effective potential for rotating
Dirac particles in a strong magnetic field is given by the
first two contributions in Eq. (B15) plus the contribution
from the rotating antiparticles in the LL,

y Ao  eB

N, +27rg, _ﬂg

S ((s)e-r)o((1+3)2-r)

(30)

For small rotation the summation can be approximated by a
continuous integration with the result
V Ao’ eB 1
N, 2mng., 2= 2QS8

9(Eq —0)(Eq —0)*  (31)

with Eq = (N + 1)Q. For 6 > Ejg, the effective potential is
independent of Q, and develops a minimum for

+Jrg, eB

) = +——,

: A 2n

Vs zg, (eB)?

22 B2 32
N,  2A <2ﬂ> (32)

In contrast, for 6 < Eq, Eq. (31) depends on Q through

V A eB ,, eB eBQ 1
— - - N+- 33
N, <2n’gr 4nNQ>" TN ax < +2> (33)

and prefers always

(o] :0,

Vl EQEB

R 4
N, 2 2 (34)

For Eq < %% the 2-minimum (34) is dominant. The

rotating vacuum develops a scalar condensate (yy) # 0
with finite &, but zero fermion density (y’y) = 0. In the
opposite case, with Eq > 4B the 1-minimum (34) takes
over. The rotating vacuum prefers a gapless solution with

o1 = 0 and zero scalar condensate (yy) = 0, but a finite
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fermion density (yw) # 0. At large N, the critical value
for which this occurs is

gr eB
Q = —.
CTAN+1A

(35)

This is the phenomenon of rotational inhibition of the
magnetic catalysis noted in 1 + 3 dimensions in Ref. [7]. At
finite but large N and without the use of the continuum
approximation and keeping the ¢* term, the results remain
quantitatively almost the same, with one exception that the
local minimum o; = 0 can overtake the finite local mini-
mum o, slightly before the Q.. For A = 10v/eB and
N =100, Eq. (35) yields . = 0.000497+/eB. We note
that in the free case with A — o0, Eq. (35) yields Q. — 0in

—0.001

-0.002

-0.003

-0.004

-0.001

-0.002 -

-0.003 -

—-0.004 -

—0.00380 [

—0.00385 |

-0.00390 -

-0.00395 |

—0.00400 [

-0.00405

0.01 0.02 0.03 0.04 0.05 0.06

FIG. 2. Effective potential V' as a function of ¢ in units of v/ eB
at T=0: Q =0.0001veB (top), £ = 0.00049veB (middle),
and Q = 0.0005v/eB (bottom).

agreement with the observation in Eq. (10). Any finite
rotation destroys the free scalar condensate.

In Fig. 2 we show the behavior of the effective potential
for finite but small Q with the two local minima (32) and
(34). We use A/veB =10, N=100 and g, =1. A
transition sets in numerically Q. = 0.000488+/eB in agree-
ment with Eq. (35). In Fig. 3 we display the effective mass
as a function of v/eB and  in units of A, for g, = 1 (weak-
coupling regime) and 7" = 0. While the mass gap is seen to
increase slightly faster than linearly with v/eB at Q = 0, the
effect of the rotation is to cause it to disappear at the critical
value (35) through a first-order transition at weak coupling.

2. Thermal state with Q # 0

First we note that the existence of a mass gap for any
finite temperature does not contradict the Mermin-Wagner-
Coleman theorem, since the thermal state is in a BKT phase
rather than a spontaneously broken or Goldstone phase.
Having said that, at finite temperature and weak coupling,
we note that since 0, < \eB, the temperatures of interest
for the vanishing of the mass gap, are in the low range with
T < /eB. Therefore, only the j = +1 LLLs contribute in
Eq. (25). For T = T, = 05, the potential flattens out and the
centrifugation near 6 = 0 becomes visible leading to a
small value for the critical Q..

In Fig. 4 we show the behavior of the effective potential
for A/v/eB =10, N =100 and g, = 1 (weak coupling)
for = 80/+/eB and f = 43/+/eB. For § > 80/+/eB the
transition occurs at Q,~0.0005+/eB, and for f=43/+/eB,
the transition is around , = 0.0001+/eB. The critical tem-
perature is numerically in the range S, ~(40—43)/v/eB.
The behavior of the effective mass is shown in Fig. 5 as a
function of f and Q, for the ranges 50 < fv/eB < 80
and 0.0003 < Qv/eB < 0.0006.

0.020F =
0.015f
0.0107

0.005]
t

0.0005, ~0.10
0.00005
0.00010™

000015,

FIG. 3. Effective mass as a function of v/ eB and € in units of A.
The mass gap disappears for Q > Q. as given by Eq. (35) through
a first order transition.
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-0.0033 |

-0.0034 |

-0.0035 |

-0.0036 |

-0.0037

-0.0038 |

-0.00518856
-0.00518858
-0.00518860
-0.00518862 |
-0.00518864
-0.00518866 |

-0.00518868 /

0.0005 0.0010 0.0015

e

0.0020 0.0025 0.0030

FIG. 4. Finite-temperature effective potential V as a function of
o in units of veB: = 100/veB and Q = 0.0003v/¢B (top);
p =43/veB and Q = 0.0001+/eB (bottom).

In Fig. 6 we show the analogue of the profile density (14)
in units of /B, in the weak-coupling regime with g, = 1
and for 1/ < Q as a function of x = eBr?/2. The first
figure from the top is for Q = 0.00005v/¢B for 1/ = 0. It
is roughly constant and drops sharply at the edge of the
causality disc fixed by QR = 1. However, for Q < 1/ <
VeB a linear behavior sets in the middle of the disc, to drop

FIG. 5. Effective mass as a function of  and Q in units of /eB
at T # 0.

1.00
oo f
ooaf
097 |
096
095k
004
X . . . .

20 40 60 a0 oo
0.015:- //\
u.om:-
0.005:-

T o @ "I

TN

o/

20 40 a0 a0 100

015

60 80 100

FIG. 6. The current density in the weak-coupling regime with

g, =1, as a function of x = 2~ in units of £ at 7 =0 and

Q =0.0005 (in units of /eB) (first), f = 100, Q = 0.0001
(second), f =100, Q =0.0005 (third), and B =40, Q=
0.0001 (fourth).
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only sharply at the edge. The second and third figures from
the top are for = 100/v/eB and Q = 0.0001v/eB and
Q = 0.0005+/eB respectively. The fourth figure is for f =
40/+/eB at Q = 0.0001v/eB. As we indicated in Sec. II D
for the free case, this centrifugation effect holds for the
interacting case as well and carries to higher dimensions as
we show below. We will suggest a possible physical
application in 1+ 3 dimensions. Finally, the occurrence
of surface or edge modes was noted recently in Ref. [15].
We show in Appendix B that they do not alter our current
discussion for large N.

3. Dense state with Q # 0

For completeness, we now explore the effects of a finite
chemical potential u on the mass gap for gy pairing. Just as
a caution, we note that a more complete treatment would
require the inclusion of the competing yy channel as well.
However, we note that at leading order in 1/N, the yy
channel is 1/N_. suppressed in comparison to the yy
channel and can be ignored. With this in mind, the effect
of a finite chemical potential follows from Eq. (B3) through
the substitution Q(/ + 1) - u + Q(I +1), which we now
briefly address.

In Fig. 7 we show the behavior of the effective potential

V for f = 80/veB and u = 0.007/+/¢B as a function of ¢

-0.0030 | \
o003z |
-0.0034 |
-0.0036 |

-0.0038 | ~

1 1 e
0.01 002 0.03 0.04
-0.00400 | /

-0.00405

~0.00410 [ /
-0.00415 [
—0.00420 [

-0.00425 [ _—

0.01 0.02 0.0z 0.04 0.05

FIG. 7. Finite-temperature effective potential V(s) at f =
80/v/eB and p = 0.007/v/eB as a function of ¢ in units of
veB: Q=0 (top) and Q = 0.0003+v/eB (bottom).

in units of v/eB. The top panel is for @ = 0 and the bottom
panel is for Q = 0.0003+/eB. The increase in the rotation
causes the loss of the gapped solution. In particular,
for g, =1 (weak coupling), f =80/v/eB and Q =0,
the critical value is p, = 0.02v/eB, while for Q =
0.0003v/eB, the critical value is y, = 0.007+/eB.

Finally and for completeness, we discuss in Appendix B 1
the dense state with negative u. Since the model under
consideration can be viewed as an effective description of
planar condensed matter systems [12], a negative chemical
potential is experimentally accessible.

B. Strong-coupling regime

In the opposite regime of strong coupling with g > g,

a mass gap also forms. In the regime where the ratio \/%—B is

large and g > g, or g, < 0, the minimum of the effective
potential is now controlled by the first and third contribu-
tions in Eq. (28) namely
Vo Ac? ©o°
— - + J—
N, 2xlg,| 3%

(36)

with a mass gap 6 = A/|g,|- For veB/A < 1, the leading
contribution shifts the mass and the scalar condensate
quadratically,

0.25 [sewrsmissssiasoose -,
020 |
0.15
o10f
0.05
L ik,
20 40 60 80 100
0.2
0.2
01 .,
it el TN
""””m
20 40 80 20 100
-0.1
-0.2
-0.3
FIG. 8. Mass gap o/A in the strong-coupling regime with

g, = —4, as a function of Q/(107*A) for A/+/eB =5 (top) and
A/veB =3 (bottom).
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We note that the ratio of the mass gap to the LL gap 5/v/eB
can be very large. Therefore, the critical €, for which the
mass gap can be depleted is much larger for strong coupling
than for weak coupling. For fixed €, the mass & decreases
as the ratio A/v/eB decreases. For instance, for g, = —4
and A/VeB = 5, Q, ~ 0.008A, but for A/(v/eB|g,|) = 3,
Q. ~0.009A. In Fig. 8 we show the behavior of the
mass gap for strong coupling with g, = —4 versus ¢ in
units of A as a function of Q expressed in units of A/10*.
The top panel is for A/v/eB = 5 and the bottom panel is

for A/veB = 3.

IV. FREE DIRAC FERMIONS IN 1+3

(wy)p
(ww)o

The extension of the previous analysis to 1 4+ 3 dimen-
sions for free Dirac fermions is straightforward. In
Appendix B2 we detail the rotating wave functions in
the presence of a magnetic field, for the free case. The
interacting case is more challenging than say the case of
QCD which is strongly coupled and gapped in the vacuum.
Below, we will focus on the combined effects of a rotation
and magnetic field on the QCD chiral condensate in the
spontaneously broken phase using mesoscopic arguments,
and leading-order chiral perturbation.

A. Free left currents

We now extend the analysis for the left or L currents to
show the generic nature of the observations made in 1 4 2
dimensions above. From Appendix B2, the L wave
functions in 1 4 3 dimensions take the simplified forms

0) =[5 L o0,

up(n=0) =v(n=

1 .
up(n,m) = 7m(\/ 2eBnf . (E+ p)fuzim)s
vL(n’m) = (V 2eBn nn1’_(E+p)fn—1,m)‘

2E(E + p)
(38)

The left particle density at the origin is

m©) =+ [ 5

°B e np(=p = poo) = np(=p + poo))
) dp
+ Z/ 4r

/ (np(Ey + poo) + np(E, + o))

(np(E, = poo) + np(E, — o))

(39)

while the current density at the origin is

. eB
RO =5 (Re+Xn.) @
4 n=1
with
0 dp
Ji,o = —/ Z(”F(‘p — poo) = np(=p + poo))
_ QL m
dr 2rm
5= “Z (np(E, — poo) — np(E, —
L.n ;/m 4 (np(E, — poo) — np(E, ﬂlo))

"F (E, + poo) = np(E, + pio))
(41)

with :%—i—,uL and p;y = —%—i—,uL. For small B and
zero py, the summation in Eq. (40) gives

%f(\/pz +293n) - /%f(vpz +k2)- (42)

This reproduces the known result at B =0 [1]

TQ  (Q+2u) +(Q-2u.)
- 5 . (43)
127 967

While the current density at the origin reproduces the
expected result, the distribution of the current density in the
radial direction is not homogeneous. Indeed, the centrifu-
gation causes it to peak at the edge as in 1 4+ 2 dimensions.
This is readily seen from the contribution of the LLL which
can be worked out explicitly with the result

Z (eBr) (m+1/2)£2+,uL. (44)

m!

3 _
JLn:O -

The sum can be performed exactly with the result

J3o(r) = %(ﬂL—FQ(Z—I—ﬂNr)). (45)

The centrifugal effect causes the current density to peak at
the edge of the rotational plane in 1 4 3 dimensions.

A possible application of this phenomenon may be in
current heavy-ion collisions at collider energies such as the
RHIC and LHC. Indeed, for semicentral collisions both the
rotational (orbital) and electromagnetic fields are sizable
with Q ~ eB ~ m, which may induce partonic densities of
the type (45) that are largely deformed in the transverse
plane. While the rotation and magnetic fields tend to
separate the partonic charges in concert along the rotational
axis, the centrifugation causes this separation to peak in the
orthogonal direction where the observed particle flow is
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more important. If true, this effect should be seen as an
enhancement of v, in the charged particle flow.

B. Number of free left particles

As we noted in 1 + 2 dimensions, the number of free left
particles increases in 1 4+ 3 dimensions due to the sinking
of the particle LLL in the Dirac sea. More explicitly, we
have

ny :/dXdy<:1l7L}’olI/L:>

:Z _0 in—ij(nF

(=p = tm) = np(=p + p))

o0 dp
+ n;m - Z (nF(En _Iunm) - nF(En + /’tnm))'
(46)
Here y,,, = (m—n+3)Q+pu; and E, =+/p*+2eBn. The

flowing left current along the rotational-magnetic axis is
1= / dxdy(pLy’v.)

0 dp
= —Z/ 57 (=P = ) = e (=p + pn))
1 & 1
HLN

Q N?
=——|N+— ) ——F. 47
27r< * 2) 27 (47)

The first contribution in Eq. (47) was noted in Refs. [5,7].
Equations (46) and (47) generalize to arbitrary 1+ d
dimensions. In particular, for y; =0

d=3 )

nyy = 2(_‘)/ sen(Q) |4 22 (m n ) (48)

with the volume V,_, = %~ /T'(9).

C. Relation to anomalies

These observations can be used to generalize Eq. (49) to
arbitrary 1 + d = 2n dimensions. Consider the case with
nonvanishing and nonparallel magnetic fields By o1 # 0
with 1 <k <n—3. The general anomaly-induced chiral
magnetic effect for the left current is [16]

P (0 S (49)
i =5\, 12D34---Bop—42p-3-

We now observe from Eq. (45) that the role of the rotation is
to tag p; in 2n = 4 dimensions as

eB 1 >\ eB
E(HL —l—Q(E—l—nNr)):yLZ—FQJ(r). (50)

The anomalous result (49) relates to the rotationally
induced current by a similar substitution in 2n dimensions,
namely

1 e n—-2
JEs(r) = - o <§> B13Bsy...Bry_620-5(82, (7))
(51)

where J(r) refers to the current spin density in the radial
direction within the 2n —4, 2n — 3 plane

eB 1 r2
Jon-aon_sy(r) = —2ct2n=3 (5 + Byy_420-3 5)- (52)

27

The rotational contribution to the current density (51) in 2n
dimensions is related to the chiral magnetic effect (49) in
2n — 2 dimensions.

D. Charge-neutral volume

Most of the analyses for the fermions presented above
hold for the absolute ground state with overall charge
conservation not enforced (open volume V). If we require
total charge neutrality of the system (closed volume V) then
we expect an induced charge chemical potential y;, such

that (é-é > 0)

/ O )
5 [ (s malionms)) o

where the number of z* (first contribution) balances the
number of z~ (second contribution). For large e¢B or small
temperature 7', only the n = O term survives as before. In
this case, the solution for y;, follows by inspection

R e il 4
Hin 5= (54)

The ground state consists of negative charge filling the LLL
withm =0tom = % and positive charge filling the LLL
with m :% to N. The corresponding charge density for
massless fermions is

Uhaalel) = oD et (50" (0
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ol ‘,"'-.\

“nf -

FIG. 9. The charge distribution (55) in the LLL in a closed
volume V with overall charge neutrality, for N = 1000 as a
function of r and in units of eB.

The first line is the contribution from all negative-charge
contributions, and the second line is from all positive-
charge contributions. After integration, the total negative
charge density is

LB N
2,70 —
</ ¢ ij,nO(x>>negative B ﬂ,;) <m - 5>Q (56)

and similarly for the positive charge density. In Fig. 9 we
display the charge density in the LLL in a closed volume
V = SL with total charge neutrality as given by Eq. (55).
We expect the same distribution of charge around a fluid
vortex when overall charge neutrality is enforced, which is
to be contrasted with a vortex with only positive (negative)
charge accumulation when the charge neutrality constraint
is not enforced [5].

V. INTERACTING DIRAC FERMIONS IN 1+3

Now we consider the case of interacting Dirac fermions
in the context of QCD in 1+ 3 dimensions at strong
coupling. In this regime, a mass gap forms and chiral
symmetry is spontaneously broken with a triplet of charged
Goldstone modes. They play the role of diffusons in the
vacuum [17]. We will not quantify these statements by
evaluating the QCD vacuum energy density shift caused by
a finite Q, B and use it to extract the chiral condensate.

A. Diffusion with B, Q=0

The spontaneous breaking of the symmetry is manifest
though a finite scalar condensate, which in the chiral limit
relates to the quark return probability in proper time 7 as [17]

1 ©
(Ww)oo = —lim lim —/ P(0,7)dr
0

m—0V,—>00 Vy

(57)

with

P(0.7) = (Jur* (2)u(0) + d*()d(0) )
for two light u, d flavors. The averaging in Eq. (58) is over
the QCD vacuum in Euclidean four-dimensional space. In
the absence of magnetism, the vacuum is isospin symmetric
and the correlator in Eq. (58) is dominated by the lightest
Goldstone modes 7%+

(58)

P(0,7) = 2(Py(0,7) + P.(0,7)

Ze—TD (0,0) Q

The sum is over the pions or diffusons with momenta Q, =
n,2z/L in a periodic V4 = L* Euclidean box. The vacuum
diffusion constant is D(0,0) = 2F2/|(pw) o [17].

(59)

B. Diffusion with B, Q # 0

Under rotations all z%* are affected by centrifugation,

while only the 7+ are affected by magnetism. As a result,
the squared and Euclideanized pion spectra are

Q5 = pr + p3 + (pa + Q1) + my,

07y = eB(2n+ 1) + p3 + (ps + iQj1)* + mz.  (60)
Each chargeless mode carries [ = 0,+£1, ..., while each
charged mode is in a LL n where —n <[ < N —n with
degeneracy N. Note that the rotational energy shift in
Euclidean space is purely imaginary. The change in each
of the return probabilities in Eq. (59) following from
Eq. (60) is

+0o0
= E E e~ D(QB) (PP pi+(patiQl)’ +my)

n,.n3.nyg [=—oco

P;_(B.Q,1)
_ Z Z Z e~ D (Q.B)(eB(2n+1)+p3+(pa+iQjl)*+m3)
nsy,ng n=0 —n<I<N-n

(61)

with p34 = n34(27/L) in a Euclidean box of cylindrical
4-volume with V, — zR’>L?> and the causal constraint
QR < 1.1In general, in the rotating vacuum with magnetism
the diffusion constant D(Q, B) is Q, B dependent.

The change in the quark return probability is the change
in the charged diffuson modes and is captured by the
difference

1= /W[P(Q, B,7) — P(0,0,7)]dx. (62)

In the chiral limit, replacing the sums over free momenta by
integrals allows to get rid of the explicit Q dependence in
Eq. (61) by shifting p,. So the dependence on Q, B in P is
only through D(€, B). Clearly, in the absence of B a
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rotation  alone cannot change the return probability, and
therefore the chiral or scalar condensate as the vacuum is
rotationally symmetric. This is not the case in the presence
of an externally fixed magnetic field B as rotational
symmetry is broken. Indeed, the LL dependence in P,
does not drop out but it can be resummed exactly with the
result

eBV4 o 1 1 In2 eBV4
I=+— e ) L :
162°D Jo \zsinhz z 167 D(Q, B)

(63)

Using the value of the diffusion constant we arrive at

(Ww)as . In2 eB D(0,0)
Wy)oo 1672 F2D(Q.B)’

(64)

For Q = 0 and B # 0, Eq. (64) is in agreement with chiral
perturbation theory at leading order [18]. This linear
magnetic catalysis is supported by lattice simulations [19].

Equation (64) is the analogue of Eq. (37) in 142
dimensions at strong coupling, with the difference that it
grows linearly rather than quadratically. The quadratic
growth follows from the absence of charged Goldstone
modes. As indicated earlier, in 1+ 2 dimensions the
gapped phase is a BKT phase rather than a Goldstone
phase. We now give an independent determination that
fixes D(L, B) in Eq. (64).

C. Energy densities of a BEC of chiral pions

Assessing the dual action of Q-B>0 in the QCD
vacuum energy requires vacuum loops in the presence of €2,
B. When the magnetic field is sufficiently weak, i.e. |eB| <
(4nF,)* where F, is the pion decay constant, the loop
momenta are small and QCD is well described by an
effective theory of chiral pions. At leading order, the
pion interactions which are soft can be ignored. The €,
B-dependent parts in the QCD vacuum energy follow from
a one-pion loop with arbitrary €, B insertions at leading
order, with the rotation acting as an effective chemical
potential.

In the presence of a fixed magnetic field in the +z
direction B = B2, the charged z* pion spectrum is char-
acterized by highly degenerate LLs with energies

Eyp = (leBl2n+ 1)+ p> +n2f (65)

Each LL n for fixed pion 3-momentum p carries a
degeneracy N, labeled by the z component of the angular
momentum L, =1 with —n <[/ <N —n as detailed in
Appendix B 2. When a rotation Q parallel to the magnetic
field is applied, the spectrum (65) shifts so that in the

rotating frame we have (ﬁ ‘B> 0)

E,,—E,,—QL,=E,, - jQl (66)

Here j = +1 for positively charged pions (particles) and
Jj = —1 for negatively charged pions (antiparticles). As a
result, the degeneracy of each LL is lifted. The mechanism
of #* splitting by a rotation can cause z* pion condensa-
tion [20]. We now explore this condensation in the vacuum
and also matter for different overall charge constraints.

1. Open volume

We first consider the open volume V = SL case, where
charge is free to move in and out of V. At leading order in
the pion interaction, the QCD vacuum energy per unit
volume in V is the sum of a purely B-dependent contri-
bution &,5 and a mixed B, Q-dependent contribution &,q

gn’(g’ B) = 5713 + gﬂQ' (67)

If we denote by n the number of condensed z* per unit
length L along the rotational axis, then

N [+odp S 1
Ep=2— SENT ,
=2 /_ N ngiozen(p)

2

n n
gﬂQ:_E(NQ_mO)—i_CN? (68)

with €2(p) = p* + m2 and m?2 = (2n + 1)eB + m2. The
first contribution stems from the pion loop with charged 7+
pions, while the second contribution stems from the Bose
condensation of the z* in the LLL when the rotationally
induced chemical potential ) = QN exceeds the effective
pion mass my. In the open-volume case, the accumulation
of the charge at the edge of V is compensated by a deficit
outside of V to maintain overall charge conservation. The
last contribution in £, is the Coulomb repulsion in the
condensed droplet of z* by centrifugation.

To assess the Coulomb contribution, we note that the
two-dimensional charge distribution in this state is given by
pn (%) = e?|fon(x,y)|> where fon(x,y) is the Nth Landa
level

1 0 eBZ\\VN | ..
fozv(x’)’)z<ﬁ (28—Z+TZ>> eBZ (69)

with z = x + iy and valued in S = 7R?. The condensate
lies at the edge of the rotational plane with a Coulomb
factor

62

1
ev = [ oy ®) @), (0)
2L Jixs

o = x|

In the large degeneracy N limit, we can approximate this
distribution by a uniform radial distribution within the area
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N —V/N <87 < N 4 /N with total charge e. It follows
that the Coulomb factor is cy ~ e%/12zv/N.

The condensate density n is fixed by minimizing the
energy density &,q in Eq. (68), with the result
N Q- my

= G(NQ - mo) 2CN

(71)

for which the energy density in Eq. (68) is

377\/_

Era = — (NQ — mo)?0(NQ —mgy).  (72)
For eB = 0.1m,2,, and N = 1000, the threshold for devel-
oping nonzero n is Q. ;, = 0.001m,. For Q = 0.0015m,,
we have n =268m,, and for Q = 0.002m,, we have
n = 566m,.

The condensation of charged pions by rotation in a
magnetic field is for bosons, what the accumulation of
vector charge in a vortex threaded by a magnetic field is for
fermions [5], and in general in any rotating frame with a
magnetic field [5-7,20]. For Dirac fermions this phenome-
non is related to spectral flow and therefore to anomalies
[5,20], of which the charged pionic condensate is its low-
energy manifestation in the QCD vacuum. In both cases,
the charge accumulation in the finite volume V = LS is
compensated by a deficiency of opposite charge outside of
the volume V. Overall charge conservation is maintained by
allowing the charge to move in or out of V as also suggested
in Ref. [5] for fermions.

2. Closed volume

If the volume V = SL is closed with no charge allowed
to flow in or out, then charge conservation is to be enforced
strictly in V [20]. Let u be the charged chemical potential in
the comoving frame. Charge neutrality at finite 7, pu

requires
/ 2r eT EOV_IQ_” 1

/ ™)

with the pion spectrum (65). Equation (73) is solved for
u= —N—ZQ at any temperature 7. Therefore, the [ = N —m
and [ =m states for z* and z~ will have the same
occupation number. For NQ > 2m simultaneous conden-
sation occurs for m = 0, i.e. #7 with [ = N and n~ with
I =0.For (N —2)Q > 2m, the condensation involves both
m =0, 1. As we increase Q all m < %Wﬂl condense, i.e. 7T
with § </ <N and 7~ with 0 <7 <5

An alternative way to see this without solving for yu is to
note that for all terms in Eq. (73) to be meaningful, the
inequalities

< -—my<u<my—NQ<L ... (74)
must hold. Thus, as long as mg— NQ < —mgy or
NQ > 2m,, the occupation number of the / = N state
for zT and the [ = 0 state for z~ are no longer meaningful,
and condensation may follow. For increasing Q such that
my—NQ+ Q < —my—Q or (N—2)Q > 2m,, the con-
densation for the / = N — 1 state of z* and the / = 1 state
for z— will also follow, which is consistent with the above
argument based on the solution for y. We note that in the
charge-conserving case, the critical Q is twice the critical Q
in the nonconserving case.

Now consider the rotating ground state with 7' = 0 and
NQ > 2myg but (N —2)Q < 2my, so that only the [ = N
state for T and [ = O state for z~ condense. The analogue
of Eq. (68) is then

gﬂg = —n(NQ — 2m0) + dNn2 (75)
with the new Coulomb factor

ez (R

dy ~—

1 2 2 R 2
3 2Jrrdr( )——ln ~< N (76)

Iy 2rr dr  a 8«

where dy is the electric field energy stored between two
charged rings with radius /,; ~ 1/v/eB and charge —1 (z7),
and radius R > [, and charge +1 (z"). The Coulomb self-
energy is now subleading as ¢y /dy at large N and omitted.
The pion condensate density that minimizes Eq. (75) is
the same as Eq. (71) with the substitution mgy — 2my
and cy — dy.

3. Magnetic backreaction

To order a = e?/4x, the charged pion condensate at the
edge of the volume V induces a magnetic field that adds to
the applied external magnetic field, for both the open and
closed cases. To assess it, consider the QED part of the
charged pion Lagrangian at leading order

L= —f4—2+ |(d + ie(A + a))IIJ? (77)

in form notations with f = da. Here A is the external vector
potential for the background magnetic field, and a is a
fluctuation which is O at leading order. At next-to-leading
order a = a[J¥] = a[n], where J¥ = (n|J#|n) is the current
induced by the pion condensation with

In), = (a; O,n:O.l:N)nL(b;:O,n:O.I:O)nL‘0>9
In), = (a; om—0.1—n)""10). (78)
More details regarding the quantization of free pions at

finite Q, B can be found in Appendix B 2. The sublabel a
refers to the closed-volume case with charge conservation,
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while b refers to the open-volume case. For both cases, the
induced current is azimuthal

N N
JH — ]9 — en 2
] = (n[J"n) mor |fonl
eNn e’Bn
~——=06(r—R) = 6(r—R 79
2m071'R2 (r ) 47rm0 (r ) ( )

where foy is the LLL. Equation (79) sources a uniform
magnetic field in V = SL in the z direction,

e2Bn

4zmy

b_[n] (80)

which adds to the applied external magnetic field
B — B +b_[n]. We can solve anew the LL problem in

the modified magnetic field B(1 + 422 -
the following substitutions:

), which amounts to

e’n
m3 — min] = m2 + eB 1+4 ),

N—>N[n]:N<1+ e“). (81)

In addition, Eq. (79) induces a magnetic energy per unit
length in V

b2 2 4BZR2 3BN 2
7”2:ne i _ e 2n . (82)

2 32zmgm]  16zmg[n]
The Coulomb factors in the backreacted case are
now cy = \6/2]\7) (open volume) and dy = ‘”hy;] (n)

(closed volume). With all this in mind, the pion energies
per unit volume for the closed (a) and open case (b) are
respectively

Exgl2n

==V me-2mmn e (e )

€r0lQ.n]

:—(N<n>g—mo<n>>n+n2ez(16;f%’[n]+lzﬂ \/lN—(n ))_
(83)

We have checked that the dependence of my[n] and N[n] on
n is rather weak, and the threshold for pion condensation
remains the same in both cases.

D. Shift in the chiral condensate

At leading order in (eB)/(4rnF,)?, the chiral condensate
can be extracted from Eqs. (67) and (68) as (yy)q z =
0E,(Q, B)/Om modulo vacuum renormalization. Using the
Gell-Mann-Oakes-Renner relation m2F2 = —m{jy) in

the absence of Q, B, we can trade the derivative with respect
to the current mass m for the derivative with respect to the
pion mass m,. For the Q-independent pion contribution in
Eq. (67) we explicitly have

35nB: Ww)oo / d
om  (4xF,)?

eBe™"s

s sinh(eBs) "

(84)

The corresponding shift in the chiral condensate for Q = 0
but finite B is

(Pw)s _ In2 eB
By)oo 1627 F;

in agreement with chiral perturbation theory at leading
order [18]. This linear magnetic catalysis is supported by
lattice simulations [19]. The quadratic magnetic catalysis in
NIJL-type models at strong coupling, was initially proposed
in Ref. [10]. A rerun of the same arguments for the
Q-dependent contribution in Eq. (68), yields the net shift
of the chiral condensate for the open case (no backreaction)

(85)

w)as |
Wy)oo
leB [(In2 3 NQ
=——|—5—-——=|—-1|0(NQ - 86
172 (527 (g ~1)Jo¥0 =m0} (89
and for the closed case (no backreaction)
w)as |
(wy)o
B (In2 4 NQ
2F; \87= e NInN \ my

(87)

at leading order in the pion interaction.

Finally, the backreacted energy densities (83) can be
used to correct Egs. (86) and (87). A rerun of the preceding
arguments yield in the closed case with backreaction

7 Bln2
<ll’i//>3,9 1= 2n N —2mg) D
<l//l//>0 16z Fzr NFlrmOe
8my —4NQ  2eBN(2my — NQ)?
2InN +<4Y " mi(2In N + <BY)?
0 0
(83)
and in the open case with backreaction
y Bln2 B
<l//i//>B,Q _q_ 2n . L ONQ = mg) D
<l//l//>0 16z Fﬂ NFfrmOe
y <2m0 —2NQ  2eBN(mg— NQ)2>
4_ | eBN 3(_4_ | eBN\2
e MGyt )
(89)
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The change of the chiral condensate under the combined
effects of a magnetic field and a rotation was initially
suggested using arguments from random matrix theory and
anomalies [4,21]. It was clarified and detailed in the context of
the NJL model in Refs. [6,7]. The effect of the rotation is to
inhibit the so-called magnetic catalysis as emphasized in
Ref. [7]. Note that all the shifts are of order N>! and would be
missed in an effective calculation with constituent quarks such
as in the NJL model in the leading-loop or N approximation.
A critical rotation can compensate the increase induced by the
magnetic field. The shifted condensates (86) (open volume),
(87) (closed volume) and (88)—(89) (backreaction) when
compared to the diffusive result (64) fix the ratio of the
diffusion constants for the different charge conservation cases,
with or without magnetic backreaction.

VI. PION SUPERFLUID IN
HEAVY-ION COLLISIONS

In a heavy-ion collision at collider energies, very large
angular momenta [ ~ 103-10°7 [22-24] and large magnetic
fields B ~ m2 [25] are expected in off-central collisions, in
the early parts of the collision. Assuming that they persist in
the freeze-out part where the constituents are hadrons, i.e.
R ~ 10 fm and still with eB ~ m2, this would translate to a
LL degeneracy N = eBR?/2 ~ (m, x 10 fm)? ~ 100/4
and a rotational chemical potential puy = NQ ~ 1.25m,.
The pion chemical potentials at freeze-out are y; ~ 0.5m,,
at the RHIC, and py ~0.70m, at the LHC [26]. When
combined with the rotationally induced chemical potential,
we have u, = py + pp ~ 1.75m, and 1.96m, respectively.
These chemical potentials may induce charged pion con-
densation, in the form of a rotating BEC of pions at the
edge of the fire ball. The specifics of this BEC depend on
whether the volume V' is open or closed as we now detail.

In the open-volume case without magnetic backreaction,
the mean number of condensed z* is

For L ~ 10 fm, eB ~ m2 and N = 25, we show in Fig. 10
the average number of condensed z* for temperatures in
the range 0.5m, < T < 1.5m, and rotations in the range
0.03m, < Q <0.04m,. As Q exceeds the critical Q,;,, the
number of z" increases.

For the closed-volume case without magnetic backreac-
tion, the mean number of condensed z* is

n(NQ2pp=2mo) 2y

[So]
ne T 8aTL
n=0
Ni n(NQ+2;4f—2mO) 2N (91)
00 ") 7 n"hN
e € T 8aTL

For eB = m2, Q. = ZNﬁ\/E and RveB = v/2N, so that
Q.R= %ﬁ
critical rotation to be within the causality bound. In Fig. 11
we show N, for N =50 and L = 10 fm ~ 7m;", in the
range 0.5m, <T < 1.5m, and 0.05m, < Q < 0.08m,,.

When the magnetic backreaction is taken into account
for both the closed (a) and open (b) volume cases, the mean
number of condensed pions is

In this case, we must have N > 16 for the

By 0 ne_%(Lgig ['Q'%] _Kcz,b”ﬂf>
n=

Zoo 0 e_%(ngﬁ [Q’L_l] _Ka<bnﬂf)
n=

(92)

N+.a.b =

with k, = 2 (closed volume) and x;, = 1 (open volume). In
Fig. 12 we plot the mean number of condensed pions for
N =50, L =10 fm, in the range 0.03m, < Q < 0.09m,.

Finally, we note that this pion superfluid phase may be
substantial in neutron stars. Indeed, for a star of size
R ~ 10 km with a moderate magnetic field B ~ 10~m2,
and a typical period 7 =1 ms, the degeneracy N =
eBR?/2~ 103! is very large. For a rotational velocity
Q = 2x/T ~ 107??m,, the induced pion chemical potential
in a neutron star is large with uy = NQ~10"m, in
comparison to the LLL gap of 2my ~ 2m,. Such a phase
is likely to form in a neutron star, and clearly in a magnetar

NQ‘HI/*WLO_ n2 . . .
© o ne' T e where the magnetic field is even larger, e.g. B~ 1073 m2. It
Ny = N (90) would be interesting to explore its effects on the bulk
0 T = . .
n=0 € 125VNTL neutron star properties, transport and magnetism.
0.030 0.035 0.040
-*"““——»,_ I :____d_,—f--
600
400 -
200
L ols
- 10
- 1ls
0=

FIG. 10. The mean number of superfluid pions N«

in the range 0.5m, < T < 1.5m,, pu; = 0.5m, and 0.03m, < Q < 0.04m,.
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FIG. 11. The mean number of superfluid pions N+ in the range 0.5m, < T < 1.5m, and 0.03m, < Q < 0.08m,, for uy = 0.8m,.
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FIG. 12. The mean number of superfluid pions N in the range 0.5m, < T < 1.5m, and 0.03m, < Q < 0.05m,, for case (a) (upper)
and case (b) (lower).

VII. CONCLUSIONS particles does not change in the free case, but it is modified in
the interacting case. These results strengthen our earlier

. . . . .. observation that an increase in the density of composite
magnetic field on free and interacting Dirac fermionsin 1 +2 ¢, .00 0 g0 quantum Hall effect at half filling under

dimensions. Our results show that the rotation causes massless  rotation would signal their Dirac nature [4]. They may also be
positive states in the LLL to sink into the Dirac sea, followed  of relevance to planar condensed matter systems when subject
by an increase in the density of particles. The scalar density of ~ to a parallel rotation plus a magnetic field.

We analyzed the combined effects of a rotation and a
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We showed that the mechanism behind the sinking of the
LLL for free Dirac fermions, holds in any dimension,
leading to a finite increase in the density of particles that is
related to anomalies. For QCD in the spontaneously broken
phase with Dirac fermions, this mechanism manifests itself
in a novel way through the condensation of charged pions.
We used this observation to derive the shift in the chiral
condensate at leading order in the pion interaction.

In a more speculative way in QCD, the charged sepa-
ration caused by the dual combination of a rotation parallel
to a magnetic field, may impact the flow of charged
particles in semicentral collisions of heavy ions at present
collider energies, provided that the magnetic field is still
strong in the freeze-out region. While both the rotation and
the magnetic field separate charges along the rotational axis
as known through the standard chiral vortical and magnetic
effect, the combined effect causes them to centrifuge. The
resulting charge separation is quadrupolar as opposed to
polar with some consequences for the charged particle flow.
Also, the possibility of an induced and coherent charge
accumulation by rotation in a magnetic field, whether in the
form of partons or pions, may affect the fluctuations in the
charge and pion number, the transport coefficients such as
the viscous coefficients, and potentially the electromagnetic
emissivities in the prompt and intermediate parts of the
collision, especially their distribution and flow in the low-
mass region. These issues are worth further investigations.
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APPENDIX A: RANGE OF [

To better understand the nature of the range in the orbital
angular momentum / for each LL, we recall that for / > 0
the wave function is typically of the form

Ze L (eBr)2). (Al)

The requirement that Eq. (A1) stays within the area S = 7R?
implies that [+ n < N, meaning that both [,n < N.
Conversely, for / < 0 the wave functions are of the form

e Ll (eB)2) (A2)
which requires n < N. But for this case, we always have
n > —I. These observations imply that the orbital angular
momentum is bracketed with —n < [ < N — n. This range of
[ helps keep the angular shift Qn smaller than the magnetic
shift /eBn for large n. Indeed, this requirement together

with the causality bound QR < 1, implies that

1
V2eBn — Q|l| ZE(V4N2_N) ~ VNeB. (A3)

APPENDIX B: ALTERNATIVE V;

The one-loop finite-temperature contribution to the
effective potential is related to the scalar condensate
through

8VT

== [ e,

Using the quantized fields (8) and the proper time con-
struction, we have

aVT /da)z
fF , l
x Im idse—is(@*=o~ie) ( 2-6, eizean)
/) > (2-5,0)

Nmin

(B1)

(B2)

For positive [, the constraint is [ < N — n, and thus the
upper bound for / is N and for a given [ the upper bound
for n is N — . For negative /, we also have |/| < N and
|I| <n < N. Thus, the summation over n gives for positive /

1 2ieBs 2ieBs(N—I)
LA L (B3)
1 — g2ieBs 1 — g2ieBs
Since we have
) —O(w
Frlo.) (@) @) (pa

- PRIy ™ -t QU+ T/2)+4)
it is clear that |fr| < 2. Thus the summation of the second
term in Eq. (B3) is of order

1— eZieB(Ns)

1— eZieBs (BS)
After analytical continuation to the imaginary axis, this
contribution vanishes in the thermodynamical limit. The
only contribution is to the residue which is / independent.
For negative [ we have

g2iNeBs 2iNeBsl|l|

—e
1= eZieBs

(B6)
After analytic continuation, neither the residue nor the

integrand part survive. With all this in mind, the result
is now

dw
= —4¢ / ZfFa)lIm/ idse~is(w*—0’~ie)
1_|_eZteBs 2l€BS(N 0)
X — -2
1= eZzeBs 1= e21eB.x
For w? — 6% <0, the analytical continuation of the inte-

grand to the positive imaginary axis yields a zero imaginary
part. For ®® — 6> > 0 the analytical continuation of the first

8VT

(B7)
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and second contributions to the negative and positive real
axes respectively, results in adding residues with a net
imaginary part. The result is

eB

(S ETE)

which integrates to
N
Vi = /dco > frll.w)o(a? - o)
=0
@?—c?\ 2 sin(% (0 - 0?))
((£57) 2T A

n=1

Wr do ) &
%0 —40/ O(w* — o );fF(a),l)

(B8)

Through a change of variable, we can recast each /
contribution in Eq. (B9) in the form

L)
L )0(e? — o w’—o
[ e -2
@*—0*<2eB(n+1) —”<w;;62> — (271 + 1)71'
NN fr(o) .
6>>2eBn 2

(B10)

By partial integration we found that the first term cancels
the last term, with only boundary terms left. The final result
for the thermal contribution to the effective potential takes
the canonical form

520 Y 1+ i)

=N n=0 j=1-1

(B11)

~%IH

This result is equivalent to Eq. (25) in the thermodynam-
ical limit.

1. Edge modes in 1+2

Recently, it was noted in Ref. [15] that for a negative
fermion mass and when the boundary condition at the
luminal radius R is enforced (for example through an MIT
bag boundary condition; see also Ref. [27]), there is one
imaginary solution to the radial wave number k, =
VE? — M? for each angular momentum m (in the infin-
ite-area case k3 = 2eBn). These solutions were referred to
as edge modes as they peak near the edge in the absence of
a magnetic field. For a finite magnetic field, the corre-
sponding wave function reads

K eBr?
— ,—|. (B12
288" > (B12)

eBr? ;
- m ,img
e~ rmem F, (—

The increasing hypergeometric function | /'y may overcome

_eBrt

the prefactor e~ 4 1", and become dominant at large r.
However, for large degeneracies with N > 1 this does not
take place. Indeed, in the parameter range discussed here
with N =100 and M = —/¢eB, the edge solution form = 0
reads k2 ~ —10"*¢B and for k, this small, the hyper-
geometric function remains almost constant for all r. This

edge mode is simply the deeply confined LLL mode e‘#.
For m = 80, the edge solution is about k? ~ —0.4¢B. The
F'| function for this value at the edge is about 2 times the
value at the origin or r = 0, which should be viewed as a
moderate enhancement of the LLL wave function with | F

set to 1. Specifically, as e~ for m~ N already peaks
near the boundary, the edge enhancement by | F'; changes
nothing qualitatively. For large N, the LLL wave function
remains a good approximation for the low-lying modes and
needs no further amendment. The only effect is that the
energy of these edge states become slightly lighter (for the
case considered it is 0.8:1), which could result in a
moderate statistical enhancement.

2. Negative p in 1+2

The use of a negative potential ¢ may be more than
academic in 1 + 2 dimensions, since effective descriptions
of planar condensed matter systems are described by the
model we presented in the main text using Dirac fermions
[12]. In Fig. 13 we show the behavior of the effective
potential V as a function of ¢ for 7 =0 and Q = 0, but
large negative u = —0.0311/eB, where the gap solution is
lost (top). The critical value for which this happens is
i, = —0.025v/eB. Amusingly, with increasing Q, the mass
gap is recovered at €21, and then lost at Q.. . For instance, at

T =0 and yu = —0.03v/eB, we have Q.; = 0.00011/eB
and Q. = 0.00096\/eB as illustrated in the middle and
bottom panels of Fig. 13 respectively. In Fig. 14 we show
the effective mass as a function of Q also for 7 =0

and u = —0.03v/eB.

3. Free Dirac fermion in 1+3

In 1 + 3 dimensions, the rotating metric (1) is minimally
changed to ds> — ds* — dz?, with the pertinent changes to
the comoving coordinates. In the chiral Dirac basis for the
gamma matrices, the rotating LL levels (6) are now
changed to

1 N
(Ei+sz(m—n+§>> ::l:\/p2+M2+2eBn:j:E

(B13)

with the corresponding wave functions for particles
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FIG. 13. Effective potential V(o) at T=0 and u=
—0.031/+/¢B in units of veB: Q =0 (top), Q = 0.00012+/¢B
(middle), and Q = 0.001v/eB (bottom).

T _ —iEtt+ipz 1
Upm = € ==
2E(E+ p)
X (anm’oﬂ (E + p)fnm’ —V2eBn n—lA,m)7
u}71"m2 — o~ iETi+ipz _ 1~
2E(E+ p)

X ( v 2eBn nms (E + p)fn—lm’o’ an—l,m)
(B14)

and antiparticles
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FIG. 14. Effective mass at 7 = 0 and y = —0.03+/eB in units
of veB as a function of Q in units of 10~>v/¢B.

2E(E + p)
X ( V2eBn nm» _(E + p)fn—lmv 07 an—l.m)'
(B15)

The quantized fields are now

- dp —iEtt+i
W([,x) :/Zﬂ(e E t+pzunmi(xl)anmi(p)

I, ()b (P)) (B16)

with the anticommutation rules

[anmi(p)’ aqu(p/]+ - 5np5mq6ij2”5(p - p/)' (B17)

4. Free pion in 1+3

We now present an explicit derivation of the pion
spectrum in a rotating frame for infinite volume. The
rotating metric is the same as for the Dirac fermions in
1 4 3 dimensions. The comoving frame is defined similarly
with e, = €40, and (e, e) = (0,4 yQd, — xQ0,, V).
In the rest frame, the circular vector potential reads
Ap = —B—zr%fdeR in form notation. Using the coordinate
transformation to the rotating frame ry =r, )y =1,
0y = 6 + Qt yields

Br? QBr?
A=——d0 -
2 2

dt. (B18)

In the rotating frame there is in addition to the magnetic
field BZ, an induced electric field E = QB7. This is
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expected from a Lorentz transformation from the fixed
frame with BZ to the comoving frame BZ and E = QBF.

In the rotating frame, a charged scalar is described by the
Lagrangian

L = |(D, + yQD, — xQD)I1|* — | DI — m2IT'TT
(B19)

with the long derivative D = 0 + ieA. The electric field
drops out in Eq. (B18), thanks to the identity

D, +yQD, — xQD, = 0, + yQ0, — xQ0 (B20)

)
The comoving frame corresponds only to a frame change
with no new force expected. In the rotating frame, the
charged field satisfies

—(0, + yQ0, — xQ0,)* T - DIDJ1+ m2I1=0.  (B21)
In the infinite-volume case, we solve Eq. (B21) using the
ladder operators

a= D, +iD,),
\/2eB( })
P4 j
a'=——(D,—iD,),
\/2eB( y)
1 eB
b= (20+ )
V2eB ( 2
1 - eB
b = -20 + —z) . B22
v2eB < 2 ( )
Hence, we have the identities
DiD, + DiD, = eB(2a’a + 1),
L, =i(-x0, 4+ yd,) =b'b—d'a. (B23)

The general stationary solution to Eq. (B21) is of the form
1 = eP=7E f with f solving

(E4+QL,)*f = (m2+ p*)f +eB(2a'a+1)f.  (B24)

The normalizable solutions form a tower of LLs of the form
Fom = e (a6
mn = a k)
vm!n! 00
(Epp +Q(m—n))? = eB(2n+ 1) + m2

(B25)

with foo ~ e~ ) as the LLL. Therefore, the quantized
charged field IT in the rotating frame takes the form

dp f L P
o= mn —iE*t+ipz y p iE~t—ipz
/ 2 2o e + bimpe™ %)

nm

(B26)
with the bosonic canonical rules

+
[bnmp ’ b

nlm/p/]

= [anmp’ a:r,/m’p’] = 2”5rm/5mm’5(p - p/)
(B27)

aflm,, creates a n' with energy ET = E, — Q(m —n),
charge +e and [ = m — n. b,Tlmp creates a 7~ with energy
Et =E, + Q(m — n), charge —e and [ = —m + n. Hence,
the relation between the rotating frame and the rest frame
energies are EWine = frest — QF, with L, = jl, | = m — n.
In particular, j = +1 for z" (particle) and j = —1 for z~
(antiparticle) as in Eq. (66). For completeness, the solutions
to the Klein-Gordon equation can be found in Ref. [20].
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