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Muonic hydrogen and the proton size
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We reexamine the structure of the n = 2 levels of muonic hydrogen using a two-body potential that
includes all relativistic, recoil and one-loop corrections. The potential was originally derived from QED to
describe the muonium atom and accounts for all contributions to order a’. Since one-loop corrections are
included, the anomalous magnetic moment contributions of the muon can be identified and replaced by the
proton anomalous magnetic moment to describe muonic hydrogen with a pointlike proton. This serves as a
convenient starting point to include the dominant electron vacuum polarization corrections to the spectrum

and extract the proton’s mean squared radius r, = /(r*). Our results are consistent with other theoretical
calculations that find that the muonic hydrogen value for r,, is smaller than the result obtained from electron

scattering.
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I. INTRODUCTION

The muonic hydrogen experiments [1,2] measure
both the 23S1/2 <> 25P3/2 and the 21S1/2 <> 23P3/2
transitions. The experimental results are, respec-
tively,  49881.35(65) GHz = 206.2925(3) meV  and
54611.16(1.05) GHz = 225.8535(4) meV. These mea-
surements have been compared with a variety of theoretical
calculations [3-9] that include a dependence on the mean
squared proton radius (r?). Our purpose here is to compare
the contributions to the Lamb shift that are independent
of the proton structure with those of previous calculations.
We find a value of 205.980 meV, about 0.07 meV smaller
than other theoretical calculations.

If proton structure corrections are included, the resulting
values of r, from muonic hydrogen are systematically
smaller than those generally obtained from electron scatter-
ing data [10], leading to a disparity between the two
approaches. Some of the disparity could be associated

[13] supports a larger value as do most other spectroscopic
measurements.

Here, we reexamine the theoretical calculation from a
slightly different starting point. Our approach is to modify
the two-body potential originally derived from QED to
describe the muonium atom [14]. This potential contains all
relativistic, recoil and one-loop terms that contribute to
order o. The inclusion of the one-loop corrections enables
us to identify the muon anomalous magnetic moment and
replace it by the proton’s anomalous magnetic moment
k = 1.79285. The resulting potential can be used to
calculate the fine structure, hyperfine structure, Lamb shift
and recoil corrections for muonic hydrogen with a a
pointlike proton. It also serves as the starting point to
include the dominant electron vacuum polarization con-
tributions. The resulting hyperfine, spin-orbit, tensor and
spin-independent potentials are [15], respectively,
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Here, u is the reduced mass, n; = m;/(m; +m,), y is
Euler’s constant and A; is the infrared cutoff. The last term
in Eq. (4) is the contribution from the muon and proton
vacuum polarizations. In what follows, we use [16]
m;=105.6583715(35)MeV, m, = 938.272046(21) MeV,
u=94.9645 MeV, m, =0.510998928(11) MeV, a=
1/137.035999074(44) and a, = a/2x.

Much of the reason for undertaking the following calcu-
lation is that Eq. (4) contains several terms that differ from
those commonly used in determining the muonic hydrogen
spectrum. In particular, the order o delta function term
behaves as p~> whereas the corresponding term in [5] has
an overall (1/m? + 1/m3) factor. The difference in the
s-state contribution is several meV in the order a* correction.
Also, the one-loop term ua?/(2m,m,r?) contributes at order
a* at the few meV level. The u~2 dependence of the order o
one-loop In(u/A;r) term results in a recoil correction to the
Lamb shift of order °a’ /m3 that is larger than the order a®
correction to this contribution given in [5]. We undertook the
calculation to determine the implication of these differences.

II. ELECTRON VACUUM
POLARIZATION EFFECTS

A. One-loop correction to the Coulomb potential

The dominant contributions to the 2P — 2 splitting in
muonic hydrogen are due to the electron vacuum polari-
zation corrections to the photon propagator. These con-
tributions can be included by using the dispersion
representation for the photon propagator [17-19]

di AQ)

1
D) =15~ A P ®)
where A(g?) is
2 (2”)3 ) . .
Ag”) = 37 > 59(g=4,)(01j,(0)In) (nl #(0)[0).  (6)
For the e intermediate state, A?)(4) is
@) = ( 2m2) I 1 = Am2 /200 — 4m2).  (7)

£+ )07

If we take k% to be spacelike, then the modified Coulomb
interaction at the one-loop level is

e? o dA AP (A
V(E) = 7 AmgTI?JEA) ®)
= Vc(l?) + VVP(]_(Q)‘ 9)

The explicit form of V‘/p(l_c'2 ) in momentum space can be
obtained by integrating over A which results in
e

Vip(K) = =T (1), (10)

K1Y ) L
2m, 18

(11)

x <\/ 1+ 4m%/l_c'2arcsinh<

n}”(/? ) is the electron one-loop vacuum polarization

correction in the spacelike region.
Transforming to coordinate space

1

Vir) = / PRV (DR, (12)
Vir(d) =% [ Z?M We . (13)

To compute the effect of Vyp, we need to calculate the
difference between (21m|Vyp|21m) and (200|Vyp|200).
For example, (21m|Vyp|21m) is

A )/1 oodtt3 —(1+a\/1)t’
" fu 7 % ‘

o dx AP (x)
x (I+meay/x)*

with @ = 1/pa and 1 = m2x. A similar calculation gives

© d

21m|Vyp|21 14
imlvypim === | (14
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o dx A® (x)(1+2m2a’x)
x o (I+meayx)*

The difference between Eqs. (14) and (15) is

(200[V5[200) =~ = A (15)

odx(1+2/x)\/1-4 2a?

EE,p=A(2P-25) ="~ / (1 +2/x) ﬁxm“a
6m (I+m,a\/x)

=205.007 meV. (16)

This agrees with [5]. It is worth noting that the muon
contribution from Eq. (16) is 0.0167 meV which is virtually
the same as the 0.0168 meV result coming from the m;>
muon contribution in the last term of Eq. (4). The proton
vacuum contribution from the m; 2 term in Eq. (4) is
indistinguishable from the result obtained using Eq. (16).

B. Two-loop correction to the Coulomb potential

The two-loop contributions to A(4), A® (1), have been
calculated by Killen and Sabry [19]. They contain both the
reducible double electron bubble diagram and the irreduc-

ible fourth-order term Hﬁf)(l_c)z). These corrections can be

expressed as a correction to the Coulomb potential in the
form [20]

= -ZF(r). (17)

Vypa(r) ,

13 7
3909~ (35 + g5

2 Ve 4
+75 X2—1—|— —+
9x 3x

2 44 2 5
3x3> Vx?—1log (8x(x*—1)) + (—++

where
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F — dte™ -1
() =-2 ¢ {(54:2 108 9;6)

7 Ji
4 T
* <F N 3t4> Hog(8
44 2
+ < 313 +4t5 of >arccosh( )
8
+ <—— + 3t5) dxf(x )] (18)
with
flx) = %MCCOS}]@) v 1log (8x(x* = 1)).

(19)

By transforming this potential to momentum space and
comparing it with Eq. (5), A can be identified with 4> and
the second-order energy shift expressed as

pa /oo O (/x/2)mia®
4-77.'2 4

———————— = 1.508 meV,
A+ moayx) me
where A®)(x) is

EEypm =

(20)

2
o T3z 1d +9x6> arccosh(x)

+ <—§+i> [zisiz—arccoshz(x) —log (8x(x* —1))arccosh(x) — 2Re[Li, ((x + Vx> = 1)?)]

3 3x*

+Lip (—(x— x2—1)2)].

The terms in the large square brackets result from evalu-
ating the last integral in Eq. (18) and Li,(z) is the Spence

function
Ldt
—/ —log(1 — zt).
o !

C. Three-loop correction to the Coulomb potential

The three-loop contribution to A(1), A©)(1), is not
available in the literature. These contributions have been
calculated by Kinoshita and Nio [21]. They note that the
three-loop correction is comprised of two reducible diagrams
and one irreducible diagram that can be represented as

Liy(z) =

MP®))° + 20 (@0 (@) + 0¥ (@), (22)

(1)

Remembering the reducible fourth-order dispersion result

o di AW (1) e?
—62/ == = - TI¥#E 23
wm A+ R () (23)

and
4) /72
Y (&), (24)

itis possible to verify the contributions of the reducible terms.
They are 0.000396 and 0.0029312 meV, respectively. The

numerical evaluation of the Hﬁf)(l_é2 ) contribution is [21]

0.001103 meV, giving a total three-loop correction to the
Coulomb potential of 0.004431 meV.
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D. a* second-order nonrelativistic
perturbation correction

The large size of the one-loop correction suggests that
the contribution of Vyp(7) in the second-order nonrelativ-
istic perturbation theory is not negligible. Evaluating this
correction necessitates using the radial portions of the
Coulomb Green’s function for n =2 and Z=0, 1,
expressed as p’ag,.(x, x'). General expressions for these
Green’s functions were derived by Hostler [22,23] and
explicit expressions for small values of n are contained in
[24,25]. Due to some typographical errors in the latter
papers [gyo in Ref. [24] and Eq. (2.18) in Ref. [25]],
the expressions for gyy(x,x’) and gy (x,x") (x =r/a,
X' =7'/a) are given here:

sl ¥) = 02| (2 =) 2 =) (0(2) + ()

x+x 15 '
+ 1 )+2Y—Z+E1(x<)>
2 2 /
T P TR AR
X X X X
+e-x)e (1) |4 (252)
e (o)L .
X< )e X 4”
/ /

g (x,x') = %6_(“"/)/2 {ln(x) +In(x') + (x : *) +2y
49 3 3 2 3 3 2 .
BRI Rl i i R S 1 C))

1 2 3% %
T o 25b
+<X<+xi+xi>e] ix (25b)

Here, Ei(x) is
X t
Ei(x) = / di—, (26)
and
xo = x0(x —x) +x0(x —x'),

x5 = XO(x' — x) + x0(x — x'). (27)

The contributions take the form

e[ iRy ()W (r) [ 50050V (7R ),

(28)
for n=2 and /=0, 1. The integrations over
r, ¥ can be evaluated exactly using Mathematica,

and integrations over propagator parameters A and A’
can then be calculated numerically. The results are

EE@2Pyp, = —-0.0022671 meV ~ and  EE®2S,p =
—0.153164 meV for a net contribution of [5]

EE\) = 0.1509 meV. (29)

E. &’ second-order nonrelativistic
perturbation correction
There is also a second-order nonrelativistic perturbative
contribution from the combination of a one-loop vacuum
polarization correction and a two-loop vacuum polarization
correction. The calculation is similar to the one-loop
second-order calculation and results in a 0.00215 meV
contribution. In addition, there is a third-order nonrelativ-
istic perturbative contribution from three one-loop vacuum
polarization corrections [21,26] which gives 0.00007 meV.
The remaining corrections to the energy levels come
from the potentials in Eqgs. (1)-(4). In what follows,
we use simultaneous eigenstates of F2, F,, Jz, 522, where

F=L+58+S,,J=L+3§,.

III. SPIN-INDEPENDENT TERMS

A. Order a* terms

The terms in the first line of Eq. (4) contribute to the s and
p levels in order a*. Their expectation values are (in meV)

3 4
a ., wa 4 1 9
- =— —— 110 30
< mlmzrp> nmym, <2f+1 n) » - (30a)
ar _,_, s 9
) 5(7') :_2]13 5f010 s
1 1
I NI N 2=-2AV)
(s o) )
4 /.3 3
pa’ (@’ 8 3\ (o
=—-—|—=+—= —-—]10°, 30
8n? (m?—i—m%) <22,”—|—1 n) (30¢)

2 3 4 1
L 10%,
2mmyr nwmnmy 2¢ + 1

and it should be noted that the 1/ term is part of the one-
loop correction. For the n = 2 state, the contributions are

(30b)

| =

(30d)

E,(28) = —10.711 meV, (31a)
E,(2P) = —5.100 meV, (31b)
E> = E,(2P) — E;(25) = 5.610 meV.  (3lc)

B. Order «° terms

The remainder of the terms in Eq. (4) are of order &® or
@ In(a). There are two issues to address when evaluating
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these terms. The first is the elimination of the photon mass
dependence. This is accomplished by using the “Bethe
logarithm” technique, which amounts to the replacement of

In(u/Ar) by [27]

R 5 R
In—=2_+216 In—=(1=56,). 32
(nazko(n,0)+6> 0+ nko(n,f)( w0).  (32)

The other is the matrix element of V2[(In(ur) + y)/r]. For
states with # > 0, this reduces to —1/r>. When # = 0, the
result is

(n0| 2—1ﬂv2 [w] 1n0)

3,3 n
:27‘;”? [mzn—“qunz_nl +;%] (33)
Using
Inky(2S) = 2.8117699, (34)
In ko (2P) = —0.0300167 (35)

and denoting the expectation values of the order o’ as
E,(n?), the results are

E,(2S) = 0.7077 meV, (36a)
E,(2P) = 0.0004 meV, (36b)

IV. SPIN-DEPENDENT TERMS
A. ? =0 hyperfine

The expectation value of V. affects only s states and is

Eurn51) = o 214001 +0
e
(37a)
Eyr(’Si2) = 5.704 meV, (37b)
Enr(1812) = —17.113 meV, (37¢)
AEyr(S))) = 22.817 meV. (37d)

B. Spin-orbit and tensor terms
The largest contribution of V ¢ is that associated with the

L-S 1 term. It accounts for the fine structure splitting
between the P3/, and the P;/, states. The contribution is

(1+2a,) (1 +au)] <i><*.§1>. (38)

Erg(P; ) =«
FS( 'll) |: Zm% mymy 7'3

The expectation value of 2 is

1 2//i30!3 /l3(13
r e +1)2¢6+1) 24

. . . . -
Since the eigenstates we are using are eigenstates of J-,

-

2L-S, =7 —L* =51 =j(j+1)—2-3/4.  (40)

Then,
Eps(P;) = i’;:; (1+2a,) +2m—”’2‘(1 +a)[(L-5),
(41)
and
Epg(P3;) = 2.782 meV, (42a)
Eps(Py)y) = —5.564 meV, (42b)
AEpg= EFS(P3/2) _EFS(PI/Z) =8.347meV. (42c)

The remaining spin-dependent terms are the L- §2
portion of Eq. (2) (call it V) ) and V7. Their matrix
elements for a generic 2P state are

3 4
wat(l+«) mp (1+2)] >
2P|V (|2P) = 7.5
(2PVLs|2P) 24mym, [ 2m, (1+K)< 2)
(43a)
, wat(l+a,)(1+K) = = . = =
<2P|VT|2P>: 24m1m2 (3S1-r52-r—Sl-S2>.

(43b)

For V' ¢, we can use the fact that F? and J? are diagonal,
so F? = (.7 +S,)? and we can obtain the relation

2L-S,=F*—J*-28,-5,-3/4=F>-J*+3/4-§.
(44)

Both the 5P3/2 and 'P, /> States are eigenstates of s
with eigenvalue 2, so <5P3/2|E-§2|5P3/2):1/2 and
("Pip|L - S,|'Py ) = —1:
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(Pl Vigl'Py o) = =

wat(1+x) [ Tmy (14 zx)}

24m,m, 2my (14x)
(45a)
3ot (1 +«) Lmy (14 2x)
SP \V SP :,Ll a ( fulidad §
CPapal VisPPsa) 48m m, 2my (1 +k)
(45b)
The matrix elements of V; for these states are
3 4
wat(l+x)(1+ay,)
(Pyalvl i) = -2 CEI 08 e
Sat(1 1+
OPyalVlopy) = LU UE @) )

3m1m2 80

Combining these two contributions gives

Enrs(1Py)y) = wat(l+x) 1 a, 1 m(1+2)
HESS V2 = " 3mm, |4 8 16m, (1 +x)
— —5.968 meV, (47a)
5 wat(l+x)[1 a, 1 m(1+2)
EnpsCP3pn) =—F——— |55~ ont 35—
3mym, |20 80 32m, (1+k)
— 1.272 meV. (47b)

The *Ps, and *P, , states are mixed by the V/ ¢ and V7
potentials. This results in

(31’1/2|Ij : §2|3P1/2> =1/3,
(P3pa|L - S1PP3p0) = =576,
(31)3/2|Z : §2|3P1/2> =-V2/3 (48)

and

~

<3P1/2|3§1 78,7 =S, '§2|3P1/2> =1/3,
<3P3/2|3§1 7S, - = S '§2|3P3/2> =1/6,
<3P3/2|3§1 78,7 =5, '§2|3P1/2> =/2/6. (49)

~

The matrix elements of V/ ¢ are

3 4
pwat(l +«)
@mmmwmz————[

lﬂ(l—i—ZK)]’

72m m, 2my (1+k)
(50a)
Swat(l ) [y L (1+26)
3P V’ 3P —_ = P
CP32|VisPP3y2) 144m,m, 2my (14x) |
(50b)

CP3pa|ViglPPrya) ==

pat(1+x)
72m1m2

1my (14 2k)
+2m2 (14x) } V2.

(50¢)

and those of V; are

. . o
CPy 2| VPP ) = 72m1m2(1 +x)(1 +a,), (51a)
. . o

(P30|Vr|°P3)2) = m(l +x)(1 +a,), (51b)
3 3 ”30!4 \/_
Pain|Vr|PP =——(1 1 2. 51
(P32 |V7°Py)2) 144m1m2( +x)(1+a,) (5lc)

The V), ¢ and V7 contributions can be combined to give

Epyps(Py ) = UK L Ly (14 26)
HES\ 2172 Omm, |4 8  16m, (1+«)
— 1.989 meV, (52a)
53t (1+x)[ 1 a, 1 m(1+2k)
E 3p — B T
nrs(Psp2) 8mym, |10 40 16m, (1+x)
— —2.120 meV, (52b)
3.4
wa(l+k) my (142x)] V2
By r) = 1 S
— —0.796 meV. (52¢)

The expression for Ej;;xy omits the a, contribution and
all these results agree with Ref. [5].
Diagonalizing the triplet P mixing matrix

EMIX

(EHFS(3P1/2) > (53)
Eyrs(PP3)n) + AEgs

EM[X

has the effect of shifting the 3P; 2 level up by A=
0.1447 meV and the 3P, /2 level down by the same amount.

There are small electron vacuum polarization corrections
to all of the terms in the potential that contribute to order a*.
These are computed in Appendix A and included in the
results that are compared with the experiment.

V. RESULTS AND CONCLUSIONS

Relative to the n =2 Bohr level, the energies of the
various n = 2 states, including the small corrections
calculated in Appendix A, are
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E(°P3)5) = EEyp + E; + E4 + Epg(P3)3) + Enps(°P3)2)
= 215.609 meV, (54a)

E(P3)y) = EEyp + Ey + Ey 4 Eps(P3)2) + Egps(PP3)0)

+ A =212.360 meV, (54b)
E(Py)y) = EEyp + Ey + Ey + Epg(Py o)

+ EHFS(3P1/2) — A =207.826 meV, (54¢)
E('Py)y) = EEyp + Ey + Ey + Epg(Py o)

+ EHFS(IPI/Z) = 200.006 meV, (544d)
E(Ssl/z) = EHF(3SI/2) = 5.7351 meV, (546)
E(]SI/Z) = EHF(]SI/Z) = —17.2054 meV, (54f)

E(Pyj;) —E(Si)2) = EEyp + E, + E4 + Epg(P1)2)

= 205.980 meV. (54¢)

Here, EEyp is the sum of the first seven rows in Table I,
E, is the eighth row, E, the ninth row, Er¢ the tenth row,
the s-state hyperfine splitting the eleventh row and the
p-state hyperfine splittings the twelfth row. The additional
small corrections in Appendix A include the spin-
independent terms in subsection I, the £ = 0 hyperfine
splitting in subsection IV, the fine structure splittings
in subsection 2, and the £ =1 hyperfine splitting in

subsections 3, 4 and 5. Equation (54g) gives our value
for the Lamb shift excluding proton structure corrections.

We have used nonrelativistic wave functions throughout
because our potential contains the leading-order relativistic,
recoil and one-loop corrections. However, if we use the
solutions to the Dirac equation given in Rose [28], the
value of the electron one-loop vacuum polarization changes
from 205.007 to 205.028 meV for the 2P/, — 25,
interval and from 205.007 to 205.033 meV for the
2P3/5 — 28, interval [4]. We have also calculated the
relativistic corrections to the two-loop vacuum polarization
contribution using the approach of [21]. In this order, the
change in the 2P, ;, — 25, /, interval is 0.0001 meV and the
corresponding change in the 2P;,, —2§,,, interval is
0.0002 meV.

A more fundamental way to calculate the relativistic
corrections to the dominant electron vacuum polarization
contribution would be to use the solutions to the Salpeter
equation with an instantaneous Coulomb kernel. Estimates
of this correction using the scalar Salpeter equation have
been made [29] and the results are small. Unfortunately,
analytic solutions for the spin 1/2 Salpeter wave functions
with unequal masses are not available.

Finally, one might wonder how the relatively large
contributions from the mass dependence of the delta
function term and the one-loop a?/r? term mentioned in
the introduction can still lead to a Lamb shift value that is in
agreement with other calculations. The answer is that there
are two versions of the spin-independent fine structure
Hamiltonian that contribute order a* corrections to the
2Py, — 28, energy difference. One is the Breit-Pauli
version [7] H_p given by

TABLE I. The entries summarize the various corrections (in meV) to the n = 2 states of muonic hydrogen calculated using Egs. (1)—(4).
1S1)2 3812 P/ 3Pi) Py °P3)) 3Py <3Py
One-loop vacuum polarization 205.007 205.007 205.007 205.007
Relativistic one-loop correction 0.021 0.021 0.026 0.026
Two-loop vacuum polarization 1.508 1.508 1.508 1.508
Relativistic two-loop correction 0.0001 0.0001 0.0002 0.0002
Three-loop vacuum polarization 0.0044 0.0044 0.0044 0.0044
NR 2nd-order @* vacuum polarization 0.1509 0.1509 0.1509 0.1509
NR 2nd-order o vacuum polarization 0.0022 0.0022 0.0022 0.0022
Spin-independent o* 5.6102 5.6102 5.6102 5.6102
Spin-independent o’ —0.7073 —0.7073 —-0.7073 —0.7073
Fine structure —5.5645 —5.5645 2.7823 2.7823
Hyperfine £ = 0 —17.113  5.7045
Hyperfine £ = 1 —5.9682 1.9894 -2.1195 1.2717
Mixing matrix element . —0.79615
Vacuum polarization corrections to V, (k)
—0.0920  0.0307 —0.0532 —0.0464 —0.0446 —0.0418 —0.0003
Total —-17.205  5.735 200.006 207.971 212.215 215.609 —0.7965
Result of mixing 207.826 212.360
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o [ 1 1 a O X;X;
H, ="+ )s(F) - (%0 Y,
B=P = 9 (m%_'—m%) (") 2m1m2p’<r + r Pj

na na a 6:i  X;X;
=T 57— "% 5(7) - (% N,
79(7) mm, () 2m1m2p’< r + P )pj

The other is Hi;gg of Ref. [14], which has the form

Ta . a 1. ua?
H/(;Rszz_ﬂzé(”)— -p?

—, (57
Zmlmzrz ( )

mymyr
where the last term arises in the calculation of the one-loop
corrections. The last two terms of Eqgs. (56) and (57) give
identical contributions to the 2P, —2S;, splitting,
namely,

All the spin-dependent fine structure terms of the two
versions are the same so, apart from minor differences in
some recoil terms, the Lamb shift values agree. This
implies that there should be no a?/r* term associated with
the one-loop corrections to Breit-Pauli Hamiltonian. In
Appendix B this is shown to be the case.
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APPENDIX A: ELECTRON VACUUM
POLARIZATION CORRECTIONS
TO ORDER a* TERMS

The electron vacuum polarization corrections to the
leading-order a* terms in the potential can be obtained
from the momentum space representation of the potential,
which is

- e 1_52 i my\ > L. L 1+2xkmy\ - L. o
Volk) === |l =5+ 24+ —=|)(kxp)-o,+(1+x) |2+ — ) (kx p) -0,

]_é 8/,£ 4m1m2 my 1+K' my
(I+K8)». o (I+x) (> > o 1=, _ P> aurk 1 -
- k'oy - k-o1k-0,—=k"o; - - — (k] Al
6mm, o1 ot 4mm, R 3 ooy )+ mym, 4m;m, 6<r ) (A1)
|
where the next to last term is a one-loop correction that za [ dA, (1) N
. 4 o — 6(F) ———e V). (A4)
contributes at order a*. The electron vacuum polarization 2u? a2 A 4 1

correction is obtained by making the replacement

2 o di A
G o —e? / “aod) (A2)
4

P w AR

In addition, there is a second-order perturbative correction
containing Vyp(r) for each of these terms as well as for the
relativistic kinetic energy terms. In these calculations, all
integrals except those over A can be evaluated analytically
using Mathematica. The integrals over 1 are performed
using the Mathematica Nlntegrate routine.

1. Spin-independent terms
a. ek’ /8u?

This leads to the expression

a /oo diT,(2) K (a3)

%2 o A R4a

and transforming to coordinate space gives

The delta function only contributes to £ = 0 and gives

a5 ®© dx
AE(5)—ZEA P L2/ T=afx.  (AS)

X
The integral diverges, but the £ = 0 contribution of the
remaining term cancels this divergence. Using Eq. (14) and

the extra factor of 1 = m2x, the remaining contribution to
the E(2P) — E(2S) interval is

A(E(2P) — E(25))

_pa /00 dxmta*x*(1+2/x)\/1 —4/x (A6)
- 487 J, x(1 + mpay/x)* '
The vacuum polarization correction to this term is
- S o
AE, (2K /8u?) = W/ —x(l +2/x)\/1—-4/x
487 4 X
mia*x?
X |1
[(1 +meay/x)* }
= —0.0363 meV. (A7)
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The second-order correction is
a - - -
8Ex(@0(7)/80%) = 2(25) [ rs®Vin(r) [ a6l
2
i)/dg Rzo(7>r Vi g0(r/a,0)

8ra’

i /oodrr - e"/zae‘ﬂ’gzo(r/a,O),
2ta’) o 2a

AE,(e?5(7)/8p%) = — (7;—05> /ooo dxx(1 = x/2)e™ e H7 gy (x,0),

where the integration over dA has been suppressed. The Greens function g,y(x,0) is

/’l ae—x/Z

4r 2x

2
g20(x.0) = [=4-+ (87 = 6)x + (13 = dy)x® = x* — dx(x = 2) In(x)] =5~ Goo (),
The final expression for the 2p — 2s splitting is

,ua a [odx

S 3n ), 3 (L T2V 4/xF(BY3) = ~0.0549 meV,

—AEy(e?5(7)/8y) =

where

F(pv/x) = Am dyy(1 = y/2)e™2e VDG (y),

Fpv = 21+ p)

and f = m,a.

b. —e*p?/rmm,

Here, the expression is

2 37 ik7 2
—¢ 1 d’ke™ n2 — _* e~ ’1’1_52 = — Zua <1 —L> e‘ﬂr.

mym, (2r)? e ) p a mymyr mymyr’ 8a

For the £ = 1 state, the result of integrating over r is

wat 1 3
2mymy (1 £ av/i)® (“ AL+ “ﬂ))

The ¢ = 0 state when integrated over r gives

30
Zlm2(1+;ﬂ)4< (1+avi) + ( +aviy - ( +avi) + )

Integrating the difference of these two results over A gives

AE|(—e?p*/rmim,) = 0.0142 meV.

3+ HBYE + 457 + 12802 + 4557 + 4(1 + vx) (1 + 26%x) In(1 + py/%)

(A8)

(A9)

(A10)

(Al1)

(A12)

(A13)

(A14)

(A15)

The expression for the second-order correction is (again, suppressing the integral over dA and including the factor of 2)

dda® [ ©
AE,(—e*p*/rmymy) = ﬂa% drrRM(r)e_ﬁ’A dr'gye(rfa,r' /a)(1 = r /8a)R,.(r).

nmyny

This expression reduces to
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3.4
Ho © 2 ,—x/2 ,—\/iax /oo / Ny =X )2 /
d d , 1—-x'/8 Al7
6m1m2A xx?e e ; X g1 (x, x")x e (1-x'/8) ( )
for # =1 and
2udat [eo —)2—aax | g / 119 =¥ /2 /
dxx(1 — x/2)e™*/2e=VAax dx' goo(x, x') (1 = x'/2)e™/2(1 — x'/8) (A18)
mym; Jo 0

for £ = 0. The integrals are, respectively,

134 33av2 4 32(1 + av2) In(1 + aV/)

Al9
8(1 + ava) (A19)
and
_ 30+ 86aV/A — 60a% + 52a°2%% + 64(1 + aVA) (1 + 24’2 In(1 + aVd) (A20)
64(1 + av/a)’ .
Integrating the difference over dA gives a 2p — 2s contribution of
AE,(—e?p*/rm;m,) = 0.01459 meV. (A21)
c. —(p?)*/8mj
When integrated over dA, the second-order correction to the relativistic kinetic energy contribution is
=2\2 3 4”40(4 © -V © / / 2 /
AE,(—(p°)*/8my) = g /. drrRy,(r)e V" ; dr'g:e(r/a,r'/a)(1 —71'/8a)" Ry (7). (A22)
1

This correction is negligible for # = 1. After completion of the integrals above, the contribution from the muon to the
2p — 2s splitting for £ =0 is

©d
AEy(—(p?)?/8m}) = o' a 1 12/ /T = 4/xG(By/x) = 0.02237 meV, (A23)
2m1 3 X
with
74 ByVx(19 4+ 2B/x(=7 + 58/x)) + 16(1 + p/x)(1 + 247x) In(1 + py/x
Gps) = T HPVEIO T BYRT + VD) #1601+ R0+ o
16(1 + p/x)
d. aurk/4mm,
Here, the momentum space integral is
2.2 31k pik T p—ek 2
uoarws 1 dkke™"e Ho /°° dt .
= = 1-vA — A , A25
myny (27:)3/ 4+ 2mymyr? Var o 2+1 sm(\/_tr) (A25)

where ¢ is taken to O after the integral is evaluated. The dt integral can be evaluated at this point, but it is more convenient to
first integrate over dr with the integrand multiplied by R2 ,(r). For the £ = 1, the result is

1 1 © dt 24la’t(Aa*? —1)
e~r/a = 2 . A26
244 3/ ( \/_/ rsln \/_tl’)> 24a3 { -I-A 2 0 +la2t2)4 ] ( )

The integration over dt then gives

1 [1 a2 (23a® = 32%a* + 152a® — 6(Aa* + 1) In(Aa?) — 13)]
2 - .

12a (1=2a*)* (A27)

The calculation for # = 0 is similar. Taking the difference and integrating over A results in the expression
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a dx (1+2/x)y/1-4/x
AE, (e*aunk/4m m,) = 72jrtmlmz/1 ; i >ﬂ2 B [264°x3 — 30p*x? + 6%x

—24*x2(f*x + 1) In(B/x) — 2] = —0.0030 meV, (A28)

where f = m,a.
The second-order correction for ua?/2m;m,r? is obtained by integrating

'u3 atad o
AE,(£) = / dxxRoy (x)eViox / A’ oy (5, X' Ry () (A29)
2Zmymy Jo 0
over A. The results are
AE,(P) = 0.00003 meV, AE,(S) = 0.00154 meV, (A30)
for a 2p — 2s splitting contribution of
AE,(e?aurk/4mm,) = —0.0015 meV. (A31)
2. Fine structure
a. —eziki/4m1m2
The integral to be evaluated is
1 [ diPke®
: =i Ar)eVar. A32
e Tar " ATV (A32)
This leads to the spin-orbit contributions
a (14 2x)m; 3
— (2 LS +(1+x)(2+ 1221 Vir, A33
g | ()1 00 (2 G -]+ v =
Only the p state is affected and we have
1 1 1+3aVi
2p| = (1 +VareV2p) = — —— X2 A34
@pl (1 Vanei2p) = 3 s (A34)

-

For the L - §1 term, (Z - 8y) is 1/2 for the P3 ), states and —1 for the P, /, states. Thus, their (fine structure) contributions are

30 N odx(l+2 1—4/x(1+3 AE = 0.001 meV,
o)y [T ORIV YD _ [ (433)
1447zmy 4 X (14 pv/x) AE, ps(Py2) = —0.002 meV.
The second-order contribution can be obtained from the expression
WBa oL o 0 )
AEyps(P) = =5 — (1 +2m;/my)(L - S1>/ dﬁze_t/ze_ﬂm/ dr' gy (t.1)e™"/2, (A36)
24mj7 0 0
integrated over A. The result is
305 S AE, g(P3/,) = 0.0006 meV
wa dx 2 Fs\£732 )
-———(1+2 L-S +2 1-4/xH(f) = A37
b () £-50) [0+ 2w = {0 P oot mev, A
with
34+ pvx(11 +48y/x) +4(1 + p/x) In(1 + py/x

2(1 + pyx)

013002-11



WAYNE W. REPKO and DUANE A. DICUS

PHYS. REV. D 98, 013002 (2018)

3. p state hyperfine splitting

The L - §2 term gives corrections to the hyperfine
splitting. The values of these corrections are obtained from
Eq. (A35) by changing the coefficient of the integral to

The results are

AE2 HF(5P3/2) = 0.0004 meV,

AE; yp(*P3,) = —0.0006 meV, (A43a)
3
U (1+2)m\ - =
—(1 2 — {L-S A39
144ﬂm1m2( + K)( + (] + K) my < 2> ( ) AEz HF(3P1/2) = 0.0002 meV,
and using AEQ HF(IP1/2> = —0.0007 meV, (A43b)
-5 o 1 .
(CP3a|L - $1°P3)0) = > AE; yr(Mix) = —0.0003 meV. (A43c)
- 5
3 L33 —_=
(P3pa|L - S35 0) = 6’ (A40a) 4. Hyperfine splitting
| a. e*(1 +1c)7czz)'l -6,/ 6mym,
(P 12L - S,PP 1/2> =3 This term is very similar to the spin-independent '3
. - o contribution treated above. The spin dependence means
(PiplL - $2/'P1p) = —1, (A40b)  that the s states and p states must be treated separately. For
Lo the s state, we have
(P3|l - 5,PP ) = —V2/3. (Ad0c)
a(l+x) [~ d A _

The corresponding energy corrections are AVSyr(r)= 6(ml mz) A ZTHe (4) [4”5(’:)—;‘3 Vi ]01 "03.
AE, yr(3P3/3) = 0.0006 meV, (A44)
AE 3P3/5) = —0.0009 meV, Adla

e (CPapo) ( ) The delta function gives
AE1 (3P1 2) = 0.0004 meV,
AE . 1P/ 0.0011 meV A41b patl+) /oo ) (A45)
_ 46 . 6 _
1uF('P1y2) : mev, ( ) 2mym, ' ? a2 A
AE; yr(Mix) = —0.0005 meV. (Adlc) . i
and the remaining term gives
The second-order perturbative hyperfine corrections can
be obtained from Eq. (A37) by replacing its coefficient with _,u3a4(1 +K)6 5 / ©di ) [04/12 +a*k/ 2] (A46)
\ s R2mymy 7 e € (1+aviy* |
1 1+2 _—
_wal +K)< (1+ K)><L.Sz>. (A42)
T2mym, (1+x) The energy corrections are
|
W (1+x) = = [eodx(1+2/x)\/1—4/x(14+4B/x + 1152x/2 + 453x3/?)
AE, gp(S) =————(851-5) | — 7
Omm m, 4 X (14 Bv/x)
AE 381 /2) = 0.0121 meV,
_ { 1 1F(°S1)2) (A47)
AEI HF(ISI/Z) = —0.0362 meV.
The second-order contribution is given by
2t (1+k) = = o dx
E S)=—""—"7—"—""(S51-8,)— —(1+2 1 —4/xF
ar(8) = =F5 0 5,5 5 [T 20 T (V)
AE 381/2) = 0.01859 meV,
_ { 2 1r(3S1/2) (Ad8)
AEQ HF(1S1/2) = —0.05579 meV,

where F(f+/x) is given by Eq. (A11). (See [4].)
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For the p state, 5. Tensor splitting
=2
A (P WBat(l+1) [ody TLE)Px = s a. e2(1+x)(kik;— k" /3)/4mym,
nr(P) == 6mm, J, x (1+ py/x)* (S1-52). The relevant integral in this case is
(A49) / i (kik; — K25,,/3) ™
Using the expectation values (2r)3 2+
5Py S, - 5, 1 _ - (14 vir+ D) e (as2
<P3/2|51'52|P3/2>:Z, —47”3(1';— 2|1+ r—l-T e V. (AS2)
(3P /2|§ L §2|3P3 ) = —%, (A50a)  The expression to be integrated over 4 is
.- 1
3 on __ 1 1 Ar?
CPialSi- SalPij) = =13 PlAV(P2P) = 20N <—3 (1 *ﬂ”i> f>
N N 1 nminy r 3
1 Lo _ ! I Lo
<P1/2|SI SQ|P1/2> —47 (ASOb) X<3Sl-f’52-f"—Sl-S2>. (A53)
the corresponding energy corrections are
Now,
AEHFP(5P3/2) - 00002 meV,
AEgrp(*Ps)2) = —0.0004 meV, (A5la) <% (1 T Vir +/1_r2> e_ﬂr> _1a +4a\/1+54a2/1)
AEp(CPyj3) = —0.0001 meV, r 3 24a’ - (1+aV7)
AEp('Py ) = 0.0002 meV. (A51b) (A54)
SO

(1 4k) [odx(142/x)y/1—4/x(1+4p/x + 567x)
s (T V7

(35,78, - #=8,-5,).  (A55)

Using
AE| +(Mix) = 0.00035 meV. (A57c¢)

. Lo 1
5 S, = . 5 = -
CP32|381 - 783 - 7= 81 $5PP3ya) 5’ The perturbative second-order corrections are obtained

3 S 1 using Eq. (A38) and
(OP32|38, - 7S, - 7= S, '52|‘P3/2>:g, (AS6a)
31 4+« o dx

o | = (R TN e 1Y)
<3P1/2|351-?52-%—51-52|3P1/2>:§, N

.. Lo x (35,78, - # =8, - S,). (A58)
<1P1/2|3S1 AV S2|1P1/2> = =2, (A56b)

. . L. The results are
(P3o|381 78, - # = 8, - 5:P°Py n) = V2/6, (A56c)

AEZ T(5P3/2) = —0.0001 meV,
the corrections are

AE; 7(*P5;5) = 0.0001 meV, (A59a)
AE; 1(°P3;) = —0.0003 meV,
AE, 7(3P3)5) = 0.0003 meV, (A57a) AE, 7(3Py5) = 0.0002 meV,

AE, +('P, ) = —0.0013 meV, (A59b)
AE, 1(°Py);) = 0.0005 meV,
AE, 7('Py /) = —0.0030 meV, (A57b) AE, 1(Mix) = 0.00015 meV. (A59¢)
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APPENDIX B: ONE-LOOP
EFFECTIVE POTENTIAL

To obtain the full one-loop effective potential V4, one has
to evaluate the one-loop corrections to the single photon
exchange potential V, and calculate

(2711)3/d3kei13?<ZV4,-(/€)—5(V2,V2)), (B1)

where i is the sum over all one-loop diagrams and

Vy(r) =

5(V2,V2)
S 41
2] T BB E) - B ) - B
(52)

The subtraction is necessary to prevent double counting of
the Coulomb exchange in the box diagram.

Using our formulation, the @?/r? term in Eq. (57) arises
from the &§(V,,V,) subtraction term in Eq. (BI). In
momentum space this term behaves as |l€|‘1. As can be
seen in Egs. (2.3)—(2.7) of Ref. [14], the only term of this
type that survives is the one in 5(V,, V), with V,(p', p)
given by

VZ(ﬁ,7ﬁ) =

2 (| G-P, P
(P'—p)*+2 8u? mymy '

(B3)

where the dots denote spin-dependent terms that are not
relevant.

If one calculates the one-loop effective potential
using the Breit-Pauli equation as a starting point, the
corresponding subtraction term will involve a V,(p', p)
of the form

) = g (1= (S + L) 5 -
2p7p 7(1_7”—27')2—'—12 8 m% m% p p
p>  p-(p'-p)p-(p' - Pp)
+ == +
nmym; mymy(p' = p)
(B4)

In this case, the last term in Eq. (B4) exactly cancels the
coefficient of the |k|~! term produced by the second and
third terms when §(V,,V,) is evaluated. Consequently,
there is no a@?/r” term in the one-loop corrections to the
Breit-Pauli potential.
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