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B — f,(1270) form factors with light-cone sum rules
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We construct the quark-antiquark chiral odd distribution amplitudes including twist-four mass
contributions for tensor mesons. We also give quark-antiquark-gluon distribution amplitudes, where
we calculate the input parameters with QCD sum rules. With the help of equations of motion, we determine
the twist-three and twist-four distribution amplitudes including SU(3) breaking terms. We use QCD light-
come sum rules to derive the form factors for the decay B — f,(1270) with vector, axial-vector and tensor
currents. We also give the g> dependence of the form factors.
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I. INTRODUCTION

Semileptonic B decays involving light mesons are
especially promising in the search for new physics. This
can be illustrated, e.g., by the recent discussion about
angular distributions in B — K*%u*u~ [1-3]. Decays into
tensor mesons have the advantage that three different
polarizations of the final tensor meson are possible and
therefore provide additional sensitivity to search for devia-
tions from the helicity structure of the electroweak inter-
action. (For a general introduction, see the minireviews by
A. Gritsan (pp. 1252-1255 in the 2017 online update) and
P. Eerola, M. Kreps and Y. Kwon (pp. 1137-1149) in [4]
and references given there.) In fact, it was demonstrated by
BELLE in a recent measurement of the transition form
factor y*y — f,(1270) at large momentum transfers that
already, with the existing detectors, relevant polarization
sensitive data can be obtained [5]. The uncertainty of the
standard model predictions is dominated by QCD uncer-
tainties. A precise calculation of the B — f,(1270) decay
form factors, which is the topic of this contribution, can
reduce these theoretical uncertainties.

Tensor mesons have already been the topic of earlier
work. In Ref. [6], the chiral-even and -odd distribution
amplitudes (DAs) were constructed and the decay constants
were calculated, while in Ref. [7] the chiral-even DAs
including meson mass corrections and three-particle twist-
three DAs were studied. The present contribution is largely
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based on that work. The definitions of the B to tensor
meson form factors can be found in [8—10]. There are a few
studies of the B to f,(1270) decay, for example using a
perturbative QCD approach [10] or using light-cone sum
rules [11,12].

In this paper, we calculate the form factors for the B
meson decaying into the tensor meson f,(1270) by using
the framework of light-cone sum rules (LCSR) [13-15].
We give for the first time the chiral odd quark-antiquark
DAs, including higher-twist contributions and meson
mass corrections. We also construct new three-particle
quark-antiquark-gluon DAs with tensor structure. With
the help of equations of motion (EOM) we can represent
the higher-twist DAs in terms of lower-twist DAs including
SU(3) breaking terms for the first time. We determine
quark-gluon coupling constants appearing in the three
particle DAs using QCD sum rules. In doing so, we assume
that f,(1270) is a pure nonstrange isospin singlet state
1/V/2(itu + dd) and f5,(1525) is a pure strange state §s
which is equivalent to assuming a vanishing mixing angle
[16,17].

The paper is organized as follows. In Sec. II, we give the
form factors and the related LCSR expressions. Section III
contains the numerical analysis of the sum rules and our
results. In the Appendix, we define the leading and higher-
twist DAs of the tensor mesons.

II. FORM FACTORS AND
LIGHT-CONE SUM RULES

We define the semileptonic B — f,(1270) form factors
by [8=10]

(f5(P)|@(0)y,b(0)|B(P"))
2 N
= meﬂmﬁeﬁ)*PmPﬁV(Clz)’ (1)
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(f4(P)]i(0)y,rsb(0)|B(P))
= i(my + my,)e A1 (g)
e . p! -

- im(f’/ + P),Ay(q*)
oW p )
—2imy, qu qu [A3
(f4(P)|i(0)0,,7sb(0)|B(P'))
= AP e (P +P), =" (P+ P,

— B(g?)[ef"q, — e q,)

= eW* . g
—2C(q") ——— [Puq, = P, (3)
mg — mf2
. D)*_p
where g, = P, — P,, egf)' = —E“’/; Bq and

~ mg+m
As(q?) —#A 1(q*) = #Az( 7*).
2 2

The tensor form factors can also be defined by the two
following matrix elements,

(f5(P)i(0)o* q,b(0 )|B(P’)>

= —2jeMPp P, e T,(q%).
(f5(P)]i@(0)6*y5q,b(0)|B(P'))

= Tofa?) O — el — ol

TP+ Py
mp — mfz

PP Py

+T5(q?)e™ - P g ~

which then leads to

To get access to these form factors, we use the two-point
correlation function

M,(g.P) =i / dhxe® (f3(P)|T{q, (x)Tob(x)j5(0)}0).
)

with the Lorentz structures

rp = y/v FﬂS = quS’ F/U/S = 0/41/75'

Here,

J8(0) = b(0)irsq,(0)

is the interpolating current for the B-meson.
The decay constant fp of the B-meson is defined by

BP)EOirse00) =25 (5

mp
The standard procedure of light-cone sum rules is to
calculate the correlation function (4) in two different ways.
On the one hand, for large virtualities, we use operator
product expansion (OPE) around the light cone so that we
can represent the correlation function in terms of the light-
cone DAs, which are given in Appendix. On the other hand
we can insert a complete set of eigenstates with the
quantum numbers of the B-meson and isolate the ground
state. These two different representations can be matched
using dispersion relations and quark-hadron duality. Using
Borel-transformation to eliminate subtraction terms and to
suppress higher states leads to the final sum rules. For the
hadronic representation after inserting a complete set of
eigenstates and isolating the ground state, we get, e.g., for
the vector current

(01g17,,b|B) (B|birsq»|0)

Hﬂ(q’P): m%—qz
i Z <O|511}’ub|h><h|b175%|0>
W mj, = q*

Inserting Eqgs. (1), (5) and rewriting the higher states into a
dispersion integral over a spectral density, describing the
excited and continuum states, we get
2me%€ﬂyaﬁel(g)*PlaPﬂ‘7(q2)

my,(mp + mfz)(m%i - 4%

Hﬂ(QvP) =

Here sg is the threshold of the lowest continuum state.
Applying a Borel-transformation,

1
S_PIZ

—s/Mz’ (P/2)n -0,

- e
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we get for the vector case and the other two cases after the same procedure

\% 2
Ma(q. P) = 2f gme-rive V(L)

(mB + mfz)m,,

6;41/(1/361(11)* anﬂ ’

o ; * 20
(g, P) == e é/MZ[<mB+mfz> DR = ()R ) 2L
2
e(ﬁ)*.q ~ y
~2mp, S g, (A5 (a) = Aola) .

q

H/u/S(q’P) my,

~B() (el q, - eq,) -

with M? being the Borel parameter. For simplicity, we do
not write down the spectral densities. Later we will use
quark-hadron duality to subtract these contributions
from our OPE result.

For the OPE, we contract the two b-quarks in (4) using
the quark propagator in a background field [18,19]

(0T{b'(x)b7(0)}|0)

_ _i/ &k g Ktmy
P

H d4k —ikx va AT\
- lgs/ (271)48 k [) dvG* (vx)<2>
k + my, 1
X (2(’"% — k2)2 Oy + mi s vxY, -
So we get, e.g., for the vector current

d*xd*k 1170
,(q.P)=i | —F——
ﬂ(Q7 ) l/ (2]_[)4 m,% _ k2

x <mb<fg<P>q1<x>y,,y5q2<0>|0>
+k(f5(P)|q1(x)7,7,7592(0)]0)

+ / L do(F(P) g (1), G (vx)

0

(s o+ 2 ) 0010 )

After rewriting the Lorentz structures, if necessary, the
resulting matrix elements are expressed in terms of the
light-cone DAs from Appendix. After performing the x and
k integration, the general structure, shown in simplified

form looks like
A(u)
/ Dn ’ (6)

e g
ZC(q )ﬁ(PﬂqU -
f

2
= T8 o {—A<q2><<2P,, +q,)e = (2P, + )¢l

i P,q,) |

where A(u) is one of the DAs from Appendix and the
denominator is
D =mj —(q + uP)>.

We have to write (6) as a dispersion integral in P2,

1 [ ds
N”AZ S Im,As),

which we can achieve by substituting

1, (g, P)

my — ig* 4 uamy ),

—2 [m]%, + q2 -
+ \/ N q - m

in the denominator (6), with i =1 —u and perform a partial

integration whenever the power of the denominator is larger

than one. Now the contributions of the excited and
continuum states can be approximated using quark-hadron

duality,
© ds 1 [ ds
— ~— I
/sg S_P,zp(S) ”[0 T m,A(s),

where s is the duality threshold. For the final sum rules, we
use following shorthand notation for the DAs,

2 dm3 (o} — )|,

d -
EA(M) = —A(u),
don T( ) =-T ().
with A(0) = A(1) =T (a3 = 0) = T (a3 = 1) = 0. For

/Al(u) 7 (@), we have two derivatives, etc. Performing a
Borel-transformation, one obtains the final sum rules for
the form factors
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~ (mB+mf )mb 2 1 [% /M2 A ~
V(g?) :2fB—m;e /M ”Li dse™s/M[8(1 —5+)mbm}2flemsga(s) —2mf2fjf21mSA(s)
—(3m3 + l)m}Zf}ZImsﬁAk(s)],
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1 _meB(mB+mf)ﬂ . %€ MMy, J 1, MBS My, My g, M TAS )My, ] g, M S
2 m

+8mym4 [, Im;Cy(s) = 2my, f1 (uP* + Pq)ImA(s) + (3m} + Vmj 1 (uP* + Pg)Im,A(s)

)
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I L(—2a3 ’;‘|
ay=—p>

X2

2 my,
+16m3 f§ (uP? 4+ Pq)lmB(s +8/ da%/ dvff m3 Im, (Tl( ) = “ 2 Q)>
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- (my, + mg,)my, 1 [0 o A A
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b

A(s) A
~(3mj, + )m3_f Im SA(s) —8(1 - S umy f7 Toghy”(s) + 24umymy f,Im,Cy(s)

+4um; [T Im.é(s) —m; f1 (56 +48(uPq + qz))Im ,B(s)

+8/ dog/ag dvft m}, <3uIm <Tl( )——Tz( )) —m%lmsﬁl(g)—m%ﬁ(g)))

I-a3

)
ay=l-ay—a
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ay= e

2 < A A
n 4 my onpl S0 e 3 0T (,p2 A 4 A
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III. NUMERICAL ANALYSIS AND DISCUSSION

For the numerical analysis, we use the following input
values for the masses [20]
myg, = 1.275 GeV, mg = 5.279 GeV,

and for the decay constants at a scale of y = 1 GeV, we use
[6,7]

f7, = 0.101(10) GeV,

£ =0.117(25) GeV.

0.0 . L L

FIG. 1.
lines are the uncertainties from varying the input parameters.

We use the pole b-quark mass, as always for LCSR, given
by m;, = 4.8(1) GeV and for the B-meson decay constant
fg, we use the tree-level sum rule from [21]. All the scale-
dependent parameters are evaluated at the factorization

scale yy = y/m% —mj. We choose the Borel parameter

window to be M? = 4-8 GeV? and the duality threshold
so = 35.5 £2 GeV?, which is consistent with other studies
of the B-meson [22]. All the other input values are given in
Appendix.

g* dependence of the form factors. The solid line gives the central value of the fit to the sum rule results (dots) and the dashed
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TABLE 1. Results from fitting the B — f,(1270) form factors
obtained by LCSR to the three parameter form in (7).

Form factor F(0) a b

Vv 0.30 +0.03 2.38+04 1.50 +0.73
A 0.17 £ 0.01 1.41 +0.50 0.35+1.40
A, 0.11 +0.02 1.84 + 1.46 2.30 +4.09
Ao 0.22 +0.02 2.57+0.77 1.89+2.23
T, 0.11 +0.02 214+ 1.14 1.34 +3.19
7, 0.12 +0.01 135+ 1.24 1.11 +3.39
T, —0.02 +0.04 1.94 +17.51 0.71 £49.40

The LCSR are assumed to give a reasonable approxi-
mation up t0 ¢* < gk = (mp —my,)* = 16.07 GeV2. To
avoid fitting artifacts, we limit the actual fit range to
0 < ¢g> <10 GeV?. The deviations from the fit curves
for large ¢> in fact indicate the break down of the
approximation. We choose a parametrization for the form
factors with the three parameters F(0), a and b,

_ F(0)
L —alg?/mg) + b(q? /mp)*

F(q*) (7)
We perform a weighted fit using as weights the uncertain-
ties from varying the input parameters and add the errors in
quadrature. The cited errors indicate an increase of y> by 1.
For asymmetric errors we take the mean value and shift the
central value by the difference of the asymmetric error and
the mean value to get symmetric errors. As one can see
from Fig. 1, our y?/ d.o.f. is nearly zero for all form factors
and ¢*> < 10 GeV?, indicating that the parametrization (7)
is a very efficient one. We do not show any g> dependence
of the form factor 7'5(¢?) because this form factor is close
to zero in the whole fitting range due to the fact that B(g?)
and C(q?) have nearly the same magnitude but different
signs. Our results can be found in Table I and in Figs. 1, 2.

We observe that the contributions from the mass terms
A(u) and ¢4 (u) to the form factors are not negligible as can
already be seen in Fig. 2. More precisely, the effect of these
mass terms is for all the form factors less than 30% for
g*> = 0. For ¢ # 0 the contributions of the meson mass
terms to the form factors V(¢?), A;(¢?) and Ay(g?) stays
under 30%. For the form factors A,(q?), T1(¢?), T»(q?)
and T5(g?) the effect of the meson mass terms increases for
higher values of g>. Worth mentioning is the form factor
Ao(g?), which depends on A,(¢?) and A,(4?) but, due to
cancellations the effect of the meson mass terms is less than
13% for the whole range of g>. The comparison with other
theoretical approaches, which is illustrated in Fig. 2 by the
q2 = 0 values of the form factors, illustrates the improved
precision we achieved. This comparison requires, however,
some explanations. The method used in [10] is a calculation
within a specific “pQCD” approach based on k, factori-
zation. The discrepancies between their results and ours
(black bullets) is substantially larger than the systematic
uncertainty we expect for our LCSR calculation. Therefore,
we conclude that we disagree with the findings of [10]. In
contrast, [11,12] are also LCSR calculations which allows
to trace back the discrepancies to the fact that we have
calculated higher contributions. In all cases, the error bars
represent the variation observed when the LCSR input
parameters are varied in reasonable bounds. They do not
include any estimate of neglected higher order terms.
Therefore, [11] should be compared to our grey bullets
which do not contain meson mass corrections as these
where also not taken into account in [11]. The difference
between our grey bullets and the green squares shows that
the higher-twist contributions and three-particle DAs we
take into account make a significant difference, especially
for V(0), though not a very large one. The same can be said
of the meson mass terms, comparing our grey and black
bullets. Thus, one can conclude that to reach high precision
all these effects have to be included and that our results are

0.6
0.5F With mass terms —e@—— n
‘Without mass terms
0.4 - Ref. [12] —o—— _|
Ref. [10] —a—
Ref. [11]F—8—
0.3F ¢ s
0.2t ; ¢, + i
[ ]
. | ; g
0.1F + 4* ¢ ¢ * ¢ * }* 7]
i
ot { §
-0.1F -
-0.2

FIG. 2. The values of the form factors for g> = 0 from different theoretical approaches.
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in fact far more precise than earlier calculations even
though this does not show up in all cases in the cited
error bars.

To summarize, we calculated the B — f,(1270) form
factors with LCSR using chiral-even and chiral-odd tensor
meson DAs, including for the first time twist-four meson
mass terms. We observe that these mass terms have a
noticeable impact on the sum rules and should be taken
into account in future studies. Especially for the region of
g* # 0 these mass terms can play an important role. The
effects of still higher-twist terms are probably smaller than
the uncertainties arising from the choice of the Borel
parameter, which is illustrated by the cited error bars.
However, this can only be checked by future calculations.
In such future investigations, we would, e.g., also consider
additional SU(3) breaking terms. Especially for decays
involving a strange quark, such SU(3) breaking terms can
probably yield important contributions.
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APPENDIX: DISTRIBUTION AMPLITUDES

In previous studies, the chiral-even quark-antiquark
light-cone DAs for the f,-meson were defined as matrix
elements of nonlocal light-ray operators [6,7,23]

(f2(P,A)|q(z2n)y,q(z,n)|0)
A 1 .
= frml, [(pn)zpﬂ /0 e by (1, )
2)
+%/1 dueizlz(l”l)gv<u’ﬂ)
pn Jo
1 e(l)*

2 nn

1 .
_E”umszA due2 P gy (u p)|. (A1)

(f2(P, 1)|4(z2n)7,75q(z1n)|0)

(A)x
n pa e/in

pn pn

1 .
X / due@2(P g (u, u).

0

= _iffzmjzf ( 5+) Cuvap —

(A2)

In the same manner, we can define the chiral odd DAs'

'In Ref. [6], they already defined the chiral odd DAs but
without the mass terms and SU(3) breaking terms.

(f2(P,2)|q(z2n)q(z,n)|0)

el L (s)
= ‘fjl;v m}z(l - 5£)/0 duelleQM)hH‘ (M,,Ll),
(A3)

2 (pn)?

(f2(P.A)|G(zan)0,,q(211)|0)

q
A)* A)x*
. T |:m (eﬁ_})wpl/ - eﬁ_liypﬂ) /1
f
0

= U |, pn due 2P g (u, p)
351/2* ! i (1)
—i—m}z(pﬂn,, - puiy,) (pn)3/o duelzlz(pn)h” (u, 1)
1 A)* A)* m; 1 i n
(el = elim) s | duee (. p)

(A4)

(A)% (A)

with e, = € n“n? and we use the shorthand notation

— . . A) .
Z1p = Uzy + uz,. The polarization tensor e£ﬂ> is traceless,

symmetric and satisfies the condition e< >P” = 0. Further,
we have

A)* 2
W _ 1 Wx u>*_€r(m) L M,

Lun = Ywlun = C€un (pn ) +2nﬂ nn (pn)

’

LSS}

1
g;J[y = 9w — _I’l (nﬂpl/ + nypy)v

m2
f2

pn
light-like, n>=p>=0. The SU(3) breaking terms are
parametrized by

where the

vectors n, and p,=P, —7 are

:f_;zmqﬂ:mq ST — ffzm +m,

o — L= T
ffz mg, f mg,

Close to the light cone x*>— 0, the operator
product expansion (OPE) of the chiral odd DAs takes
the form

(f2(P, 2)|q(x)0,q(=x)|0)

. (el(fi)*Pv_eJ(C/}/)*P) ! i&(Px
=ifl] [mf2 - ) K A dueP¥) | A(u)

1
+1x2m12c2/&(u)}

(A)*

€xx ! iE(Px
Pyxﬂ)WA due ") B(u)

—l—m}2 (P,x, —
(f2(P,4)|q(x)q(=x)|0)

(4)x
C€xx iE(Px
= Fi i (1=t [ aueseng ),
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with the new two-particle twist-four DA A(u) that can be expressed in terms of the other DAs using QCD EOM, see below
and £ = 2u — 1. By comparing to Egs. (A4) and (A3), we find

A(u) = ¢, (u),
B(u) = |/ () -
C(u) = hy(u)

The OPE for the chiral-even DAs can be found in [7].

P (u)  hy(u)
2 2
— ¢ (u).

We take the three-particle quark-antiquark-gluon DAs from Ref. [7]

(f2(P.M)G(231)9G u (221)1a754(21n)|0) =

and we define a new one for tensor structures

(f2(P. 1)|q(23n)0459G  (221)4(217)[0)

(A)%
T enn

22(pn)?

T m32 L(A)x L(A)=
+ /1,5 [papﬂeyﬁ

with e,,l,,(’l) e<,>, 9 gl, For the asymptotic form of the

three-particle DAs we take [24,25]
> [ 1
V(a) =360 0505 | &5 + §w3(7a2 -3)],

1
A(a) = 360a;0503 567)3(051 - 053)],

[T
Tl/z(a) = 360&1&%&3 3 /

]
+5 o3 (Tay — 3)]

The constants &3, w3 and @3 have been determined in [7] by
using QCD sum rules and are at a scale of 1 GeV

£ =0.1508), @;=-02(3), @ =0.06(1).

Using QCD sum rules we get

< Ak — & > =0.16(3),

m2 @2
<f223—a)371> — —0.33(16).

In Egs. (A1)—(A3), the two-particle DAs ¢,(u), ¢ (u)
are leading twist two, g,(u), g,(u), h‘(‘t)(u), h‘(‘s)(u) are

(£2(P.2)1q(23n)igG . (221)70q(211)|0) = —f s, m3, %

n [Pue(fzw - pvefr)m] /DaeipnzakaV(Q) +oee

Pa (4)
=, m ﬁ [

Pu€in — puegﬁm] /Daeip"Z“kaA(g) 4+,

m3 [ PaPup, = PpPuda = PaPudf, + PpPuli) / Dae?" 2% T (a)

1(A)* 1(A)* 1 z
— ppppeia’ = papieyy + pppicia’] / Dae?" 224 Ty(a) + - -+

collinear twist three and g4(u), hy(u) are twist four. By
using the EOM [24], we can represent the twist-three DAs,
including the SU(3) breaking terms in terms of the leading
DAs and three-particle DAs

(=500 = ["av® - [T,

v

al = ["a® sy [! vaSj’) 5. (w)

——/ dal/ da3—
—/ d /d — —+i A)
0 “ 0 a3f12 day  dag @

with
Q(u) =y (u) + (6- + 6. 2u—1))¢', (u)
__—/ dal/ da3—<a1—+“3di)v(“)
_55 / da, / da3—<a1 da di)/l(g),
and
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B — f,(1270) FORM FACTORS WITH ...
(1= 80)hf ()

(a0
=Y ([0 [ ) s g
ju dal/ dm—(’]’l() ;m;zfz(a))
with

®(u) = 3¢, (u) + 5" —¢

)+ St

(00
), / AGELT )
)

*du
< (Tilw) - 3m3, Tota)

For the leading-twist DAs, we will use the asymptotic
form

$a2(u) = =1 (u) = 30uit(2u — 1),

where we defined ¢, («) with a minus sign so that we have
the same signs in Eq. (A4) as in Ref. [6] from which we
take the value for f,.

Also using the EOM [26], we can express the twist-four
DAs by the asymptotic form of lower twist DAs

94 (1) = 30uia(2u — 1),
hy(u) = =30ui(2u — 1),
¢4(u) = 100u?i>(2u — 1),
A(u) = 60ui*(2u — 1).

[1] R. Aaij et al. (LHCD), J. High Energy Phys. 02 (2016) 104.
[2] T. A. Collaboration (ATLAS), arXiv:1805.04000.
[3] A. M. Sirunyan et al. (CMS), Phys. Lett. B 781, 517 (2018).
[4] C. Patrignani et al. (Particle Data Group), Chin. Phys. C 40,
100001 (2016).
[5] M. Masuda et al. (Belle), Phys. Rev. D 93, 032003 (2016).
[6] H.-Y. Cheng, Y. Koike, and K.-C. Yang, Phys. Rev. D 82,
054019 (2010).
[7] V.M. Braun, N. Kivel, M. Strohmaier, and A. A. Vladimirov,
J. High Energy Phys. 06 (2016) 39.
[8] H. Hatanaka and K.-C. Yang, Phys. Rev. D 79, 114008
(2009).
[9] H. Hatanaka and K.-C. Yang, Eur. Phys. J. C 67, 149 (2010).
[10] W. Wang, Phys. Rev. D 83, 014008 (2011).
[11] K.-C. Yang, Phys. Lett. B 695, 444 (2011).
[12] Z.-G. Wang, Mod. Phys. Lett. A 26, 2761 (2011).
[13] L. 1. Balitsky, V. M. Braun, and A. V. Kolesnichenko, Sov. J.
Nucl. Phys. 44, 1028 (1986).
[14] L L. Balitsky, V. M. Braun, and A. V. Kolesnichenko, Nucl.
Phys. B312, 509 (1989).

[15] V.L. Chernyak and I. R. Zhitnitsky, Nucl. Phys. B345, 137
(1990).

[16] D.-M. Li, H. Yu, and Q.-X. Shen, J. Phys. G 27, 807
(2001).

[17] K. Olive and P. D. Group, Chin. Phys. C 38, 090001 (2014).

[18] V.M. Belyaev, V.M. Braun, A. Khodjamirian, and R.
Ruckl, Phys. Rev. D 51, 6177 (1995).

[19] I. 1. Balitsky and V.M. Braun, Nucl. Phys. B311, 541
(1989).

[20] C. Patrignani and P. D. Group, Chin. Phys. C 40, 100001
(2016).

[21] C. A. Dominguez and N. Paver, Phys. Lett. B 197, 423
(1987); 199, 596(E) (1987).

[22] P. Ball and V. M. Braun, Phys. Rev. D 58, 094016 (1998).

[23] V.M. Braun and N. Kivel, Phys. Lett. B 501, 48 (2001).

[24] P. Ball, V. M. Braun, Y. Koike, and K. Tanaka, Nucl. Phys.
B529 (1998).

[25] V.M. Braun, G. P. Korchemsky, and D. Mueller, Prog. Part.
Nucl. Phys. 51, 311 (2003).

[26] P. Ball and V. M. Braun, Nucl. Phys. B543, 201 (1999).

014008-9


https://doi.org/10.1007/JHEP02(2016)104
http://arXiv.org/abs/1805.04000
https://doi.org/10.1016/j.physletb.2018.04.030
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1103/PhysRevD.93.032003
https://doi.org/10.1103/PhysRevD.82.054019
https://doi.org/10.1103/PhysRevD.82.054019
https://doi.org/10.1007/JHEP06(2016)039
https://doi.org/10.1103/PhysRevD.79.114008
https://doi.org/10.1103/PhysRevD.79.114008
https://doi.org/10.1140/epjc/s10052-010-1293-7
https://doi.org/10.1103/PhysRevD.83.014008
https://doi.org/10.1016/j.physletb.2010.11.053
https://doi.org/10.1142/S0217732311037133
https://doi.org/10.1016/0550-3213(89)90570-1
https://doi.org/10.1016/0550-3213(89)90570-1
https://doi.org/10.1016/0550-3213(90)90612-H
https://doi.org/10.1016/0550-3213(90)90612-H
https://doi.org/10.1088/0954-3899/27/4/305
https://doi.org/10.1088/0954-3899/27/4/305
https://doi.org/10.1088/1674-1137/38/9/090001
https://doi.org/10.1103/PhysRevD.51.6177
https://doi.org/10.1016/0550-3213(89)90168-5
https://doi.org/10.1016/0550-3213(89)90168-5
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1016/0370-2693(87)90414-X
https://doi.org/10.1016/0370-2693(87)90414-X
https://doi.org/10.1016/0370-2693(87)91634-0
https://doi.org/10.1103/PhysRevD.58.094016
https://doi.org/10.1016/S0370-2693(01)00095-8
https://doi.org/10.1016/S0550-3213(98)00356-3
https://doi.org/10.1016/S0550-3213(98)00356-3
https://doi.org/10.1016/S0146-6410(03)90004-4
https://doi.org/10.1016/S0146-6410(03)90004-4
https://doi.org/10.1016/S0550-3213(99)00014-0

