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The quantum null energy condition (QNEC) is a new local energy condition that a general quantum field
theory (QFT) is believed to satisfy, relating the classical null energy condition (NEC) to the second
functional derivative of the entanglement entropy in the corresponding null direction. We present the first
series of explicit computations of QNEC in a strongly coupled QFT, using holography. We consider the
vacuum, thermal equilibrium, a homogeneous far-from-equilibrium quench as well as a colliding system
that violates NEC. For the vacuum and thermal phase, QNEC is always weaker than NEC. While for the
homogeneous quench QNEC is satisfied with a finite gap, we find the interesting result that the colliding
system can saturate QNEC, depending on the null direction.
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I. INTRODUCTION

Energy conditions rose to prominence in the 1960s as
requisites for proofs of singularity theorems or Hawking’s
area theorem [1,2]. While the specific energy condition
needed depends on details of the particular theorem, all
local classical ones are violated by quantum effects. Even
apparently feeble energy conditions such as NEC,

hTkki≡ hTμνkμkνi ≥ 0; ∀ kμkμ ¼ 0; ð1Þ

can be violated for stress tensors Tμν in reasonable QFTs.
Instead, QFTs typically obey nonlocal conditions such as
the averaged null energy condition (ANEC, [3,4]), which is
the statement that negative energy density along a complete
null geodesic is compensated by positive energy density
(with “quantum interest” [5]).
These averaged energy conditions can sometimes be

proven for QFTs (see [6,7] for ANEC) and hence provide
nontrivial consistency conditions for general QFTs. A better

understanding of quantum energy conditions can then even
lead to bounds on inflationary parameters, such as conjec-
tured in [8].
In general relativity, the NEC with the Raychaudhuri

equation imply the focusing of geodesics, which in turn
implies that classically the total area of black hole horizons
does not decrease. When including quantum effects, this
needs to be generalized by adding area and (entanglement)
entropy together, after which the generalized entropy
cannot decrease. This quantum focusing conjecture [9]
in turn implies a generalized NEC, which is a new local
energy condition (QNEC), proposed as [9]

hTkki ≥
1

2π
ffiffiffi
h

p S00; ∀ kμkμ ¼ 0: ð2Þ

Here S00 is the second functional derivative of entanglement
entropy (EE) with respect to deformations of the entangling
region along the null vector kμ, and h denotes the
determinant of the induced metric in the boundary of the
entangling region (we set ℏ ¼ c ¼ kB ¼ 1). Note that
QNEC (2) is weaker (stronger) than NEC (1) if S00 is
negative (positive).
The functional derivative in (2) can be taken in two ways.

In this paper, we will deform the entangling region homo-
geneously in the transverse directions and take the second
derivative with respect to this deformation parameter.
Alternatively, it is possible to do a pointwise deformation,
which then only contains the “diagonal” component of
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QNEC, in the language of [9]. It was recently shown [10]
that in theories with an interacting UV fixed point in more
than two dimensions, theQNECbecomes an equality, which
provides extra motivation to investigate the inclusive QNEC
in this paper.
Quantum energy conditions are particularly relevant for

systems that violate the classical ones. A pertinent class of
examples is provided by far-from-equilibrium strongly
coupled quantum matter, which presents a challenge for
most theoretical approaches. In this work, we consider such
examples.
While QNEC (2) is supposed to hold universally [11],

most work so far [12–15] focuses on holography [16–18].
This is because holography relates EE to simple geomet-
rical entities in the dual gravitational bulk [19–21], which
would otherwise be notoriously hard to compute in the
QFT itself. Notable exceptions are [11], which generalized
the proof of ANEC [6] to prove QNEC for general QFTs
(see also [22] for a 1þ 1-dimensional analysis).
QNEC is truly remarkable: it is the only known local

energy condition that is supposed to hold in any relativistic
QFT. Moreover, it relates a local quantity (the stress-tensor)
to EE, which depends on the quantum state of the
entangling region in question. We present several examples
where indeed the inequality depends on the entangling
region in a nontrivial way, but nevertheless QNEC is
satisfied in all of them.
Our work relies on previous work in numerical relativity

that determined the time-evolution of holographic entan-
glement entropy (HEE) [23] and extracted features of
interest for thermalization of anisotropic systems [24] or
holographic models of non-Abelian plasma formation in
heavy ion collisions [25] based on a geometric setup that
considers the collision of gravitational shockwaves [26–28]
numerically [29–31]. This latter setup has the interesting
property that for sufficiently localized shockwaves NEC (1)
is violated [26,30] with remarkable consequences for
phenomenology, such as the absence of a local rest frame
in far from equilibrium quantum matter [32].
The tools developed for calculating HEE can now be

applied to evaluate QNEC numerically, and the present
paper reports the first such study. We consider physical
systems of increasing complexity before finally addressing
colliding gravitational shock waves, where we discover a
surprising saturation of the QNEC inequality (2), depend-
ing on the null direction kμ used therein.

II. COMPUTING QNEC

We determine QNEC holographically by studying the
gravitational dual, where EE of a region in the CFT can be
computed using the Ryu-Takayanagi formula [19,20,33]:

SEE ¼ A
4GN

¼ N2
c

2π
A≡ N2

cSEE: ð3Þ

Here A is the area of an extremal codimension-2 surface in
the bulk which is homologous to the entangling region in
the boundary, and GN is Newton’s constant. The prescrip-
tion was proven in the static case [21] and has survived
many tests in dynamical situations [20,33–35].
All our examples use five-dimensional metrics of the

form

ds2 ¼ 2dtðFdy − dz=z2Þ − Adt2 þ R2ðeBdx2⊥ þ e−2Bdy2Þ;
ð4Þ

where A, B, F and R can depend on boundary coordinates t,
y and the AdS radial coordinate z. Near the AdS5 boundary
at z ¼ 0, these functions can be expanded as

A ¼ z−2 þ a4ðt; yÞz2 þOðz3Þ ð5aÞ

B ¼ b4ðt; yÞz4 þOðz5Þ ð5bÞ

F ¼ f4ðt; yÞz2 þOðz3Þ ð5cÞ

R ¼ z−1 þOðz4Þ: ð5dÞ

They have normalizable modes a4, b4, and f4, from which
the projection of the stress tensor can be determined [36] as

1

N2
c
hTμνk

μ
�k

ν
�i≡ T �� ¼ 1

2π2
ð−a4 − 2b4 � 2f4Þ; ð6Þ

with null vectors kμ� ¼ δμt � δμy at the boundary z ¼ 0.
In this work, all our entangling regions are infinite strips

along the perpendicular directions x⊥ and, hence, are
specified fully by their endpoints SEEðtL; yL; tR; yRÞ with
a corresponding separation L ¼ yR − yL. For these regions,
the extremal surface equation reduces to a geodesic
equation in an auxiliary spacetime, which simplifies the
computation considerably (see [24,25] for a detailed
description of the numerical procedure to find the relevant
geodesics [37]). The lengths of the geodesics then give the
entropy density per transverse area. An important subtlety
in computing (3) is its UV divergence. We regulate it by
putting a cutoff at zcut ¼ 0.01 and verifying that none of the
physics presented in this paper depends on the cutoff [38].
After computing EE, it is straightforward to evaluate

QNEC (2) at some point ðt; yÞ for the null vectors kμ�.
This is done by computing ∂2

λSEEðtþ λ; y� λ; t; yþ LÞ at
λ ¼ 0, which yields S00=

ffiffiffi
h

p
in Eq. (2) [39].

It is instructive to examine QNEC from a near-boundary
perspective, where it is possible to prove QNEC [13]. Close
to the boundary point ðtL; yLÞ an extremal surface is
given by tðzÞ ¼ tL þ λ − zþ t4ðλÞz4 þ a4z5=5þOðz6Þ,
yðzÞ ¼ yL � λ − zþ y4ðλÞz4 þ f4z5=5þOðz6Þ, where t4
and y4 also depend on ðtR; yRÞ and are undetermined in a
near-boundary analysis. Extremal surfaces are stationary
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under perturbations, so variations of extremal surfaces only
yield boundary terms. A simple geometric argument then
gives ∂λA ¼ −4t4ðλÞ � 4y4ðλÞ, which leads to the second
variation:

S00� ¼ ð�4∂λy4 − 4∂λt4Þ=ð4GNÞ: ð7Þ

Comparing the results (6) and (7) with each other shows
that inclusive QNEC does not hold or saturate automati-
cally, but may do so for suitable functions a4, b4, f4, y4
and t4.
Since we perturb in a null direction, the leading con-

tribution to the distance between the two extremal surfaces
separated by λ vanishes. We have two subleading contri-
butions, coming from the subleading terms in the extremal
surface and metric expansions, respectively,

Δs2 ¼ jxμðtL; yL; zÞ − xμðtL þ λ; yL þ λ; zÞj
¼ z2λ2ð−2b4 � 2f4 − a4 ∓ 2∂λy4 þ 2∂λt4Þ: ð8Þ

Assuming the classical NEC in the bulk spacetime and
using that the deformation along λ is null, it can be shown
[35] that the distance between the surfaces has to be
spacelike, i.e., Δs2 ≥ 0, also called the “entanglement
nesting property.” This condition reduces precisely to
QNEC in (2); see [13]. Equation (8) is useful for us, not
only to illustrate why in holography we expect QNEC to be
valid, but also to independently verify QNEC from a bulk
perspective. This is done by explicitly computing the
distance between two nearby extremal surfaces and com-
paring this with QNEC determined as described next.
To evaluate QNEC in practise we evaluate the second

derivative by computing SEE for five equidistant values of λ
between −0.05 and 0.05. We then obtain four estimates of
S00
� by generating a quadratic fit through all five points, the

first three points, the middle three points and the last three
points, thereby both obtaining a mean estimate as well as a
numerical error.
Figure 1 shows an example of a family of surfaces for kμþ

at tL ¼ tR ¼ 0.75, y ¼ 0.5 and L ¼ 1.0, including the
apparent horizon of the shock-wave collisions and the
(violation of) NEC in the boundary theory. On the right, we

display EE of the five surfaces, having their vacuum
contribution subtracted.
To obtain the full QNEC result, it is necessary to add the

vacuum contribution again. This is straightforward, since
for a strip the vacuum EE per transverse area is known
analytically [19],

SEE ¼ 1

2π

�
1

z2cut
−

1

2c30l
2

�
c0 ¼

3Γ½1=3�3
21=3ð2πÞ2 ; ð9Þ

where l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL� λÞ2 − λ2

p
is the proper length of the

(boosted) strip. Taking the second derivative with respect
to λ at λ ¼ 0 gives

1

2π
S00
� ¼ −

1

π2c30L
4
≈ −

0.06498
L4

: ð10Þ

From Eq. (10), it is clear that the CFT vacuum satisfies
QNEC in a trivial way, especially for small L, while it
saturates QNEC in the limit L → ∞.

III. RESULTS

A. Thermal plasma

We first consider a homogeneous thermal equilibrium
state with dual description in terms of the AdS5
Schwarzschild black brane that has A ¼ 1=z2 − ðπTÞ4z2,
R ¼ 1=z and B ¼ F ¼ 0, where the energy density is
related to the temperature by T0

0 ¼ 3N2
cπ

2T4=8. The null
projections of the energy momentum tensor, T ��, are the
same for both lightlike directions due to parity symmetry,

1

N2
c
hTμνk

μ
�k

ν
�i≡ T �� ¼ π2

2
T4 ≈ 0.0507π4T4: ð11Þ

In this case, S00þ ¼ S00
−, which can be understood by

realizing that the plasma is time-reversal invariant. That
means we can invert the kt component and invariance of the
second derivative under kμ → −kμ yields the identity.
In Fig. 2, we show that at small length S00

� approaches the
vacuum result, while for large L it approaches zero from
below exponentially fast. Since T �� is positive, we see that

FIG. 1. Two families of extremal surfaces at representative locations ðtL; yLÞ ¼ ð0.75;�0.5Þ for the shock-wave geometry. The
families correspond to a null variation at a point where the classical NEC is violated (purple region at z ¼ 0 or black region in Fig. 6).
The family starting at y ¼ −0.5 hovers just above the apparent horizon (colored surface) and hence has larger entropy, as well as more
negative S00

� (right Fig., see also Fig. 8).
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QNEC is easily satisfied for all lengths and never saturates.
Analytic calculations in the Appendix confirm our numeri-
cal results at small and large L.

B. Far-from-equilibrium quench

Now we consider a quenched far-from-equilibrium
system, where a homogeneous shell of null dust is injected
in the gravitational dual [23], leading to the AdS5 Vaidya
spacetime:

A ¼ z−2 −MðtÞz2; MðtÞ≡ 1

2
ð1þ tanhð2tÞÞ: ð12Þ

Equation (12) realizes a homogeneous quench of the
vacuum at t ¼ −∞ to a thermal state with T ¼ 1

π at
t ¼ ∞. The corresponding projection of the energy momen-
tum tensor is time dependent, with T �� ¼ 1

2π2
MðtÞ. The

Vaidya geometry is not invariant under time inversion,
so S00

� are distinct from each other.
In Fig. 3, we show S00

� versus the length of the strip at
four different times. For small lengths these curves again
approach the vacuum result, but at intermediate lengths

there is a clear difference between S00þ and S00
−, whereby in

particular S00
− can develop a pronounced local minimum.

For large lengths we find that S00þ and S00
− asymptote to

equal values. In Fig. 4, we plot these asymptotic values as a
function of time, where we see that QNEC is always
satisfied, and S00

� reaches a maximum slightly after the time
of the quench. We also see that QNEC settles down to its
thermal value later than the stress-tensor itself.
Even though the geometry is only slightly perturbed at

early times, we curiously see that the ratio of S00
�=ð2πÞ

versus T �� reaches a constant value of about 0.25; see
Fig. 5. This setting is the first case where QNEC is stronger
than NEC, i.e. we find S00

� > 0. Nevertheless, QNEC never
saturates, even at early times where both sides approach 0.

C. Shock-wave collision

The richest example presented here analyzes QNEC for
the CFT state dual to colliding gravitational shock waves.
This, in particular, leads to regions where the ordinary NEC
is violated [32] and, hence, gives a perfect setting to
examine QNEC. Colliding shock waves are dual to planar
sheets of energy moving at the speed of light and fully

FIG. 3. S00
� at four different times as a function of separation L

together with the corresponding T �� (for the quenched geometry
(4) with (12) and B ¼ F ¼ 0).

FIG. 4. Time evolution of T �� and the long length limit of
S00
�=ð2πÞ. Growth and settling down of S00

�=ð2πÞ happens later
than for T ��.

FIG. 5. Ratio of the two sides of the QNEC inequality (2).
Curiously the ratio asymptotes to 0.25 at early times and never
grows above that value. QNEC is still nontrivial for a time of
order 1=ðπTÞ after the geometry has already settled down.

FIG. 2. S00
� for the thermal state as a function of strip length

(blue). For small L the curve follows the vacuum result (Eq. (10),
red) whereas for large length S00

� approaches zero exponentially
(black). Since S00

�<0 and T �� > 0 QNEC is obviously satisfied.
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characterized by their only nonzero component of the
boundary stress-energy tensor T �� ¼ 1=2π2h�ðx�Þ, with
x� ¼ t� y, where h�ðx�Þ ¼ μ3 exp½−x2�=2w2�=

ffiffiffiffiffiffiffiffiffiffiffi
2πw2

p
and μw ¼ 0.1. We determined the functions A, B, F,
and R in the metric (4) numerically in previous work [30]

and use these results here as input for our evaluation of
HEE and QNEC.
Figure 1 shows the bulk shock-wave evolution, whereby

the colors at z ¼ 0 represent (the violation of) NEC (see
also [32] and Fig. 6). Figure 7 shows analogous S00

� versus
L plots at three representative points, noting that T þþ
differs from T −− at y ≠ 0. The red curve is at the location
where NEC is significantly violated, with T −− ¼ −0.04μ4,
while QNEC is satisfied, with S00

−=ð2πÞ asymptoting to
−0.19μ4. For kμ ¼ kþ, NEC is satisfied, but QNEC is
saturated, with T þþ ¼ S00þ=ð2πÞ ¼ 0.01μ4 for L → ∞.
Figure 8 shows the asymptotic behavior of QNEC for

μy ¼ −0.5, 0.0 and 0.5 [recall that �0.5 are distinct from
each other due to our choice of varying the left point of the
strip in Eq. (2)].
Strikingly, at y ¼ 0, we find QNEC saturation in the far-

from-equilibrium regime for k− at negative times, which
transitions to saturation for kþ at positive times. During the
hydrodynamic phase at μt > 0.8, there is no saturation.
For y ¼ 0.5, we have the nontrivial result that QNEC is
saturated for both k− and kþ as the outgoing shock passes
around μt ¼ 0.3–0.5. Lastly, for y ¼ −0.5, the entangling
region encompasses most of the collision region, and we do
not find saturation for t > 0.

IV. DISCUSSION

Our main result is the saturation of (inclusive) QNEC in
far-from-equilibrium regions created during shock-wave
collisions. This saturation is nontrivial and not seen in other
systems we studied. For vacuum and thermal states, QNEC
is weaker than NEC, since S00 is always negative. For a
homogeneous quench, QNEC is stronger than NEC, but the
ratio of both sides of the inequality never exceeds 0.3. In
shock-wave collisions, QNEC is never saturated in the
hydrodynamic regime, but it is saturated in the far-from-
equilibrium region, regardless of whether NEC is valid.
Reference [40] (see also [41]) conjectures that saturation of
QNEC can lead to a simplified expression for (part of) the
modular Hamiltonian of a half-space in vacuum.

FIG. 7. QNEC terms as a function of L for three representative
points in the shock-wave geometry (see Fig. 1). Dashed blue
saturates QNEC, even though NEC is positive. Dashed red
violates NEC, but S00

− is even smaller and no saturation occurs
in − direction, while it occurs in þ direction.

FIG. 8. Large L limit of QNEC as a fuction of time for y ¼ −0.5 (left), y ¼ 0 (middle) and y ¼ 0.5 (right). Strikingly, depending on
the direction of kμ all cases show a saturation of QNEC in the far-from-equilibrium regime, where in the center case first the k− direction
saturates, after which it transitions to the kþ direction, which saturates when NEC is violated (T �� < 0).

FIG. 6. Contour plot of T −− with NEC violation in the black
region.
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Even in vacuum, QNEC is nontrivial, as for our strip, the
EE term scales as S00

� ∝ −1=L4, which has a UV divergence
as L → 0. This makes the inequality trivially satisfied in the
small length limit, and it is hence an interesting question
whether QNEC also holds if one looks at a more physical
quantity, such as the vacuum-subtracted EE. None of the
proofs of QNEC apply for that case, but for all points where
we checked QNEC, we found that this stronger condition
also holds.
QNEC is a remarkable quantum inequality, and exam-

ples such as the ones studied in this paper will help to
further explore its more general implications as well as
applications such as holographic descriptions of strongly
coupled quantum matter.
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APPENDIX: QNEC FOR AdS5
SCHWARZSCHILD BLACK BRANE

Preliminaries—HEE for the AdSd Schwarzschild black
brane was considered by Fischler and Kundu who gave
infinite series representations in terms of ratios ofΓ-functions
[42] and more recently by Erdmenger andMiekley [43] who
expressed their results in closed form in terms of Meijer
G-functions. ForQNEC, it is necessary to compute nonequal
timeHEE, which is not straightforward using thesemethods.
We use a more pedestrian approach that allows straightfor-
ward generalization from HEE to QNEC as well as fast and
precise numerical evaluation of QNEC at small and large
separations. For the sake of specificity, we focus on d ¼ 5,
but our methods and results can be generalized easily to
arbitrary dimensions. In this way, we shall recover the
vacuum result for HEE (9) and QNEC (10) as well as the
corresponding thermal results in the main text; see Fig. 2.
Geometry—The AdS5 Schwarzschild black brane metric

is given by

ds2 ¼ 1

z2

�
−fðzÞdt2 þ dz2

fðzÞ þ dy2 þ dx21 þ dx22

�
ðA1Þ

with

fðzÞ ¼ 1 − ðπTÞ4z4; ðA2Þ

where T is the Hawking temperature in the same units as in
the main text.
Area functional—For a strip, the minimal area per

transverse density functional reads

A ¼
Z lþλ

2
−ω

0

dyLðz; _z; _tÞ ðA3Þ

with Lagrangian

Lðz; _z; _tÞ ¼ 2

z3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _z2

fðzÞ − _t2fðzÞ;
s

ðA4Þ

where the dimensionful quantity l is the width of the strip
in the y direction before deformation and λ parametrizes the
null deformation of the boundary interval with boundary
points ðt�; y�Þ ¼ ð�λ=2;�ðlþ λÞ=2Þ. This means that for
λ ¼ 0, we shall recover the HEE results for a strip of width
l centered around y ¼ 0 at the constant time-slice t ¼ 0.
Moreover, ω denotes the cutoff on the holographic coor-
dinate, such that zðl=2 − ωÞ ¼ zcut ≪ 1, dots denote
derivatives with respect to y and the overall factor 2 in
(A4) comes from the fact that we have two equally big
contributions to the area by integrating y from the midpoint
y ¼ 0 to either of the endpoints y� ¼ �ðlþ λÞ=2.
Noether charges—Since the functional (A3) respects

translation invariance, y → yþ y0, there is an associated
Noether charge yielding a first integral,

Q1 ¼L− _z
∂L
∂ _z − _t

∂L
∂_t ¼

2

z3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _z2=fðzÞ− _t2fðzÞ

p ≕
2

z3�N�
;

ðA5Þ

with N� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð_t2fÞjz¼z�

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Λ2=fðz�Þ

p
chosen

such that at zðy → 0Þ ¼ z� we are at the tip of the extremal
surface, _z ¼ 0. The constant Λ ¼ ð_tfÞjz¼z� was introduced
in anticipation of (A6) below.
There is a second Noether charge following from

∂yð∂L=∂_tÞ ¼ 0, yielding a constant of motion Λ.

Q2 ¼ _tfðzÞ≕Λ: ðA6Þ

Combining the two Noether charges, Q1;2 establishes an
expression for _z:

_z ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN2�z6�=z6 − 1ÞfðzÞ þ Λ2:

q
ðA7Þ

The values of the two Noether charges are fixed by the
interval parameters l and λ. Integrating (A7) from the tip of
the surface z ¼ z� to the boundary z ¼ 0 and introducing
the dimensionless variable x ¼ z=z� yields
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lþ λ

2
¼ z�

Z
1

0

dx
x3

RðxÞ ðA8Þ

with RðxÞ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN2�−x6Þð1−ðπTz�xÞ4ÞþΛ2x6

p
. Similarly,

integrating _t from t ¼ 0 to t ¼ λ=2 (which again can be
converted into a z-integration from the tip of the surface
z ¼ z� to the boundary z ¼ 0) yields

λ

2
¼ Λz�

Z
1

0

dx
x3

fðxz�ÞRðxÞ
: ðA9Þ

For small l, it is useful to determine Λ instead from

Λ ¼ λ

lþ λþ 2z�IΔ
ðA10Þ

with

IΔ ¼
Z

1

0

dx
x3

RðxÞ
�

1

fðxz�Þ
− 1

�
: ðA11Þ

For QNEC, we need to expand to order Oðλ2Þ but not
higher, which means that in (A10), we need to take into
account only terms in IΔ of order unity or linear inΛ, but no
higher powers of Λ.
Area as integral—Inserting the first integrals (A7), (A6)

into the area functional (A3) with (A4) and (A2) and
expanding in powers of the cutoff zcut yields

A ¼ 1

z2cut
þ 2

z2�

�
IλA −

1

2

�
þOðz2cutÞ ðA12Þ

with the finite contribution

IλA ¼
Z

1

0

dx
1

x3

�
N�
RðxÞ − 1

�
: ðA13Þ

The remaining task in order to get the area as a function
of the dimensionless product of temperature and strip
width, Tl, is to evaluate the integrals (A13), (A11) and
(A8). We consider first the limit of small widths, Tl ≪ 1,
and then of large widths, Tl ≫ 1. These results will allow
comparison with the numerical fits in the main text and
in Fig. 2.
Small width expansion—We start with the small width

expansion Tl ≪ 1. Note that we have the chain of inequal-
ities 0 < λ=l ≪ Tl ≪ 1. As we shall see, all our results
are expressed succinctly in powers of a single transcen-
dental number,

c0 ¼
3Γ½1=3�3
21=3ð2πÞ2 ≈ 1.159595; ðA14Þ

which was already introduced in the main text (9).
Perturbative evaluation of the integral (A11) together with
(A10) yields

Λ ¼ λ

lþ λ
− ðπTz�Þ4

4πc0λz�
15

ffiffiffi
3

p ðlþ λÞ2

þ ðπTz�Þ8
�

16π2c20λz
2�

675ðlþ λÞ3 −
2λz�

3ðlþ λÞ2
�

þOððTz�Þ12Þ þOðλ3=l3Þ: ðA15Þ

Similarly, evaluation of the integral (A8) establishes a
series expansion for z�,

z�
c0l

¼ 1þ ðπTlÞ4 2πc60
15

ffiffiffi
3

p þ ðπTlÞ8
�
4π2c120
135

−
c90
6

�

þ λ

l

�
1 − ðπTlÞ4 2πc

6
0

3
ffiffiffi
3

p þ ðπTlÞ8
�
4π2c120
15

−
3c90
2

��

þ λ2

l2

�
−
1

2
þ ðπTlÞ4

�
c40
6
−
49πc60
45

ffiffiffi
3

p
�

þ ðπTlÞ8
�
c80
6
−
71c90
12

−
c100 π

5
ffiffiffi
3

p þ 2074c120 π2

2025

��
þOððTlÞ12Þ þOðλ3=l3Þ; ðA16Þ

where we additionally expanded in powers of the dimen-
sionless small parameter λ=l, keeping only the powers
needed to determine QNEC. Finally, the area integral
(A13), together with the other results above, leads to an
expression for the area (A12)

A ¼ 1

z2cut
−

1

2c30l
2
þ ðπTÞ4l2

πc30
5

ffiffiffi
3

p þ ðπTÞ8l6

�
c60
12

−
2c90π

2

225

�

þ λ

l

�
1

c30l
2
þ ðπTÞ4l2

2πc30
5

ffiffiffi
3

p þ ðπTÞ8l6

�
c60
2
−
4c90π

2

75

��

þ λ2

l2

�
−

2

c30l
2
þ ðπTÞ4l2

2πc30
15

ffiffiffi
3

p

þ ðπTÞ8l6

�
4c60
3

−
88c90π

2

675

��
þOðz2cutÞ þOðT12l10Þ þOðλ3=l3Þ: ðA17Þ

The first line recovers the HEE results of [42,43].
The second derivative of the area (A17) with respect to

�λ evaluated at λ ¼ 0 yields the QNEC quantity S00
� used in

the main text:

1

2π
S00
� ¼ −

1

π2c30l
4
þ ðπTÞ4c30

15
ffiffiffi
3

p
π
− ðπTÞ8l4

�
44c90
675

−
2c60
3π2

�
þOðT12l8Þ: ðA18Þ

SATURATION OF THE QUANTUM NULL ENERGY … PHYS. REV. D 97, 126016 (2018)

126016-7



This is our main result in the limit of small separations.
For comparison with our numerical results in the main text,
we evaluate (A18) using (A14) (we set πT ¼ 1.):

1

2π
S00
� ≈ −

0.06498
l4

þ 0.01910 − 0.08289l4: ðA19Þ

The number 0.06498 reproduces the correct vacuum result
(10), while the numbers 0.01910 and 0.08289 appear in the
fit in the inset of Fig. 2.
Large width expansion—If Tl ≫ 1, then the holo-

graphic depth z� approaches the horizon,

z� ¼ ðπTÞ−1ð1 − ϵÞ 0 < ϵ ≪ 1: ðA20Þ

This means that we have again a small parameter that we
can use for perturbative purposes, namely ϵ. However, a
technical difficulty is that integrals like (A13) now acquire
terms that diverge like ln ϵ or 1=ϵ due to the behavior of the
integrands near the upper integration boundary x ¼ 1.
Thus, we need to isolate these divergences as we expand
around ϵ ¼ 0.
We encounter two types of delicate integrals. The first

one is of the form

I1½hðxÞ� ¼
Z

1

0

hðxÞdxffiffiffiffiffiffiffiffiffiffiffi
1 − x

p ð1 − xþ ϵxÞ3=2

¼ 2hð1Þ
ϵ

þOðln ϵÞ; ðA21Þ

and the second one reads

I2½hðxÞ� ¼
Z

1

0

hðxÞdxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − xÞð1 − xþ ϵxÞp
¼ −hð1Þ ln ϵ

4
þ
Z

1

0

dx
hðxÞ − hð1Þ

1 − x

− ðhð1Þ þ h0ð1ÞÞ ϵ
2
ln
ϵ

4
þOðϵÞ; ðA22Þ

where in both cases the function hðxÞ must be (and in all
our cases will be) Taylor-expandable around x ¼ 1. We
have also simple explicit expressions for the subleading
terms, but do not display them since we are not going to use
them (with one exception). By virtue of the formulas above,
we now evaluate the three relevant integrals.
Let us start with the integral (A9). We rewrite it as

λ

2
¼ Λz�I1½hΛðxÞ�; ðA23Þ

with hΛð1Þ ≃ 1=ð8 ffiffiffi
6

p Þ þOðϵÞ, where ≃ denotes equality
up to terms of irrelevant order in λ. Using (A21) for small ϵ,
the integral (A23) yields

Λ ≃ 2
ffiffiffi
6

p
ϵλðπTÞ þOðλϵ2 ln ϵÞ: ðA24Þ

The next integral we consider is (A8), which determines
ϵ defined in (A20) in terms of l and λ. Again, we slightly
rewrite the integral,

lþ λ

2z�
≃ I2½hzðxÞ� þ λ2ðπTÞ2ϵI1½hλðxÞ�; ðA25Þ

which for small ϵ by virtue of (A21) and (A22) expands as

lþ λ

2z�
≃ −hzð1Þ ln

ϵ

4
þ h0z þ 2λ2hλð1Þ þOðϵ ln ϵÞ; ðA26Þ

with hzð1Þ¼2hλð1Þ¼1=ð2 ffiffiffi
6

p ÞþOðϵÞ and h0z ≈ −0.25032
[44], yielding

ϵ ≃ ϵ0 exp½−
ffiffiffi
6

p
ðlþ λÞðπTÞ þ λ2ðπTÞ2� þ � � � ; ðA27Þ

where the ellipsis refers to terms that are exponen-
tially suppressed as compared to the one displayed.
Numerically, ϵ0 ¼ 4 exp½h0z=hzð1Þ� ≈ 1.173487.
Finally, we evaluate the area integral (A13). We split it

into λ-independent and λ-dependent terms,

IA ≃ I2½hzðxÞ þ ϵkzðxÞ�λ2ðπTÞ2ϵI1½hλðxÞ þ ϵkλðxÞ�

≃
lþ λ

2z�
þ ϵðI2½kzðxÞ� þ λ2ðπTÞ2ϵI1½kλðxÞ�Þ; ðA28Þ

with the same functions hz and hλ as in (A25), kzð1Þ ¼
−1=2 and kλð1Þ ¼ −

ffiffiffi
6

p
=4. Physically, the reason why the

split of the integrals in (A28) into h and k is useful is related
to the fact that, for large Tl, HEE scales linearly with l.
The integration formulas (A21) and (A22) together with

the results above yield, for the area (A12),

A ≃
1

z2cut
þ lþ λ

z3�
þ 1

z2�
ðb0 þ b1ϵþ blogϵ ln ϵÞ

þ λ2ðπTÞ4b2ϵþOðz2cutÞ þOðϵ2 ln ϵÞ ðA29Þ

with b0 ≈ −0.66589, b1 ≈ −0.08889 [45], b2 ¼ −
ffiffiffi
6

p
and

blog ¼
ffiffiffi
6

p
=2. For λ ¼ 0, the area (A29) establishes a result

for HEE,

SEE ¼
1

2π

�
1

z2cut
þlðπTÞ3þðπTÞ2b0

þe−
ffiffi
6

p
lðπTÞ · ðπTÞ2ϵ0ð2b0þb1þblog lnϵ0Þ

�
; ðA30Þ

where we neglected terms that vanish as the cutoff is
removed, zcut → 0 and terms that are exponentially sup-
pressed like l exp½−2 ffiffiffi

6
p

lðπTÞ�. Note that all terms of the
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form l exp½− ffiffiffi
6

p
lðπTÞ� cancel. Numerically, the cutoff-

independent terms read (setting πT ¼ 1)

2πSfin ≈ l − 0.666 − 1.437e−
ffiffi
6

p
l þOðle−2

ffiffi
6

p
lÞ: ðA31Þ

The result above agrees with (5.27) and (B.26) in [42].
The second derivative of the area (A29) with respect to

�λ evaluated at λ ¼ 0 yields again the QNEC quantity S00
�

used in the main text.

1

2π
S00
� ¼ −

5
ffiffiffi
6

p
ϵ0

4π2
ðπTÞ4e−

ffiffi
6

p
lðπTÞ þ � � � ; ðA32Þ

where we neglected terms that are suppressed like
l exp½−2 ffiffiffi

6
p

lðπTÞ� and used the numerical identity
blog ln ϵ0 ¼ −2b0 − b1 − blog. Note that again all terms

of the form l exp½− ffiffiffi
6

p
lðπTÞ� cancel. Inserting numbers

into our large width result (A32) yields (setting πT ¼ 1)

1

2π
S00
� ≈ −0.364053e−2.44949l: ðA33Þ

The exponential behavior in (A33) agrees rather precisely
with the numerical data displayed in Fig. 2.
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