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In this paper, we consider the complete momentum-independent quartic order truncation for the effective
average action of a real Abelian rank-3 tensorial group field theory. This complete truncation includes
nonmelonic as well as double-trace interactions. In the usual functional renormalization group perspective,
the inclusion of more operators that belong to the underlying theory space corresponds to an improvement
of the truncation of the effective average action. We show that the inclusion of nonmelonic and double-trace
operators in the truncation brings subtleties. In particular, we discuss the assignment of scaling dimensions
to the nonmelonic sector and how the inclusion of double-trace operators considerably changes the results
for critical exponents with respect to those obtained when they are not included. We argue that this is not a
particular problem of the present model by comparing the results with a pure tensor model. We discuss how
these issues should be investigated in future work.
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I. INTRODUCTION

Attempts to quantize the gravitational field started soon
after the very formulation of General Relativity (the current
classical theory of the gravitational field) and of quantum
field theory (the modern framework for describing funda-
mental interactions) [1]. While suggestions that a more
radical departure from standard spacetime-based physics
were also voiced, the first strategy was to apply to the
gravitational field the same techniques that have been
successfully applied to other interactions, turning General
Relativity into a quantum field theory. In particular, the

perturbative quantization of the metric field around flat
spacetime promised to suffice for both phenomenological
and theoretical purposes. The proof of perturbative non-
renormalizability of such quantum field theory [2–4]
showed that, while possibly phenomenologically adequate
in some limited regime [5], it could not be a fundamental
description of the gravitational field, of spacetime and
geometry at the quantum level. The reactions to this
stumbling block have been diverse. Many took it to imply
that, while a field-theoretic approach aiming at a straightfor-
ward quantization for General Relativity was still viable, it
was crucial to work directly at the nonperturbative level,
using a different set of quantization tools. This is the case of
the canonical quantization à la Dirac leading to loop
quantum gravity [6–8], of the lattice path integrals on which
quantum Regge calculus and dynamical triangulations
[9,10] are based (together with spin foam models [11,12],
a covariant counterpart of loop quantum gravity), and of the
asymptotic safety scenario for the quantum gravitational
field based on functional renormalization group equations
[13,14]. String theory, while initially formulated within the
same perturbative viewpoint, quickly moved beyond it, too,
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but also pointed toward a radical generalization of local
quantum field theory identifying in the need for such
generalization the real culprit of perturbative quantum
gravity. It also provided hints that we may have to move
beyond spacetime physics as well and that spacetime and
geometry may have to be considered as emergent notions
[15–17]. The idea of an emergent spacetime, actually, has
become quite widespread in recent years and started playing
an important role in several quantum gravity formalisms,
moving further beyond the idea of a quantum field theory
formulation of quantum gravity as they move beyond any
reliance on spacetime itself.
Tensorial group field theories1 (TGFTs) [18–27] re-

present both a confirmation and a contradiction of this
line of developments. They are a proposal for a quantum
field theory of spacetime (and thus of quantum gravity),
which is then necessarily defined without relying on any
(preexisting) spacetime and in which the latter has to be
emergent rather than fundamental. They are a class of
quantum field theories where, at the same time, one tries to
apply standard field-theoretic techniques familiar from the
theory of fundamental interactions and is forced to modify,
adapt, and sometimes drop several of them, due to the
peculiar spacetime-free setting. They incarnate a very
different perspective on quantum gravity, with respect to
other approaches mentioned above and based on the wish
for a straightforward quantization of General Relativity,
while managing to incorporate several of their defining
structures and being historically a further development of
them. With details depending on the specific model being
considered, TGFTs can be seen to define a generating
functional for a theory of random lattices [28,29], like in
dynamical triangulations, a second quantized reformulation
of canonical loop quantum gravity [30], a complete
definition of spin foam models [31], and a completion
of lattice gravity path integrals via their embedding in a
quantum field theory framework [32]. In a way, TGFTs

bring together but also move beyond these related quantum
gravity formalisms and show that a quantum field theory
formulation of quantum gravity and geometry can in
principle be achieved, if we are willing to move beyond
spacetime and usual field theories, in order to do so.
The quantum field theory setting of TGFTs allows us to

use key tools from quantum field theory (QFT) to tackle
outstanding issues of quantum gravity approaches. The
quantum consistency and the construction (and quantiza-
tion) ambiguities of TGFT models can be constrained by
the request for (perturbative) renormalizability of the same,
while the crucial problem of defining the continuum limit
and thus the full quantum partition function of the same
models (including all their infinite degrees of freedom)
becomes the problem of defining their nonperturbative
renormalization group flow and phase diagram.
TGFT renormalization has become in fact a key area of

rapid developments and many results (see e.g., Refs. [18–
27,33–38] as well as Ref. [39] for a review). These results
include the proof of perturbative renormalizability of a
variety of models (Abelian and non-Abelian, in different
dimensions, with and without gauge symmetries) and the
establishment of their asymptotic freedom or safety; for
more involved models (those more closely related to loop
quantum gravity, spin foam models, and four-dimensional
simplicial gravity path integrals), detailed studies of their
divergences, and radiative corrections; results on construc-
tive renormalization; the application of functional renorm-
alization group (FRG) techniques to establish the
renormalization group (RG) flow of various models; and
useful indications about their phase diagram.
Many open issues remain, of course. Among them, the

key one seems to us to be the uncertainty on the relevant
TGFT theory space, for the most interesting (and involved)
four-dimensional quantum gravity models but also for the
simpler ones. Part of this uncertainty is due to the limits of
conventional QFT wisdom when applied to TGFTs and to
the lack of knowledge about key aspects of the formalism
like symmetries (but see Refs. [40–42]) or its mathematical
foundations (but see Ref. [43]). Part is due simply to the
still limited experience we have accumulated with the RG
flow of such models, the exact consequences of the
combinatorial structure of their possible interactions, and
the difficulties in guessing, therefore, the universal aspects
of their phase diagrams.
In this paper, we offer one more exploration of TGFTs

and a study of their RG flow, using functional techniques,
aimed exactly at understanding better their theory space
and the role that different combinatorial structures in their
interactions have on the same flow. We perform the FRG
analysis of a real, Uð1Þ TGFT model of rank 3, without
gauge invariance, in themost extended truncation of order 4
and momentum-independent interactions terms. That is, we
extend the existing analysis of a similar model at the same
order [44] by including both nonmelonic interaction

1A clarification on the nomenclature is in order. Group field
theories, tensor models, tensor field theories, and tensorial group
field theories are used in the literature for models of the type we
deal with in this paper and that we are going to specify better in
the following. The use of one or the other label may depend on
the context, the aim of the work, or the emphasis on one or the
other feature of the formalism. The “tensor” label emphasizes the
fact that the basic dynamical variable is a tensor and that its
transformation properties are crucially used in determining the
relevant theory space. The “field" label emphasizes the existence
of nontrivial propagators, softly breaking the invariance of the
interactions, or the fact that the model possesses an infinity of
degrees of freedom, with the basic dynamical variable being a
field on some domain space. The label “group” emphasizes that
such domain space is usually a Lie group manifold or the fact that
the ensuing group structures are heavily used to define the
model’s action and/or its symmetries. In this paper, we use the
most general label, also because all the corresponding features,
tensorial nature, group structure, and field-theoretic nature are
present and important.
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vertices and “disconnected” vertices, i.e., those defined by
multiple independent integrals of tensor invariant func-
tionals of the field. Nonmelonic interactions are expected to
be subdominant in the large-N limit of the theory, i.e., in the
deep UV, and for this reason, they are usually left out (but
see Ref. [45]). Thus, they are excluded for reasons internal
to the TGFT formalism, since they have no analog in usual
QFT. Disconnected vertices, on the other hand, could be
defined also in usual QFT, where they correspond to
nonlocal interactions and are thus excluded on physical
grounds; this exclusion, though, is consistent with the RG
flow in the sense that such terms are not generated by it,
when initially excluded. This is not the case in TGFT,
where we also lack any clear physical motivation for
excluding them. However unusual and of unclear physical
significance they may be (from the point of view of lattice
quantum gravity as well), consistency of the formalism
would suggest including them in the action and studying
their effect on the RG flow. This is what we do. As is to be
expected for TGFTs on compact groups [44], we end up
with a nonautonomous2 system of RG equations. We limit
our analysis to the UV regime of the model where, by an
appropriate rescaling of the coupling constants, the system
becomes autonomous and fixed points can be identified.
Our main results are going to be discussed at some length

in the concluding section. Here, it suffices to say that we
expose some ambiguities in the rescaling of the coupling
constants and some more hints that the fourth order
truncation may not give reliable and conclusive indications
of the actual RG flow of the model. Also, we find that the
extension of the truncation to nonmelonic diagrams does
not lead, in most cases, to drastic changes in the flow, while
the effects of the disconnected diagrams can actually be
more profound, calling for a careful consideration of their
role in TGFTs.

II. FUNCTIONAL RENORMALIZATION
GROUP FOR TGFTs

In order to probe nontrivial fixed points in the renorm-
alization group flow of TGFTs, we will make use of the
FRG; see Refs. [46–48] for general reviews. The FRG
equation is a flow equation for the effective average action

ΓN ½ϕ� ≔ sup
J
ðhJ;ϕi −WN ½J�Þ −

1

2
hϕ; RNϕi; ð1Þ

where WN ½J� denotes the generating functional of con-
nected Feynman diagrams and hJ;ϕi denotes the canonical
pairing between the field ϕ and its dual and where ϕ can be
considered as the vacuum expectation value of the quantum
field in the presence of a source J, i.e., ϕ ¼ hφiJ, with φ the

field to be integrated in the path integral. This is calculated
using the IR-modified generating functional

eWN ½J�≔
Z

½dφ�N0 exp

�
−S½φ�−1

2
hφ;RNφiþhJ;φi

�
; ð2Þ

where one adds a scale-dependent mass term—represented
by hφ; RNφi—which gives a mass of order N to modes in
the IR of N and which essentially vanishes for modes in the
UV of N (we call modes in the IR/UV of N those with
“momenta” smaller/greater than N). This scale-dependent
mass term serves as an IR-suppression term (i.e., a large
Boltzmann factor) for modes in the IR of N. Note that we
assume the functional integral to be UV regulated at a scale
N0. It follows that the effective average action satisfies the
FRG equation

∂tΓN ¼ 1

2
Tr

� ∂tRN

Γð2Þ
N þ RN

�
; ð3Þ

where we introduced the shorthand t ¼ lnðNÞ. Moreover, it
follows from the properties of the IR-suppression term
hϕ; RNϕi (see Refs. [46–48]) that the limit N → 0 of ΓN ½ϕ�
coincides with the standard effective action Γ½ϕ�, while the
limit N → ∞ (always keeping N < N0) yields the bare
action Sren½ϕ� with fully renormalized couplings. This
interpolation property between bare and effective action
allows one to use the FRG as a nonperturbative tool to
investigate possible continuum limits and their universality
classes.
In particular, if one chooses an IR-suppression term such

that ∂tRN ¼ 0 for N ¼ N0, then one can freely move the
UV regulator N0 without introducing an additional N0
dependence in the flow equation. So, practically, one
can forget about the N0 dependence altogether and inves-
tigate the possible continuum limits by investigating the
flow in the limit N → ∞ alone, although strictly speaking,
it is obtained as N → N0 → ∞. This feature of the FRG has
been used in Refs. [49,50] to investigate the continuum
limits of matrix models, and this setting was extended to
investigate the continuum limits of tensor models in
Ref. [51] and of tensorial (group) field theories in
Refs. [39,44,45,52–58]. The relation of these models to
discrete gravity can be seen at the level of their Feynman
amplitudes. The Feynman diagrams γ of matrix and (un)
colored tensorial models are dual to simplicial complexes
ΔðγÞ of d-dimensional pseudomanifolds (where d is the
rank of the tensor). Hence, the Feynman expansion of the
partition function

eW ¼
X
γ

AðγÞ ¼
X
ΔðγÞ

elnðAðγÞÞ; ð4Þ

where AðγÞ denotes the amplitude of the Feynman graph γ,
can be interpreted as the sum over triangulations with

2An autonomous system of differential equations does not
depend explicitly on the dependent variable, in the present case
t ¼ lnðNÞ.
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a Boltzmann factor given by the Feynman amplitude. For
simple tensor models as well as for the simplest Abelian
tensorial (group) field theories without gauge invariance,
the Feynman amplitude is purely combinatorial and can be
put in direct correspondence with the Regge action for
gravity discretized on a piecewise-flat equilateral triangu-
lation AðγÞ ¼ expðgD−2ND−2 − gDNDÞ, where ND denotes
the number of D simplices in the dual triangulation ΔðγÞ.
The resulting partition function coincides with that of
(Euclidean) dynamical triangulations. Formally, a con-
tinuum limit could be taken as follows. Using e.g., the
amplitude of colored tensor models

AðγÞ ¼ elnðNÞND−2−ðlnðgÞ−DðD−1Þ
4

lnðNÞÞND;

one notes that one can take the continuum limit (in which
the volume Vo of the D simplices approaches 0) at fixed
physical volume V ¼ VoND by taking the limit N → ∞
while taking the fiducial volume of the simplex Vo → 0 in
a way that ensures that V stays fixed. This large-N limit
corresponds to 1=G ∝ gD−2 → ∞, i.e., to the limit of the
vanishing Newton’s constant. To retain a continuum limit
at a finite value of G, one needs to scale the coupling
constant g in a nontrivial way with N as one takes the
large-N limit. This means that one searches for a non-
trivial fixed point of the RG flow in the scale N of the
matrix or tensor model, which establishes the FRG as a
tool to investigate possible continuum limits in tensorial
models of quantum gravity [49,50]. This is the field-
theoretic, TGFT counterpart of the double-scaling limit of
matrix models as the continuum limit of two-dimensional
Euclidean quantum gravity [59–65].
For more involved TGFT models (e.g., for models

directly related to loop quantum gravity), the relation to
discrete (quantum) gravity is more involved. Still, the
general correspondence is analogous: the Feynman ampli-
tudes of TGFT models correspond to simplicial gravity
path integrals, on the triangulations dual to the model’s
Feynman diagrams [32]. The group-theoretic data char-
acterizing the TGFT variables (and the domain of the
fundamental field) acquire the interpretation (when suit-
ably chosen) of discrete gravity data, i.e., a discrete
connection and discrete metric variables (encoding, ulti-
mately, the dynamical edge lengths of the triangulation),
which are then summed over to define the given Feynman
amplitude weighted by the exponential of a richer discrete
gravity action function of them, as in quantum Regge
calculus. One could indeed expect that such additional
discrete geometric data are needed to capture the increased
complexity of gravity and geometry in going from two
dimensions, where matrix models and random equilateral
surfaces suffice to define (Euclidean) quantum gravity, to
higher dimensions. Of course, this leads to more compli-
cated models and to much richer theory spaces, which are
not yet under control.

The more complete and detailed explorations of TGFT
models, starting from Ref. [22], dealt with simplified
TGFTs, which are going to be also our object of analysis.
The FRG provides an exact flow equation for action

functionals ΓN . It follows from the derivation of the FRG
that ΓN possesses the field content and the symmetries that
are shared by the bare action, the functional measure, and
the IR-suppression term. In continuum field theory, one
refers to the space of action functionals of a given field
content and given symmetries as theory space. Continuum
field theory, however, implies implicitly a notion of locality
and dimensionality of operators which are not implicitly
implied in the discrete and background-independent mod-
els that we consider here. It follows that one has to specify
at least a notion of dimensionality (i.e., scaling with the RG
scale N) of operators when defining a theory space for
discrete models. Since we are interested in investigating the
large-N behavior through the FRG, we need to impose that
the assignment of dimension is such that all beta functions
admit a 1=N expansion at large N. Thus, given an IR-
suppression term, we obtain a number of bounds for each
coupling dimensionality implied by the 1=N expandability
of the beta functions.
In practical calculations, one is usually forced to make

a truncation ansatz for the effective average action; i.e., one
expands as

ΓN ¼
X
i

λ̄iNOiðϕÞ; ð5Þ

where OiðϕÞ denote contracted field operators compatible
with the field content and symmetries of the underlying
theory space. The λ̄iN denote the corresponding dimension-
ful coupling constants. The scale derivative ∂t ≡ N∂N acts
on the truncation ansatz as

∂tΓN ¼
X
i

ð∂tλ̄
i
NÞOiðϕÞ≡

X
i

β̄iOiðϕÞ; ð6Þ

where β̄i is the bare beta function of the coupling λ̄iN . By
evaluating the trace on the right-hand side of (3), it is
possible to extract the bare beta functions β̄i through the
application of a suitable projection of the theory space onto
the truncation ansatz.
The normalization of the field ϕ →

ffiffiffiffiffiffi
ZN

p
ϕ can be

absorbed as a normalization of the functional measure
½dφ�N0 as long as the UV cutoff N0 is finite. One can thus
adopt a convention that one coupling constant ZN is
redundant and associated with the normalization of the
fields. One commonly chooses the quadratic kinetic term to
be normalized, and associates the coupling constant ZN
with the kinetic term and defines the anomalous dimension
as η ≔ ∂t lnðZNÞ. We then define the dimensionless cou-
plings by removing this redundancy and the dimensional
scaling
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λ̄iN ¼ NdimðOiÞZΦðOiÞ
N λiN; ð7Þ

where dim denotes the scaling dimension and where
2ΦðOiÞ denotes the number of fields ϕ that appear in
the monomial OiðϕÞ [i.e., ΦðOiÞ denotes the number of
pair of fields]. We thus obtain the beta functions

βi ¼ −ðΦðOiÞηþ dimðOiÞÞλi þ N− dimðOiÞZ−ΦðOiÞ
N β̄i: ð8Þ

The aforementioned consistency relations for the dimen-
sional scaling are then obtained by demanding that the
leading power in N of N− dimðOiÞβ̄i½N; λ̄� is nonpositive for
all i.
The large-N limit of the FRG defines an autonomous

vector field on theory space. Fundamentally, we want to
investigate the possible nontrivial UV scalings, which
appear as compactly contained attractors of this autonomous
vector field, in the simplest case a fixed point, i.e., a point
λi ¼ λi� where all dimensionless beta functions vanish
simultaneously. Linearizing the flow near the fixed point
λi� gives

λiðNÞ ¼ λi� þ
X
I

CIVi
I

�
N
No

�
−θI

; ð9Þ

where Vj
I denote the eigendirections ∂βi∂λj jλ¼λ�

Vj
I ¼ θIVi

I

(here, summation is implied over j, but not over I)
associated with the critical exponent θI . Positive critical
exponents imply that the associated eigendirection is an IR-
relevant interaction.
In practical calculations, one projects the FRG vector

field onto a truncation, which means that a point at which
the vector field is purely vertical (with respect to the
projection) appears as a spurious RG fixed point in the
truncation. The generation of spurious fixed points by
purely vertical RG flow suggests two strategies to test
whether a fixed point found in a truncation is spurious:
(1) One enlarges the truncation, so it becomes more

likely that the flow will possess a nonvanishing
horizontal component.

(2) One varies the projection rule and/or RG scheme, so
the notion of “vertical” changes.

To effectively apply these two strategies for identifying true
fixed points, one uses two general observations:
(1) Universality.—Quantities such as critical exponents

of true fixed points change only moderately when
enlarging the truncation and/or changing the RG
scheme.

(2) Dimensionality.—If one finds a fixed point in a
truncation an then enlarges it by including all
operators that posses scaling dimension higher than
the scaling dimension in the truncation by one or two
and the newly introduced coupling obtain a fixed
point scaling that is very close to their scaling

dimension then it becomes very unlikely that the
operators outside this truncation which have even
higher scaling dimensions will change the fixed
point behavior. We see in particular that in order to
get reliable information about a fixed point one
needs to use a truncation in which all relevant
directions are included.

III. SETTING THE STAGE: THE MODEL

In this work, we generalize the work of Ref. [44] where
the following truncation for the effective average action ΓN
was considered,

ΓN ½ϕ� ¼
ZN

2
Trðϕ · K · ϕÞ þmN

2
Trðϕ2Þ þ Γint

N ½ϕ�; ð10Þ

where ZN stands for the wave-function renormalization, m
is a mass parameter, ϕ is a real field over Uð1Þ3, and the
kinetic kernel K is defined by

Kðfpig; fp0
igÞ ¼ δð3Þpi;p0

i

�
1

3

X3
i¼1

jpij
�
; ð11Þ

with

δð3Þpi;p0
i
¼

Y3
i¼1

δpi;p0
i
; ð12Þ

The interaction term encoded in Γint
N is written as

Γint
N ¼ λ4;1N

4

X
pi;p0

i∈Z
ϕ123ϕ12030ϕ102030ϕ1023

þ Symð1 → 2 → 3Þ: ð13Þ
The nonlocal structure of the interactions on top of tensorial
invariance allows the introduction of two more operators
with four fields ϕ. Hence, the term (13) does not corre-
spond to all possible interaction terms at quartic order
which are momentum independent. In this work, all quartic
order and momentum-independent operators are included
in the truncation, namely,

Γint
N ¼ Γ4;1

N þ Γ4;2
N þ Γ4;3

N ; ð14Þ
with

Γ4;1
N ¼ λ4;1N

4

X
pi;p0

i∈Z

ϕ123ϕ12030ϕ102030ϕ1023 þ Symð1 → 2 → 3Þ;

Γ4;2
N ¼ λ4;2N

4

X
pi;p0

i∈Z

ϕ123ϕ10203ϕ10230ϕ12030 ;

Γ4;3
N ¼ λ4;3N

4

X
pi;p0

i∈Z

ϕ123ϕ123ϕ102030ϕ102030 : ð15Þ
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It is convenient to represent these interactions using
diagrams as in Fig. 1. It should be understood that the
first diagram has to be symmetrized as indicated in
Eq. (13). Having the ansatz for ΓN defined, we calculate
its RG flow using (3). For this, we have to specify a cutoff

function RN and compute the Hessian Γð2Þ
N . The contribu-

tions to the Hessian Γð2Þ
N coming from the interaction term

Γint
N are

F1ðfpig; fp0
igÞ ¼ λ4;1N

�
ϕp1;p0

2
;p0

3
ϕp0

1
;p2;p3

þ
X
m1

δp1;p0
1
ϕm1;p0

2
;p0

3
ϕm1;p2;p3

þ
X
m2;m3

δp2;p0
2
δp3;p0

3
ϕp0

1
;m2;m3

ϕp1;m2;m3

�

þ Symð1 → 2 → 3Þ; ð16Þ

F2ðfpig; fp0
igÞ ¼ λ4;2N

�X
m3

δp3;p0
3
ϕp0

1
;p2;m3

ϕp1;p0
2
;m3

þ
X
m2

δp2;p0
2
ϕp0

1
;m2;p3

ϕp1;m2;p0
3

þ
X
m1

δp1;p0
1
ϕm1;p2;p0

3
ϕm1;p0

2
;p3

�
: ð17Þ

F3ðfpig; fp0
igÞ ¼ λ4;3N

� X
m1;m2;m3

δp1;p0
1
δp2;p0

2
δp3;p0

3

× ϕm1;m2;m3
ϕm1;m2;m3

þ 2ϕp1;p2;p3

× ϕp0
1
;p0

2
;p0

3

�
: ð18Þ

The cutoff function we introduce is chosen to be the
optimized one [66],

RNðfpig; fp0
igÞ ¼ ZNδ

ð3Þ
pi;p0

i

�
N −

1

3

X3
i¼1

jpij
�

× θ

�
N −

1

3

X3
i¼1

jpij
�
: ð19Þ

Another ingredient on the right-hand side of the flow
equation is the scale derivative of the regulator:

∂tRN ¼ δð3Þpi;p0
i

�
ð∂tZNÞ

�
N −

1

3

X3
i¼1

jpij
�
þ ZNN

�

× θ

�
N −

1

3

X3
i¼1

jpij
�
: ð20Þ

The contribution to the Hessian from the quadratic part of
the effective average action with the addition of RN is

PNðfpig; fp0
igÞ ¼ ZNKðfpig; fp0

igÞ þmNδ
ð3Þ
pi;p0

i

þ RNðfpig; fp0
igÞ: ð21Þ

Therefore, the complete Hessian is expressed as

Γð2Þ
N þ RN ¼ PN þ F1 þ F2 þ F3; ð22Þ

where Γð2Þ
N is a short-hand notation for the second func-

tional derivative of ΓN . The FRG equation can be expressed
in the following form:

∂tΓN ¼ 1

2
Tr

�
ð∂tRNÞP−1

N þ
X∞
n¼1

ð−1Þnð∂tRNÞP−1
N

× ðF1P−1
N þ F2P−1

N þ F3P−1
N Þn

�
: ð23Þ

The first term of the right-hand side of (23) is field
independent and thus corresponds to a vacuum term which
can be absorbed into the normalization of the functional
measure, so we can discard it for our considerations. We
start by looking to terms quadratic in the fields, which
corresponds to the contributions for n ¼ 1. For such
a contribution, one has

∂tΓN jn¼1 ¼−
1

2
Tr½ð∂tRNÞP−1

N ðF1þF2þF3ÞP−1
N �: ð24Þ

Since our truncation involves up to quartic order terms on
the fields, we have to consider up to n ¼ 2 contributions.
These can be written as

∂tΓN jn¼2¼
1

2
Tr½ðP−1

N ð∂tRNÞP−1
N Þpi

ðF1þF2þF3Þpi;p0
i

×P−1
N ðfp0

ig;fp00
i gÞðF1þF2þF3Þp00

i ;pi
�: ð25Þ

Also, we use a condensed notation whenever is possible.
For n > 2, one gets terms which have six or more fields.

Hence, those terms do not belong to the proposed trunca-
tion (10), and we disregard them. Having (23), (24), and
(25), we can perform explicit computations.

FIG. 1. Interactions considered in the present truncation.
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In Ref. [44], the explicit computations in the absence
of the F2 and F3 contributions were presented in
details. The extension of the computation to F2 and F3

is straightforward (although lengthy) and brings no
technical novelty that needs to be stressed. Hence,

for simplicity, we do not report the details here.
As discussed in Ref. [44], the system of equations
derived from the FRG equation is nonautonomous for
a generic value of N. In particular, the flow equation
leads to

η ¼ 18Nð2λ4;2N þ 3λ4;1N ð2N þ 1ÞÞ
3ððmN þ NÞ2 − 2λ4;3N − 12λ4;2N NÞ − 2λ4;1N ð27N2 þ 18N þ 5Þ ; ð26Þ

∂tmN ¼ −ηmN −
N

ðmN þ NÞ2 ½ð9λ
4;1
N ð6N2 þ 4N þ 1Þ þ λ4;3N ð36N3 þ 18N2 þ 8N þ 3Þ þ 3λ4;2N ð6N þ 1ÞÞ

þ ηðλ4;3N ð9N3 þ 2N þ 2Þ þ λ4;1N ð18N2 þ 9N þ 4Þ þ 9λ4;2N NÞ�; ð27Þ

∂tλ
4;1
N ¼ −2λ4;1N ηþ 2N

ðmN þ NÞ3
h
3ð6ðλ4;1N Þ2ðN þ 1Þ2 þ 4λ4;1N ðλ4;3N þ λ4;2N ð2N þ 1ÞÞ þ ðλ4;2N Þ2ð2N þ 1ÞÞ

þ η

3
ððλ4;1N Þ2ð18N2 þ 45N þ 37Þ þ 12λ4;1N ð3λ4;3N þ λ4;2N ð3N þ 2ÞÞ þ 3ðλ4;2N Þ2ð3N þ 2ÞÞ

i
; ð28Þ

∂tλ
4;2
N ¼ 12N

ðmN þNÞ3 ½2ððλ
4;1
N Þ2þλ4;2N λ4;3N þð3Nþ1Þλ4;2N λ4;1N Þþηð2ðλ4;1N Þ2þ2λ4;2N λ4;3N þð3Nþ1Þλ4;2N λ4;1N Þ�−2λ4;2N η; ð29Þ

∂tλ
4;3
N ¼ 2N

ðmN þ NÞ3 ½ð6λ
4;1
N ðλ4;2N þ 3λ4;3N ð6N2 þ 4N þ 1ÞÞ þ λ4;3N ðλ4;3N ð36N3 þ 18N2 þ 8N þ 9Þ þ 6λ4;2N ð6N þ 1ÞÞ

þ 3ðλ4;1N Þ2ð12N þ 5ÞÞ þ ηðλ4;3N ðλ4;3N ð9N3 þ 2N þ 8Þ þ 18λ4;2N NÞ þ 2λ4;1N ð3λ4;2N þ λ4;3N ð18N2 þ 9N þ 4ÞÞ
þ 9ðλ4;1N Þ2ð2N þ 1ÞÞ� − 2λ4;3N η; ð30Þ

where we have performed the redefinitions

ðmN; λ
3;i
N Þ → ðZNmN; Z2

Nλ
4;i
N Þ ð31Þ

and η ¼ ∂t lnZN is the anomalous dimension. Clearly, the
beta functions described by Eqs. (26)–(30) form a nonau-
tonomous system due to the explicit dependence on N.
Nevertheless, these equations are written as flow equations
for the “dimensionful” couplings ðmN; λ

4;i
N Þ. As usual, one

should rescale the couplings in such a way that the flow
equations are expressed in terms of the dimensionless
couplings. In ordinary quantum field theories, the beta
functions for dimensionless couplings form an autonomous
system unless some external scale is present in the theory in
such a way that dimensionless ratios can be constructed. In
the present case, there is no possible redefinition of the
couplings which turns Eqs. (26)–(30) into an autonomous
system. The reason behind this fact was explored in details
in Refs. [44,54] and is related to the existence of an external
scale in the theory, namely, the radius of the (compact)
group manifold. For noncompact groups, one sees that the
beta functions are autonomous; see Refs. [52,53]. There-
fore, the analysis of fixed points for a generic N becomes
extremely difficult. Nevertheless, it is possible to obtain
autonomous beta functions systems for N ≫ 1, i.e., the

deep UV. In the following sections, we perform the analysis
in different truncations.

IV. LARGE-N LIMIT: WITHOUT
DOUBLE-TRACE INTERACTIONS

In this section, we restrict the analysis to the case where
λ4;3N ¼ 0. In the large-N limit, we have to rescale the
couplings in such a way that the dependence on N is
canceled out on the beta functions. The criterion to obtain a
well-defined (and nontrivial) autonomous beta-functions
system leads to the following redefinitions of the couplings,

mN → Nm̄N; λ4;1N → λ̄4;1N ; λ4;2N → λ̄4;2N Nα; ð32Þ

with −2 ≤ α ≤ 1=2. It is not possible to determine uniquely
the value for α. From the functional renormalization point
of view, this ambiguity is potentially fixed by considering
more sophisticated truncations; see also Ref. [51]. The
structure of the beta functions changes whether the upper
bound for α is saturated or not. For clarity reasons, we
separate the discussion for these two cases. Therefore, at
the large-N limit, the beta function system is expressed, for
α < 1=2, as
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η ¼ 36λ̄4;1N

ð1þ m̄NÞ2 − 18λ̄4;1N

;

∂tm̄N ¼ −ð1þ ηÞm̄N − 18ð3þ ηÞ λ̄4;1N

ð1þ m̄NÞ2
;

∂tλ̄
4;1
N ¼ 12ð3þ ηÞ ðλ̄4;1N Þ2

ð1þ m̄NÞ3
− 2ηλ̄4;1N ;

∂tλ̄
4;2
N ¼ −ð2ηþ αÞλ̄4;2N : ð33Þ

Clearly, the nonmelonic coupling λ̄4;2N decouples from the
rest of the beta functions. At this stage, it is easy to compute
the fixed points from Eq. (33). In fact, in this case, besides
the Gaussian fixed point m̄� ¼ λ̄4;1� ¼ λ̄4;2� ¼ 0, one gets

m̄� ¼ −0.7926; λ̄4;1� ¼ 0.0042; λ̄4;2� ¼ 0; ð34Þ

m̄� ¼ −0.5407; λ̄4;1� ¼ 0.0028; λ̄4;2� ¼ 0; ð35Þ

which are independent of α. The fixed points agree with
Ref. [44]. In particular, we emphasize that the fixed point
defined by Eq. (34) is discarded due to the fact that it cannot
be connected to the Gaussian one due to the existence of a
singularity; see Ref. [44]. Also, the computations of the
critical exponents associated to (34) lead to huge values,
suggesting that this fixed point is a truncation artifact. For
the fixed point (35), the critical exponents are

θ ¼ f−1.8682; 0.8571; 1.2915þ αg: ð36Þ

One notices that, albeit that the fixed point value (35) is α
independent, the critical exponents are not. From (36), it is
clear that the number of relevant directions depends on the
value of α. This ambiguity shows up because the functional
renormalization group is not able to fix uniquely the scaling
dimension for the coupling λ4;2N associated with the non-
melonic vertex. Clearly, if α < −1.2915, the fixed point has
just one relevant direction. However, for the allowed range
of values of α, it is also possible that such a fixed point has
two relevant directions. A definite answer requires
improvement of the present truncation by including vertices
with a higher power of fields e.g., ϕ6 interactions. This is
the first subtlety we report in this paper regarding the
enlargement of the truncation employed in Ref. [44].
Let us consider the case α ¼ 1=2, namely, when it

saturates the upper bound allowed by the present trunca-
tion. The anomalous dimension and the beta function for
the mass are the same as those written in (33). For the
couplings ðλ̄4;1N ; λ̄4;2N Þ, the beta functions for α ¼ 1=2 are

∂tλ̄
4;1
N ¼ 12ð3þηÞ ðλ̄4;1N Þ2

ð1þ m̄NÞ3
−2ηλ̄4;1N þ6ð2þηÞ ðλ̄4;2N Þ2

ð1þ m̄NÞ3
;

∂tλ̄
4;2
N ¼−

�
2ηþ1

2

�
λ̄4;2N : ð37Þ

The coupling associated with the nonmelonic interaction
λ̄4;2N appears in the beta function of λ̄4;1N associated to the
melonic interaction. This is different from the previous
situation (α < 1=2) where λ̄4;2N decouples from the beta
function of the other couplings. In this case, we obviously
get the same fixed points (34) and (35) next to

m̄� ¼ 0.5238; λ̄4;1� ¼−0.0184; λ̄4;2� ¼�0.0451; ð38Þ

which amounts to setting η ¼ −1=4. The critical exponents
associated with (38) are

θ1;2 ¼ f1.3892;−0.3313 − 0.2126i;−0.3313þ 0.2126ig:
ð39Þ

From (36) and (39), one sees that, for α ¼ 1=2, while the
fixed point for which the nonmelonic coupling vanishes has
two relevant directions, the new ones given by (38) with a
nonvanishing value for λ̄4;2 have just one relevant direction.
We must emphasize that α ¼ 1=2 is the upper bound that
the present truncation allows for α. Also, within the allowed
range for α, this is the only value which results in the
appearance of the nonmelonic coupling in beta functions
for different couplings than λ̄4;2N . The only way, within the
functional renormalization group framework, to fix the
value of α is by considering further terms in the truncation
for the effective average action. A similar feature was
observed in Ref. [51] in the context of pure tensor models.
One logical possibility is that the upper bound can be
lowered in larger truncations. This is under investigation in
pure tensor models; see Ref. [67].

V. LARGE-N LIMIT: WITH
DOUBLE-TRACE INTERACTIONS

In this case, we keep the coupling associated to the
double-trace vertex λ4;3N . Taking the large-N limit, the beta
functions display a well-defined and nontrivial large-N
expansion if the couplings ðmN; λ

4;i
N Þ with i ¼ 1, 2, 3 are

rescaled as Eq. (32) on top of

λ4;3N ¼ λ̄4;3N N−1: ð40Þ

Such a rescaling is uniquely determined by the system of
beta functions within the present truncation. Again, we
perform the analysis for α < 1=2 and α ¼ 1=2. Hence, the
beta functions system for α < 1=2 at largeN is expressed as
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η ¼ 36λ̄4;1N

ð1þ m̄NÞ2 − 18λ̄4;1N

;

∂tm̄N ¼ −ð1þ ηÞm̄N − 18ð3þ ηÞ λ̄4;1N

ð1þ m̄NÞ2

− 9ð4þ ηÞ λ̄4;3N

ð1þ m̄NÞ2
;

∂tλ̄
4;1
N ¼ 12ð3þ ηÞ ðλ̄4;1N Þ2

ð1þ m̄NÞ3
− 2ηλ̄4;1N ;

∂tλ̄
4;2
N ¼ −ð2ηþ αÞλ̄4;2N ;

∂tλ̄
4;3
N ¼ 36ð2þ ηÞ ðλ̄4;1N Þ2

ð1þ m̄NÞ3
þ 72ð3þ ηÞ λ̄4;1N λ̄4;3N

ð1þ m̄NÞ3

þ 18ð4þ ηÞ ðλ̄4;3N Þ2
ð1þ m̄NÞ3

− ð2η − 1Þλ̄4;3N : ð41Þ

The fixed points obtained from Eq. (41) are displayed in
Table I. We should emphasize they are independent of the
parameter α, and for all of them, the nonmelonic coupling
fixed point λ̄4;2� vanishes. On the other hand, the fixed points
for the coupling associated to the double-trace vertex λ̄4;3�
are nonzero. Also, we have excluded fixed points for which
the couplings assume complex values. The first fixed point
has complex critical exponents, see Table II (differently
from the real ones obtained in the previous section) and has
a fixed point value for λ̄4;1� which is negative in contrast to
the value obtained in Eq. (35). Most importantly, it has four
irrelevant directions for −2 ≤ α < 1=2. Therefore, upon the
introduction of the double-trace operator, we observe a
qualitative difference with respect to the previous trunca-
tion, in particular, a reduction on the number of relevant
directions. Since multitrace operators are generated by the
flow equation and this simple extension discussed above
indicates sharp differences between the results with and
without double-trace operators, one can interpret this fact as
a hint that results obtained with truncations that do not take
them into account can be unstable under the introduction of

those operators. Finally, the second fixed point is generated
due to the presence of λ̄4;3N in the beta function for the mass
m̄N . This fixed point belongs to a different class than those
obtained in the truncation without the double-trace vertex.
Its number of relevant directions depends on the value
assigned to α, but it is always greater than 1, namely,
θ ¼ f2.8229; 0.1771; 0; αg.
We report the results for α ¼ 1=2. In this case, the

coupling λ̄4;2N enters the beta function of λ̄4;1N . The beta
functions system is the same as the one in Eq. (41) with the
following replacements:

∂tλ̄
4;1
N ¼ 12ð3þ ηÞ ðλ̄4;1N Þ2

ð1þ m̄NÞ3
þ 6ð2þ ηÞ ðλ̄4;2N Þ2

ð1þ m̄NÞ3
− 2ηλ̄4;1N

∂tλ̄
4;2
N ¼−

�
2ηþ 1

2

�
λ̄4;2N : ð42Þ

Besides the fixed points reported in Table I, we obtain

m̄� ¼ 0.7738 λ̄4;1� ¼ −0.0250;

λ̄4;2� ¼ �0.0684; λ̄4;3� ¼ −0.0175; ð43Þ

with critical exponents

θ1;2 ¼ f1.7521;−0.4648 − 0.3282i;

− 0.4648þ 0.3282i;−0.1641g: ð44Þ

As is clear from Eq. (44), the fixed points reported in
Eq. (43) display just one relevant direction. Also, those
fixed points have nontrivial values for all couplings. It is
important to mention that the fixed points given by Eq. (43)
look very similar to those in Eq. (38) where the double-
trace operator is not present. Moreover, the critical expo-
nents in Eq. (44) are also rather close to Eq. (39). The new
direction that arises due to the introduction of the double-
trace interaction is irrelevant. Hence, we see that when the
upper bound for the scaling dimension of the nonmelonic

coupling λ4;2N is saturated, the results obtained with or
without the double-trace operators are similar. On the other
hand, we emphasize that they are qualitatively different
from the fixed point obtained in the truncation implemented
in Ref. [44]. In particular, the melonic coupling fixed point
λ̄4;1� and the mass value m̄� have opposite sign with respect
to Ref. [44]. However, as already pointed out, α ¼ 1=2 is
the upper bound allowed by a well-defined large-N
expansion of the beta functions. One still has to check
whether this upper bound is consistent under truncation
enlargements. Wewill report on that elsewhere. In any case,
within the present truncation, these fixed points cannot be
excluded.

TABLE I. Fixed points for α < 1=2.

m̄� λ̄4;1� λ̄4;2� λ̄4;3�

−0.3990 −0.0122 0 0.0180
1.0000 0 0 −0.1111

TABLE II. Critical exponents for the correspondent fixed
points in Table I for α ¼ 0.

θ1 θ2 θ3 θ4

−1.5528 − 2.1323i −1.5528þ 2.1323i −1.5094 −0.7506
2.8229 0.1771 0 0
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VI. COMPARISON WITH PURE
TENSOR MODELS

One commonly expects that enlargement of the truncation
leads to a better approximation of the true physical behavior,
so including disconnected invariants should improve the
estimates for critical behavior in the present model. The rule
of thumb that a larger truncation leads to a better approxi-
mation is, however, not always satisfied. Here, we present
evidence that this is the case when including disconnected
invariants in a small truncation for tensor models by
considering relatedmodels, in particular pure tensormodels.
The necessary beta functions for the pure complex tensor
model have been calculated inRef. [51] [Eqs. (24)–(35)], but
for the present discussion, we need only

η ¼ 5ðg24;2 þ
P

3
i¼1 g

2;i
4;1Þ

20þ g24;2 þ
P

3
i¼1 g

2;i
4;1

ð45Þ

β2;i4;1 ¼ ð2þ 2ηÞg2;i4;1 þ
13

630
ð21 − 4ηÞðg2;i4;1Þ2 ð46Þ

β24;2 ¼ ð3þ 2ηÞg24;2

þ 6 − η

15

�
ðg24;2Þ2 þ 2g24;2

X3
i¼1

g2;i4;1 þ 2
X3
i<j¼1

g2;i4;1g
2;j
4;1

�
;

ð47Þ
where g2;i4;1 denotes the coupling constant for the cyclicmelon
with preferred color i and g24;2 denotes the coupling of the
mass-squared term. This system of beta functions contains a
number of unreasonable fixed points (e.g., with complex
couplings or with unreasonably large critical exponents),
and here, we will only discuss those that are relevant for the
comparison with the model investigated in this paper. The
reasonable non-Gaussian fixed points are:
(1) The color-symmetric non-Gaussian fixed point at

which all g2;i4;1 take the same nonvanishing value
appears only in a truncation that does not include
g24;2. This fixed point appears at g24;1 ¼ −0.897 with
only one relevant direction with critical exponent
θ ¼ −2.31. However, once g24;2 is included in the
truncation, one obtains only color-symmetric fixed
points with complex coupling constants or unreason-
ably large critical exponents.

(2) The one-color non-Gaussian fixed point at which all
except one g2;i4;1 vanish: It then follows from the
structure for the beta function of g24;2 that one can set
g24;2 ¼ 0 at this fixed point. The nonvanishing ac-

quires the fixed point value g2;i4;1 ¼ −1.94, and we
find the critical exponents ð−2.21; 0.24; 0.93; 0.93Þ.

(3) The multitrace non-Gaussian fixed point at which all
g2;i4;1 vanish, so only g24;2 acquires a nonvanishing
fixed point value at −2.88: At this fixed point, we
find the critical exponents ð−3.47; 0.32; 0.32; 0.32Þ.

We see that the fixed points of the pure complex model
have a structure similar to the ones that we found in the
present paper. This is not surprising since the algebraic
structure of the beta functions is dictated by the combina-
torics of tensor invariants. The details of the model
change only the numerical factors, which also depend on
the RG scheme. Hence, one expects that physical fixed
points, which exist independently of the RG scheme,
appear in a wide variety of tensor models with similar
characteristics.
Using this correspondence between distinct tensor mod-

els, we see that the color symmetric and the multitrace fixed
points are the ones related to the fixed points discussed in
the previous sections. Moreover, we see that the color-
symmetric fixed point exhibits a similar behavior under
truncation enlargement as we found in the model inves-
tigated in the present paper; it appears as a reasonable fixed
point in a truncation that does not include g24;2, but there
seems to be no reliable (i.e., with real couplings and
reasonable critical exponents) fixed point in a truncation
that includes g24;2.

VII. STRATEGIES FOR FUTURE WORK

The results of previous sections suggest that the color-
symmetric fixed points found in truncations that do not
include multitrace invariants for the effective average action
of tensorial field theories (and of pure tensor theories) are
presumably truncation artifacts. Unfortunately, the pres-
ently considered truncations are still too small to decisively
distinguish truncation artifacts from physical RG fixed
points, because enlargements by a single operator of a very
small truncation can have drastic effects on the critical
exponents of physical fixed points, such that one might
falsely discard them as artifacts. To distinguish the two
cases, one needs to apply the general criteria mentioned in
Sec. II, i.e., truncation enlargement and the study of scheme
dependence.
As a rule of thumb, one expects that one obtains reliable

information about a fixed point at which only invariants
with four tensors obtain essentially nonvanishing fixed
point values, i.e., where the fixed point values of the
remaining couplings have a scheme dependence that is
about as big as their fixed point values, in truncations that
include up to eight tensors, such that any truncation effects
can at most be transmitted through “two-loop” effects. It is
therefore important to push the FRG investigation of
tensorial field theories to this order and to study scheme
dependence in this truncation.
In the near future, it will only be practically possible

to consider truncations to eighths order with index-
independent3 operators, thus neglecting the effect of

3We call an operator O½ϕ� index independent if it can be
written exclusively as a contraction of indices of ϕ’s and
Kronecker δ’s.
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index-dependent operators. The effect of these operators
can be estimated by the ðOðNÞÞ3-Ward identity, i.e., the
symmetry under ϕabc → ðO1ÞdaðO2ÞebðO3Þfcϕdef. In a pure
tensor model, one obtains a Ward identity that is only
broken by the presence of the regulator, while in a tensor
field theory, one obtains a Ward identity that is broken by
the regulator and the kinetic term. Thus, in either case,
one obtains a scheme-dependent Ward identity. The true
critical exponents are of course scheme independent.
Hence, one expects that one can already obtain reasonably
good results in an index-independent truncation,
when one optimizes the regulator to minimize the scheme
dependence. It therefore seems important to not only
enlarge the truncation but also to study the scheme
dependence in these truncations in order to obtain reliable
results.
Another aspect to be held in mind in the investigation

of tensorial models is the universality across various
models, in particular tensor models and tensorial field
theories, that we used in the previous section. This is
based on the observation that the models are graphically
very similar, which means that the beta functions of these
models become algebraically similar and hence the
mechanisms due to which certain fixed points exist is
similar in these models. This means that one should first
enlarge the truncations in pure tensor models, where
the calculations simplify, and use the lessons learned in
these models to enlarge the truncation in tensorial field
theories.

VIII. CONCLUSION

In this paper, we considered the full index-independent
ϕ4 truncation of a real Uð1Þ-tensorial field theory with
linear kinetic term and ðUð1ÞÞ3 symmetry.4 This truncation
enlarges the analysis of Ref. [44] by including two new
types of operators:
(1) The truncation includes a crossed interaction term

(in the notation of the present paper associated with
the coupling constant λ4;2), which is not a melonic
interaction term.

(2) The truncation includes the double-trace interaction
(in the notation of the present paper λ4;3), which is a
so-called disconnected interaction term.

The main results of investigating this truncation are the
following:
(1) The 1=N expandability of the beta functions does

not uniquely determine the scaling dimension
of the nonmelonic interaction term. Instead, one

finds only noncoinciding upper and lower
bounds on the scaling dimension of the coupling
constant λ4;2.

(2) The structure of the beta functions changes when
the upper bound is saturated; for values below the
upper bound, one finds that the coupling constant
λ4;2 does not appear in the beta functions of any
other coupling, while it does appear in the beta
functions of other couplings when the upper bound
is saturated.

(3) The number of relevant directions changes within
the range given by the lower and upper bounds. This
means that we can not determine the universality
class of the found fixed points within the present
truncation.

(4) We argue that the noncoincidence of the lower and
upper bounds is a consequence of the truncation; the
present truncation seems to not yet include enough
operators that effectively interact with the nonme-
lonic sector and hence do not yet imply coinciding
upper and lower bounds.

(5) We find the non-Gaussian fixed point that had been
found in Ref. [44]. However, when including the
double-trace operator, we find a significant change
of the critical behavior. We argue that this behavior
under truncation enlargement is not unique to this
particular model. In fact, by comparing the present
results with the results of the pure tensor model
investigated in Ref. [51], we find qualitatively
the same behavior. These results suggest that one
needs to consider truncations with ϕ6 and ϕ8

interactions to determine the critical behavior at this
fixed point.

The present analysis is a clear indication that the applica-
tion of the FRG to tensor models and tensorial field theories
has to be pushed to larger truncations, both in pure tensor
models and in tensorial field theories. We expect that
this enlargement of truncations will allow us to determine
unique scaling dimensions for all operators that are not
too close to the boundary of the truncation. Furthermore,
we argued that these truncation enlargements and the
study of scheme dependence in the enlarged truncations
will likely resolve the questions raised in the present
work.
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