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We analyze the origin of the structure observed in the reaction J=ψ → γη0πþπ− for η0πþπ− invariant
masses close to the antiproton-proton (p̄p) threshold, commonly associated with the Xð1835Þ resonance.
Specifically, we explore the effect of a possible contribution from the two-step process J=ψ →
γN̄N → γη0πþπ−. The calculation is performed in the distorted-wave Born approximation which allows
an appropriate inclusion of the N̄N interaction in the transition amplitude. The N̄N amplitude itself is
generated from a corresponding potential recently derived within chiral effective field theory. We are able to
describe the invariant-mass dependence of the measured spectra for the reactions J=ψ → γp̄p and J=ψ →
γη0πþπ− around the p̄p threshold. The structure seen in the η0πþπ− spectrum emerges as a threshold effect
due to the opening of the p̄p channel.
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I. INTRODUCTION

The Xð1835Þ resonance, first discovered by the BES
Collaboration in 2005 in the decay J=ψ → γη0πþπ− [1] and
subsequently seen in other reactions [2–4], but only faintly
by other groups [5,6], has a long and winding history.
Initially the resonance was associated with the anomalous
near-threshold enhancement in the antiproton-proton (p̄p)
invariant-mass spectrum in the reaction J=ψ → γp̄p [7,8]
which would point to a baryonium-type state (or a N̄N
quasibound state) as a possible explanation for its structure.
However, with increasing statistics [9] it became clear that
the two phenomena are not necessarily connected, not least
due to a striking difference in the width of the respective
resonances required for describing the invariant-mass
spectra of the two reactions in question. Yet another facet
was added in the most recent publication of the BESIII
Collaboration on the decay J=ψ → γη0πþπ− [10]. Now the
initial peak around 1835 MeV is practically gone but has
reappeared as a structure that is located very close to the p̄p
threshold, namely around 1870 MeV.
A more detailed coverage of the historical development

regarding the Xð1835Þ resonance can be found in recent
summary papers [11,12]. These works provide also an

overview of the large amount of theoretical investigations
performed in the context of the Xð1835Þ. Naturally, in
many of them an interpretation of the resonance in terms of
a baryonium state is the key element. Indeed, some of these
studies attempt to establish a direct and quantitative
connection between the resonance and predictions of
N̄N potentials that were fitted to p̄p scattering data [13,14].
In the present workwe aim at a quantitative analysis of the

most recent BESIII data on the reaction J=ψ → γη0πþπ−
[10]. The study is based on the hypothesis that the structure
seen in the invariant mass spectrum is indeed linked
with the opening of the p̄p channel. The incentive for
that comes from past studies of eþe− annihilation into
multipion states. Also in this case, and specifically in the
reactions eþe− → 3ðπþπ−Þ, 2ðπþπ−π0Þ, ωπþπ−π0, and
eþe− → 2ðπþπ−Þπ0, structures were observed in the experi-
ments at energies around the p̄p threshold [15–18].
Calculations by our group [19] and others [20] suggested
that two-step processes eþe− → N̄N → multipions could
play an important role and their inclusion even allowed one to
reproduce the data quantitatively near the N̄N threshold.
Accordingly, the structures seen in the experiments found a
natural explanation as a threshold effect due to the opening of
the N̄N channel, for the majority of the measured channels.
As already indicated above, with the new J=ψ →

γη0πþπ− data [10] the region of interest is now shifted
likewise to energies around the p̄p threshold. Accordingly,
we investigate the significance of the N̄N channel for the
reaction J=ψ → γη0πþπ−. Since the decay J=ψ → γp̄p
constitutes one segment of the assumed two-step process
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(the other being p̄p → η0πþπ−), we reconsider this decay
process in the present paper. Indeed,we had already shown in
earlier studies that it is possible to describe the large near-
threshold enhancement observed in the reaction J=ψ → γp̄p
by the final-state interaction (FSI) provided by the N̄N
interaction [21–23]; see also Refs. [13,14,24–26].
A main ingredient of our present calculation is the N̄N

interaction. Here we build on our latest N̄N potential,
derived in the framework of chiral effective field theory
(EFT) up to next-to-next-to-next-to-leading order (N3LO)
[27]. That potential reproduces the amplitudes determined
in a partial-wave analysis (PWA) of p̄p scattering data [28]
from the N̄N threshold up to laboratory energies of T lab ≈
200–250 MeV [27].
The paper is structured in the following way. In Sec. II an

overview of the employed formalism is provided.
Section III is devoted to the reaction J=ψ → γp̄p, the first
segment of the considered two-step process. In particular, a
comparison with the J=ψ → γp̄p data from the BESIII
Collaboration is presented. As in our initial study [23], a
refit of the N̄N amplitudes in the 1S0 partial wave with
isospin I ¼ 1 is required. The second segment of the
considered two-step process, the reaction p̄p → η0πþπ−,
is discussed in Sec. IV. However, the main focus of this
section is on the reaction J=ψ → γη0πþπ− and results for
the η0πþπ− invariant-mass spectrum are presented. It turns
out that the structure observed in the BESIII experiment at
invariant masses near the N̄N threshold is very well
reproduced, once effects due to the coupling to the N̄N
channel are explicitly taken into account. In view of that
observation, and in the light of the conjectured Xð1835Þ
resonance, the employed N̄N interactions are examined
with regard to possible bound states. The paper ends with
concluding remarks.

II. FORMALISM

Our study of the processes J=ψ → γp̄p and J=ψ →
γη0πþπ− is based on the distorted-wave Born approxima-
tion (DWBA). It amounts to solving the following set of
formally coupled equations:

TN̄N→N̄N ¼ VN̄N→N̄N þ VN̄N→N̄NG0TN̄N→N̄N;

TN̄N→η0ππ ¼ VN̄N→η0ππ þ TN̄N→N̄NG0VN̄N→η0ππ;

AJ=ψ→γN̄N ¼ A0
J=ψ→γN̄N þ A0

J=ψ→γN̄NG0TN̄N→N̄N; ð1Þ

AJ=ψ→γη0ππ ¼ A0
J=ψ→γη0ππ þ A0

J=ψ→γN̄NG0TN̄N→η0ππ

¼ A0
J=ψ→γη0ππ þ AJ=ψ→γN̄NG0VN̄N→η0ππ: ð2Þ

The first line in Eq. (1) is the Lippmann-Schwinger
equation from which the N̄N scattering amplitude (TN̄N),
is obtained, for a specific N̄N potential VN̄N ; see
Refs. [27,29] for details. The quantity G0 denotes the free

N̄N Green’s function. The second equation defines the
amplitude for N̄N annihilation into the η0πþπ− channel
while the third equation provides the J=ψ → γN̄N tran-
sition amplitude. Finally, Eq. (2) defines the J=ψ →
γη0πþπ− amplitude. The quantities A0

ν denote the elemen-
tary (or primary) decay amplitudes for J=ψ to γN̄N
or γη0ππ.
General selection rules [23] but also direct experimental

evidence [3] suggest that the specific (and unique) N̄N
partial wave that plays a role for energies around the p̄p
threshold is the 1S0. For it the equation for the amplitude
AJ=ψ→γN̄N reads [23]

A¼A0þ
Z

∞

0

dpp2

ð2πÞ3A
0

1

2Ek−2Epþ i0þ
Tðp;k;EkÞ; ð3Þ

where k and Ek are the momentum and energy of the proton
(or antiproton) in the center-of-mass system of the N̄N pair,

i.e., Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

p þ k2
q

, where mp is the proton (nucleon)

mass. The subscript of A indicating the channel is omitted
in Eq. (3) for simplicity.
The N̄N T matrix that enters Eq. (3) fulfils

Tðp0; k;EkÞ ¼ Vðp0; kÞ

þ
Z

∞

0

dpp2

ð2πÞ3 Vðp
0; pÞ

×
1

2Ek − 2Ep þ i0þ
Tðp; k;EkÞ; ð4Þ

where V represents the N̄N potential in the 1S0 partial wave.
Following the strategy in Refs. [27,29], the elementary

annihilation potential for N̄N → η0πþπ− and the transition
amplitude A0

J=ψ→γN̄N are parametrized by

VN̄N→η0ππðqÞ ¼ C̃η0ππ þ Cη0ππq2; ð5Þ

A0
J=ψ→γN̄NðqÞ ¼ C̃J=ψ→γN̄N þ CJ=ψ→γN̄Nq

2; ð6Þ

i.e., by two contact terms analogous to those that arise up to
next-to-next-to-leading order (N2LO) in the treatment of
the N̄N interaction within chiral EFT [27]. The quantity q
in Eq. (5) is the center-of mass (c.m.) momentum in the
N̄N system. We multiply the transition potentials in
Eqs. (5) and (6) with a regulator (of exponential type) in
the actual calculations. This is done consistently with the
N̄N potentials in Ref. [27] where such a regulator is
included. We also employ the same cutoff parameter as
in the N̄N sector. Since the threshold for the η0ππ channel
lies significantly below the one for N̄N, the mesons carry—
on average—already fairly high momenta. Thus, the
dependence of the annihilation potential on those momenta
should be small for energies around the N̄N threshold and it
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is, therefore, neglected [23]. The constants C̃ν and Cν can
be determined by a fit to the N̄N → η0ππ cross section (and/
or branching ratio) and the J=ψ → γp̄p invariant-mass
spectrum, respectively. Note that those constants (and
specifically the C̃ν’s) are basically normalization constants.
The invariant-mass dependence of the spectrum is primarily
determined by the FSI due to the N̄N interaction.
The term A0

J=ψ→γη0πþπ− is likewise parametrized in the
form (6), but as a function of the η0ππ invariant mass Q,

A0
J=ψ→γη0ππðQÞ ¼ C̃J=ψ→γη0ππ þ CJ=ψ→γη0ππQ: ð7Þ

The arguments for neglecting the dependence on the
individual meson momenta are the same as above and
they are valid again, of course, only for energies around the
N̄N threshold. However, since in the η0ππ case this term
represents a background amplitude rather than a transition
potential we allow the corresponding constants to be
complex valued, to be fixed by a fit to the J=ψ →
γη0πþπ− event rate.
The explicit form of Eq. (2) reads

Aγη0ππ;J=ψðX;QÞ ¼ A0
γη0ππ;J=ψ ðX;QÞ þ

Z
∞

0

dqq2

ð2πÞ3

× Vη0ππ;p̄pðX; qÞ
1

Q − 2Eq þ i0þ

× Aγp̄p;J=ψðq;QÞ; ð8Þ

written in matrix notation. The quantity X stands here
symbolically for the momenta in the η0ππ system. But since
we assumed that the transition potential does not depend on
those momenta, cf. Eqs. (5) and (7), X does not enter
anywhere into the actual calculation of the amplitudes. All
amplitudes (and the potential) can be written and evaluated
as functions of the c.m. momenta in the N̄N (q) system and
of the invariant mass Q in the η0ππ system, where the latter
is identical to the energy in the N̄N subsystem.
Since the amplitudes do not depend on X the integration

over the three-meson phase space can be done separately
when the cross section or the invariant-mass spectrum is
calculated. In practice, it amounts only to a multiplicative
factor and, moreover, to a factor that is the same for the
N̄N → η0ππ cross section and the J=ψ → γη0ππ invariant-
mass spectrum for a fixed value of Q. We perform this
phase-space integration numerically.
Of course, ignoring the dependence of A0

J=ψ→γη0ππ on the
η0ππ momenta is only meaningful for energies around the
N̄N threshold. We cannot extend our calculation down to
the threshold of the η0ππ channel. However, one has to keep
in mind that also the validity of our N̄N interaction is
limited to energies not too far away from the N̄N threshold.
The differential decay rate for the processes J=ψ → γp̄p

can be written in the form [23,30]

dΓ
dQ

¼
λ1=2ðm2

ψ ; Q2; m2
xÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 − 4m2

p

q

27π3m3
ψ

jMJ=ψ→γp̄pj2; ð9Þ

after integrating over the angles. Here the Källén function λ
is defined as λðx; y; zÞ ¼ ðx − y − zÞ2 − 4yz, Q≡Mp̄p is
the invariant mass of the p̄p system, mψ , mp, mx are the
masses of the J=ψ , the proton, and the meson (or photon) in
the final state, in order, while M is the total Lorentz-
invariant reaction amplitude. The relations between the A’s
in Eqs. (1) and (2) and the Lorentz-invariant amplitudesM
for the various reactions are [31]

MN̄N→N̄N ¼−8π2E2
NTN̄N→N̄N;

MJ=ψ→γp̄p¼−8π2EN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EγEJ=ψ

p
AJ=ψ→γp̄p;

MN̄N→η0πþπ− ¼−32
ffiffiffiffiffi
π7

p
EN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eη0EπþEπ−

p
AN̄N→η0πþπ− ;

MJ=ψ→γη0πþπ− ¼−32
ffiffiffiffiffi
π7

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EγEJ=ψEη0EπþEπ−

p
AJ=ψ→γη0πþπ− :

ð10Þ

The energies in the reactions J=ψ → γp̄p, N̄N → η0πþπ−,
and J=ψ → γη0πþπ− are given by

EN ¼ Q=2;

EJ=ψ ¼ m2
ψ þQ2

2Q
;

Eγ ¼
m2

ψ −Q2

2Q
;

Eη0 ¼
Q2 − t1 þm2

η0

2Q
;

Eπþ ¼ Q2 − t2 þm2
π

2Q
;

Eπ− ¼ t1 þ t2 −m2
π −m2

η0

2Q
;

where Q is either the energy in the N̄N system or the
invariant mass of the p̄p or η0πþπ− system (Mp̄p or
Mη0πþπ−), t1 ¼ M2

πþπ− , and t2 ¼ M2
π−η0 .

In Eq. (9) it is assumed that averaging over the spin states
has been already performed. Anyway, in the present
manuscript we will consider only individual partial-wave
amplitudes. The cross section for the reaction p̄p →
η0πþπ− is given by

σðp̄p → η0πþπ−Þ ¼
Z

tþ
1

t−
1

dt1

Z
tþ
2

t−
2

dt2jMp̄p→η0ππj2

1024π3Q3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 − 4m2

p

q ;

ð11Þ

where
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t−1 ¼ 4m2
π;

tþ1 ¼ ðQ −mη0 Þ2;

t−2 ¼ 1

4t1
ððQ2 −m2

η0 Þ2 − ½λ1=2ðQ2; t1; m2
η0 Þ

þλ1=2ðt1; m2
π; m2

πÞ�2Þ;

tþ2 ¼ 1

4t1
ððQ2 −m2

η0 Þ2 − ½λ1=2ðQ2; t1; m2
η0 Þ

−λ1=2ðt1; m2
π; m2

πÞ�2Þ: ð12Þ

The decay rate for J=ψ → γη0πþπ− is given by

dΓ
dQ

¼
Z

tþ
1

t−
1

dt1

Z
tþ
2

t−
2

dt2
ðm2

ψ −Q2ÞjMJ=ψ→γη0πþπ− j2
6144π5m3

ψQ
: ð13Þ

III. THE REACTION J=ψ → γp̄p

Due to the unusually large enhancement observed in the
near-threshold p̄p invariant-mass spectrum in the reaction
J=ψ → γp̄p [7,8,32], it has been the topic of many studies
and a variety of explanations for the strongly peaked
spectrum have been suggested [11,12]. In scenarios like
ours, were FSI effects in the N̄N channel are assumed to be
responsible for the enhancement, one faces a challenging
task. There are measurements for several other decay
channels where the produced N̄N state must be in the very
same partial wave, the 1S0, at least near threshold, and
accordingly, in principle, the same FSI effects should arise.
This concerns the reactions J=ψ → ωp̄p [33] and J=ψ →
ϕp̄p [34], and alsoψð2SÞ → γp̄p [8]. No enhancements of a
comparablemagnitudewere observed in experiments for any
of these reactions. So far, a few suggestions for a way out of
this dilemma have been made [14,23,26]. In our own work
the emphasiswas always on the isospin dependence.Already
in our initial studies [21,22], still based on the Migdal-
Watson approximation and on the Jülich meson-exchange
N̄N potential [35,36], it was the isospin I ¼ 1 amplitude that
produced the large enhancement. Then there is no conflict
with the rather moderate enhancements observed in the
J=ψ → ωp̄p and J=ψ → ϕp̄p channels, because in those
cases the produced p̄p system has to be in I ¼ 0 (assuming
that isospin is conserved in this purely hadronic decay).
Indeed, in the decays J=ψ → γp̄p and ψð2SÞ → γp̄p

isospin is not conserved and, therefore, in principle, one
can have any combination of the I ¼ 0 and I ¼ 1 ampli-
tudes. This freedom was exploited in a recent and more
refined study of J=ψ decays by our group [23]. In that work
we not only treated the FSI effects within a DWBA
approach, but we also employed an N̄N potential that
was derived within the framework of chiral effective field
theory up to N2LO [29]. Utilizing the “standard” hadronic
combination for the p̄p amplitude, namely T ¼ Tp̄p ¼
ðTI¼0 þ TI¼1Þ=2, for J=ψ decay and one with a predomi-
nant I ¼ 0 component, T ¼ ð0.9T0 þ 0.1T1Þ for ψð2SÞ

decay allowed us to achieve a consistent description of the
γp̄p spectrum for both decays [23].
Nonetheless, it should be said that we had to depart

slightly from the I ¼ 1 1S0 N̄N amplitude as determined in
the PWA of Zhou and Timmermans [28]. However, already
a rather modest modification of the interaction in the I ¼ 1
channel—subject to the constraint that the corresponding
partial-wave cross sections for p̄p → p̄p and p̄p → n̄n
remain practically unchanged at low energies—allowed us
to reproduce the event distribution of the radiative J=ψ
decay, and consistently all other decays [23].
In the present work we repeat this exercise, employing

now the new N̄N interaction [27]. First of all, we want to
see whether the same scenario holds for the improved N̄N
potential that is based on a different regularization scheme
and that is now calculated up to N3LO. In addition we have
to establish the J=ψ → γp̄p amplitude in the I ¼ 0 channel
that enters into the calculation of the two-step process;
see Eq. (2). Results for the N̄N sector, i.e., the I ¼ 1 1S0
amplitude, are shown in Fig. 1. The parameters of the fit are

FIG. 1. Real and imaginary parts of the 1S0 phase shift in the
isospin I ¼ 1 channel. The bands represent the fits to the PWA
[28] (circles) at NLO, N2LO, and N3LO from Ref. [27]. The
dashed and solid lines are refits at N2LO and N3LO, respectively,
utilized in the present work.
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summarized in Table I. Corresponding results for the p̄p
invariant-mass spectrum of the reaction J=ψ → γp̄p are
displayed in Fig. 2. It is reassuring to see that the results are
basically the same as those reported in Ref. [23] for the
chiral N2LO interaction. The presented results are for the
combination T ¼ ð0.4T0 þ 0.6T1Þ that yields the lowest χ2
value in the fit. Note, however, that those for weights of the
isospin amplitudes differing by, say, �0.1 are very similar,
even on a quantitative level.
Interestingly, the modified potential in Ref. [23] gen-

erates a bound state in the I ¼ 1 1S0 partial wave which
was not the case for the original interaction presented in
Ref. [29]. For example, for the cutoff combination
fΛ; Λ̃g ¼ f450 Mev; 500 Mevg the bound state is located
at EB ¼ ð−36.9 − i47.2Þ MeV, where the real part denotes
the energy with respect to the N̄N threshold. As noted in
Ref. [23], this bound state is not very far away from the
position of the Xð1835Þ resonance found by the BES
Collaboration in the reaction J=ψ → γη0πþπ− [1,9,10].
However, the bound state in Ref. [23] is in the I ¼ 1
channel and not in I ¼ 0 as advocated in publications of the

BES Collaboration [1] and of other authors [13,14]. The
refit of the new N̄N potential [27] employed in the present
study leads likewise to a bound state in the I ¼ 1 1S0
partial wave. The binding energies are EB ¼ ð−50.8 −
i40.9Þ MeV for the chiral N3LO interaction and EB ¼
ð−2.1 − i94.0Þ MeV for the chiral N2LO interaction. The
former value is close to that found in our earlier work [23],
while the latter differs drastically. Once again, this illus-
trates the warning remarks in Ref. [23] that, in general, any
data above the reaction threshold, like the p̄p invariant-
mass spectrum or even phase shifts, do not allow to pin
down the binding energy reliably.

IV. THE REACTION J=ψ → γη0π +π −

As already mentioned in the Introduction, in studies of
eþe− annihilation to multipion states structures were
observed around the N̄N threshold for several channels,
specifically in eþe− → 3ðπþπ−Þ, eþe− → 2ðπþπ−π0Þ, and
eþe− → 2ðπþπ−Þπ0Þ [15–18]. An analysis of those struc-
tures performed by us [19] and by others [20] suggested
that they could be simply a result of a threshold effect due
to the opening of the N̄N channel. In that work we could
estimate the contribution of the two-step process eþe− →
N̄N → multipions to the total reaction amplitude rather
reliably because cross-section measurements for all
involved processes were available in the literature.
Specifically, the amplitude for eþe− → N̄N could be con-
strained from near-threshold data on the eþe− → p̄p cross
section and the one for N̄N → 5π, 6π could be fixed from
available experimental information on the corresponding
annihilation ratios [37]. It turned out that the resulting
amplitude for eþe− → N̄N →multipions was large enough
to play a role for the considered eþe− annihilation channels
and that it is possible to reproduce the data quantitatively
near the N̄N threshold in most of the considered reaction
channels [19].
In the case of J=ψ → γη0πþπ− we are not in such an

advantageous situation. While cross sections (or branching
ratios) are available for p̄p → η0πþπ−, so far only event
rates have been published for J=ψ → γη0πþπ− itself and for
J=ψ → γp̄p. Thus, a reliable assessment of the magnitude
of the two-step process J=ψ → γp̄p → γη0πþπ− cannot be
given at present. Nonetheless, in the following we provide a
rough order-of-magnitude estimate and plausibility argu-
ments for why we believe that the N̄N intermediate step
should play an important role here. The main and most
important support comes certainly from the γη0πþπ− data
itself, where a clear structure is seen near the N̄N threshold
in the latest high-statistics measurement by the BESIII
Collaboration [10]. In addition a comparison of the event
rates for J=ψ → γp̄p and J=ψ → γη0πþπ− with the cross
sections for p̄p → p̄p in the 1S0 partial wave and for p̄p →
η0πþπ− suggests that the two-step process in question
should be of relevance.

TABLE I. Low-energy constants at N2LO and N3LO, for the
N̄N interaction in the I ¼ 1 1S0 partial wave. Note that all
parameters are in units of 104; see Ref. [27] for details.

N2LO N3LO

C̃31S0 (GeV−2) 0.1935(14) 0.3155(15)

C31S0 (GeV−4) −1.8160ð52Þ −3.5235ð101Þ
D1

31S0
(GeV−6) � � � −8.0840ð627Þ

D2
31S0

(GeV−6) � � � 10.0000(286)

C̃a
31S0

(GeV−1) 0.1733(25) 0.0230(33)

Ca
31S0

(GeV−3) −4.1780ð21Þ −3.1759ð100Þ

FIG. 2. J=ψ → γp̄p results with a refitted I ¼ 1 1S0 amplitude,
analogous to Ref. [23]. Data are from Ref. [8] (BESIII), Ref. [7]
(BES), and Ref. [32] (CLEO). Note that the latter two are scaled
to those by the BESIII Collaboration by eye.
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Let us discuss the latter issue in more detail. With the
central value of the branching ratio, BRðp̄p → η0πþπ−Þ ¼
0.626% [38], the resulting cross section at plab ¼
106 MeV=c is 2.23 mb, based on the total annihilation
cross section given in Ref. [39]. Though the branching ratio
is tiny, at first sight, one has to compare the resulting cross
section with the relevant quantity, namely the p̄p elastic
cross section in the 1S0 partial wave. The latter is around
20 mb in our N̄N potential [27], but also in the PWA [28].
Thus, the annihilation cross section for p̄p → η0πþπ− is
roughly a factor of 10 smaller than that for p̄p → p̄p.
When comparing the event rates one has to consider that

the number of J=ψ decay events used in the γη0πþπ−
analysis [10] is roughly a factor of 5 larger than that in the
γp̄p paper [8]. Moreover, the bin size is different.
Combining those two aspects suggests a roughly 5 times
larger rate for γp̄p, based on the data shown in Refs. [8,10],
which mostly compensates for the factor of 10 reduction
estimated above. Accordingly, in principle, the two-step
process via an N̄N intermediate state could be responsible
for as much as 50% of the total rate.
In the actual calculation we fix the constant C̃η0ππ in the

N̄N → η0ππ transition potential [cf. Eq. (5)] from the
corresponding annihilation cross section discussed above.
Since there is no experimental information on the energy
dependence, we set the constant Cη0ππ to zero. For the
amplitude AJ=ψ→γp̄p we employ the one described in
Sec. III, with C̃J=ψ→γN̄N fixed to the most recent BESIII
data [10]. However, we allow for some variations of the
overall magnitude because, as said above, only event rates
are available in this case. The value for CJ=ψ→γN̄N obtained
in the fit turned out to be very small so that we simply set it
to zero.
Finally, the constants in the quantity A0

J=ψ→γη0πþπ−
[cf. Eq. (7)] are adjusted to the event rate for
J=ψ → γη0πþπ−. This term has to account for all other
contributions to J=ψ → γη0πþπ−, besides the one with an
intermediate γN̄N state. Thus, it can have a relative phase
as compared to the contribution from the N̄N loop, i.e., the
corresponding C’s can be complex valued. However, it
turns out that optimal results are already achieved for real
values of C̃J=ψ→γη0ππ and CJ=ψ→γη0ππ . In the fit we consider
data in the range 1800 MeV ≤ E ≤ 1950 MeV, i.e., in a
region that encompasses more or less symmetrically the
N̄N threshold.
Our results for the reaction J=ψ → γη0πþπ− are pre-

sented in Figs. 3 and 4. They are based on the N2LO and
N3LO EFT N̄N interactions with the cutoff R ¼ 0.9 fm
(Λ ¼ 438 MeV), cf. Ref. [27] for details. Exploratory
calculations for the other cutoffs considered in Ref. [27]
turned out to be very similar. Like for N̄N scattering itself,
much of the cutoff dependence is absorbed by the contact
terms [C̃ν and Cν in Eqs. (5) and (6)] that are fitted to the
data so that the variation of the results for energies of, say,

�50 MeV around the N̄N threshold is rather small. For
consistency the momentum-space regulator function as
given in Eq. (3.1) (right side) in Ref. [27] is also attached
to the transition potentials in Eqs. (5) and (6), i.e., to all
quantities that depend on the N̄N momentum q.
In Fig. 3 a more detailed view on our calculation is

presented, exemplary for the N3LO interaction. Full results
for the η0πþπ− invariant-mass spectrum (solid line) are
shown, together with the individual contributions from the
J=ψ → γN̄N → γη0ππ transition (dotted line) and the

FIG. 3. The η0πþπ− invariant-mass spectrum in the reaction
J=ψ → γη0πþπ−. Results for the contribution from the J=ψ →
γN̄N → γη0πþπ− transition (dotted line) and the background term
(dashed line) are shown, together with the full results (solid line).
The N3LO N̄N potential [27] is employed. Data are from the
BESIII Collaboration [10]. The horizontal line indicates the p̄p
threshold.

FIG. 4. Results for J=ψ → γη0πþπ− including the background
term and N̄N → η0πþπ− transition amplitude for the N2LO
(dashed line) and N3LO (solid line) N̄N interactions. Data are
from the BESIII Collaboration [10]. The horizontal line indicates
the p̄p threshold.
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background term (dashed line) that simulates contributions
which do not involve the N̄N intermediate state. By
construction the background is a smooth function of the
η0πþπ− invariant mass, whereas the contribution from the
two-step process via the N̄N channel exhibits a pronounced
cusp-like structure at the N̄N threshold. The (square of the)
latter amplitude is roughly a factor of 3 smaller than the
background contribution. However, there is a sizable
interference between the two amplitudes so that the
coherent sum reflects the opening of (coupling to) the
N̄N channel and leads to results for the invariant-mass
spectrum that are very close to the measurements of the
BESIII Collaboration. The actual magnitude of the N̄N
two-step process is about 20% of the total event rate, well in
line with the rough estimate provided above, based on data
for the J=ψ → γp̄p and p̄p → η0πþπ− reactions.
In Fig. 4 we present the complete results for the N2LO

and N3LO interactions, on a scale similar to that in the
BESIII publication [10], cf. the inserts in Figs. 3 and 4 of
that reference. First we note that the η0πþπ− invariant mass
spectrum based on the two N̄N interactions is very similar
around the N̄N threshold. It is also very similar to the fit
within the first model considered in Ref. [10] (cf. the
corresponding Fig. 3). That model includes explicitly a
Xð1835Þ resonance and simulates the effect of the N̄N
channel via a Flatté formula [40]. Obviously, in our
calculation the data can be described with the same quality,
but without such a Xð1835Þ resonance. The more elaborate
treatment of the coupling to the N̄N channel via Eq. (8)
with the explicit inclusion of the N̄N interaction itself is
already sufficient to generate an invariant-mass dependence
in line with the data.
For completeness, let us mention that a second resonance

has been introduced in Ref. [10] in the invariant-mass
region covered by our study, namely a Xð1920Þ, in order to
reproduce a possible enhancement at the corresponding
invariant mass suggested by two data points, cf. Fig. 4.
Furthermore, a second model has been considered in
Ref. [10] where instead of the coupling to the N̄N channel
an additional and rather narrow resonance was included—
the Xð1870Þ. In that scenario a slightly better description of
the data very close to the N̄N threshold could be achieved.
Now the key question is, of course, are those structures

seen in the experiment a signal for a N̄N bound state? We
did not find any near-threshold poles for our EFT N̄N
interactions in the 1S0 partial wave with I ¼ 0, i.e., the one
relevant for the γη0πþπ− channel, neither for the N2LO
potential presented in Ref. [29] nor for the new N2LO and
N3LO interactions [27] employed in the present calcula-
tion. As already discussed in the preceding section, there is
only a pole in the I ¼ 1 case in the versions established in
the study of the reactions J=ψ → γp̄p.
Thus, our results provide a clear indication that

bound states are not necessarily required for achieving a

quantitative description of the observed structure in the
η0πþπ− invariant-mass spectrum near the p̄p threshold.
This is in contrast to other investigations in the litera-
ture. For example, bound states in the I ¼ 0 1S0 partial
wave are present in the Paris N̄N potential [41]
employed in Refs. [13,26] [EB ¼ ð−4.8 − i26Þ MeV]
and also in the N̄N interaction constructed in Ref. [14]
[EB ¼ ð22 − i33Þ MeV]. In the latter case, the positive sign
of the real part of EB indicates that the pole found is
actually located above the N̄N threshold (in the energy
plane). As discussed in Ref. [14], the pole moves below the
threshold when the imaginary part of the potential is
switched off and that is the reason why it is referred to
as bound state.
In this context, it is worth mentioning that no bound

states or resonances were found in a study of the η0KK̄
system [42] in an attempt to explore if such states could be
generated dynamically as η0f0ð980Þ- or η0a0ð980Þ-like
configurations.
Past studies suggest that there is a distinct difference in

the amplitude for J=ψ → γ þmesons due to the N̄N loop
contribution depending on the absence/presence of a bound
state. Its modulus exhibits specific features, namely either a
genuine cusp at the N̄N threshold (cf. Fig. 3) or a rounded
step and a maximum below the threshold. This was
discussed in detail in Ref. [19] in the context of the
reaction eþe− → multipions (cf. Fig. 4 in that reference)
and also in Ref. [14]. However, in both studies the bound
states in question belong to the special class discussed
above, i.e., they are located above the N̄N threshold.
In order to illustrate what happens for the case of a

“regular” bound state we present here an exemplary calcu-
lation based on the I ¼ 1 1S0 partial wave of our N3LO
potential, where the binding energy is ð−50.8−i40.9ÞMeV,
cf. Sec. III. A J=ψ decay reaction where the corresponding
N̄N loop could contribute is, for example, J=ψ → γωρ0.
Pertinent predictions are shown in Fig. 5. Obviously, the
invariant-mass dependence of the loop (dotted line) is fairly
different from the one of the I ¼ 0 amplitude, cf. the dotted
line in Fig. 3. Specifically, there is a clear enhancement in the
spectrum around 50 MeV below the N̄N threshold reflecting
the presence of the N̄N bound state. Due to the fairly large
width (Γ ¼ −2ImEB) the structure is not very pronounced.
Of course, the final signal will be strongly influenced and
modified by the interference with the background amplitude,
as testified by the results presented above for the η0πþπ−
case. To demonstrate this we include also results for two
different but arbitrary choices for the background term; see
the dashed and solid lines in Fig. 5. Of course, if the N̄N
bound state is more narrow then the signal will be certainly
more pronounced. Note that the decay J=ψ → γωρ0 has
been already measured by the BES Collaboration [43].
However, the statistics is simply too low to draw any
conclusions. It would be definitely interesting to revisit this
reaction in a future experiment.
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V. CONCLUSIONS

We analyzed the origin of the structure associated with
the Xð1835Þ resonance, observed in the reaction J=ψ →
γη0πþπ−. Specific emphasis was put on the η0πþπ− invari-
ant mass spectrum around the p̄p threshold, where the most
recent BESIII measurement [10] provided strong evidence
for an interplay of the η0πþπ− and p̄p channels.
Motivated by this experimental observation, we evalu-

ated the contribution of the two-step process J=ψ →
γp̄p → γη0πþπ− to the total reaction amplitude. The
amplitude for J=ψ → γp̄p was constrained from corre-
sponding data by the BESIII Collaboration, while for
N̄N → η0ππ we took available branching ratios for p̄p →
η0πþπ− as a guideline. Combining the contribution of
this two-step process with a background amplitude, that
simulates other transition processes which do not involve a
γN̄N intermediate state, allowed us to achieve a quantita-
tive description of the invariant-mass dependence shown by
the data near the p̄p threshold. In particular, the structure
detected in the experiment emerges as a threshold effect.
It results from an interference of the smooth background
amplitude with the strongly energy-dependent two-step
contribution, which itself exhibits a cusp-like behavior at
the N̄N threshold.
The question of whether there is evidence for a N̄N

bound state was discussed, but no firm conclusion could be
made. While in our own calculation such states are not
present, and are also not required to describe the data for the
reaction J=ψ → γη0πþπ−, contrary claims have been
brought forth in the literature [14,26]. In any case, it should
be said that the possibility that a genuine resonance is
ultimately responsible for the structure observed in the

experiment cannot be categorically excluded based on an
analysis like ours. Yet, our calculation provides a strong
indication for the important role played by the N̄N channel
in the J=ψ → γη0πþπ− decay for energies around its
threshold and we consider the fact that it yields a natural
and quantitative description of the structure observed in the
invariant-mass spectrum as rather convincing.
Data with improved resolution around the p̄p threshold

could possibly help to shed further light on the relation of
a possible Xð1835Þ with the p̄p channel. An absolute
determination of the relevant invariant-mass spectra
would certainly put stronger constraints on the question
whether the intermediate p̄p state can play such an
important role as suggested by the present study. In
addition, we believe that an analogous measurement for
channels like J=ψ → γηπþπ− could be very instructive.
Indeed, this was already recommended around the time
when the first evidence for the Xð1835Þwas reported [44].
The branching ratio for p̄p → ηπþπ− is more than a factor
of 2 larger than that for η0πþπ− [45] which would enhance
the role played by the p̄p channel. Thus, if the count rate
for J=ψ → γηπþπ− turns out to be similar to that for
γη0πþπ− [30,44] then the effect from the transition to p̄p
could be fairly strong.
Finally, we want to mention that there are data on J=ψ →

ωηπþπ− [46] and J=ψ → ϕηπþπ− [47]. For the latter,
ηπþπ− invariant masses corresponding to the p̄p threshold
are already close to the boundary of the available phase
space and, therefore, no appreciable signal is expected. In
the case of J=ψ → ωηπþπ− the BESIII Collaboration sees a
resonance-like enhancement at 1877.3� 6.3þ3.4

−7.4 MeV [46]
which coincides almost perfectly with the p̄p threshold.
However, the invariant-mass resolution of those data is only
20 MeV=c2. Moreover, it is our understanding that non-ω
(background) events are not well separated in the data
presented in Ref. [46]. These two issues handicap a
dedicated analysis for the time being. Clearly, new mea-
surements with higher statistics could be indeed rather
useful for providing further information on the role that
the (opening of the) N̄N channel plays for the reaction in
question.
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FIG. 5. Predicted ωρ0 invariant-mass spectrum for J=ψ→γωρ0,
based on the N3LO N̄N interaction described in Sec. III. The
contribution from the J=ψ → γN̄N → γωρ0 transition alone
(dotted line) and with two arbitrary choices for the background
term included (dashed and solid lines) are shown. The horizontal
line indicates the p̄p threshold.
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