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The prediction of single-spin asymmetry in inelastic photoproduction of J=ψ in ep↑

collision is presented. At next-to-leading order, the dominating process is photon-gluon fusion, γ þ g →
J=ψ þ g for the production of J=ψ in eþ p↑ → J=ψ þ X, which directly probes the gluon Sivers function.

Using the nonrelativistic QCD based color octet model, the color octet states 3Sð8Þ1 , 1Sð8Þ0 and 3Pð8Þ
Jð0;1;2Þ

contribution to J=ψ production is calculated. Sizable asymmetry is estimated as a function of transverse
momentum PT and energy fraction z of J=ψ in the range 0 < PT ≤ 1 GeV and 0.3 < z ≤ 0.9. The
unpolarized differential cross section of inelastic J=ψ photoproduction is found to be in good agreement
with H1 and ZEUS data.
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I. INTRODUCTION

Among the transverse momentum dependent pdfs
(TMDs), Sivers function has attracted considerable interest
in the scientific community in recent days, largely because
of a large amount of experimental results coming in. The
Sivers function gives the asymmetric distribution of unpo-
larized quarks/gluons inside a transversely polarized
nucleon. The nonzero Sivers function gives a coupling
between the intrinsic transverse momentum of the parton
(quark/gluon) and the transverse spin of the nucleon [1,2],
this gives an azimuthal asymmetry in the distribution of the
final state particle in ep↑ and pp↑ collision that has been
measured at HERMES [3–5], COMPASS [6–9], JLAB
[10,11] and RHIC [12,13] respectively. Sivers function is a
time reversal odd (T-odd) object [14]. The initial and final
state interactions (gauge links) play an important role in the
Sivers asymmetry. This gives a dependence on the specific
process in which the Sivers function is studied. For
example, Sivers function probed in semi-inclusive deep
inelastic scattering (SIDIS) is expected to be the same in
magnitude but opposite in sign compared to the one
probed in the Drell-Yan (DY) process. More complex
processes have complex gauge links [15]. Experimental
data on the Sivers asymmetry have now made it possible
for the extraction of u and d quark Sivers function [16],
but the gluon Sivers function (GSF) is still unknown.

There is no constraint on GSF except a positivity bound
[17]. The GSF contains two gauge links, and the process
dependence is more involved. It has been shown [18]
that the GSF in any process can be written in terms of
two independent Sivers functions, an f-type GSF (this
contains ½þþ� gauge link and also called WW gluon
distributions) and a d-type GSF (this contains ½þ−�
gauge link and are called dipole distributions) [18]. The
operator structures in these two Sivers function have
different charge conjugation properties.
Heavy quarkonium production in ep [19–23] and pp

[24,25] collision has been studied theoretically quite exten-
sively for probing the gluon TMDs, in particular the GSF
and linearly polarized gluon distribution [26,27]. This is
because the heavy quarkonium is produced at leading order
(LO) through photon-gluon fusion (ep) or two gluon fusion
(pp) channel. Although the productionmechanism of heavy
quarkonium is still not well established, the most widely
used theoretical approach is based on nonrelativistic QCD
(NRQCD) [28]. This gives systematic way to separate the
high energy and low energy effects of the production
mechanism. In this approach, the heavy quark pair is
produced at a short distance in color singlet (CS) [29–32]
or in color octet (CO) [33–35] configuration and then they
hadronize to form a quarkonium state of given quantum
numbers through a soft process. The short distance coef-
ficients are calculated perturbatively for each process and the
long distance matrix elements (LDMEs) are extracted from
the experimental data. The LDMEs are categorized by
performing an expansion in terms of the relative velocity
of the heavy quark v in the limit v ≪ 1 [36]. The theoretical
predictions are arranged as double expansions in terms of v
as well as αs. The heavy quark pair may be produced in CO
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state which then form the CS quarkonium by emitting a
soft gluon. NRQCD has been successful to explain the
J=ψ hadroproduction at Tevatron [37,38], also data from
J=ψ photoproducton at HERA [39–42] suggests sub-
stantial contribution from CO states [43–48]. In the
single-spin asymmetry (SSA) in ep collision, when the
J=ψ is produced in the CS state, the two final state
interactions with quark and antiquark lines cancel each
other, and the final state interaction with unobserved
particles cancel between diagrams having different cuts.
As a result, SSA in J=ψ production in ep collision is
zero when the heavy quark pair is produced in the CS
state, and nonzero asymmetry can be observed when the
pair is produced in CO state [49]. The final state
interactions are more involved for pp collision proc-
esses, and there, nonzero SSA is expected when the
heavy quark pair is produced in a CS state. In the
study of TMDs in SSA in heavy quarkonium produc-
tion, one assumes that TMD factorization holds for such
processes.
In our previous work [20], we calculated the Sivers

asymmetry in J=ψ electroproduction at LO, which is a
photon-gluon 2 → 1 process, in color octet model (COM).
We showed that the calculated asymmetry at z ¼ 1 agrees
within the error bar of the recent COMPASS [50] meas-
urement. Here we extend the analysis to estimate the SSA
in photoproduction of J=ψ at next-to-leading order (NLO).
This allows to calculate the asymmetry over a wider
kinematical region accessible to the present experiments
at COMPASS and at the planned EIC in the future. We will
use NRQCD based COM in our calculation for estimating
the asymmetry.
The paper is organized into five sections including the

introduction in Sec. I. The SSA and J=ψ production
framework are presented in Sec. II and Sec. III respectively.
Section IV discusses about the numerical results. The
conclusion of the paper is given in Sec. V. A few details
of calculation are given in the Appendices.

II. SINGLE-SPIN ASYMMETRY

In general the transverse single-spin asymmetry (SSA) is
defined as following

AN ¼ dσ↑ − dσ↓

dσ↑ þ dσ↓
; ð1Þ

where dσ↑ and dσ↓ are respectively the differential cross-
sections measured when one of the particle is transversely
polarized up (↑) and down (↓) with respect to the scattering
plane. Here ↑ð↓Þ direction is the proton polarization
direction along the þy (-y) axis with momentum along
−z axis and the final hadron is produced in the xz plane as
shown in Fig. 1. We consider the inclusive process
eðlÞ þ p↑ðPÞ → J=ψðPhÞ þ X. The virtual photon radiated
by the initial electron scattering will interact with the

proton. The virtual photon carries the momentum q such
that q2 ≈ −2EE0ð1 − cos θÞwithE andE0 are energies of the
initial and final electron, respectively. In the forward scatter-
ing limit, however, the four momentum of virtual photon
q2 ¼ −Q2 → 0 as a result thevirtual photon becomes the real
photon. The dominating subprocess at NLO for quarkonium
production in ep collision is photon-gluon fusion process,
i.e., γðqÞ þ gðkÞ → J=ψðPhÞ þ gðpgÞ. The letters within the
roundbrackets represent the fourmomentumof eachparticle.
There are two types of J=ψ photoproductions. One is the
direct photoproduction in which the photon electromagneti-
cally interacts with the partons of the proton. The second,
resolved photoproduction wherein the photon acts as a
source of partons and then they strongly interact with partons
of the proton.
In this paper we have not considered the resolved photo-

production channel which basically contributes at low z
region (z ≤ 0.3) [51], where z ¼ P:Ph

P:q is the energy fraction
transferred from the photon to J=ψ in the proton rest
frame. In photoproduction, the inelastic variable z can be
measured in experiments using the Jacquet-Blondel method
[39,40,42]. The LO photon-gluon fusion subprocess
(γ þ g → J=ψ) contributes to elastic photoproduction at
z ¼ 1 [20]. The process of a colorless exchanged particle
between quasireal photon and proton, diffractive process,
contributes to J=ψ production in the elastic region, i.e., z ≈ 1
and PT ≈ 0 GeV [52,53]. PT is the transverse momentum of
J=ψ . Moreover, gluon and heavy quark fragmentation also
contribute for quarkonium production significantly at PT >
4 GeV [54], which are excluded by imposing PT cut. The
feed-down contribution from an excited state ψð2SÞ and the
decay of χc states contribution to J=ψ are 15% [41] and 1%
[53,55] respectively, are not considered in this work.
Therefore, we impose the following kinematical cut 0.3 <
z ≤ 0.9 to account for inelastic photoproduction [55,56]
events only. For true inelastic J=ψ production, one has to
impose low PT cut as in [55,56], however, to validate
asymmetry calculation in the TMD framework, we have
considered 0 < PT ≤ 1 GeV and lowPT cut is not imposed.
The softening of final gluon, i.e., z → 1, leads to infrared
singularity in the inelastic photoproduction as shown in
Eq. (B10). Hence, z ≤ 0.9 kinematical cut is motivated to
keep the final gluon hard and the perturbative calculation is
under good control. At the same order in αs, another channel
γ þ q → J=ψ þ q also gives the CO contribution to J=ψ

FIG. 1. Kinematical configuration for ep → J=ψ þ X process.
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production. Since the process is initiated by light quarks, the
contribution is expected to be negligible compared to the
photon-gluon fusion process [57]. For the dominating
channel of J=ψ production through γg fusion, the contribu-
tion to the numerator of AN comes mainly from the gluon
Sivers distribution [58]. As the heavy quark pair in the final
state is produced unpolarized, there is no contribution from
Collins function [24]. Also the linearly polarized gluons do
not contribute to the denominator as long as the lepton is
unpolarized [58]. Within the generalized parton model
formalism, the differential cross section for an unpolarized
process is given by

Eh
dσ
d3Ph

¼ 1

2ð2πÞ2
Z

dxγdxgd2k⊥gfγ=eðxγÞfg=pðxg; k⊥gÞ

× δðŝþ t̂þ û −M2Þ 1

2ŝ
jMγþg→J=ψþgj2: ð2Þ

Here xγ and xg are the light-cone momentum fractions of
photon and gluon respectively. The Weizsäker-Williams
distribution function, fγ=eðxγÞ, describes the density of
photons inside the electron which is given by [59]

fγ=eðxγÞ ¼
α

2π

�
2m2

exγ

�
1

Q2
min

−
1

Q2
max

�

þ 1þ ð1 − xγÞ2
xγ

ln
Q2

max

Q2
min

�
ð3Þ

where α is the electromagnetic coupling andQ2
min ¼ m2

e
x2γ

1−xγ
,

me being the electron mass. We have considered Q2
max ¼

1 GeV2 for estimating the SSA. For photoproduction of J=ψ
at HERA, we have taken two different values of Q2

max ¼
2.5 GeV2 and 1 GeV2 in line with H1 [39,40] and ZEUS
[41,42] data, respectively. The unpolarized gluon TMD,
fg=p, represents the density of gluons inside an unpolarized
proton. The ŝ, t̂, and û are the Mandelstam variables whose
definitions are given in Appendix B. Mγþg→J=ψþg is the
amplitude of photon-gluon fusion process which will be
discussed in Sec. III and its square is given in Appendix A.
The mass of J=ψ is represented with M. Now, we are in a
position to write down the expression of numerator and
denominator terms of Eq. (1) when the target proton is
polarized and are given by

dσ↑−dσ↓¼dσep
↑→J=ψX

dzd2PT
−
dσep

↓→J=ψX

dzd2PT

¼ 1

2zð2πÞ2
Z

dxγdxgd2k⊥gfγ=eðxγÞΔNfg=p↑ðxg;k⊥gÞδðŝþ t̂þ û−M2Þ 1
2ŝ
jMγþg→J=ψþgj2; ð4Þ

and

dσ↑ þ dσ↓ ¼ dσep
↑→J=ψX

dzd2PT
þ dσep

↓→J=ψX

dzd2PT
¼ 2

dσ
dzd2PT

¼ 2

2zð2πÞ2
Z

dxγdxgd2k⊥gfγ=eðxγÞfg=pðxg; k⊥gÞδðŝþ t̂þ û −M2Þ 1

2ŝ
jMγþg→J=ψþgj2: ð5Þ

The ΔNfg=p↑ðxg; k⊥gÞ, GSF, describes the density of
unpolarized gluons inside the transversely polarized proton
and is defined as below

ΔNfg=p↑ðxg; k⊥gÞ ¼ fg=p↑ðxg; k⊥gÞ − fg=p↓ðxg; k⊥gÞ
¼ ΔNfg=p↑ðxg; k⊥gÞŜ:ðP̂ × k̂⊥gÞ ð6Þ

For estimating the SSA numerically, we have to discuss
about the parametrization of TMDs. Generally, it is
assumed that the unpolarized gluon TMDs follow the
Gaussian distribution. The Gaussian parametrization of
unpolarized TMD is

fg=pðxg; k2⊥g; μÞ ¼ fg=pðxg; μÞ
1

πhk2⊥gi
e−k

2⊥g=hk2⊥gi: ð7Þ

Here,xg andk⊥g dependencies of theTMDare factorized.The
collinear PDF is denoted with fg=pðxg; μÞ which is measured

at the scale μ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þP2

T

p
. The collinear PDF obeys the

Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) scale
evolution. We choose a frame (shown in Fig. 1) as discussed
in Appendix B wherein the polarized proton is moving
along −z axis with momentum P, is transversely polarized
Ŝ ¼ ðcosϕs; sinϕs; 0Þ. The transverse momentum of the
initial gluon is k⊥g ¼ k⊥gðcosϕ; sinϕ; 0Þ,

Ŝ:ðP̂ × k̂⊥gÞ ¼ sinðϕ − ϕsÞ: ð8Þ

For numerical estimation we have taken ϕs ¼ π=2. The
parametrization of GSF is given by [16,60]
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ΔNfg=p↑ðxg; k⊥g; μÞ

¼ 2N gðxgÞfg=pðxg; μÞhðk⊥gÞ
e−k

2⊥g=hk2⊥gi

πhk2⊥gi
; ð9Þ

here fg=pðxg; μÞ is the usual collinear gluon PDF and

N gðxgÞ ¼ Ngxαgð1 − xgÞβ
ðαþ βÞðαþβÞ

ααββ
: ð10Þ

The definition of hðk⊥gÞ is given by

hðk⊥gÞ ¼
ffiffiffiffiffi
2e

p k⊥g

M1

e−k
2⊥g=M

2
1 : ð11Þ

The k⊥g dependent part of Sivers function can be written as

hðk⊥gÞ
e−k

2⊥g=hk2⊥gi

πhk2⊥gi
¼

ffiffiffiffiffi
2e

p

π

ffiffiffiffiffiffiffiffiffiffiffi
1 − ρ

ρ

s
k⊥g

e−k
2⊥g=ρhk2⊥gi

hk2⊥gi3=2
; ð12Þ

where we defined

ρ ¼ M2
1

hk2⊥gi þM2
1

: ð13Þ

D’Alesio et al. [60] have extracted the GSF from pion
production data at RHIC [61] first time and two sets of best
fit parameters were presented which are denoted with SIDIS1
andSIDIS2.Moreover, using the latest SIDIS dataAnselmino
et al. [16] have extracted the quark and antiquark Sivers
function. However, GSF has not been extracted yet from
SIDIS data. Therefore, in order to estimate the asymmetry,
best fit parameters of Sivers function corresponding tou andd
quark will be used in the following parametrizations [62]:

ðaÞ N gðxgÞ ¼ ðN uðxgÞ þN dðxgÞÞ=2;
ðbÞ N gðxgÞ ¼ N dðxgÞ: ð14Þ

We call the parametrization (a) and (b) as BV-a and BV-b
respectively. The best fit parameters are tabulated in Table I.
The final expressions of numerator and denominator

terms of Eq. (1) within DGLAP evolution approach are
given by

dσ↑ − dσ↓ ¼ 1

2zð2πÞ2
Z

dxγdxgd2k⊥gfγ=eðxγÞ2N gðxgÞfg=pðxg; μÞ
ffiffiffiffiffi
2e

p

π

ffiffiffiffiffiffiffiffiffiffiffi
1 − ρ

ρ

s
k⊥g

e−k
2⊥g=ρhk2⊥gi

hk2⊥gi3=2

× δðŝþ t̂þ û −M2Þ 1

2ŝ
jMγþg→J=ψþgj2 sinðϕ − ϕsÞ; ð15Þ

and

dσ↑ þ dσ↓ ¼ 2

2zð2πÞ2
Z

dxγdxgd2k⊥gfγ=eðxγÞfg=pðxg; μÞ
1

πhk2⊥gi
e−k

2⊥g=hk2⊥giδðŝþ t̂þ û −M2Þ 1

2ŝ
jMγþg→J=ψþgj2: ð16Þ

III. J=ψ PRODUCTION IN COM FRAMEWORK

Let us consider the J=ψ production in eþ p → J=ψ þ X process. The NLO subprocess is γ þ g → J=ψ þ g and the
related Feynman diagrams to this process are shown in Fig. 2. The amplitude expression for bound state production in
NRQCD framework can be written as below [63,64]

Mðγg → QQ̄½2Sþ1Lð1;8Þ
J �ðPhÞ þ gÞ ¼

X
LzSz

Z
d3k0

ð2πÞ3ΨLLz
ðk0ÞhLLz; SSzjJJziTr½Oðq; k; Ph; k0ÞPSSzðPh; k0Þ�; ð17Þ

where k0 is the relative momentum of the heavy quark in the quarkonium rest frame. In Eq. (17), Oðq; k; Ph; k0Þ represents
the amplitude of QQ̄ pair without considering the external heavy quark and antiquark legs, which is given by

TABLE I. Best fit parameters of Sivers function.

Evolution a Na α β ρ M2
1 GeV2 hk2⊥i GeV2 Notation

DGLAP

g [60] 0.65 2.8 2.8 0.687 0.25 SIDIS1
g [60] 0.05 0.8 1.4 0.576 0.25 SIDIS2
u [16] 0.18 1.0 6.6 0.8 0.57 BV-a
d [16] −0.52 1.9 10.0 0.8 0.57 BV-b
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Oðq; k; Ph; k0Þ ¼
X8
m¼1

CmOmðq; k; Ph; k0Þ: ð18Þ

From Fig. 1, the amplitude expression of individual Feynman diagram is given below

O1 ¼ 4g2sðeecÞεμλaðkÞενλbðqÞε
ρ�
λg
ðpgÞγν

=Ph þ 2=k0 − 2=qþM
ðPh þ 2k0 − 2qÞ2 −M2

γμ
−=Ph þ 2=k0 − 2=pg þM

ðPh − 2k0 þ 2pgÞ2 −M2
γρ; ð19Þ

O2 ¼ 4g2sðeecÞεμλaðkÞενλbðqÞε
ρ�
λg
ðpgÞγρ

=Ph þ 2=k0 þ 2=pg þM

ðPh þ 2k0 þ 2pgÞ2 −M2
γν

−=Ph þ 2=k0 þ 2=kþM
ðPh − 2k0 − 2kÞ2 −M2

γμ; ð20Þ

O3 ¼ 4g2sðeecÞεμλaðkÞενλbðqÞε
ρ�
λg
ðpgÞγν

=Ph þ 2=k0 − 2=qþM
ðPh þ 2k0 − 2qÞ2 −M2

γρ
−=Ph þ 2=k0 þ 2=kþM
ðPh − 2k0 − 2kÞ2 −M2

γμ; ð21Þ

O4 ¼ 2g2sðeecÞεμλaðkÞενλbðqÞε
ρ�
λg
ðpgÞγν

=Phþ2=k0−2=qþM
ðPhþ2k0−2qÞ2−M2

γσ
1

ðk−pgÞ2
½gμρðkþpgÞσþgρσðk−2pgÞμþgσμðpg−2kÞρ�:

ð22Þ

Here M ¼ 2mc, mc being the charm quark mass. Charge
conjugation invariance implies that all the eight Feynman
diagrams are symmetric by reversing the fermion flow. The
amplitude expressions of O5, O6, O7, and O8 can be
obtained by reversing the fermion flow and replacing
k0 → −k0. The color factor of each diagram is given by

C1 ¼ C6 ¼ C7 ¼
X
ij

h3i; 3̄jj8ciðtatbÞij;

C2 ¼ C3 ¼ C5 ¼
X
ij

h3i; 3̄jj8ciðtbtaÞij

C4 ¼ C8 ¼
X
ij

h3i; 3̄jj8ciifabdðtdÞij ð23Þ

here the summation is over the colors of the outgoing quark
and antiquark. The SU(3) Clebsch-Gordan coefficients for
CS and CO states, respectively, are given by

h3i; 3̄jj1i ¼ δijffiffiffiffiffiffi
Nc

p ; h3i; 3̄jj8ai ¼
ffiffiffi
2

p
ðtaÞij ð24Þ

and they project out the color state ofQQ̄pair either it is inCS
orCOstate,whereNc is the number of colors. Thegenerators
of SU(3) group in fundamental representation is denoted by
ta which follows TrðtatbÞ¼δab=2 and TrðtatbtcÞ¼
1
4
ðdabcþifabcÞ. Using Eq. (24), we have the following color
factors for the production of initial QQ̄ in CO state

C1 ¼ C6 ¼ C7 ¼
ffiffiffi
2

p

4
ðdabc þ ifabcÞ;

C2 ¼ C3 ¼ C5 ¼
ffiffiffi
2

p

4
ðdabc − ifabcÞ;

C4 ¼ C8 ¼
ffiffiffi
2

p

2
ifabc: ð25Þ

FIG. 2. Feynman diagrams for γ þ g → J=ψ þ g process.
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The excluded heavy quark and antiquark spinors are
absorbed in the definition of spin projection operator which
is given by [63,64]

PSSzðPh;k0Þ

¼
X
s1s2

�
1

2
s1;

1

2
s2jSSz

�
v

�
Ph

2
−k0;s1

�
ū

�
Ph

2
þk0;s2

�

¼ 1

4M3=2 ð−=Phþ2=k0 þMÞΠSSzð=Phþ2=k0 þMÞþOðk02Þ;
ð26Þ

bearing ΠSSz ¼ γ5 for singlet (S ¼ 0) state and ΠSSz ¼
=εszðPhÞ for triplet (S ¼ 1) state. Here spin polarizationvector
of theQQ̄ system is denoted with εszðPhÞ. Since the relative

momentum k0 is very small with respect to Ph, Taylor
expansion can be performed around k0 ¼ 0 in Eq. (17).
The first term in the expansion gives the S-wave amplitude.
Since the radial wave function R1ð0Þ ¼ 0 for P-wave
(L ¼ 1; J ¼ 0, 1, 2), one has to consider the second term
in the Taylor expansion to calculate P-wave amplitude. By
following Ref. [64], one obtains the S and P state amplitude
expressions which are given by

M½2Sþ1Sð8ÞJ �ðPh; kÞ

¼ 1ffiffiffiffiffiffi
4π

p R0ð0ÞTr½Oðq; k; Ph; k0ÞPSSzðPh; k0Þ�jk0¼0

¼ 1ffiffiffiffiffiffi
4π

p R0ð0ÞTr½Oð0ÞPSSzð0Þ�; ð27Þ

M½2Sþ1Pð8Þ
J � ¼ −i

ffiffiffiffiffiffi
3

4π

r
R0
1ð0Þ

X
LzSz

εαLz
ðPhÞhLLz; SSzjJJzi

∂
∂k0α Tr½Oðq; k; Ph; k0ÞPSSzðPh; k0Þ�jk0¼0

¼ −i
ffiffiffiffiffiffi
3

4π

r
R0
1ð0Þ

X
LzSz

εαLz
ðPhÞhLLz; SSzjJJziTr½Oαð0ÞPSSzð0Þ þOð0ÞPSSzαð0Þ� ð28Þ

The following shorthand notations are defined in the above
expressions

Oð0Þ¼Oðq;k;Ph;k0Þjk0¼0; PSSzð0Þ¼PSSzðPh;k0Þjk0¼0

ð29Þ

Oαð0Þ ¼
∂

∂k0αOðq; k; Ph; k0Þjk0¼0;

PSSzαð0Þ ¼
∂

∂k0α PSSzðPh; k0Þjk0¼0: ð30Þ

For P-wave amplitude calculation, we use the Clebsch-
Gordan coefficients as defined in Refs. [65,66]

X
LzSz

h1Lz; SSzj00iεαszðPhÞεβLz
ðPhÞ ¼

ffiffiffi
1

3

r �
gαβ −

1

M2
Pα
hP

β
h

�
;

ð31ÞX
LzSz

h1Lz; 1Szj1JziεαszðPhÞεβLz
ðPhÞ

¼ −
i
M

ffiffiffi
1

2

r
ϵδλρσgραgσβPδ

hε
λ
Jz
ðPhÞ; ð32Þ

X
LzSz

h1Lz; 1Szj2JziεαszðPhÞεβLz
ðPhÞ ¼ εαβJz ðPhÞ: ð33Þ

Here εαJzðPhÞ is the polarization vector of bound state with
J ¼ 1 and it obeys the following relations

εαJzðPhÞPhα ¼ 0;

X
Lz

εαJzðPhÞε�βJz ðPhÞ ¼ −gαβ þ Pα
hP

β
h

M2
≡Qαβ: ð34Þ

The εαβJz ðPhÞ represents the polarization tensor for J ¼ 2

bound state and obeys the below relation [65,66]

εαβJz ðPhÞ¼εβαJz ðPhÞ; εαJzαðPhÞ¼0; Phαε
α
Jz
ðPhÞ¼0;

εμνJz ðPhÞε�αβJz
ðPhÞ¼

1

2
½QμαQνβþQμβQνα�−1

3
QμνQαβ: ð35Þ

The R0ð0Þ and R0
1ð0Þ are the radial wave function and its

derivative at the origin, and have the following relation with
LDME [57]

h0jOJ=ψ
1 ð2Sþ1SJÞj0i ¼

Nc

2π
ð2J þ 1ÞjR0ð0Þj2; ð36Þ

h0jOJ=ψ
8 ð2Sþ1SJÞj0i ¼

2

π
ð2J þ 1ÞjR0ð0Þj2; ð37Þ

h0jOJ=ψ
8 ð3PJÞj0i ¼

2Nc

π
ð2J þ 1ÞjR0

1ð0Þj2: ð38Þ

The numerical values of LDMEs are given in Table II. Now,
let us discuss each CO state (3S1, 1S0 3PJ) amplitude in
detail.
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A. 3S1 amplitude

We have the following symmetry relations for 3S1 state

Tr½O1ð0Þð−=Ph þMÞ=εsz � ¼ Tr½O5ð0Þð−=Ph þMÞ=εsz �
Tr½O2ð0Þð−=Ph þMÞ=εsz � ¼ Tr½O6ð0Þð−=Ph þMÞ=εsz �
Tr½O3ð0Þð−=Ph þMÞ=εsz � ¼ Tr½O7ð0Þð−=Ph þMÞ=εsz �
Tr½O4ð0Þð−=Ph þMÞ=εsz � ¼ −Tr½O8ð0Þð−=Ph þMÞ=εsz �:

ð39Þ
Using Eq. (39), we can sum the color factors and we

have

C1 þ C5 ¼ C2 þ C6 ¼ C3 þ C7 ¼
ffiffiffi
2

p

2
dabc ð40Þ

The diagrams 4 and 8 do not contribute to 3S1 state as from
Eq. (39). The final amplitude expression for 3S1 state can be
obtained by using Eq. (27) and is given by

M½3Sð8Þ1 �ðPh;kÞ

¼ 1

4
ffiffiffiffiffiffiffi
πM

p R0ð0Þ
ffiffiffi
2

p

2
dabcTr

�X3
m¼1

Omð0Þð−=PhþMÞ=εsz
�
;

ð41Þ
where

X3
m¼1

Omð0Þ¼ g2sðeecÞεμλaðkÞενλbðqÞε
ρ�
λg
ðpgÞ

�
γνð=Ph−2=qþMÞγμð−=Ph−2=pgþMÞγρ

ðŝ−M2Þðû−M2Þ þ γρð=Phþ2=pgþMÞγνð−=Phþ2=kþMÞγμ
ðŝ−M2Þðt̂−M2Þ

þ γνð=Ph−2=qþMÞγρð−=Phþ2=kþMÞγμ
ðt̂−M2Þðû−M2Þ

�
: ð42Þ

B. 1S0 amplitude

The symmetry relations for 1S0 state are given by

Tr½O1ð0Þð−=Ph þMÞγ5� ¼ −Tr½O5ð0Þð−=Ph þMÞγ5�
Tr½O2ð0Þð−=Ph þMÞγ5� ¼ −Tr½O6ð0Þð−=Ph þMÞγ5�
Tr½O3ð0Þð−=Ph þMÞγ5� ¼ −Tr½O7ð0Þð−=Ph þMÞγ5�
Tr½O4ð0Þð−=Ph þMÞγ5� ¼ Tr½O8ð0Þð−=Ph þMÞγ5� ð43Þ

One can sum the color factors using Eq. (43) and we have the below relation

C1 − C5 ¼ −C2 þ C6 ¼ −C3 þ C7 ¼
ffiffiffi
2

p

2
ifabc; C4 þ C8 ¼

ffiffiffi
2

p
ifabc: ð44Þ

Using Eq. (27) the final amplitude expression for 1S0 state is given by

M½1Sð8Þ0 �ðPh; kÞ ¼
1

4
ffiffiffiffiffiffiffi
πM

p R0ð0Þ
ffiffiffi
2

p

2
ifabcTr½ðO1ð0Þ −O2ð0Þ −O3ð0Þ þ 2O4ð0ÞÞð−=Ph þMÞγ5� ð45Þ

where O1ð0Þ, O2ð0Þ and O3ð0Þ are given in Eq. (42) and

O4ð0Þ ¼ g2sðeecÞεμλaðkÞενλbðqÞε
ρ�
λg
ðpgÞ

γνð=Ph − 2=qþMÞγσ
ûðû −M2Þ ½gμρðkþ pgÞσ þ gρσðk − 2pgÞμ þ gσμðpg − 2kÞρ�: ð46Þ

TABLE II. Numerical values of LDMEs.

hOJ=ψ
1 ð3S1Þi GeV3 hOJ=ψ

8 ð3S1Þi × 10−2 GeV3 hOJ=ψ
8 ð1S0Þi × 10−2 GeV3 hOJ=ψ

8 ð3P0Þi × 10−2 GeV5

Ref. [45] 1.16 0.3� 0.12 8.9� 0.98 1.26� 0.47
Ref. [46] 1.32 0.168� 0.046 3.04� 0.35 −0.908� 0.161
Ref. [47] 0.645� 0.405 1.0� 0.3 0.785� 0.42 3.8� 1.1
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C. 3PJ Amplitude

The symmetry relations for P-state (J ¼ 0, 1, 2) are given by

Tr½O1αð0ÞP1Szð0Þ þO1ð0ÞP1αSzð0Þ� ¼ −Tr½O5αð0ÞP1Szð0Þ þO5ð0ÞP1αSzð0Þ�
Tr½O2αð0ÞP1Szð0Þ þO2ð0ÞP1αSzð0Þ� ¼ −Tr½O6αð0ÞP1Szð0Þ þO6ð0ÞP1αSzð0Þ�
Tr½O3αð0ÞP1Szð0Þ þO3ð0ÞP1αSzð0Þ� ¼ −Tr½O7αð0ÞP1Szð0Þ þO7ð0ÞP1αSzð0Þ�
Tr½O4αð0ÞP1Szð0Þ þO4ð0ÞP1αSzð0Þ� ¼ Tr½O8αð0ÞP1Szð0Þ þO8ð0ÞP1αSzð0Þ�: ð47Þ

From above equations, we get the color factors as given in Eq. (44). Using these color factors, the Eq. (28) can be further
simplified as below

M½3Pð8Þ
J �ðPh;kÞ¼

ffiffiffi
2

p

2
fabc

ffiffiffiffiffiffi
3

4π

r
R0
1ð0Þ

X
LzSz

εαLz
ðPhÞh1Lz;1SzjJJzi

×Tr½ðO1αð0Þ−O2αð0Þ−O3αð0Þþ2O4αð0ÞÞPSSzð0ÞþðO1ð0Þ−O2ð0Þ−O3ð0Þþ2O4ð0ÞÞPSSzαð0Þ�:
ð48Þ

In order to calculate the amplitude expression for J ¼ 0, 1
and 2, we have used the Clebsch-Gordan coefficients as
defined in Eqs. (31)–(33). After summing and averaging
over the colors and spins, the amplitude square of each state
is given in Appendix A.

IV. NUMERICAL RESULTS

In this section, we discuss the numerical results of SSA
and inelastic photoproduction of J=ψ in polarized and
unpolarized ep collision respectively. For numerical esti-
mation of SSA, best fit parameters of GSF from [60] and up
and down quark Sivers function parameters from [16] are
considered. MSTW2008 [67] is used for PDF which is
probed at the scale μ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ P2

T

p
. Mass of J=ψ , M ¼

3.096 GeV is taken. The NLO subprocess γ þ g → J=ψ þ
g is considered for J=ψ production in ep↑ → J=ψ þ X

process. The COM is employed for calculating production

rate of J=ψ . The 3Sð8Þ1 , 1Sð8Þ0 , 3Pð8Þ
0 , 3Pð8Þ

1 , and 3Pð8Þ
2 states

amplitudes are calculated using the FORM package [68],
and are given in Appendix A. For comparison, we have
considered three sets of LDMEs from the Refs. [45–47],
which are tabulated in Table II. The LDMEs for
J ¼ 1, 2 are obtained by using the relations hOJ=ψ

8 ð3P1Þi ¼
3hOJ=ψ

8 ð3P0Þi and hOJ=ψ
8 ð3P2Þi ¼ 5hOJ=ψ

8 ð3P0Þi. The trans-
verse momentum of the initial gluon k⊥g in Eq. (2) is
integrated within the limits 0 < k⊥g < 3 GeV. We have
noticed that the higher values of k⊥g max (upper limit of the
k⊥g integration) do not affect the SSA and unpolarized
differential cross section.
We have estimated the SSA at

ffiffiffi
s

p ¼ 100, 45 GeV (EIC)
and

ffiffiffi
s

p ¼ 17.2 GeV (COMPASS) energies using Eq. (1)
by fixing the J=ψ production plane as discussed in [69].

FIG. 3. Single spin asymmetry in eþ p↑ → J=ψ þ X process as function of (a) PT (left panel) and (b) z (right panel) at
ffiffiffi
s

p ¼
100 GeV (EIC). The integration ranges are 0 < PT ≤ 1 GeV and 0.3 < z < 0.9. For convention of lines see the text.
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The SSA as a function ofPT and z is obtained by integrating
0.3 < z ≤ 0.9 and 0 < PT ≤ 1 GeV respectively, and is
shown in Figs. 3–5. The light-cone momentum fraction
xγ of quasireal photon is integrated over the range 0 < xγ <
1 in Figs. 3–6. The upper bound on the virtuality of
the photon in Eq. (3), Q2

max ¼ 1 GeV2 is considered in
Figs. 3–6. The integration with respect to the light-cone
momentum fraction of initial gluonxg in Eqs. (15) and (16) is
carried out by using the Dirac delta function as discussed in
Appendix B. The conventions in the Figs. 3–5 are the
following. The obtained asymmetry using D’Alesio et al.
[60] fit parameters of GSF is represented by “SIDIS1” and
“SIDIS2.” The “BV-a” and “BV-b” curves are obtained by
using Anselmino et al. [16] fit parameters as defined in
Eq. (14). As aforementioned, due to the final state inter-
actions the asymmetry is nonzerowhen the heavy quark pair
is produced in the CO state in ep collision [49]. Therefore,
we have considered the initial heavy quark pair production is
to be only in the CO state for calculating the numerator part
of Eq. (1). However, the denominator of Eq. (1) is basically
two times the unpolarized cross section and CS state do

contribute significantly to unpolarized cross section as
shown in Fig. 7. Hence, CS state contribution of J=ψ is
taken into account in the denominator of asymmetry. The
asymmetry is increased by maximum about 30% if the CS
state contribution is not considered in the denominator. The
SSA decreases as center-of-mass (C.M) energy increases in
the kinematical range considered.
From Figs. 3–5, SIDIS and BV parameters are estimating

positive and negative asymmetry respectively as a function
of PT and z. However, the estimated asymmetry using
“SIDIS2” fit is almost close to zero for all

ffiffiffi
s

p
. The obtained

asymmetry as a function of PT using “BV-b” parameters is
maximum about 14% at COMPASS

ffiffiffi
s

p
. Basically, asym-

metry is proportional to GSF which is considered as an
average of u and d quark’s x-dependent normalization
N ðxgÞ in “BV-a” parametrization as defined in Eq. (14).
The sign of the asymmetry depends on relativemagnitude of
Nu and Nd and these have opposite sign which can be
observed in Table I. The magnitude of N dðxgÞ is dominant
compared to N uðxgÞ as a result the asymmetry is negative.
The LDMEs from Ref. [45,47] estimate similar asymmetry

FIG. 4. Single spin asymmetry in eþ p↑ → J=ψ þ X process as function of (a) PT (left panel) and (b) z (right panel) at
ffiffiffi
s

p ¼ 45 GeV
(EIC). The integration ranges are 0 < PT ≤ 1 GeV and 0.3 < z < 0.9. For convention of lines see the text.

FIG. 5. Single spin asymmetry in eþ p↑ → J=ψ þ X process as function of (a) PT (left panel) and (b) z (right panel) at
ffiffiffi
s

p ¼
17.2 GeV (COMPASS). The integration ranges are 0 < PT ≤ 1 GeV and 0.3 < z < 0.9. For convention of lines see the text.
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FIG. 6. Unpolarized differential cross section in eþ p → J=ψ þ X process as function of (a) PT (left panel) and (b) z (right panel) atffiffiffi
s

p ¼ 100, 45 GeV (EIC) and
ffiffiffi
s

p ¼ 17.2 GeV (COMPASS) with hk2⊥gi ¼ 1 GeV2. The each curve is obtained by taking into account
the color singlet and color octet states contribution to J=ψ production. The integration ranges are 0 < PT ≤ 3 GeV and 0.3 < z < 0.9.
LDMEs are from [47].

FIG. 7. Unpolarized differential cross section in eþ p → J=ψ þ X process as function of (a) PT (left panel), (b) W (right panel) and
(c) z (lower pannel) at HERA (

ffiffiffi
s

p ¼ 318 GeV) with hk2⊥gi ¼ 1 GeV2. The H1 data from [39,40] and LDMEs are from [47]. The
integration ranges are 1 < PT ≤ 10 GeV, 60 < W < 240 GeV and 0.3 < z < 0.9. The curves “CS” and “CSþ CO” represent the
consideration of J=ψ production only in color singlet model and color singlet plus color octet model respectively.
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as presented in Figs. 3–5. However, the obtained asymmetry
usingLDMEsofRef. [46] is one ordermagnitude lesser than
that of Figs. 3–5. This is due to the fact that CS state

contribution that appear only in the denominator is much
larger than CO state as shown in the right panel of Fig. 8.
Nevertheless, the magnitude and sign of the asymmetry

FIG. 8. Unpolarized differential cross section in eþ p → J=ψ þ X process as function of PT at HERA (
ffiffiffi
s

p ¼ 318 GeV) using the
LDMEs from (a) Ref. [45] (left panel) and (b) Ref. [46] (right panel) with hk2⊥gi ¼ 1 GeV2. The H1 data from [39,40]. The integration
ranges are 1 < PT ≤ 10 GeV, 60 < W < 240 GeV and 0.3 < z < 0.9. The convention of lines is same as Fig. 7.

FIG. 9. Unpolarized differential cross section in eþ p → J=ψ þ X process as function of (a) PT (left panel), (b) W (right panel) and
(c) z (lower panel) at HERA (

ffiffiffi
s

p ¼ 300 GeV) with hk2⊥gi ¼ 1 GeV2. The ZEUS data from [41] and LDMEs are from [47]. The
integration ranges are 1 < PT ≤ 5 GeV, 50 < W < 180 GeV and 0.4 < z < 0.9. The convention of lines is same as Fig. 7.
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strongly depends on the modeling of GSF. Asymmetry
increases slightly for higher values of Gaussian widths of
unpolarized gluon TMD which appears in the denominator
of asymmetry definition.
In Fig. 6, the unpolarized differential cross section as a

function of PT and z using the LDMEs from Ref. [47] at

EIC and COMPASS energies is shown. The CS state, 3Sð1Þ1 ,
contribution to J=ψ production is considered along with
CO states to obtain Fig. 6. The energy spectrum of J=ψ ,
right panel in Fig. 6, is restricted to z ≤ 0.9 as we are
interested in the inelastic J=ψ production. The Gaussian
parametrization of gluon TMD as defined in Eq. (7) with
Gaussian width hk2⊥gi ¼ 1 GeV2 is considered. For lower
values of TMD width, i.e., hk2⊥gi ¼ 0.5 GeV2, the cross
section differential in z is increased by 10% at low z
region. Whereas the differential cross section as a function
of PT is increased by 4.5% in the low PT region. The
3Pð8aÞ

J state contribution to J=ψ production is significantly

large compared to 3Sð8aÞ1 and 1Sð8aÞ0 states for the LDMEs
of Ref. [47].

The obtained unpolarized differential cross section
of J=ψ using the LDMEs of Ref. [47] is compared with
H1 data [39,40] in Fig. 7. The theoretical results are
calculated within the same kinematical region of H1 data,
i.e.,

ffiffiffi
s

p ¼ 318 GeV, P2
T > 1 GeV2, 60 < W < 240 GeV,

0.3 < z < 0.9 and Q2
max ¼ 2.5 GeV2. The C.M energy of

the photon-proton system is W and W2 ¼ ðPþ qÞ2 ≈ xγs,
where s ¼ ðPþ lÞ2 is the C.M energy square of the proton-
lepton system. The PT and W spectra obtained by consid-
ering the J=ψ production in CS state along with the CO
states are in good agreement with data. However, the CS
contribution to the J=ψ production is below the data. In
Fig. 7, the dσ=dz distribution is not well described by
both CS and CO contributions of J=ψ . From Fig. 7, it is
obvious that the CO states contribution is dominated for
higher z values.
The H1 data are compared with the theoretical results

obtained by using the LDMEs of Ref. [45,46], which are
presented in Fig. 8. The LDMEs of [45] over estimate
the result as shown in the left panel of Fig. 8. Whereas
Ref. [46] LDMEs predict the result very close to the data,

FIG. 10. Unpolarized differential cross section in eþ p → J=ψ þ X process as function of PT for each z bin (a) 0.3 < z < 0.45,
(b) 0.45 < z < 0.6, (c) 0.6 < z < 0.75 and (d) 0.75 < z < 0.9 at HERA (

ffiffiffi
s

p ¼ 318 GeV) with hk2⊥gi ¼ 1 GeV2. The H1, ZEUS data
from [40,42] and LDMEs are from [47]. The integration range of W is 60 < W < 240 GeV. The convention of lines is same as Fig. 7.
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which is illustrated in the right panel of Fig. 8. The same
behavior is also noticed for z and W spectra which are not
shown. To assess the agreement between the data and
theoretical results, χ2=d:o:f is calculated for three sets of
LDMEs from the PT spectrum of Figs. 7–9 at a fixed
hk2⊥gi ¼ 1 GeV2, which is tabulated in Table III. The
χ2=d:o:f for hk2⊥gi ¼ 1 GeV2 is observed to be smaller
than that of hk2⊥gi ¼ 0.5 GeV2 and hk2⊥gi ¼ 0.25 GeV2 for
three sets of LDMEs. Therefore, we have considered the
unpolarized TMDGaussian width to be hk2⊥gi ¼ 1 GeV2 in
the analysis of J=ψ photoproduction. Since the χ2=d:o:f for
LDMEs of [47] is 7.92 and 2.541 for H1 and ZEUS data
respectively, only the LDMEs of Ref. [47] have been used
in the Figs. 9 and 10. The ZEUS data [41] are compared
with theoretical results within the kinematical regionffiffiffi
s

p ¼ 300 GeV, 50 < W < 180 GeV, 0.4 < z < 0.9, and
Q2

max ¼ 1 GeV2, and is shown in Fig. 9. The W and z
spectra are obtained by integrating the PT over the range
1 < PT < 5 GeV. In Fig. 10, the PT spectrum for each z
bin is compared with H1 [40] and ZEUS [42] data. The PT
spectrum is away from the data in the 0.3 < z < 0.5,
0.45 < z < 0.6, and 0.75 < z < 0.9 bins. However, the
theoretical result is in good agreement with the data for the
bin 0.6 < z < 0.75.

V. CONCLUSION

We have calculated the single-spin asymmetry and
unpolarized differential cross section in the inelastic photo-
production of J=ψ in polarized and unpolarized ep
collision respectively, where the scattered electron with
small angle produces low virtuality photons. The NLO
subprocess for J=ψ production is the photon-gluon fusion
process γ þ g → J=ψ þ g. Within the NRQCD based COM

framework, the color octet states 3Sð8Þ1 , 1Sð8Þ0 , and 3Pð8Þ
Jð0;1;2Þ

contribution to J=ψ production is calculated. Sizable
asymmetry is obtained as a function of PT and z in the
kinematical range 0 < PT ≤ 1 GeV and 0.3 < z ≤ 0.9

respectively. The infrared singularity at z ¼ 1, arises when
the final gluon becomes soft, is excluded by restricting the
analysis in the region z ≤ 0.9. The resolved photoproduc-
tion contribution is removed by considering z > 0.3. We
also presented the unpolarized differential cross section of
inelastic J=ψ photoproduction as a function of PT , z, and
W, and is found to be in good agreement with the H1 and
ZEUS data. The sizable asymmetry indicates that the
inelastic photoproduction of J=ψ in ep↑ collision is a
useful process to probe the gluon Sivers function over a
wide kinematical region accessible to the future electron-
ion collider (EIC).
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APPENDIX A: SQUARE OF THE AMPLITUDE
FOR γ + g → J=ψ + g PROCESS

The summation over only the transverse polarizations of
the initial and final on-shell gluons and photon is achieved
by invoking [63]

X2
λa¼1

ελaμ ðkÞε�λaμ0 ðkÞ ¼ −gμμ0 þ
kμnμ0 þ kμ0nμ

k:n
−

kμkμ0

ðk:nÞ2 ðA1Þ

with nμ ¼ Pμ
h

M . We define the following variables for
computation purpose

s1 ¼ ŝ −M2; t1 ¼ t̂ −M2; u1 ¼ û −M2: ðA2Þ

FORM package [68] is used to obtain the square of the

amplitude. The CS, 3Sð1Þ1 state amplitude calculation is

similar to CO, 3Sð8aÞ1 , except a change in the color factor.

The amplitude square of 3Sð1;8Þ1 , 1Sð8Þ0 , 3Pð8Þ
0 , 3Pð8Þ

1 , and 3Pð8Þ
2

states is given below

jM½3Sð1Þ1 �j2 ¼ 2π3e2cα2sα
27M

h0jOJ=ψ
1 ð3S1Þj0i

512M2

s21t
2
1u

2
1

fs21ðs1 þM2Þ2 þ u21ðu1 þM2Þ2 þ t21ðt1 þM2Þ2g ðA3Þ

jM½3Sð8Þ1 �j2 ¼ 5π3e2cα2sα
36M

h0jOJ=ψ
8 ð3S1Þj0i

512M2

s21t
2
1u

2
1

fs21ðs1 þM2Þ2 þ u21ðu1 þM2Þ2 þ t21ðt1 þM2Þ2g ðA4Þ

TABLE III. χ2=d:o:f for the LDMEs of Refs. [45–47].

Data LDMEs of [45] LDMEs of [46] LDMEs of [47]

H1 data [40] 62.129 3.83 7.92
ZEUS data [41] 12.56 9.12 2.541
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jM½1Sð8Þ0 �j2 ¼ 3π3e2cα2sα
4M

h0jOJ=ψ
8 ð1S0Þj0i

128

s21t
2
1u

2
1ðM2 þ u1Þ2

f8M14 þ 4M12

× ð4ðs1 þ t1Þ þ 7u1Þ þ 2M10ð8s21 þ 17u1ðs1 þ t1Þ þ 12s1t1 þ 8t21 þ 19u21Þ
þ 2M8ð7s31 þ 4u1ðs21 þ 5s1t1 þ t21Þ þ 5s21t1 þ 5s1t21 þ 6u21ðs1 þ t1Þ þ 7t31

þ 13u31Þ þ 2M6ð2s41 þ 4u1ðs31 þ t31Þ þ s31t1 þ u21ð−17s21 þ 7s1t1 − 17t21Þ
þ 2s21t

2
1 þ s1t31 − 8u31ðs1 þ t1Þ þ 2t41 þ 5u41Þ þ 2M4ð6u31ð−3s21 þ s1t1 − 3t21Þ

− 6u21ðs1 þ t1Þðs21 þ t21Þ þ u1ðs1 − t1Þ2ðs21 þ 4s1t1 þ t21Þ − 6u41ðs1 þ t1Þ
− 3s1t1ðs1 − t1Þ2ðs1 þ t1Þ þ u51Þ þM2ð−2u41ð5s21 − 11s1t1 þ 5t21Þ þ u21

× ð−2s41 þ s31t1 − 5s21t
2
1 þ s1t31 − 2t41Þ − 2u51ðs1 þ t1Þ − 6u31ðs1 − t1Þ2ðs1 þ t1Þ

þ s1t1u1ðs1 − t1Þ2ðs1 þ t1Þ − s1t1ðs1 − t1Þ2ð2s1 þ t1Þðs1 þ 2t1ÞÞ
þ s1t1u1ð3u21ðs21 þ s1t1 þ t21Þ þ ðs1 − t1Þ2ðs21 þ s1t1 þ t21Þ þ 8u31ðs1 þ t1Þ þ 8u41Þg ðA5Þ

jM½3Pð8Þ
0 �j2 ¼ π3e2cα2sα

4M
h0jOJ=ψ

8 ð3P0Þj0i
512

M2s41t
4
1u

4
1ðM2 þ u1Þ2

f32s1t1u1M20

þ 16ð−5s21t21 − ðs21 − 8t1s1 þ t21Þu21ÞM18 þ 16u1ðs1t1ð2s21 − 13t1s1 þ 2t21Þ
− 2ðs21 − 6t1s1 þ t21Þu21ÞM16 þ 8ð2ðs21 þ 8t1s1 þ t21Þu41 þ s1t1ð2s21 − 17t1s1

þ 2t21Þu21 − 2s21t
2
1ð3s21 − 7t1s1 þ 3t21ÞÞM14 þ 8u1ð2ð5s21 þ 2t1s1 þ 5t21Þu41

− ð2s41 þ 15t1s31 − 19t21s
2
1 þ 15t31s1 þ 2t41Þu21 − s1t1ðs41 þ 8t1s31 − 22t21s

2
1

þ 8t31s1 þ t41ÞÞM12 þ 4ð16ðs21 þ t21Þu61 − ð3s21 þ 16t1s1 þ 3t21Þð4s21 − 7t1s1

þ 4t21Þu41 þ s1t1ð3s41 þ 4t1s31 − 2t21s
2
1 þ 4t31s1 þ 3t41Þu21 þ 2s21t

2
1ð2s41

þ 7t1s31 − 10t21s
2
1 þ 7t31s1 þ 2t41ÞÞM10 þ 4u1ð4ðs21 þ t21Þu61 − ð12s41

þ 19t1s31 − 73t21s
2
1 þ 19t31s1 þ 12t41Þu41 þ s1t1ð11s41 þ 6t1s31 − 26t21s

2
1

þ 6t31s1 þ 11t41Þu21 − s21t
2
1ðs1 þ t1Þ4ÞM8 þ 2ð−2ð4s41 þ t1s31 − 32t21s

2
1

þ t31s1 þ 4t41Þu61 þ s1t1ð10s41 − 19t1s31 − 15t21s
2
1 − 19t31s1 þ 10t41Þu41

− s21t
2
1ð11s41 þ 3t1s31 − 22t21s

2
1 þ 3t31s1 þ 11t41Þu21 − 2s31ðs1 − t1Þ2t31

× ð2s1 þ t1Þðs1 þ 2t1ÞÞM6 þ 2s1t1u1ð2ðs21 þ 7t1s1 þ t21Þu61 − ð2s41 þ 11t1s31

− 12t21s
2
1 þ 11t31s1 þ 2t41Þu41 þ s1t1ðs41 þ 10t1s31 þ 10t21s

2
1 þ 10t31s1 þ t41Þu21

þ 6s21t
2
1ðs21 − t21Þ2ÞM4 þ s21t

2
1u

2
1ð2ð4s21 þ 11t1s1 þ 4t21Þu41 þ ð4s41 − 16t1s31

− 19t21s
2
1 − 16t31s1 þ 4t41Þu21 − 3s1ðs1 − t1Þ2t1ð2s21 þ 3t1s1 þ 2t21ÞÞM2 þ s31t

3
1

× ðs21 þ t1s1 þ t21Þu31ððs1 − t1Þ2 þ 3u21Þg ðA6Þ

jM½3Pð8Þ
1 �j2 ¼ π3e2cα2sα

8M
h0jOJ=ψ

8 ð3P1Þj0i
2048

m2s41t
4
1u

4
1ðm2 þ u1Þ2

f8s1t1u1m20 þ 4ð5s21t21
þ ðs1 þ t1Þ2u21Þm18 þ 4u1ð2ðs21 − 4t1s1 þ t21Þu21 þ s1t1ð5s21 þ 8t1s1 þ 5t21ÞÞ
×m16 þ 2ð−2ðs21 þ 16t1s1 þ t21Þu41 þ s1t1ð12s21 þ 23t1s1 þ 12t21Þu21 þ 2s21t

2
1

× ð3s21 − 7t1s1 þ 3t21ÞÞm14 þ 2u1ð−10ðs1 þ t1Þ2u41 þ ð2s41 − 16t1s31 þ 71t21s
2
1

− 16t31s1 þ 2t41Þu21 þ s1t1ð−2s41 þ 3t1s31 − 22t21s
2
1 þ 3t31s1 − 2t41ÞÞm12
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þ ð−ð16s21 þ 7t1s1 þ 16t21Þu61 þ 2ð6s41 − 31t1s31 þ 109t21s
2
1 − 31t31s1 þ 6t41Þu41

− s1t1ð3s41 þ 16t1s31 þ 20t21s
2
1 þ 16t31s1 þ 3t41Þu21 − 2s21t

2
1ð2s41 þ 7t1s31 − 10t21s

2
1

þ 7t31s1 þ 2t41ÞÞm10 þ u1ðð−4s21 þ 3t1s1 − 4t21Þu61 þ ð12s41 − 28t1s31 þ 159t21s
2
1

− 28t31s1 þ 12t41Þu41 þ s1t1ð5s41 − 16t1s31 − 45t21s
2
1 − 16t31s1 þ 5t41Þu21 − s21t

2
1

× ð3s41 þ 5t1s31 − 12t21s
2
1 þ 5t31s1 þ 3t41ÞÞm8 þ ð3s1t1u81 þ ð4s41 þ 55t21s

2
1 þ 4t41Þ

× u61 þ s1t1ð3s41 − 16t1s31 − 87t21s
2
1 − 16t31s1 þ 3t41Þu41 þ s1t1ð2s61 − t1s51 þ 21t21s

4
1

− 15t31s
3
1 þ 21t41s

2
1 − t51s1 þ 2t61Þu21 þ s31ðs1 − t1Þ2t31ð2s1 þ t1Þðs1 þ 2t1ÞÞm6

þ s1t1u1ðu81 þ ð2s21 þ 3t1s1 þ 2t21Þu61 − ðs41 þ 12t1s31 þ 59t21s
2
1 þ 12t31s1 þ t41Þu41

þ ð2s61 − 7t1s51 þ 24t21s
4
1 − 7t31s

3
1 þ 24t41s

2
1 − 7t51s1 þ 2t61Þu21 − s21ðs1 − t1Þ2

× t21ðs21 þ t1s1 þ t21ÞÞm4 − s21t
2
1u

2
1ð3u61 þ ð2s21 þ 13t1s1 þ 2t21Þu41

þ ð5s41 − 13t1s31 − 7t21s
2
1 − 13t31s1 þ 5t41Þu21 þ s21ðs1 − t1Þ2t21Þm2

þ s31t
3
1ðs21 þ t1s1 þ t21Þu31ððs1 − t1Þ2 þ 3u21Þg ðA7Þ

jM½3Pð8Þ
2 �j2 ¼ 3π3e2cα2sα

20M
h0jOJ=ψ

8 ð3P2Þj0i
1024

3M2s41t
4
1u

4
1ðM2 þ u1Þ2

f104s1t1u1M20 þ 4

× ð−5s21t21 − ðs21 − 86t1s1 þ t21Þu21ÞM18 þ 4u1ðð−2s21 þ 99t1s1 − 2t21Þu21
þ 2s1t1ð13s21 − 23t1s1 þ 13t21ÞÞM16 þ 2ð2ðs21 þ 47t1s1 þ t21Þu41 þ s1t1

× ð122s21 − 107t1s1 þ 122t21Þu21 − 2s21t
2
1ð3s21 − 7t1s1 þ 3t21ÞÞM14 þ 2u1

× ð10ðs21 þ 4t1s1 þ t21Þu41 þ ð−2s41 þ 63t1s31 þ 133t21s
2
1 þ 63t31s1 − 2t41Þu21

þ s1t1ð23s41 − 77t1s31 þ 52t21s
2
1 − 77t31s1 þ 23t41ÞÞM12 þ ðð16s21 þ 99t1s1

þ 16t21Þu61 − 2ð6s41 þ 59t1s31 − 305t21s
2
1 þ 59t31s1 þ 6t41Þu41 þ s1t1ð171s41

− 476t1s31 þ 220t21s
2
1 − 476t31s1 þ 171t41Þu21 þ 2s21t

2
1ð2s41 þ 7t1s31 − 10t21s

2
1

þ 7t31s1 þ 2t41ÞÞM10 þ u1ðð4s21 þ 69t1s1 þ 4t21Þu61 − ð12s41 þ 154t1s31

− 355t21s
2
1 þ 154t31s1 þ 12t41Þu41 þ s1t1ð227s41 − 612t1s31 þ 295t21s

2
1

− 612t31s1 þ 227t41Þu21 − s1t1ð18s61 þ 19t1s51 þ 19t21s
4
1 − 60t31s

3
1 þ 19t41s

2
1

þ 19t51s1 þ 18t61ÞÞM8 þ ð21s1t1u81 − ð4s41 þ 52t1s31 − 53t21s
2
1 þ 52t31s1

þ 4t41Þu61 þ s1t1ð125s41 − 374t1s31 þ 219t21s
2
1 − 374t31s1 þ 125t41Þu41 þ s1t1

× ð−30s61 − 13t1s51 þ 39t21s
4
1 þ 83t31s

3
1 þ 39t41s

2
1 − 13t51s1 − 30t61Þu21 − s31

× ðs1 − t1Þ2t31ð2s1 þ t1Þðs1 þ 2t1ÞÞM6 þ s1t1u1ð3u81 − ð2s21 þ 17t1s1 þ 2t21Þ
× u61 þ ð23s41 − 100t1s31 þ 81t21s

2
1 − 100t31s1 þ 23t41Þu41 þ ð−12s61 þ 17t1s51

þ 80t21s
4
1 þ 11t31s

3
1 þ 80t41s

2
1 þ 17t51s1 − 12t61Þu21 þ 3s21ðs1 − t1Þ2t21ð3s21 þ 7t1s1

þ 3t21ÞÞM4 þ s21t
2
1u

2
1ð−9u61 þ ð−4s21 þ 13t1s1 − 4t21Þu41 þ ð7s41 þ 23t1s31

− 13t21s
2
1 þ 23t31s1 þ 7t41Þu21 þ 3s21ðs1 − t1Þ2t21ÞM2 þ s31t

3
1ðs21 þ t1s1 þ t21Þu31ððs1 − t1Þ2 þ 3u21Þg ðA8Þ
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APPENDIX B: KINEMATICS

We consider the frame in which the proton and electron
are moving along −z and þz-axes, respectively, and their
four momenta are given by

P ¼
ffiffiffi
s

p
2

ð1; 0; 0;−1Þ; l ¼
ffiffiffi
s

p
2

ð1; 0; 0; 1Þ: ðB1Þ

The C.M energy of electron-proton system is s ¼ ðPþ lÞ2.
The above four momenta in light-cone coordinate system
can be written as

Pμ ¼
ffiffiffi
s
2

r
nμ−; lμ ¼

ffiffiffi
s
2

r
nμþ; ðB2Þ

where nþ and n− are two light-like vectors with nþ:n− ¼ 1

and n2þ ¼ n2− ¼ 0.

nμþ ¼ ð1; 0; 0Þ; nμ− ¼ ð0; 1; 0Þ: ðB3Þ

We assume that the quasireal photon is collinear to the
electron. The quasi-real photon and gluon four momenta
are given by

qμ ¼ xγ

ffiffiffi
s
2

r
nμþ; ðB4Þ

k ¼ k2⊥g

2xg
ffiffi
s
2

p nμþ þ xg

ffiffiffi
s
2

r
nμ− þ kμ⊥ ≈ xg

ffiffiffi
s
2

r
nμ− þ kμ⊥; ðB5Þ

where xγ ¼ qþ
lþ and xg ¼ k−

P− are the light-cone momentum
fractions. The four momentum of the J=ψ is given by

Pμ
h ¼ zxγ

ffiffiffi
s
2

r
nμþ þM2 þ P2

T

2zxγ
ffiffi
s
2

p nμ− þ Pμ
T: ðB6Þ

The inelastic variable is defined as z ¼ P:Ph
P:q ¼ Pþ

h
qþ . By using

the above relations, we can write down the expressions of
Mandelstam variables as below

ŝ ¼ ðkþ qÞ2 ¼ 2k:q ¼ sxgxγ; ðB7Þ

t̂ ¼ ðk − PhÞ2 ¼ M2 − 2k:Ph

¼ M2 − zsxgxγ þ 2k⊥gPT cosðϕ − ϕhÞ; ðB8Þ

û ¼ ðq − PhÞ2 ¼ M2 − 2q:Ph ¼ M2 −
M2 þ P2

T

z
: ðB9Þ

Here M being the mass of J=ψ . The ϕ and ϕh are the
azimuthal angles of the gluon and J=ψ transverse momen-
tum vector respectively. ϕh ¼ 0 for estimating the asym-
metry since the production of J=ψ is considered to be in the
xz plane as shown in Fig. 1. The delta function in Eq. (2)
can be used to find the solution of xg. From Eq. (B7)–(B9),
the delta function can be written as follows

δðŝþ t̂þ û−M2Þ

¼δ

�
sxgxγþM2−zsxgxγþ2k⊥gPT cosðϕ−ϕhÞ

þM2−
M2þP2

T

z
−M2

�

¼δ

�
sxgxγð1−zÞþ2k⊥gPT cosðϕ−ϕhÞ−

M2þP2
T

z
þM2

�

¼ 1

sxγð1−zÞδðxg−a1Þ; ðB10Þ

where a1 is defined as

a1 ¼
M2 þ P2

T − zM2 − 2zk⊥gPT cosðϕ − ϕhÞ
sxγzð1 − zÞ : ðB11Þ

The phase space integration of J=ψ can be written as

d3Ph

Eh
¼ 1

z
dzd2PT: ðB12Þ

In line with Ref. [30], we impose the following kinematical
cuts on Mandelstam variables

M2≤ ŝ≤s; 0≥ t̂≥−ðŝ−M2Þ; 0≥ û≥−ðŝ−M2Þ: ðB13Þ
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