
 

Impact of medium modifications of the nucleon weak and electromagnetic
form factors on the neutrino mean free path in dense matter

Parada T. P. Hutauruk,1,* Yongseok Oh,2,1,† and K. Tsushima3,1,‡
1Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk 37673, Korea
2Department of Physics, Kyungpook National University, Daegu 41566, Korea

3Laboratório de Física Teórica e Computacional, Universidade Cruzeiro do Sul,
01506-000 São Paulo, SP, Brazil

(Received 7 February 2018; revised manuscript received 21 May 2018; published 30 July 2018)

Impact of the in-medium modified nucleon weak and electromagnetic form factors on the neutrino mean
free path in dense matter is studied by considering both the weak and electromagnetic interactions of
neutrinos with the constituents of the matter. A relativistic mean field model and the quark-meson coupling
model are respectively adopted for the in-medium effective nucleon mass and nucleon form factors. We
find that the cross sections of neutrino scattering in cold nuclear medium decrease when the in-medium
modifications of the nucleon weak and electromagnetic form factors are taken into account. This reduction
results in the enhancement of the neutrino mean free path, in particular at the baryon density of around a
few times of the normal nuclear matter density. The enhancement of the neutrino mean free path is
estimated to be about 10%–40% compared with the values obtained without the medium modifications of
the nucleon form factors, and the enhancement is expected to accelerate the cooling of neutron stars.
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I. INTRODUCTION

It is widely accepted that the majority of neutrinos in the
Universe are produced in the core collapse supernova
explosion. The final stage of the explosion creates a hot
dense protoneutron star, which emits bursts of neutrinos
[1–3]. Then the produced neutrinos propagate through the
neutron star and affect the evolution of neutron stars. Inside
the neutron star, neutrinos scatter with the constituents
of matter, mostly neutrons and protons, and this process
determines the propagation of neutrinos, namely, the
neutrino mean free path (NMFP). Thus the NMFP is an
important input in simulations of neutron star evolution as
well as those of compact stars. In previous calculations on
the NMFP in neutrino scattering, it was found that the
NMFP value for various neutrino scattering is larger than
that of the neutrino absorption, and the propagation of the
neutrino in neutron matter is longer than that in vacuum [4].
For estimating the neutrino scattering cross sections in a

more realistic manner, various attempts were made by
considering the effects of the phase space, weak magnet-
ism, recoil correction, form factors, and strange quark
corrections [5–8]. In Ref. [9] the electromagnetic form
factors of the neutrino were also considered. These works,

however, were based on the nucleon electromagnetic form
factors in free space.
The electromagnetic form factors of nucleons reflect

their internal structure. For example, the anomalous mag-
netic moments of the nucleons and the momentum depend-
ence of the electromagnetic and axial form factors of
nucleons are the consequences of their finite size, or their
quark-gluon substructure. Since not only the nucleons
themselves but also the substructure of nucleons are
expected to be modified in the surrounding environment,
it is natural to expect that the electromagnetic and weak
properties of nucleons are also modified in nuclear
medium. Thus, one of our main motivations of this study
is to explore the impact of the possible in-medium
modifications of the nucleon electromagnetic and axial-
vector form factors on the NMFP in nuclear medium. For
this purpose, we first discuss the nucleon form factors in
free space, and then elaborate the form factors in nuclear
medium based on a relativistic phenomenological quark
model, which is based on the quark degrees of freedom
dictated by quantum chromodynamics (QCD). Such an
attempt was also recently made by the first principle lattice
QCD calculations for a few nucleon systems in Ref. [10].
Although the detailed analysis is yet model dependent,

recent experimental observations in electron-nucleus scat-
terings suggest the in-medium modifications of the nucleon
electromagnetic (EM) form factors [11–16]. There are
several issues related with the interpretation of the exper-
imental observations in connection with the in-medium
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effects, nucleon correlations, and so on. More detailed
discussions can be found, e.g., in Refs. [17–20]. Another
example which may be interpreted as the in-medium
modifications of the nucleon properties would be the
neutron lifetime inside a nucleus. Namely, a bound neutron
in a nucleus is found to live longer than in vacuum, where
its lifetime in vacuum is ≃880 s [21] against the weak beta
decay to the proton. This phenomenon would be interpreted
as a change of axial-vector coupling constant, i.e., the
effective axial-vector coupling constant in nuclear medium
geffA is smaller than that the in-vacuum value, gA ≃ 1.27.
A recent review on the axial-vector coupling strength in β
and double β decays can be found, e.g., in Ref. [22]. There
are also alternative approaches to explain this observation
while keeping the free spacevalue of gA [23,24]. Therefore, it
is not easy to understand the correct origin of such obser-
vations, butwhat is clear is thatmany nontrivial contributions
arise in nuclear medium, and the physics in nuclear medium
is very different from the physics in free space. In the present
article, following the point of view that the properties of the
quark and gluon substructure of nucleons change in nuclear
medium and can be estimated by effective theories of
QCD, we investigate the effects of in-medium modified
weak and EM form factors of the nucleon on the NMFP
in dense nuclear medium.
In previous studies of neutrino-nucleus scattering in

Refs. [25,26], the authors, including one of us, estimated
the (anti)neutrino-nucleus scattering cross sections via
charged [25] and neutral [26] currents for a bound nucleon
by including the effect of the in-medium modified weak-
magnetism and axial-vector form factors, FW

2 ðq2Þ and
GAðq2Þ, respectively, where q is the transferred four-
momentum. (See e.g., Ref. [27] for a recent review on
theoretical studies of neutrino-nucleus interactions.) They
found that the in-medium modified nucleon form factors
FW
2 ðq2Þ and GAðq2Þ as a total effect could reduce the total

cross sections of neutrino-nucleus scattering by ∼8% [25]
and 12%–18% [26], respectively. Motivated by these
results, we address the role of the in-medium modified
nucleon EM form factors in the present work by focusing
on the impact of the medium modifications of both the
weak and EM form factors of the nucleon in dense matter
on the neutrino scattering with nucleons.
For this purpose, we adopt a relativistic mean field model

inspired by the effective field theory models to describe
nuclear matter. For the in-medium nucleon weak and EM
form factors, we use the quark-meson coupling (QMC)
model [28]. Based on these theoretical approaches, we
calculate the differential and total cross sections of neutrino
scatterings to estimate the NMFP. We consider the scatter-
ing of neutrinos with the proton (p), the neutron (n), the
electron (e−), and the muon (μ−), which are the major
constituents of the matter. Our results may be used as a
guidance for supernova simulations [29,30] to examine the
effects of the in-medium nucleon form factors.

This paper is organized as follows. In Sec. II, we review
the formalism for calculating cross sections of neutrino
scatterings with the constituents of matter, i.e., nucleons,
electrons, and muons. In Sec. III, we briefly discuss the
models of nuclear matter adopted in the present work. The
in-medium modifications of the weak and EM form factors
of the nucleon are presented in Sec. IV. In Sec. V, our
numerical results are presented and their implications are
discussed. Section VI is devoted for a summary.

II. NEUTRINO SCATTERINGS WITH MATTER
CONSTITUENTS

In this section we calculate the differential cross sections
of neutrino-matter scattering. Before discussing the in-
medium modifications of the nucleon weak and EM form
factors, we briefly discuss the free space neutrino scatter-
ings with constituents of the matter.
The effective interaction of the neutrino with the con-

stituents of matter is given by the current-current inter-
action form as

Lj
int ¼

GFffiffiffi
2

p ½ν̄ðk0ÞΓμ
WνðkÞ�½ψ̄ jðp0ÞJWðjÞ

μ ψ jðpÞ�

þ 4αem
q2

½ν̄ðk0ÞΓμ
EMνðkÞ�½ψ̄ jðp0ÞJEMðjÞ

μ ψ jðpÞ�; ð1Þ
where GF and αem are the Fermi (weak) coupling constant
and the EM fine structure constant, respectively, whose
values are GF ≃ 1.166 × 10−5 GeV−2 and α−1em ≃ 137 [21].
The initial and final neutrino spinors are represented by
νðkÞ and ν̄ðk0Þ, respectively, and ψ jðpÞ and ψ̄ jðp0Þ refer to
the initial and final spinors of the target fermion j,
respectively, where j ¼ ðn; p; e−; μ−Þ. The four-momenta
of the initial and final neutrinos are denoted by k and k0,
respectively, and p and p0 stand for the initial and final
four-momenta of the target j. The transferred four-momen-
tum is thus q ¼ k − k0 ¼ p0 − p. The first term of the
Lagrangian in Eq. (1) is the current-current interaction
between the neutrino and the nucleon. The weak interaction
vertex of the neutrino is given by

Γμ
W ¼ γμð1 − γ5Þ: ð2Þ

The second term in the effective Lagrangian of Eq. (1)
contains the current-current interaction of the EM inter-
action. Since the EM form factors of Majorana neutrinos
can be obtained from those calculated for Dirac particles
[31], we consider the Dirac neutrino in the present work.
The EM vertex of Dirac neutrinos is described by four form
factors as [31–34]

Γμ
EMðq2Þ ¼ f1ðq2Þγμ −

i
2me

f2ðq2Þσμνqν

þ g1ðq2Þ
�
gμν −

qμqν

q2

�
γνγ

5

−
i

2me
g2ðq2Þσμνqνγ5; ð3Þ
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where the four form factors, f1ðq2Þ, g1ðq2Þ, f2ðq2Þ, and
g2ðq2Þ, are the Dirac, anapole, magnetic, and electric form
factors, respectively. Applying the current conservation
condition, we can rewrite it as

Γμ
EMðq2Þ ¼ fmðq2Þγμ þ g1ðq2Þγμγ5

− ½f2ðq2Þ þ ig2ðq2Þγ5�
Pμ

2me
; ð4Þ

where fmðq2Þ≡ f1ðq2Þ þ ðmν=meÞf2ðq2Þ and Pμ ¼ kμ þ
k0μ with mν (me) being the neutrino (electron) mass.
In the static limit (q2 ¼ 0), the Dirac form factor f1ðq2Þ

and the anapole form factor g1ðq2Þ are related respectively
to the vector charge radius hR2

Vi and the axial-vector charge
radius hR2

Ai as [32–35]

hR2
Vi ¼ 6

df1ðq2Þ
dq2

����
q2¼0

;

hR2
Ai ¼ 6

dg1ðq2Þ
dq2

����
q2¼0

; ð5Þ

which in the Breit frame, where q0 ¼ 0, leads to

f1ðq2Þ ≃
1

6
hR2

Viq2 ¼ −
1

6
hR2

Viq2;

g1ðq2Þ ≃
1

6
hR2

Aiq2 ¼ −
1

6
hR2

Aiq2; ð6Þ

where we have used f1ð0Þ ¼ g1ð0Þ ¼ 0. It is common to
define the sum hR2i≡ hR2

Vi þ hR2
Ai, which can have a

negative value for Dirac neutrinos [36,37]. For Majorana
neutrinos, only the anapole form factor g1ðq2Þ remains and
thus the relevant quantity is solely hR2

Ai [31,33] in the EM
interaction vertex with hR2

Vi ¼ 0 [36,37]. The values of
jhR2ij for the Dirac neutrino are at the order of ð10−3 fmÞ2
[36–38].
At q2 ¼ 0, the form factors f2ðq2Þ and g2ðq2Þ respec-

tively define the neutrino magnetic moment and the charge
parity (CP) violating electric dipole moment as

μmν ¼ f2ð0ÞμB and μeν ¼ g2ð0ÞμB; ð7Þ

where the effective neutrino magnetic moment μν is defined
as μ2ν ≡ ðμmν Þ2 þ ðμeνÞ2 [39], and μB ¼ e=2me is the Bohr
magneton. The estimated value of the neutrino magnetic
moment is around 10−10μB [40–45].
For a free-space nucleon, the weak and EM vertices in

the nucleon and lepton current operators read [40,46,47]

JWμ ¼ FW
1 ðq2Þγμ −GAðq2Þγμγ5

þ iFW
2 ðq2Þ

σμνqν

2MN
þGpðq2Þ

2MN
qμγ5; ð8Þ

and

JEMμ ¼ FEM
1 ðq2Þγμ þ iFEM

2 ðq2Þ σμνq
ν

2MN
ð9Þ

for each target particle j. Since the induced pseudoscalar
form factor Gpðq2Þ in Eq. (8) gives a very small contri-
bution to the cross section, which is proportional to
ðleptonmassÞ2=M2

N [48], it will be neglected in the present
calculation. The values of the weak form factors, FW

1 ð0Þ,
GAð0Þ, and FW

2 ð0Þ, in free space are listed in Table I with
those of the EM form factors, FEM

1 ð0Þ and FEM
2 ð0Þ.

With the effective Lagrangian of Eq. (1), the differential
cross section per volume of the neutrino scattering with a
target particle can be calculated as

�
1

V
d3σ

d2Ω0dE0
ν

�
¼ −

1

16π2
E0
ν

Eν

��
GFffiffiffi
2

p
�

2

ðLαβ
ν ΠIm

αβÞðWÞ

þ
�
4παem
q2

�
2

ðLαβ
ν ΠIm

αβÞðEMÞ

þ 8πGFαem
q2

ffiffiffi
2

p ðLαβ
ν ΠIm

αβÞðINTÞ
�
; ð10Þ

where E0
ν (Eν) is the final (initial) energy of the neutrino.

For the details on the analytic formulas of the polarization
tensors for the weak and EM interactions and all the
corresponding quantities in Eq. (10), we refer to
Refs. [9,41]. Then the final results of the contracted lepton
and hadron tensors in the corresponding interactions in
Eq. (10) are obtained as

TABLE I. Weak and electromagnetic form factor values at q2 ¼ 0 in free space. Here we use sin2 θw ¼ 0.231,
gA ¼ 1.260, FEM

2p ð0Þ≡ κp ¼ 1.793, and FEM
2n ð0Þ≡ κn ¼ −1.913 in the units of the nuclear magneton μN ¼ e=2Mp

with Mp being the proton mass.

Target FW
1 GA FW

2 FEM
1 FEM

2

n −0.5 − gA
2 − 1

2
ðκp − κnÞ − 2 sin2 θwκn 0 κn

p 0.5 − 2 sin2 θw
gA
2

1
2
ðκp − κnÞ − 2 sin2 θwκn 1 κp

e 0.5þ 2 sin2 θw
1
2

0 1 0

μ −0.5þ 2 sin2 θw − 1
2

0 1 0
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½Lαβ
ν ΠIm

αβ �ðWÞ¼−8q2
X
j

½Aj
WðΠj

LþΠj
TÞþBj

1WΠ
j
T

þBj
2WΠ

j
AþCj

WΠ
j
VA�;

½Lαβ
ν ΠIm

αβ �ðEMÞ¼q2
X
j

½Aj
EMðΠj

LþΠj
TÞþBj

1EMΠ
j
TþBj

2EMΠ
j
A�;

½Lαβ
ν ΠIm

αβ �ðINTÞ¼−4q2
X
j

½Ai
IðΠj

LþΠj
TÞþBj

1INTΠ
j
T

þBj
2INTΠJ

AþCj
INTΠ

j
VA�; ð11Þ

where the sum over j ¼ p; n; e−; μ− is understood. The
vector polarization tensorΠImV

αβ for each contribution can be
represented by two independent components in the frame
of qμ ≡ ðq0; jqj; 0; 0Þ, which yields ΠT ¼ ΠV

22 ¼ ΠV
33 and

ΠL ¼ −ðq2=jqj2ÞΠV
00. The axial vector and mixed pieces

are found to be ΠImðV-AÞ
αβ ðqÞ ¼ iϵ0αβηqηΠVA. The explicit

forms of ΠT , ΠL, ΠVA, and ΠA for the nucleon are
expressed as

ΠT¼
1

4πjqj
��

M�2þ q4

4jqj2þ
q2

2

�
ðEF−E�Þ

þq0q2

2jqj2ðE
2
F−E�2Þþ q2

3jqj2ðE
3
F−E�3Þ

�
;

ΠL¼
q2

2πjqj3
�
1

4
ðEF−E�Þq2þq0

2
ðE2

F−E�2Þþ1

3
ðE3

F−E�3Þ
�
;

ΠVA¼
iq2

8jqj3 ½ðE
2
F−E�2Þþq0ðEF−E�Þ�;

ΠA¼
iM�2

2πjqjðEF−E�Þ: ð12Þ

For leptons, we have similar expressions, but the lepton
properties are assumed to be the same as those in free space.
Thus in Eq. (12) the in-medium quantities should be
replaced by the corresponding free space quantities in
the case of lepton targets. The functions appearing in
Eq. (11) are given for the weak contributions,

AW ¼
�
2EðE−q0Þþ 1

2
q2

jqj2
��

ðFW
1 Þ2þG2

A −
q2

4M2
ðFW

2 Þ2
�
;

B1W ¼
�
ðFW

1 Þ2þG2
A −

ðFW
2 Þ2q2
4M2

�
;

B2W ¼−
�
G2

Aþ
q2

2mM
FW
1 F

W
2 −

ðFW
2 Þ2q2
4M2

ð1þq2=4m2Þ
�
;

CW ¼−2ð2E−q0Þ
�
FW
1 G

W
A þm

M
FW
2 GA

�
; ð13Þ

while for the EM contributions they are given by

AEM¼
�
2EðE−q0Þþq2=2

jqj2 ðbq2−aÞþ1

2
bq2

�

×

�
ðFEM

1 Þ2−ðF
EM
2 Þ2q2
4M2

�
;

B1EM¼−
1

2
ðbq2þaÞ

�
ðFEM

1 Þ2−ðF
EM
2 Þ2q2
4M2

�
;

B2EM¼1

2
ðbq2þaÞ

�
q2

2mM
FEM
1 FEM

2 −
ðFEM

2 Þ2q2
4M2

�
1þ q2

4m2

��
;

ð14Þ

where

a ¼ 4ðf2mν þ g21νÞ; b ¼ f22ν þ g22ν
m2

e
; ð15Þ

which are related to the charge radius and magnetic
moment of the neutrino through Eqs. (5)–(7). The inter-
ference terms are obtained as

AINT¼c
�
2EðE−q0Þþ1

2
q2

jqj2
��

FW
1 F

EM
1 þ q2

4M2
FW
2 F

EM
2

�
;

B1INT¼c

�
FW
1 F

EM
1 þ q2

4M2
FW
2 F

EM
2

�
;

B2INT¼−cq2
�
FW
2 F

EM
2

4M2

�
1þ q2

4m2

�
−
ðFW

1 F
EM
2 þFW

2 F
EM
1 Þ

4mM

�
;

CINT¼cð2E−q0Þ
�
m
M
FEM
2 GA−FEM

1 GA

�
; ð16Þ

with c ¼ fmν þ g1ν.
In the present work, we consider only the NMFP of the

neutrino elastic scattering, and do not consider that of
neutrino absorption, because the NMFP of neutrino scat-
tering is dominated by the neutrino elastic scattering [4].
The inverse mean free path of the neutrino is straightfor-
wardly obtained by integrating the differential cross section
of Eq. (10) over the energy transfer q0 and the three-
momentum transfer jqj. The final expression for the NMFP
as a function of the initial energy at a fixed baryon density
can be obtained as [49]

1

λðEνÞ
¼

Z
2Eν−q0

q0

djqj
Z

2Eν

0

dq0
jqj

E0
νEν

2π

V
d3σ

d2Ω0dE0
ν
; ð17Þ

where the final and initial neutrino energies are related as
E0
ν ¼ Eþ q0. More detailed explanations for the determi-

nation of the lower and upper limits of the integral can be
found in Ref. [49].

III. MODELS FOR MATTER

Sincewe are interested in the scatterings of neutrinos with
the constituents ofmatter at zero temperature, the in-medium
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properties of nucleons are required as discussed in the
previous section. The interactions of the nucleon in matter
are described by an effective chiral Lagrangian given as

L ¼ LN þ LM; ð18Þ

whereLN is the interactions of the nucleon with mesons, and
themesonic LagrangianLM containsmeson self-interactions.
For this purpose,we introduce thepion field through the chiral
field ξ as

ξ2 ¼ U ¼ expð2iπ=fπÞ; ð19Þ

where π ¼ 1
2
τ · π and the pion decay constant is

fπ ¼ 93 MeV. To develop chiral invariant interactions, we
introduce the vector and axial vector currents, vμ and aμ, as

vμ ¼ −
i
2
ðξ†∂μξþ ξ∂μξ

†Þ;

aμ ¼ −
i
2
ðξ†∂μξ − ξ∂μξ

†Þ; ð20Þ

so that vμ ¼ v†μ and aμ ¼ a†μ. Following Refs. [50–52], we
write the effective Lagrangian as [50]

LN ¼ ψ̄ ½iγμð∂μ þ ivμ þ igρρμ þ igωωμÞ
þ gAγμγ5aμ −MN þ gσσ�ψ ; ð21Þ

where ψ is the nucleon isodoublet defined as

ψ ¼
�
p

n

�
ð22Þ

with MN being the nucleon mass. The Lagrangian LN
contains the interactions of the nucleon with the ρ vector
meson (ρμ ¼ 1

2
τ · ρμ), ω vector meson (ωμ), and the scalar σ

meson (σ).
The Lagrangian LM of the mesonic part reads [50–52]

LM ¼ f2π
4
Trð∂μU∂μU†Þ þ f2πm2

π

4
TrðU þU† − 2Þ

þ 1

2
∂μσ∂μσ −

1

2
TrðρμνρμνÞ −

1

4
ωμνω

μν

þ 1

2
m2

ωωμω
μ þm2

ρTrðρμρμÞ

−
b
3
MNðgσσÞ3 −

c
4
ðgσσÞ4; ð23Þ

where

ωμν ¼ ∂μων − ∂νωμ; ρμν ¼ ∂μρν − ∂νρμ: ð24Þ

In the Hartree mean field approximation, the π meson
makes no contribution because of its negative intrinsic

parity. Throughout the present calculation, we use MN ¼
939 MeV, mρ ¼ 770 MeV, mω ¼ 783 MeV, and mσ ¼
520 MeV. We use the coupling constants determined in
Refs. [51,52], i.e., ðgσ=mσÞ2 ¼ 9.148 fm2, ðgω=mωÞ2 ¼
4.820 fm2, ðgρ=mρÞ2 ¼ 4.791 fm2, b ¼ 3.478 × 10−3,
and c ¼ 1.328 × 10−2. (We note that similar approaches
were used successfully in Refs. [41,53–56].)
The Lagrangian for leptons reads

Ll ¼
X

l¼e−;μ−;νe;νμ

ψ̄ lðγμ∂μ −mlÞψ l; ð25Þ

where ml denotes the lepton mass. In the present work,
leptons are assumed to be free by forming the Fermi gas.
Once the Lagrangian is given, we can obtain and solve the
Euler-Lagrange equations to compute the matter properties
with the constraints of the beta equilibrium, which states
the relation of the chemical potentials as μchemn þ μchemνe ¼
μchemp þ μcheme , and the charge neutrality, ρe þ ρμ ¼ ρp. The
total baryon density is given by ρB ¼ ρp þ ρn.
With the parameters given above, we obtain the satu-

ration density ρ0 ¼ 0.15 fm−3 with the binding energy
E=A ¼ 16.30 MeV at the saturation density. The calculated
compression modulus is K ¼ 219 MeV, which is in good
agreement with the empirical value of K ¼ 210� 30 MeV
[57], and the symmetry energy coefficient Esym is obtained
to be around 32.5 MeV. The effective nucleon mass M�

N is
estimated to be 0.78MN . These values are consistent with
those obtained in the QMC model [28] which will be used
to calculate the in-medium nucleon form factors.

IV. MEDIUM MODIFICATIONS OF THE
NUCLEON WEAK AND ELECTROMAGNETIC

FORM FACTORS

In order to estimate the effects of the in-medium
modified nucleon form factors for neutrino scattering,
we need to replace the free-space form factors, GAð0Þ,
FW
2 ð0Þ, and FEM

2 ð0Þ, in the formalism discussed in Sec. II
by the in-medium form factors, G�

Að0Þ, FW�
2 ð0Þ, and

FEM�
2 ð0Þ, respectively. Since FW�

1 ð0Þ and FEM�
1 ð0Þ corre-

spond to the weak-vector charge and the EM charge
normalizations, respectively, their values do not change
from the free space values. Hereafter, quantities with an
asterisk stand for those in nuclear medium.
For the estimates of the in-medium nucleon form factors,

we make use of the QMC model [25,58–61]. The QMC
model [28] has been successfully applied to many problems
of nuclear physics and hadron properties in nuclear
medium. Some details of the applications can be found,
e.g., in Refs. [25,58–63]. In the earlier works of neutrino-
nucleus interaction of Refs. [25,26], the in-medium modi-
fication of the nucleon weak form factors was applied, but
the effect of the in-medium EM form factors is yet to be
explored. Certainly, one can expect that the in-medium
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nucleon EM form factors can influence the beta equili-
brated matter composition as well as the neutrino-matter
scattering cross sections. These are what we pursue in the
present work.
In the QMC model, the medium effects arise from

the self-consistent exchange of the scalar (σ) and vector
(ω and ρ) meson fields directly coupled to the confined
quarks rather than to the pointlike nucleon. In the following
we consider symmetric nuclear matter in the Hartree mean
field approximation. This may be justified because the
differences in the results between the Hartree and Hartree-
Fock calculations are found to be relatively small. In
particular, the energy densities per nucleon for symmetric
nuclear matter are nearly identical at the cost of compli-
cations introduced in the Hartree-Fock treatment. Thus the
use of the Hartree approximation in this exploratory study
would be enough. More details on the Fock terms in the
QMCmodel can be found in Ref. [64]. We consider the rest
frame of the symmetric nuclear matter in the following to
be consistent with Sec. III. The effective Lagrangian for a
symmetric nuclear matter is given by [58,65]

LQMC ¼ ψ̄ ½iγ · ∂ −M�
NðσÞ − gωωμγμ�ψ þ Lmeson; ð26Þ

where ψ , σ, and ω are respectively the nucleon, scalar σ,
and vector ω fields, and the effective nucleon mass M�

Nðσ̂Þ
is defined by

M�
NðσÞ≡MN − gσðσÞσ; ð27Þ

with gσðσÞ and gω being respectively the σ-dependent
nucleon-σ, and nucleon-ω coupling constants. Because
in symmetric nuclear matter the isospin-dependent
ρ-meson field vanishes in the Hartree approximation, we
do not explicitly include the ρ meson. The free meson
Lagrangian density in Eq. (26) is defined by

Lmeson ¼
1

2
ð∂μσ∂μσ −m2

σσ
2Þ − 1

2
∂μωνð∂μων − ∂νωμÞ

þ 1

2
m2

ωω
μωμ: ð28Þ

In the mean-field approach, the nucleon Fermi momen-
tum kF and the scalar density ρs in symmetric nuclear
matter are defined as

ρB ¼ γ

ð2πÞ3
Z

dkθðkF − jkjÞ ¼ γk3F
3π2

;

ρs ¼
γ

ð2πÞ3
Z

dkθðkF − jkjÞ M�
NðσÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M�2
N ðσÞ þ k2

p ; ð29Þ

where γ ¼ 4 for symmetric nuclear matter. For asymmetric
nuclear matter γ ¼ 2, and the Fermi momenta of the proton
and neutron kp;nF are determined by ρp and ρn, respectively,
with ρB ¼ ρp þ ρn.

In the QMC model [58,65], the nuclear matter is treated
as a collection of nucleons that are assumed to be non-
overlapping MIT bags [66]. The Dirac equations for light
quarks (q ¼ u or d) in the bag are given by

�
iγ · ∂x − ðmq − Vq

σÞ ∓ γ0
�
Vq
ω þ 1

2
Vq
ρ

���
ψuðxÞ
ψ ūðxÞ

�
¼ 0;

�
iγ · ∂x − ðmq − Vq

σÞ ∓ γ0
�
Vq
ω −

1

2
Vq
ρ

���
ψdðxÞ
ψ d̄ðxÞ

�
¼ 0;

ð30Þ

where the effective quark mass m�
q is defined as

m�
q ≡mq − Vq

σ ; ð31Þ

with mq being the light-quark current mass (q ¼ u, d) and
Vq
σ the scalar potential. In this model, we assume the SU(2)

isospin symmetry for the light quarks, which gives
mq ¼ mu ¼ md. In symmetric nuclear matter using the
Hartree approximation, the isospin dependent ρ-meson
mean field yields Vq

ρ ¼ 0 in Eq. (30). The scalar and
vector mean field potentials in nuclear matter are defined as

Vq
σ ≡ gqσσ ¼ gqσhσi; Vq

ω ≡ gqωω ¼ gqωδμ0hωμi: ð32Þ

The bag radius of the hadron h in nuclear medium R�
h is

determined from the hadron mass stability condition
against the variation of the bag radius (to be shown below),
and the eigenenergies in units of 1=R�

h are

�
ϵu

ϵū

�
¼ Ω�

q � R�
h

�
Vq
ω þ 1

2
Vq
ρ

�
;

�
ϵd

ϵd̄

�
¼ Ω�

q � R�
h

�
Vq
ω −

1

2
Vq
ρ

�
: ð33Þ

The effective mass of a hadron in nuclear medium m�
h is

calculated as

m�
h ¼

X
j¼q;q̄

njΩ�
j − zh
R�
h

þ 4

3
πR�3

h B; ð34Þ

while the in-medium bag radius R�
h is determined by the

condition

∂m�
h

∂Rh

����
Rh¼R�

h

¼ 0; ð35Þ

where Ω�
q ¼ Ω�̄

q ¼ ½x2q þ ðR�
hm

�
qÞ2�1=2, m�

q ¼ mq − gqσσ ¼
mq − Vq

σ . In Eq. (34), zh is related with the bag-model
quantity, which is determined by the hadron mass in free
space and the bag pressure B ¼ ð170 MeVÞ4 that is fixed
by the standard QMC model input for the nucleon in
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vacuum, RN ¼ 0.8 fm with mq ¼ 5 MeV [58,65]. For the
quarks inside the bag of the hadron h, the lowest positive
eigenfunctions of the bag satisfy the boundary condition at
the bag surface, j0ðxqÞ ¼ βqj1ðxqÞ, where

βq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω�

q − ðm�
qR�

hÞ
Ω�

q þ ðm�
qR�

hÞ

s
; ð36Þ

with j0 and j1 being the spherical Bessel functions.
The scalar σ and vector ω meson mean fields at the

nucleon level can be related as

ω ¼ gωρB
m2

ω
; ð37Þ

σ ¼ 4gσCNðσÞ
ð2πÞ3m2

σ

Z
dkθðkF − jkjÞ M�

NðσÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M�2

N ðσÞ þ k2
p ; ð38Þ

where CNðσÞ is defined as

CNðσÞ ¼
−1

gσðσ ¼ 0Þ
�∂M�

NðσÞ
∂σ

�
: ð39Þ

For the pointlike nucleon the value of CNðσÞ is unity. The
CNðσÞ and the σ-dependent coupling gσðσÞ are the origin of
the novel saturation properties achieved in the QMCmodel,
and contain the dynamics of quark structure of the nucleon.
The quark structure of the nucleon is reflected in the
effective nucleon mass M�

Nðσ) through a self-consistent
way. By solving the self-consistent equation for the scalar σ
mean field in Eq. (38), the total energy per nucleon is
obtained as

Etot=A ¼ 4

ð2πÞ3ρB

Z
dkθðkF − jkjÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M�2

N ðσÞ þ k2
q

þm2
σσ

2

2ρB
þ g2ωρB

2m2
ω
: ð40Þ

The coupling constants gσ and gω in Eq. (40) are
determined by fitting the binding energy of 15.7 MeV at
the saturation density for symmetric nuclear matter. Results
for the scalar and vector meson coupling constants,
incompressibility, and symmetry energy are listed in
Table II. The resulting quark potentials of Eq. (32) are
shown in Fig. 1.
Referring the further details of the QMC model to

Refs. [28,58,67], we now discuss how the nucleon form
factors in medium are computed based on the QMC model.
Using theG-parity argument (i.e., no second-class current),
the charged weak-interaction vector and axial form factors
for free-space nucleons are defined by

hp0s0jVμ
að0Þjpsi

¼ ūs0 ðp0Þ
�
FW
1 ðq2Þγμ þ i

FW
2 ðq2Þ
2MN

σμνqν

�
τa
2
usðpÞ;

hp0s0jAμ
að0Þjpsi

¼ ūs0 ðp0Þ
�
GAðq2Þγμγ5 þ

GPðq2Þ
2MN

qμγ5

�
τa
2
usðpÞ; ð41Þ

where qμ ¼ p0
μ − pμ, and τa (a ¼ 1, 2, 3) are the Pauli

matrices. The weak-vector form factors FW
1 ðq2Þ and

FW
2 ðq2Þ are respectively assumed to be the same as those

of the EM form factors FEM
1 ðq2Þ and FEM

2 ðq2Þ, since they
are the components of the corresponding isovectors. Then,
FW;EM
1 ðq2Þ and FW;EM

2 ðq2Þ are related to the electricGEðq2Þ
and magnetic GMðq2Þ Sachs form factors as

GEðq2Þ ¼ FW;EM
1 ðq2Þ þ q2

4M2
N
FW;EM
2 ðq2Þ;

GMðq2Þ ¼ FW;EM
1 ðq2Þ þ FW;EM

2 ðq2Þ: ð42Þ

The induced pseudoscalar form factor GPðq2Þ is domi-
nated by the pion pole and can be calculated using the

TABLE II. Results for the coupling constants and the sym-
metric nuclear matter properties at saturation density
ρ0 ¼ 0.15 fm−3. The current quark mass (mq), effective nucleon
mass (m�

N), the nuclear incompressibility (K), and the nuclear
symmetry energy (Esym) are in units of MeV. We use RN ¼
0.8 fm (input) which is a standard value of the free nucleon bag
radius in the QMC model.

mq g2σ=4π g2ω=4π m�
N K Esym

5.0 5.393 5.305 754.5 279.3 35.0
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FIG. 1. Quark potentials for Vq
σ (solid line) and Vq

ω (dashed
line) in symmetric nuclear matter for the current quark mass
mq ¼ 5 MeV.
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partially conserved axial current (PCAC) relation [68,69].
Nevertheless, the contribution from GPðq2Þ to the cross
section is proportional to ðleptonmassÞ2=M2

N . Therefore,
this contribution is small and will be neglected throughout
the present calculation.
For estimating the in-medium modifications of the

nucleon form factors, we consider the rest frame of nuclear
medium. The in-medium nucleon form factors are calcu-
lated in the Breit frame [60,70] using the improved cloudy
bag model (ICBM) of Ref. [71] and the QMCmodel, which
gives

G�QMC
E;M;Aðq2Þ ¼

�
M�

N

E�
N

�
2

G�sph
E;M;Aðq̃2Þ; ð43Þ

where q̃2 ¼ ðM�
N=E

�
NÞ2q2 and the subscripts of E, M, A

mean electric, magnetic, and axial-vector form factors,
respectively. The multiplication factor ðM�

N=E
�
NÞ2 origi-

nates from the Lorentz contraction. The in-medium
nucleon energy is defined as E�

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M�2

N ðσÞþq2=4
p

, and
Gsph

E;M;Aðq2Þ are the form factors calculated with the static
spherical MIT bag quark wave functions of nucleons [71],
applied in nuclear medium using the in-medium properties/
inputs calculated by the QMCmodel. The ICBM includes a
Peierls-Thouless projection to account for center-of-mass
and recoil corrections as well as the Lorentz contraction of
the internal quark wave function. Note that the operators
calculated in the QMC model are one-body nucleon
operators acting on the nucleons with the in-medium
modified quark wave functions that reflect the changes
of the internal structure of the nucleon. Therefore, many-
body operators including two-body operators arising from
meson exchange are not explicitly included, although they
can add extra contributions.
The ratios of the in-medium to free-space nucleon form

factors G�QMC
E;M;A=ðGICBM

E;M;AÞfree are then calculated so that the
in-medium nucleon form factors can be estimated. We use
these ratios to get the in-medium nucleon form factors
using the empirical form factors extracted in free space. By
making use of the empirical parametrizations in free space
Gemp

E;M;A, the in-medium nucleon form factors G�
E;M;Aðq2Þ

can be estimated by

G�
E;M;Aðq2Þ ¼

�
G�QMC

E;M;Aðq2Þ
ðGICMB

E;M;AÞfreeðq2Þ
�
Gemp

E;M;Aðq2Þ: ð44Þ

Note that the pion cloud effect is not taken into account in
calculating the axial-vector form factor. However, the
normalized q2 dependence reproduces relatively well the
empirical parametrization in free space [60]. Furthermore,
the relative modification of G�

Aðq2Þ due to the pion cloud is
expected to be small because the pion cloud contribution to
gA, which is GAðq2 ¼ 0Þ, without specific center-of-mass
corrections [68,69], is small. For our numerical calculations,

as already mentioned, we use the current quark mass mu ¼
md ¼ 5 MeVassuming the SU(2) isospin symmetry and the
free-space nucleon bag radius RN ¼ 0.8 fm. These values
are considered to be standard in the QMC model
[28,58,65,67]. The ratios of the in-medium to free-space
nucleon form factors are then obtained as shown in Fig. 2 as
functions of ρB=ρ0. It would be worthwhile to emphasize
again that the form factor ratios presented in Fig. 2 are
calculated based on the quark substructure of nucleons.
It should be noted that the counter effect of the weak
magnetism FW

2 [8], which makes the NMFP shorter by
enhancing cross sections, turns out to give much smaller
contribution than that of GA.
We also confirmed that, contrary to the low Q2 region of

our interests, the ratio of the in-medium to free-space
nucleon axial-vector form factors at high Q2 does not show
significant quenching. In fact, the QMC model predicts
small quenching even at Q2 ¼ 2 GeV2 [60] and it becomes
almost negligible atQ2 ¼ 3 GeV2. However, sinceGAðQ2Þ
at large Q2 is much smaller than that at small Q2, the
scattering cross sections are dominated by the kinematic
region of low Q2.

V. NUMERICAL RESULTS AND DISCUSSIONS

We calculate the differential cross sections of neutrino
scatterings with the constituents of matter at zero temper-
ature as functions of the energy transfer q0 at jqj ¼
2.5 MeV with the initial neutrino energy Eν ¼ 5 MeV,
which is the typical kinematics for the cooling phase of a
neutron star [72]. Our numerical results are shown in Fig. 3,
which shows the total sum of the differential cross sections
in vacuum (thin solid lines) and those in nuclear medium
(thick solid lines) as well as the contributions from each
target to the total sum of the differential cross sections (see
the caption of Fig. 3 for details). In the present calculation,
we set the charge radius of the neutrino RV;A ¼ 0 and
neutrino magnetic moment μν ¼ 0 in order to focus on the

FIG. 2. Ratios of the in-medium to free-space nucleon weak
and EM form factors at q2 ¼ 0 versus ρB=ρ0 with ρ0 ¼
0.15 fm−3.

HUTAURUK, OH, and TSUSHIMA PHYS. REV. D 98, 013009 (2018)

013009-8



different role of the nucleon form factors in vacuum and in
medium. Also, when there is no neutrino trapping, the
contribution of the neutrino form factors is too small
compared to that of the nucleon form factors [40].
Therefore, it does not give any visible effects in differential
cross sections of neutrino scatterings, and we can safely
neglect these effects in the estimation of the neutrino mean
free path.
In Fig. 3, we present the results for the neutrino

scattering cross sections with ρB ¼ 0.5ρ0, ρB ¼ 1.0ρ0,
ρB ¼ 1.5ρ0, ρB ¼ 2.0ρ0, ρB ¼ 2.5ρ0, and ρB ¼ 3.0ρ0. In
the case that the baryon density is lower than the normal
nuclear matter density such as ρB ¼ 0.5ρ0, the nucleon
effective mass M�

N is not so much reduced from the free-
space nucleon massMN , namely,M�

N ≈MN . Consequently,
this constrains the kinematic range of the energy transfer q0
for the nucleon. Since qmax

0 is given by

qmax
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M�2

N þ ðpF þ jqjÞ2
q

− EF

≃
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðM�
N=pFÞ2 þ 1

p jqj; ð45Þ

the maximum value of q0 increases as M�
N decreases at a

given value of the Fermi momentum pF [49,73]. This
kinematic cutoff is responsible for the sharp peak structure
of the differential cross sections of the neutrino scattering
with the target nucleon. At this low density, the fractions of
the electron and muon scatterings with neutrinos are very

small, and their masses are smaller than their Fermi

momenta pðμ;eÞ
F , which implies qmax

0 ≃ jqj. Therefore, the
range of q0 is larger than that of nucleon targets.
The main effect of the in-medium nucleon weak and EM

form factors is to suppress the neutrino-nucleon differential
cross sections compared to those calculated with the free-
space nucleon form factors. Because the weak interaction
cross section has the dominant contributions from the
vector (FW

1 ) and (more dominant) axial-vector (GA) form
factors [48,74], the quenching of GA in medium gives a
larger impact on the reduction of the total differential cross
section. As a result, the shape and magnitude of the
differential cross section depend on the modification of
the form factors. For baryon density ρB ¼ 1.0ρ0 and higher,
the quenching of the axial-vector coupling constant gives
more impacts and the differential cross sections of both the
neutrino-neutron and neutrino-proton scatterings decrease
accordingly. The effect of the in-medium nucleon weak and
EM form factors on the differential cross section is more
pronounced at higher baryon density. In addition, the range
of the energy transfer q0 widens at higher density because
the effective nucleon mass becomes smaller. Our results for
ρB ¼ 1.0ρ0 are presented in Fig. 3(b). The results for
baryon densities above the normal nuclear matter density
are shown in Figs. 3(c)–3(f). One can verify that the impact
of the in-medium nucleon weak and EM form factors is
pronounced at higher densities.
To study the impact of the in-medium nucleon weak and

EM form factors, we calculate the NMFP for both cases

(a) (b) (c)

(d) (e) (f)

FIG. 3. Differential cross sections of neutrino scatterings with the constituents of matter as functions of q0 at the three-momentum
transfer jqj ¼ 2.5 MeV, and Eν ¼ 5 MeV for (a) ρB ¼ 0.5ρ0, (b) ρB ¼ 1.0ρ0, (c) ρB ¼ 1.5ρ0, (d) ρB ¼ 2.0ρ0, (e) ρB ¼ 2.5ρ0, and
(f) ρB ¼ 3.0ρ0. The thick-solid, thick-long-dashed, thick-short-dashed, thick-dash-dotted and thick-dotted lines are respectively the
differential cross sections for total pþ nþ eþ μ, neutron n, proton p, electron e, and muon μ obtained with the in-medium nucleon
form factors, while the corresponding thinner lines are those obtained with the free-space nucleon form factors. Note that, for the
electron e and muon μ cases, the lines are nearly degenerate for the results obtained with the in-medium nucleon form factors and those
obtained with the free-space ones, and difficult to distinguish.
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with the vacuum and in-medium form factors. Figure 4
shows the NMFP with the free-space nucleon form factors
(dashed line) and that with the in-medium modified
nucleon form factors (solid line) at jqj ¼ 2.5 MeV and
Eν ¼ 5 MeV. As expected, the NMFP becomes longer by
the in-medium modifications of the nucleon weak and EM
form factors. Our results show that the in-medium mod-
ifications of the nucleon form factors increases the NMFP
by 10%–40%. This causes a faster cooling of neutron stars,
since it makes it easier for neutrinos to escape from the
nuclear medium.
Our results show that the interactions between the

neutrino and nucleons in nuclear medium become weaker
than those in free space. Although the nucleon weak and
EM form factors at q2 ¼ 0, i.e., FW

2 ð0Þ and FEM
2 ð0Þ,

respectively, are enhanced in nuclear medium, the
quenched axial-vector coupling constant G�

Að0Þ gives a
dominant contribution to reduce the cross section, which
results in the enhancement of NMFP.

VI. SUMMARY

To summarize, we have studied the impact of the in-
medium modifications of the nucleon weak and electro-
magnetic form factors on the neutrino scattering in the
calculation of differential cross sections and the neutrino
mean free path in dense matter using the results from a
relativistic mean field model. The in-medium nucleon
form factors are estimated by the quark-meson coupling
model that is based on the quark degrees of freedom of the
nucleon and nuclear matter enjoying successful applica-
tions to describing the hadron and nuclear properties in
nuclear medium.

The differential cross sections of the neutrino scatterings
with the constituents of cold matter were found to slowly
decrease with increasing baryon density, which results in
the increase of the neutrino mean free path. This feature is
sensitive to the in-medium modifications of the nucleon
weak and electromagnetic form factors (in particular, that
of the axial-vector form factor), and that the effect is
pronounced for higher baryon densities. The increases of
the neutrino mean free path are estimated to be about
10%–40% compared with the results obtained with the
free-space nucleon form factors. This suggests that the
cooling of a neutron star due to the escape of neutrinos is
faster than the expectation based on the previous calcu-
lations using the free-space nucleon weak and electro-
magnetic form factors. The impact of this observation on
supernova explosion may be studied by developing more
realistic simulations [29,30] by including the medium
effects.
As baryon density increases, hyperons such as Λ, Σ, and

Ξ are expected to appear in the nuclear medium [51,75–78].
Since the interactions of the neutrino with hyperons are
different from those with nucleons, it would be interesting
to investigate the effects of the in-medium weak and
electromagnetic form factors of hyperons for estimating
the neutrino mean free path. Inclusion of hyperon compo-
sition in matter and their in-medium form factors should
give a more realistic description of the neutrino scattering
with matter produced in the neutron star and is expected to
change the fractions of matter composition.
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