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We revisit the extraction of the triple electroweak gauge boson couplings from the Large Hadron
Collider Run I data on the WþW− and W�Z productions when the analysis also contains additional
operators that modify the couplings of the gauge bosons to light quarks and the gauge boson self-energies.
We work in the framework of effective Lagrangians where we consider dimension-six operators
and perform a global fit to consistently take into account the bounds on these additional operators
originating from the electroweak precision data. We show that the constraints on the Wilson coefficients
fB=Λ2 and fW=Λ2 are modified when we include the additional operators while the limits on fWWW=Λ2

remain unchanged.
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I. INTRODUCTION

The CERN Large Hadron Collider (LHC) has already
accumulated an impressive amount of data that allow for
precise tests of the Standard Model (SM), as well as, a
plethora of searches for physics beyond the standard model.
Moreover, the discovery of a new state [1,2], probably the
Higgs boson predicted by the SM, was the first step towards
the direct exploration of the electroweak symmetry break-
ing sector.
Within the framework of the SM, the trilinear and quartic

vector-boson couplings are completely determined by the
SUð2ÞL ⊗ Uð1ÞY gauge symmetry. Therefore, the scrutiny
of these interactions can either lead to an additional con-
firmation of the SMor give some hint of the existence of new
phenomena at a higher scale. The triple gauge couplings
(TGC) were for the first time directly probed at LEP2 [3]. At
the LHC the largest available center-of-mass energy allows
for further tests of TGC. In fact, the ATLAS and CMS
collaborations’ studies of the WþW− [4,5] and W�Z [6,7]
productions were already used to constrain the TGC.

The combined analysis of the LHC Run I production of
electroweak gauge bosonpairs performed inRef. [8] showed
that the TGCmeasurement is already dominated by the LHC
data with better precision than the previous results from
LEP2 [3]. Furthermore, the analyses of the Higgs boson
properties in the framework of dimension-six effective
operators can indirectly shed light on TGC [9,10] by
improving the accuracy of the TGC determination [11–16].
Recently, the authors of Refs. [17,18] discussed that

changes in the couplings of gauge bosons to fermions, even
within the constraints of electroweak precision data
(EWPD), could lead to modifications of the kinematical
distributions in gauge boson pair production of comparable
size to the ones stemming from the purely anomalous TGC.
This motivates us to revisit the analyses of the LHC Run I
data on the leptonic WþW− and W�Z productions to
quantify the impact of anomalous couplings of gauge
bosons to fermion pairs on the TGC bounds when con-
sistently including in the statistical analysis the EWPD that
comprise Z peak observables [19], W observables [20] and
the Higgs mass [21].
We work in the framework of effective Lagrangians

parametrizing the departures from the SM by dimension-six
operators. Altogether, as described in Sec. II, the combined
analysis of Run I and EWPD data comprises a total of 11
operators of which a subset of nine enter the gauge boson
pair production at the LHC via modifications of the TGC,
of the gauge boson couplings to fermions, as well as,
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contributions to the oblique parameters. Section III con-
tains the details of our analyses while our results are
presented in Sec. IV. They show that the largest impact on
the LHC Run I constraints on TGC is on the operator OB
for which its 95% C.L. allowed range shifts and it also
becomes ∼30% wider. The impact on OW is somewhat
smaller while the constraints on OWWW are not affected by
the inclusion of the additional operators. We summarize
and discuss our results in Sec. V.

II. DIMENSION-SIX OPERATORS

In this work we are interested in deviations from
the Standard Model relevant to gauge boson pair produc-
tion at the LHC. We parametrize those in terms of higher-
dimension operators as

Leff ¼ LSM þ
X
n>4;j

fn;j
Λn−4 On;j; ð2:1Þ

where theOn;j operators are linearly invariant under the SM
gauge group SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1ÞY . Here we assume
C and P conservation. The first operators that impact the
LHC physics are of n ¼ 6, i.e., dimension six. The most
general dimension-six operator basis respecting the SM
gauge symmetry, as well as baryon and lepton number
conservation, contains 59 independent operators, up to flavor
and Hermitian conjugation [22,23]. Since the S-matrix
elements are unchanged by the use of the equations of
motion (EOM), there is a freedom in the choice of basis [24–
27]. Here we work in that of Hagiwara, Ishihara, Szalapski,
and Zeppenfeld [28,29] for the pure bosonic operators.

A. Bosonic operators

There are nine C- and P-conserving dimension-six
operators in our basis involving only bosons that take part
at tree level in two-to-two scattering of gauge and Higgs
bosons after we employ the EOM to eliminate redundant
operators [30]. Of those, five contribute to electroweak

gauge boson pair production at LHC after finite renorm-
alization effects are accounted for. In particular there is just
one operator that contains exclusively gauge bosons

OWWW ¼ Tr½Ŵν
μŴ

ρ
νŴ

μ
ρ�: ð2:2Þ

In addition there are four dimension-six operators that
include Higgs and electroweak gauge fields

OW ¼ðDμΦÞ†ŴμνðDνΦÞ; OB ¼ðDμΦÞ†B̂μνðDνΦÞ;
OBW ¼Φ†B̂μνŴ

μνΦ; OΦ;1¼ðDμΦÞ†ΦΦ†ðDμΦÞ:
ð2:3Þ

Here Φ stands for the Higgs doublet and σa are the
Pauli matrices. We have also adopted the notation
B̂μν ≡ iðg0=2ÞBμν and Ŵμν ≡ iðg=2ÞσaWa

μν, with g and g0

being the SUð2ÞL andUð1ÞY gauge couplings respectively.
The first three operators in Eqs. (2.2) and (2.3) directly

modify the TGC, thus, affecting the ff̄ → VV scattering,
where V stands for the electroweak gauge bosons. On the
other hand, the operator OBW (OΦ;1) is associated with the
S (T) oblique parameter and is constrained by the EWPD.
However, these operators also modify the TGC once the
Lagrangian is canonically normalized.

B. Operators with fermions

Our operator basis contains 40 independent fermionic
operators, barring flavor indices, that conserve C, P and
baryon number and that do not involve gluon fields. Of
these operators there are 28 of them that do not take part in
our analyses since they either modify Higgs couplings to
fermions or are contact interactions. Moreover, we also do
not consider six that give rise to dipole interactions for the
gauge bosons. Therefore, the operators that contribute to
the processes analyzed here are

Oð1Þ
ΦL;ij ¼ Φ†ðiD↔μΦÞðL̄iγ

μLjÞ; Oð3Þ
ΦL;ij ¼ Φ†ðiD↔a

μΦÞðL̄iγ
μTaLjÞ;

Oð1Þ
ΦQ;ij ¼ Φ†ðiD↔μΦÞðQ̄iγ

μQjÞ; Oð3Þ
ΦQ;ij ¼ Φ†ðiD↔a

μΦÞðQ̄iγ
μTaQjÞ;

Oð1Þ
Φu;ij ¼ Φ†ðiD↔μΦÞðūRi

γμuRj
Þ; Oð1Þ

Φd;ij ¼ Φ†ðiD↔μΦÞðd̄Ri
γμdRj

Þ;

Oð1Þ
Φud;ij ¼ Φ̃†ðiD↔μΦÞðūRi

γμdRj
þ H:c:Þ; Oð1Þ

Φe;ij ¼ Φ†ðiD↔μΦÞðēRi
γμeRj

Þ; ð2:4Þ

wherewe defined Φ̃¼iσ2Φ�,Φ†D
↔

μΦ¼Φ†DμΦ−ðDμΦÞ†Φ
and Φ†D

↔a
μΦ ¼ Φ†TaDμΦ − ðDμΦÞ†TaΦ with Ta ¼ σa=2.

We have also used the notation ofL for the lepton doublet,Q
for the quark doublet and fR for the SUð2ÞL singlet
fermions, where i, j are family indices.
In order to avoid the existence of blind directions [31,32]

in the analyses of the EWPD we use the freedom associated

with the use of EOM to remove from our basis the
following combination of operators [30]:

X
i

Oð1Þ
ΦL;ii; and

X
i

Oð3Þ
ΦL;ii: ð2:5Þ

Furthermore, to prevent the generation of too large flavor
violation, in what follows we assume no generation mixing
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in the above operators. For the same reason we will
work under the assumption that the coefficient of the

potential source of additional flavor violation, Oð1Þ
Φud;ij, is

suppressed and can be neglected.1 Also for simplicity
we consider the operators to be generation independent.

In this case the operators Oð1Þ
ΦL and Oð3Þ

ΦL are removed by
the use of the EOM. Therefore, in our basis, only the

operator Oð1Þ
Φe;ij modifies the Z coupling to leptons, while

there are additional contributions to the Z–quark pair

vertices originating from Oð1Þ
Φu;ij, Oð1Þ

Φd;ij, Oð1Þ
ΦQ;ij, and

Oð3Þ
ΦQ;ij. Moreover, the W coupling to fermions receives

extra contributions from Oð3Þ
ΦQ;ij and Oð1Þ

Φud;ij.

The operators OBW , OΦ;1, Oð1Þ
ΦQ, Oð3Þ

ΦQ, Oð1Þ
ΦQ, Oð1Þ

Φu,

Oð1Þ
Φd, and Oð1Þ

Φe can be bounded by the EWPD, in
particular from Z-pole and W-pole observables [33].
In this work we focus on fermionic operators most
relevant for gauge boson pair production at the LHC
which are those leading to modifications of the quark
couplings to gauge bosons and we will not consider

Oð1Þ
Φe in our TGC analysis but it is kept in the EWPD

studies. Furthermore, for completeness, we also include
the effect of the dimension-six four-fermion operator
contributing with a finite renormalization to the Fermi
constant

OLLLL ¼ ðL̄γμLÞðL̄γμLÞ: ð2:6Þ

Altogether the effective Lagrangian considered in this
work reads

Leff ¼LSMþfWWW

Λ2
OWWWþfW

Λ2
OWþfB

Λ2
OB

þfBW
Λ2

OBWþfΦ;1

Λ2
OΦ;1þ

fð1ÞΦQ

Λ2
Oð1Þ

ΦQþ
fð3ÞΦQ

Λ2
Oð3Þ

ΦQ

þfð1ÞΦu

Λ2
Oð1Þ

Φuþ
fð1ÞΦd

Λ2
Oð1Þ

Φdþ
fð1ÞΦe

Λ2
Oð1Þ

Φeþ
fLLLL
Λ2

OLLLL:

ð2:7Þ

C. Lorentz- and Uð1Þem-invariant parametrization

After accounting for finite renormalization effects,
the part of the Lagrangian (2.7) relevant for our
analyses can be cast in a Lorentz- and Uð1Þem-invariant
form as

ΔLf;V ≡ −ieΔκγWþ
μ W−

ν γ
μν −

ieλγ
2M2

W
Wþ

μνW−νργρ
μ

−
iecWλZ
2M2

W
Wþ

μνW−νρZρ
μ − iecWΔκZWþ

μ W−
ν Zμν

− iecWΔgZ1 ðWþ
μνW−μZν −Wþ

μ ZnνW−μνÞ
−

e
sWcW

Zμ

X
f

ψ̄fγμ½ΔgfLPL þ ΔgfRPR�ψf

−
effiffiffi
2

p
sW

½Wþ
μ ðψ̄uγμΔgudWLPLψ

d

þ ψ̄νγμΔgeνWLPLψ
eÞ þ H:c:�; ð2:8Þ

where PL;R are the chirality projectors. The TGC
effective couplings are

Δκγ ¼
e2v2

8s2WΛ2
ðfW þ fB − 2fBWÞ;

ΔgZ1 ¼ e2v2

8s2Wc
2
WΛ2

�
fW þ 2s2W

c2θW
fBW

�
−

1

4c2θW

v2

Λ2
fΦ;1;

ΔκZ ¼ ΔgZ1 −
s2W
c2W

Δκγ;

λγ ¼ λZ ¼ 3e2M2
W

2s2WΛ2
fWWW; ð2:9Þ

where cW (sW) stands for the cosine (sine) of the weak
mixing angle and c2θW is the cosine of twice this angle.
Notice that there are only three independent TGC due to
the linear realization of the SUð2ÞL ⊗ Uð1ÞY symmetry
in the dimension-six operators. The effective couplings
of the fermions can be written as

ΔgfL;R ¼ gfL;RΔg1 þQfΔg2 þ Δg̃fL;R;

Δgff
0

WL ¼ ΔgW þ Δg̃ff
0

WL; ð2:10Þ

where gfL ¼ Tf
3 − s2WQ

f and gfR ¼ −s2WQf are the SM
couplings. The first contributions to these anomalous
couplings originate from finite renormalizations due to
OBW and OΦ;1

Δg1 ¼
1

2
ðαTÞ; Δg2 ¼

sW2

c2θW
ðc2WðαTÞ −

1

4sW2
αSÞ;

ΔgW ¼ c2W
2c2θW

αT −
1

4c2θW
αS; ð2:11Þ

with the oblique parameters given by

αS ¼ −e2
v2

Λ2
fBW; αT ¼ −

1

2

v2

Λ2
fΦ;1: ð2:12Þ

The fermionic dimension-six operators in Eq. (2.7) give
rise to additional contributions

1This operator contributes only to the right-handed coupling of
theW, and therefore it does not interfere with the SM amplitudes
and, at linear order, is not constrained by the EWPD.
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Δg̃uL¼−
v2

8Λ2
ð4fð1ÞΦQ−fð3ÞΦQÞ; Δg̃uR¼−

v2

2Λ2
fð1ÞΦu;

Δg̃dL¼−
v2

8Λ2
ð4fð1ÞΦQþfð3ÞΦQÞ; Δg̃dR¼−

v2

2Λ2
fð1ÞΦd;

Δg̃udWL¼
v2

4Λ2
fð3ÞΦQ; Δg̃eR¼−

v2

2Λ2
fð1ÞΦe: ð2:13Þ

The anomalous TGC and gauge boson interactions with
quarks modify the high-energy behavior of the scattering of
quark pairs into two electroweak gauge bosons since the
anomalous interactions can spoil the cancellations built into
the SM. For the WþW− and W�Z channels the leading
scattering amplitudes in the helicity basis are

Aðd−d̄þ→Wþ
0 W

−
0 Þ

¼ i
s
Λ2

sinθ

�
−

g2

24c2W
ð3c2WfW−s2WfBÞþ

1

4
ðfð3ÞΦQ−4fð1ÞΦQÞ

�
;

ð2:14Þ

Aðd−d̄þ → Wþ
�W

−
�Þ ¼ −i

s
Λ2

sin θ
3g4

8
fWWW; ð2:15Þ

Aðdþd̄−→Wþ
0 W

−
0 Þ¼−i

s
Λ2

sinθ

�
g2s2W
12c2W

fBþfð1ÞΦd

�
;

ð2:16Þ

Aðu−ūþ→Wþ
0 W

−
0 Þ

¼ i
s
Λ2

sinθ

�
g2

24c2W
ð3c2WfW þ s2WfBÞ−

1

4
ðfð3ÞΦQþ4fð1ÞΦQÞ

�
;

ð2:17Þ

Aðuþū−→Wþ
0 W

−
0 Þ¼ i

s
Λ2

sinθ

�
g2s2W
6c2W

fB−fð1ÞΦu

�
; ð2:18Þ

Aðu−ūþ →Wþ
�W

−
�Þ¼Aðd−ūþ →Z�W−

�Þ

¼ i
s
Λ2

sinθ
3g4

8
fWWW; ð2:19Þ

Aðd−ūþ → W−
0Z0Þ ¼ i

s
Λ2

sin θ

�
g2

4
ffiffiffi
2

p fW −
1

2
ffiffiffi
2

p fð3ÞΦQ

�
;

ð2:20Þ
where s stands for the center-of-mass energy and θ is the
polar angle in the center-of-mass frame.
We notice that the leptonic operator Oð1Þ

Φe does not
contribute to the gauge boson production amplitudes at
the LHC. It only contributes to the decay rate of the Z boson
in the ZW channels and in the narrow-width approximation
its effect is subdominant. Wewill not consider it in the TGC
analysis but it is kept in the EWPD analysis.

III. ANALYSIS FRAMEWORK

In order to constrain the parameters in the effective
Lagrangian in Eq. (2.7) we study the WþW− and W�Z
productions in the leptonic channel since these are the
measurements with the highest sensitivity for charged triple
gauge boson vertices. In doing so we consider the same
kinematic distributions employed by the experiments for
their anomalous gauge boson coupling analyses which
allows us to validate our results against the bounds obtained
by the experiments in each of the final states. More
specifically, the channels that we analyze and their kin-
ematical distributions are

Channel (a) Distribution # bins (Nb) Data set σsig σbck σi;unc

WW → lþl0− þ =ETð0jÞ pleading;lepton
T

3 ATLAS 8 TeV, 20.3 fb−1 [4] 0.049 0.02 0.08–0.14
WW → lþlð0Þ− þ =ETð0jÞ mllð0Þ 8 CMS 8 TeV, 19.4 fb−1 [5] 0.069 0.02 0.01–0.08
WZ → lþl−lð0Þ� mWZ

T 6 ATLAS 8 TeV, 20.3 fb−1 [6] 0.1 0.02 0.12–0.18
WZ → lþl−lð0Þ� þ =ET Z candidate pll

T 10 CMS 8 TeV, 19.6 fb−1 [7] 0.15 0.02 0.15–0.25

For each experiment and channel, we extract from the
experimental publications the observed event rates in each
bin, Na

i;d, as well as the background expectations N
a
i;bck, and

the SM WþW− (W�Z) predictions, Na
i;sm.

The procedure to obtain the relevant kinematical dis-
tributions predicted by Eq. (2.7) is as follows. First we
simulate the WþW− and W�Z productions using
MADGRAPH5 [34] with the UFO files for our effective
Lagrangian generated with FEYNRULES [35,36]. We

employ PYTHIA6.4 [37] to perform the parton shower,
while the fast detector simulation is carried out with
DELPHES [38]. In order to account for higher-order cor-
rections and additional detector effects we simulate SM
WþW− and W�Z productions in the fiducial region
requiring the same cuts and isolation criteria adopted by
the corresponding ATLAS and CMS studies, and normalize
our results bin by bin to the experimental collaboration
predictions for the kinematical distributions under consid-
eration. Then we apply these correction factors to our
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simulated WV distributions in the presence of the anoma-
lous couplings. This procedure yields our predicted number
of signal events in each bin i for the “a” channel, Na;nosys

i;sig .
The statistical confrontation of these predictions with the

LHC Run I data is made by means of a binned log-
likelihood function based on the contents of the different
bins in the relevant kinematical distribution of each
channel. Depending on the number of data events in the
bin we use a Poissonian or a Gaussian probability dis-
tribution for its statistical error. In constructing the log-
likelihood function we simulate the effect of the systematic
and theoretical uncertainties by introducing two sets of
pulls: two that globally affect the predictions of the event
rates in all bins in fully correlated form (which parametrize,
among others, the luminosity uncertainty, and theoretical
errors on the total cross section for the process and its
backgrounds), and Na

b independent pulls, one per bin, to
account for the bin-uncorrelated errors arising from the
theoretical errors affecting the distributions, experimental
energy resolutions and, in general, any energy and/or
momentum dependence of the uncertainties. With this,
the number of predicted events in bin i for channel a is
Na

i ¼ ½ð1þξasigÞð1þξai;uncÞNa;nosys
i;sig þð1þξabckÞNa

i;bck�. The
errors of these pulls are introduced as Gaussian bias in
the log-likelihood functions and are extracted from the
information given by the experiments. For completeness
they are reported in the table above.
In order to validate our simulation we obtain first the

95% C.L. allowed regions for the TGC for each channel
and experiment under the same assumptions the collabo-
ration used. For example, we present in Fig. 1 our two-
dimensional allowed regions using the ATLASWþW− data
and assuming that the only nonvanishing Wilson coeffi-
cients are fWWW , fW and fB, with two of them different
from zero at a time, as in the ATLAS analysis. As seen in
the figure, our results for the 95% C.L. allowed region (blue
region) agree well with the one obtained by ATLAS, whose
border is represented by the black curve.

When including the effect of the additional operators we
must also account for their contribution to the EWPD. Our
construction of the χ2 function for the EWPD follows the
analysis in Ref. [33] to which we refer the reader for details.
In brief in our EWPD analysis we fit 15 observables of
which 12 are Z observables [19]:

ΓZ; σ0h; AlðτpolÞ; R0
l; AlðSLDÞ;

A0;l
FB; R0

c; R0
b; Ac; Ab; A0;c

FB; and

A0;b
FBðSLD=LEP-IÞ;

complemented by three W observables

MW; ΓW and BrðW → lνÞ

that are, respectively, its average mass taken from Ref. [39],
its width from LEP2/Tevatron [20], and the leptonic W
branching ratio for which the average in Ref. [39] is
considered. The correlations among these inputs were
presented in Ref. [19] and we take them into consideration
in the analyses. The SM predictions and their uncertainties
due to variations of the SM parameters were extracted
from Ref. [40].
Altogether we construct a combined χ2 function

χ2LHC−RIþEWPD ≡ χ2LHC−RIðfW; fB; fWWW; fBW; fΦ;1; f
ð1Þ
ϕ;Q;

fð3Þϕ;Q; f
ð1Þ
ϕ;u; f

ð1Þ
ϕ;dÞ

þ χ2EWPDðfBW; fΦ;1; f
ð1Þ
ϕ;Q; f

ð3Þ
ϕ;Q; f

ð1Þ
ϕ;u;

fð1Þϕ;d; f
ð1Þ
ϕ;e; fLLLLÞ; ð3:1Þ

from which we derive the allowed ranges for each coef-
ficient or pair of coefficients after marginalization over all
the others.
Finally, for comparison, we also consider the constraints

from the LEP2 global analysis of TGC [3]. In order to do so
we follow the procedure in Ref. [8] and construct a
simplified Gaussian χ2LEP2 using the central values, σ and
the correlation matrix for the couplings Δg1Z, Δκγ and λ and
their correlation coefficients from the final combined LEP2
analysis in Ref. [3] (reproduced in Table I for complete-
ness) which was performed in terms of these effective TGC

FIG. 1. Allowed regions in the planes fB=Λ2 ⊗ fWWW=Λ2 (left
panel) and fB=Λ2 ⊗ fW=Λ2 (right panel) at 1σ, 95%, 99%, and
3σ C.L. The black line stands for the border of the 95% C.L.
allowed region obtained by ATLAS [4].

TABLE I. ΔgZ1 , Δκγ and λ central values, standard deviations
and correlation coefficients from LEP2 [3].

LEP

68% C.L. Correlations

ΔgZ1 0.051þ0.031
−0.032 1.00 0.23 −0.30

Δκγ −0.067þ0.061
−0.057 0.23 1.00 −0.27

λ −0.067þ0.036
−0.038 −0.30 0.27 1.00

EFFECT OF FERMIONIC OPERATORS ON THE GAUGE … PHYS. REV. D 98, 013006 (2018)

013006-5



coefficients under the relations implied by the dimension-
six effective operator formalism for TGC. We notice,
however, that in extracting those bounds on the effective
TGC couplings, the LEP collaborations did not include the
effect of fermion operators. For that reason the combination
of those LEP2 bounds with our LHC Run I data and EWPD
is only shown for the purpose of illustration.

IV. BOUNDS ON TRIPLE GAUGE BOSON
INTERACTIONS

We start by showing the results of our analysis in terms of
the allowed ranges for the Wilson coefficients of the three
“canonical” TGC operators, fWWW=Λ2, fW=Λ2 and fB=Λ2.
We depict first in Fig. 2 the 95% C.L. (two d.o.f.) allowed
regions in the planes fB=Λ2 ⊗ fW=Λ2, fWWW=Λ2 ⊗
fB=Λ2 and fWWW=Λ2 ⊗ fW=Λ2 for the WþW− and W�Z
channels and for ATLAS and CMS, as well as the combi-
nation of these results. In order to assess the impact of
additional operators in the TGC extraction at the LHC we
first perform the “standard” analysis by fitting just these
three coefficients, and setting the coefficients of all other
operators to zero. The corresponding allowed regions are

shown in the left panels after marginalizing over the third
coefficient which is not displayed. Conversely the results of
the global analysis of the LHC Run I data together with
EWPD performed in terms of 11 nonzero Wilson coeffi-
cients [see Eq. (2.7)] are shown in the right panels. These
regions are obtained after marginalization over the 9 undis-
played coefficients.
One salient feature of Fig. 2 is that the W�Z bounds on

the Wilson coefficient fB=Λ2 are much looser than the ones
on fW=Λ2 and fWWW=Λ2, as expected, because OB does
not contribute to the leading term of the growth of the
scattering amplitudes; see Eqs. (2.14)–(2.20).
For better comparison of the results obtained with and

without including the additional operators we overlay in
Fig. 3 the 1σ and 95% C.L. allowed regions obtained
combining all channels and experiments for the two
scenarios. As we can see from this figure the addition of
more parameters leads to the expansion of the allowed
regions, as expected. Moreover, the region of fB=Λ2

suffers the largest shift towards positive values of this
parameter while there is a small shift in the fW=Λ2

direction and there is no appreciable displacement along
the fWWW=Λ2 axis.

FIG. 2. Allowed 95% C.L. regions in the planes fWWW=Λ2 ⊗ fB=Λ2 (top row), fB=Λ2 ⊗ fW=Λ2 (middle row) and fWWW=Λ2 ⊗
fW=Λ2 (lower row) for the different channels as labeled in the figure. In the left panels only fWWW, fW and fB are considered nonzero in
the fit, while the right panels display the result from the 11-parameter fit. In each case we marginalize over the undisplayed nonzero
variables.
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The corresponding dependence of the Δχ2 for the two
analyses with each of the three coefficients is given in Fig. 4
and from those we read the 95% C.L. one-dimensional
allowed ranges for each coefficient given in Table II. As
seen above, the Δχ2 distribution for fB=Λ2 (fW=Λ2)
broadens and shifts to positive (negative) values when
we compare the results considering only the LHC Run I
data and three canonical parameters (solid black line) with
the one containing additional operators also constrained by
the EWPD (solid blue line). Quantitatively the effect is
slightly larger for fB=Λ2 whose allowed range widens by
about 30% versus 20% for fW=Λ2.

The effect of each of the six additional operators on the
extracted range of the three “canonical” TGC operator
coefficients is illustrated in Fig. 5 where we depict the two-
dimensional correlations between the three TGC coeffi-
cients and the additional ones. In each panel of this figure
we exhibit the 1σ and 95% C.L. level (two d.o.f.) allowed
regions after marginalizing over the remaining parameters.
As we can see, fB=Λ2 has a significant correlation only

with fð1ÞΦu=Λ2 and to a lesser extent is (anti)correlated with

fð1ÞΦQ=Λ2 (fð3ÞΦQ=Λ2 and fð1ÞΦd=Λ2). This is expected as these
are the operator coefficients contributing the growth of the
scattering amplitudes into longitudinally polarized gauge
bosons [Eqs. (2.14)–(2.20)]. In particular the correlation

with fð1ÞΦu=Λ2 can be understood from the scattering

FIG. 3. 1σ and 95% C.L. allowed regions in the planes
indicated on the axes. Here we consider the WþW− and W�Z
productions and the EWPD in the analyses. The data set and
parameters used are as indicated in the figure.

FIG. 4. Δχ2 dependence on the fW=Λ2 (left panel), fB=Λ2 (central panel) and fW=Λ2 (right panel) parameters after the
marginalization over the remaining fit parameters. The solid black line stands for the standard TGC analysis, while the solid blue
line represents the nine-parameter fit to the LHC Run I data and the EWPD. The dashed blue line differs from the solid ones just by the
addition of LEP2 data on TGC.

TABLE II. 95% C.L. allowed ranges for the Wilson coefficients
of the dimension-six operators that contribute to the studied
processes in gauge boson pair production at the LHC. The ranges
for each parameter are obtained after marginalization of the
coefficients of all other operators contributing to each analysis. In
particular the results given in the third and forth columns are
obtained after marginalization over fð1Þϕ;e and fLLLL as well.

95% allowed range (TeV−2)

Coupling
LHC RI
(3 OP) EWPD

LHC RI
ð9OPÞ þ EWPD

fW ð−3.9; 3.9Þ � � � ð−5.6; 4.0Þ
fB ð−15; 20Þ � � � ð−11; 37Þ
fWWW ð−2.4; 2.5Þ � � � ð−2.4; 2.6Þ
fBW � � � ð−0.32; 1.7Þ ð−0.33; 1.7Þ
fΦ1 � � � ð−0.040; 0.15Þ ð−0.044; 0.15Þ
fð1ÞΦQ

� � � ð−0.083; 0.10Þ ð−0.044; 0.12Þ
fð3ÞΦQ

� � � ð−0.60; 0.12Þ ð−0.52; 0.18Þ
fð1ÞΦu

� � � ð−0.25; 0.37Þ ð−0.19; 0.42Þ
fð1ÞΦd

� � � ð−1.2;−0.13Þ ð−0.73; 0.023Þ
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amplitude in Eq. (2.18). Similarly fW=Λ2 shows a stronger

anticorrelation only with fð1ÞΦu=Λ2 and to a smaller degree is

correlated with fð3ÞΦQ=Λ2 and fð1ÞΦd=Λ2. Finally from the third
column of this figure we can see that fWWW=Λ2 shows no
correlation with the additional parameters as expected
since OWWW contributes by itself to the energy growth of
the scattering amplitudes for transversely polarized gauge
bosons.
The impact of the LHC diboson production data on the

determination of the parameters directly constrained by the
EWPD is illustrated in Fig. 6 which depicts the Δχ2
distribution as a function of these parameters where the
magenta (blue) line stands for the result obtained using the
EWPD (and the LHC Run I diboson production data).
The top left and middle panels of this figure show that the

addition of the LHC data does not alter the constraints on the

fBW=Λ2 and fΦ1=Λ2 parameters. This is easy to understand
since these parameters do not modify the high-energy
behavior of qq̄ → VV amplitudes; see Eqs. (2.14)–(2.20).
This is expected from OΦ;1 as it only contributes to the
amplitudes via finite renormalization effects of the SM
parameters. The operator OBW, on the other hand, also
directly modifies the TGC; however, its effects on the Z
wave-function renormalization cancel the growth with the
center-of-mass energy due to the anomalous TGC. From
the top right, bottom left andmiddle panelswe can see that the
impact of the Run I data on fð1ÞΦQ=Λ2, fð3ÞΦQ=Λ2 and fð1ÞΦu=Λ2 is

marginal. fð1ÞΦd=Λ2 is the only parameter whose Δχ2 distri-
bution gets significantly affected. The EWPD analysis favors
a nonvanishing value for fð1ÞΦd=Λ2 at 2σ, a result driven by the
2.7σ discrepancy between the observed A0;b

FB and the SM. On
the contrary no significant discrepancy is observed between

FIG. 5. 1σ and 95% C.L. allowed regions in the planes indicated on the axes. Here we consider theWþW− andW�Z productions and
the EWPD in the analyses.
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the observed LHC Run I diboson data and the SM. Hence
there is a shift towards zero of fð1ÞΦd=Λ2 when including the
LHCRun I data in the analysis. This slight tension results also
in the reduction of the globally allowed range.

We finish this section by comparing our results with the
bounds derived from LEP2 diboson data. To do so we plot
in Fig. 7 the two-dimensional 95% C.L. allowed regions for
the three combinations of the canonical TGC parameters
for the analysis with and without additional operators
together with the LEP2 results. As shown in Ref. [8],
the limits emanating from the canonical LHC Run I
diboson data (black solid line) are substantially more
stringent than those imposed by LEP2 (black dashed line).
As seen in this figure, enlarging the number of operators in
the LHC analyses, together with the EWPD, does not alter
this conclusion despite the growth of the allowed regions
(solid blue line). For illustration we also show in the figure
the allowed regions obtained by naively combining the
general LHC Run Iþ EWPD analysis with the LEP2
information (see discussion at the end of Sec. III). As
seen, including LEP2 data in the approximation used leads
to a reduction of the allowed regions in the fB=Λ2

direction, as well as to a shift of it towards negative values
(see also the dashed blue line in Fig. 4).

V. SUMMARY

In this work we have quantified the impact of possible
anomalous gauge couplings to quarks on the TGC deter-
mination performed using the LHC Run I diboson data. In
order to carry out a statistically consistent analysis we have
included in addition the EWPD to constrain the couplings
between quarks and gauge bosons as well as the modifica-
tions of the gauge boson self-energies. We have worked in
the framework of effective Lagrangians so our study has
been performed including the 11 dimension-six operators
given in Eq. (2.7).
As a summary of our findings we present in Table II the

95% C.L. globally allowed ranges for the Wilson coef-
ficients of the nine operators that contribute to the LHC
Run I data considered. The comparison of the first and third
columns of this table shows that the addition of the new
operators modifies the TGC bounds on fB=Λ2 and fW=Λ2

coming from the LHC Run I diboson data. Quantitatively
the effect is slightly larger for fB=Λ2 whose allowed range
widens by about 30% versus 20% for fW=Λ2. The limits on
fWWW=Λ2, on the contrary, are almost unaffected. Despite
these changes, the constraints on these parameters are still
dominated by the LHC Run I data, and are still substantially
stronger than those obtained from LEP2 data.
Wehave also learned fromour analyses that theLHCRun I

diboson data is not precise enough to yield substantial
information on the gauge couplings to quarks in addition
to what is already known from EWPD; compare the second
and third columns of Table II. The only apparent exception is

fð1ÞΦd=Λ2 which in the considered family universal scenario is
driven to be nonzero in the EWPD analysis by the discrep-
ancy between the measured A0;b

FB at LEP/SLC and the SM
while LHC Run I data shows no evidence of any deviation

FIG. 6. Δχ2 dependence on fBW=Λ2, fΦ1=Λ2, fð1ÞΦQ=Λ2,

fð3ÞΦQ=Λ2, fð1ÞΦu=Λ2, and fð1ÞΦd=Λ2 after the marginalization over
the undisplayed parameters. The magenta line stands for the
results using only the EWPD while the blue one is obtained
considering the EWPD and LHC Run I diboson production.

FIG. 7. Two-dimensional 95% C.L. allowed regions in the
planes indicated on the axes. Here we consider the WþW− and
W�Z productions, LEP2 data on TGC and the EWPD in the
analyses. The lines are as shown in the figure.
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with respect to the SM.Nevertheless, these results allowus to
foresee that diboson production at the LHC will play an
important role in the analyses of anomalous couplings of
gauge bosons to quarks as the LHC increases its integrated
luminosity. Hence global analyses of LHC data and EWPD
are becoming necessary for a consistent determination of the
Wilson coefficients of the full set of dimension-six operators.
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