
 

Four-dimensional ambitwistor strings and form factors
of local and Wilson line operators

L. V. Bork1,2,3 and A. I. Onishchenko4,5,6
1Institute for Theoretical and Experimental Physics, Moscow 117218, Russia
2National Research Nuclear University (MEPhI), Moscow 115409, Russia

3The Center for Fundamental and Applied Research, All-Russia Research Institute of Automatics,
Moscow 117055, Russia

4Bogoliubov Laboratory of Theoretical Physics, Joint Institute forNuclear Research,Dubna 141980, Russia
5Moscow Institute of Physics and Technology (State University), Dolgoprudny 141701, Russia
6Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow 119991, Russia

(Received 21 February 2018; published 20 June 2018)

We consider the description of form factors of local and Wilson line operators (Reggeon amplitudes) in
N ¼ 4 Supersymmetric Yang-Mills theory within the framework of four-dimensional ambitwistor string
theory. We present the explicit expressions for string composite operators corresponding to stress-tensor
operator supermultiplet and Wilson line operator insertion. It is shown that corresponding tree level string
correlation functions correctly reproduce previously obtained Grassmannian integral representations. As a
by-product we derive four-dimensional tree-level scattering equation representations for thementioned form
factors and formulate a simple gluing procedure used to relate operator form factorswith on-shell amplitudes.
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I. INTRODUCTION

Recently twistor string theories [1,2] played a crucial
role in understanding and discovery of mathematical
structures underlying scattering amplitudes inN ¼ 4 super
Yang-Mills and N ¼ 8 supergravity in four dimensions.
Based onWitten’s twistor string theory Roiban, Spradlin,

and Volovich (RSV) got the integral representation of
N ¼ 4SupersymmetricYang-Mills theory (SYM) tree level
Nk−2MHVamplitudes as integrals over the moduli space of
degree k − 1 curves in super twistor space [3,4]. Further
generalization of the RSV result was performed byCachazo,
He and Yuan (CHY) via the introduction of so-called
scattering equations [5–9]. Within the latter N ¼ 4 SYM
amplitudes are expressed in terms of integrals over the
marked points on the Riemann sphere, which are localized
on the solutions of mentioned scattering equations. Next the
CHY formulas were shown to come naturally from ambit-
wistor string theory [10,11], which was also used to obtain
loop-level generalization of scattering equation representa-
tion [12–21]. Another close direction in the study of
scattering amplitudes is related to their representation in
terms of integrals over Grassmannians [22–27].

First, this representation allows natural unification
of different Britto-Cachazo-Feng-Witten (BCFW) [28,29]
representations for tree level amplitudes and loop level
integrands [22,23]. Second, it is ultimately related to the
integrable structure behind the N ¼ 4 SYM S matrix
[30–34].Moreover, theGrassmannian integral representation
also naturally relates perturbative N ¼ 4 SYM and twistor
string theories amplitudes[26]. Finally, the Grassmannian
integral representation of scattering amplitudes has led to the
discovery of the geometrical structure of the N ¼ 4 SYM S
matrix (so-called amplituhedron) [35–42].
All results mentioned above are extremely relevant not

only from a pure theoretical but also from a more practical
point of view. For example, these results provide us with
relatively compact analytical expressions for n-point tree
level amplitudes in gauge theories with N ≤ 4 Super
Symmetry (SUSY) (including QCD), which in turn could
be used to compute corresponding loop level amplitudes
(see for a review [43]). It is important to note that all results
mentioned above were almost impossible to obtain by
standard textbook Feynman diagram methods.
The ideas and methods described above can be applied

not only to the scattering amplitudes of on-shell states
(S-matrix elements) but to form factors of gauge invariant
operators (local or none local) as well. The form factors of
local gauge invariant operators are quite developed topics
in the literature; see [44–52] and references therein. The
general practice when studying form factors is to consider
the case of local gauge invariant color singlet operators.
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However, one may also consider gauge invariant (the
representation under global gauge transformation is not
necessary singlet) nonlocal operators, for example, Wilson
loops (lines) or their products [53–65]. An insertion of a
Wilson line operator will then correspond to the off-shell or
Reggeized gluon in such a formulation. These objects
should be more familiar to the reader as gauge invariant off-
shell amplitudes [53–62] (also known as Reggeon ampli-
tudes in the framework of Lipatov’s effective Lagrangian),
which appear within the context of kT or high-energy
factorization [66–69] as well as in the study of processes at
multi-Regge kinematics.
Up to the moment we already have scattering equation

(connected prescription) representations for the form fac-
tors of operators from stress-tensor operator supermultiplet
and scalar operators of the form TrðϕmÞ [70,71]. Also the
connected prescription formulas were extended to Standard
Model amplitudes [72]. Besides, there are several results
for the Grassmannian integral representation of form
factors of operators from stress-tensor operator supermul-
tiplet [73–76] and Wilson line operator insertions [63,64];
see also [65] for a recent interesting discussion of duality
for Wilson loop form factors.1

The purpose of this work is to further pursue the string
based approach toN ¼ 4 super Yang-Mills and other four-
dimensional gauge theories. Namely, we want to derive
Grassmannian integral and scattering equation representa-
tion ([74,75] and [63,64]) of form factors and correlation
functions of local and Wilson line operators in N ¼ 4
SYM starting from four-dimensional ambitwistor string
theory. Recently we have already provided such a deriva-
tion for the case of the Reggeon amplitude (Wilson line
form factors) in [84]. This paper contains both extra details
of the latter derivation together with its extension to the
case of the form factors of local operators. In addition, we
further investigate the relation between on-shell amplitudes
and form factors and suggest a procedure that allows one to
reconstruct (at tree and possible loop level) form factors
and correlation functions of Wilson line operators starting
directly from on-shell scattering amplitudes.
This paper is organized as follows: in Sec. II we

introduce necessary definitions for the form factors of
operators from stress-tensor supermultiplet and Wilson line
operators.
In Sec. III, to make an article self-contained, we proceed

with the recalling of general four-dimensional ambitwistor
string theory formalism [11].
In Sec. IV we discuss our motivation to introduce the

so-called gluing procedure—an operation, introduced for
the first time in [84], that is given by convolution of
the ambitwistor vertex operators with some function of

external kinematical data. Based on this gluing procedure
we present expressions for string theory generalized vertex
operators (string theory composite operators) correspond-
ing to theN ¼ 4 SYM field theory stress-tensor operator as
well as give some additional details regarding derivation of
the results of [84]. Using these new string vertex operators
we compute corresponding tree level string theory corre-
lation functions and show that they correctly reproduce the
results of previously obtained Grassmannian integral rep-
resentations of stress tensor supermultiplet form factors
[74] as well as form factors and correlation functions of
Wilson line operators [63,64].
Section V contains a detailed review based on [26] about

the relation between Grassmannian integral and RSV
(scattering equation) representations of the on-shell ampli-
tudes, which play a very important role in our construction
as well. At the end of the section we briefly discuss one
simple self-consistency check of our construction.
In Sec. VI we further discuss the gluing procedure. We

show that one can formally apply it (a convolution with
some function of external kinematical data) directly on the
level of on-shell amplitudes represented as the sum of
BCFW terms (both at tree and, probably, integrand level).
We formalize this by introducing the notion of gluing
operator Â. Using the gluing operator we reproduce several
previously obtained [53,63,64] results for Wilson line form
factors (Reggeon amplitudes) including the three-point
correlation function of Reggeized gluons.
Finally, in Sec. VII we present our conclusion and dis-

cuss possible future research directions. Appendices A
and B contain the computational details of the form factor
gluing procedure.

II. FORM FACTORS OF LOCAL AND
WILSON LINE OPERATORS

In this work we are interested in the ambitwistor
string description of form factors of the Wilson line and
local operators in N ¼ 4 SYM. N ¼ 4 SYM is a max-
imally supersymmetric gauge theory in four space-time
dimensions [85,86]. Its 16 on-shell states (their creation/
annihilation operators) could be conveniently described
using N ¼ 4 on-shell chiral superfield [87],

Ω ¼ gþ þ η̃Aψ
A þ 1

2!
η̃Aη̃Bϕ

AB þ 1

3!
η̃Aη̃Bη̃Cϵ

ABCDψ̄D

þ 1

4!
η̃Aη̃Bη̃Cη̃Dϵ

ABCDg−: ð2:1Þ

Here, gþ, g− denote creation/annihilation operators of gluons
with þ1 and −1 helicities, ψA are creation/annihilation
operators of four Weyl spinors with negative helicity −1=2,
ψ̄A are creation/annihilation operators of four Weyl spinors
with positive helicity, andϕAB stand for creation/annihilation
operators of six scalars (antisymmetric in the SUð4ÞR
R-symmetry group indices AB). All N ¼ 4 SYM fields

1A very close subject is the twistor and Lorentz harmonic
chiral superspace formulation of form factors and correlation
functions developed in [77–83].
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transform in the adjoint representation of the SUðNcÞ gauge
group. In what follows we will also need superstates defined
by the action of superfield creation/annihilation operators on
a vacuum. For the n-particle superstate we have

jΩ1Ω2 � � �Ωni≡Ω1Ω2 � � �Ωnj0i: ð2:2Þ

Form factors of Wilson line operators are generally used
to describe gauge invariant off-shell or Reggeon amplitudes
[53–62]. The Wilson line operators used to describe off-
shell Reggeized gluons are defined as [60]

Wc
pðkÞ ¼

Z
d4xeix·kTr

�
1

πg
tcP exp

×

�
igffiffiffi
2

p
Z

∞

−∞
dsp · Abðxþ spÞtb

��
; ð2:3Þ

where tc is the SUðNcÞ generator2 and we also used the
so-called kT decomposition of the off-shell gluon momen-
tum k, k2 ≠ 0,

kμ ¼ xpμ þ kμT: ð2:4Þ

Here, p is the off-shell gluon direction (also known as the
gluon polarization vector), such that p2 ¼ 0, p · k ¼ 0, and
x ∈ ½0; 1�. Such decomposition is generally parametrized
by an auxiliary light-cone four-vector qμ, so that

kμTðqÞ ¼ kμ − xðqÞpμ with xðqÞ ¼ q · k
q · p

and q2 ¼ 0:

ð2:5Þ

As momentum kμT is transverse with respect to both pμ and
qμ vectors, one can decompose it into the basis of two
“polarization” vectors3 as [53]

kμTðqÞ ¼ −
κ

2

hpjγμjq�
½pq� −

κ�

2

hqjγμjp�
hqpi with κ ¼ hqj=kjp�

hqpi ;

κ� ¼ hpj=kjq�
½pq� : ð2:6Þ

It is easy to see that k2 ¼ −κκ� and both κ and κ� are
independent of auxiliary four-vector qμ [53]. Another
useful relation, which is a direct consequence of kT
decomposition and will be used often in practical calcu-
lations later on, is

kjpi ¼ jp�κ�: ð2:7Þ

Note that the Wilson line operator we use to describe off-
shell gluon is colored. It is invariant δWc

pðkÞ ¼ 0 under

local infinitesimal gauge transformations δAμ ¼ ½Dμ; χ�
with χ decreasing at x → ∞. At the same time it transforms
under global adjoint transformations of SUðNcÞ with
constant χ as [56,57]

δWpðkÞ ¼ g½WpðkÞ; χ�: ð2:8Þ

The form factor of Wilson line operator or gauge
invariant amplitude with one off-shell and n on-shell gluons
is then given by [60]

Anþ1ð1�;…; n�; g�nþ1Þ ¼ hfki; ϵi; cigni¼1jWcnþ1
p ðkÞj0i;

ð2:9Þ

where the asterisk denotes off-shell gluon, while p, k, and c
stand for its direction, momentum, and color index. Next
hfki; ϵi; cigmi¼1j ¼⊗m

i¼1 hki; εi; cij and hki; εi; cij denote the
on-shell gluon state with momentum ki, polarization vector
ε−i or εþi , and color index ci. Also in the case when there is
no confusion in the position of the Wilson line operator
insertion, the latter will be labeled just by g�. Form factors
with multiple Wilson line insertions or amplitudes with
multiple off-shell gluons can be represented in a similar
fashion,

Amþnð1�;…; m�; g�mþ1;…; g�nþmÞ

¼ hfki; ϵi; cigmi¼1j
Yn
j¼1

W
cjþm
pjþmðkjþmÞj0i; ð2:10Þ

where piþm is the direction of the ith (i ¼ 1;…; n) off-shell
gluon and kiþm is its off-shell momentum. As a function of
kinematical variables this amplitude is written as

Amþnð1�;…; g�nþmÞ
¼ Amþnðfλi; λ̃i;�; cigmi¼1; fkj; λp;j; λ̃p;j; cjgmþn

j¼mþ1Þ;
ð2:11Þ

where λp;j, λ̃p;j are spinors coming from helicity spinor
decomposition of polarization vector of jth Reggeized
gluon. In the case when only off-shell gluons are present
(the correlation function of Wilson line operator insertions)
we have

A0þnðg�1 � � � g�nÞ ¼ h0jWc1
p1
ðk1Þ � � �Wcn

pnðknÞj0i: ð2:12Þ

Of course, it is also possible to consider color ordered
versions of Wilson line form factors, while the original off-
shell amplitudes (Wilson line form factors) are then
recovered using color decomposition4:2The color generators are normalized as TrðtatbÞ ¼ δab.

3Here we used the helicity spinor decomposition of lightlike
four-vectors p and q. 4See, for example, [63,88].
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A�
nþmð1�;…; m�; g�mþ1;…; g�nþmÞ
¼ gn−2

X
σ∈Snþm=Znþm

trðtaσð1Þ � � � taσðnþmÞ Þ

× A�
nþmðσð1�Þ;…; σðg�nþmÞÞ: ð2:13Þ

Note that in the planar limit this decomposition is valid for
both arbitrary tree and loop level amplitudes.
In the case of N ¼ 4 SYM one may also consider other

than gluons on-shell states from the N ¼ 4 supermultiplet.
The corresponding N ¼ 4 SYM superamplitudes are then
given by

A�
mþnðΩ1;…;Ωm; g�mþ1;…; g�nþmÞ

¼ hΩ1 � � �Ωmj
Yn
j¼1

Wpmþj
ðkmþjÞj0i; ð2:14Þ

and the explicit dependence of A�
mþnðΩ1;…; g�mþnÞ ampli-

tude on kinematical variables takes the form

A�
mþnðΩ1;…; g�mþnÞ
¼ A�

mþnðfλi; λ̃i; η̃igmi¼1; fkj; λp;j; λ̃p;jgmþn
j¼mþ1Þ: ð2:15Þ

The above superamplitude contains not only component
amplitudes with on-shell gluons but also all amplitudes
with other on-shell states from the N ¼ 4 supermultiplet.
The helicity spinors λi, λ̃i encode kinematics of on-shell
states, while η̃i encodes their helicity content. Off-shell
momentum ki and light-cone direction vector pi ¼ λp;iλ̃p;i
encode information related to Wilson line operator inser-
tion. So, in what follows we will be considering the
partially supersymmetrized version of amplitudes (2.10)
with on-shell states treated in a supersymmetric manner,
while Wilson line operators (“off-shell states”) are left
unsupersymmetrized. The component amplitudes contain-
ing gluons, scalars, and fermions may then be extracted as
coefficients in the η̃ expansion of the A�

mþn superamplitude
similar to the case of ordinary on-shell amplitudes and
super form factors.
While our present consideration should be applicable5

not only to the Wilson line but to arbitrary local operators,
here for concreteness we will restrict ourselves to the case
of operators from a stress-tensor operator supermultiplet.
When considering the latter the general practice is to focus
on the chiral part of this multiplet. Using the harmonic
superspace approach [89,90] it is given by [90–93]

T ðx; θþÞ ¼ trðϕþþϕþþÞ þ � � � þ 1

3
ðθþÞ4L; ð2:16Þ

where uþa
A , u−a

0
A is a set of harmonic coordinates para-

metrizing coset SUð4Þ
SUð2Þ×SUð2Þ0×Uð1Þ and θþa

α ¼ θAαu
þa
A ,

θ−a
0

α ¼ θAαu−a
0

A . Here, A is the SUð4ÞR index, a and a0

are SUð2Þ indices, and � denote Uð1Þ charges. For
example, ϵabϕþþ ¼ ϕABuþa

A uþb
A , where ϕAB is the scalar

field from the N ¼ 4 Lagrangian. The color ordered form
factors of operators from the chiral truncation of stress-
tensor operator supermultiplet Fn are then given by

FnðΩ1;…;Ωn; T Þ≡ hΩ1 � � �ΩnjT ðq; γ−Þj0i
¼ Fnðfλi; λ̃i; η̃igni¼1; fq; γ−gÞ; ð2:17Þ

where fλi; λ̃i; η̃igni¼1 are kinematical and helicity data of
the on-shell states, q is the operator momentum, and γ−

parametrizes the operator content of the chiral part of
N ¼ 4 SYM stress-tensor operator supermultiplet. Here,
we have also performed the Fourier transformation from
variables x, θþ to q, γ− [91,92]. The full physical form
factor may then be restored from its color ordered version
using standard color decomposition formula

F nðΩ1;…;Ωn; T Þ ¼ gn−2
X

σ∈Sn=Zn

trðtaσð1Þ � � � taσðnÞ Þ

× FnðσðΩ1Þ;…; σðΩnÞ; T Þ; ð2:18Þ

where Sn=Zn denotes all noncyclic permutations of n
objects. As in the case of off-shell amplitudes, this formula
is valid for both arbitrary tree and loop level form factors in
the planar limit.6 At least at tree level the form factors of the
full stress-tensor operator supermultiplet can be recon-
structed if the explicit form of (2.17) is known [91].

III. FOUR-DIMENSIONAL AMBITWISTOR
STRINGS

A. General formalism

As was already mentioned in the Introduction, to
describe form factors of local and Wilson line operators
we will be using the four-dimensional ambitwistor string
theory originally formulated in [11]. Here for completeness
we will discuss essential details of dimensional ambitwistor
string theory. Our presentation of this theory here closely
follows [11], and we refer the interested reader to this
original paper and [94] for further details.
The target space of four-dimensional ambitwistor string

is given by projective ambitwistor space PA. The latter is
the supersymmetrized space of complex null geodesics in a
complexified Minkowski given by a quadric Z ·W ¼ 0
inside the product of twistor and dual twistor spaces
PT × PT� quotient by relative scaling Z · ∂Z −W · ∂W :

PA ¼ fðZ;WÞ ∈ T × T �jZ ·W ¼ 0g=fZ · ∂Z −W · ∂Wg:
ð3:1Þ

5See corresponding discussion in the Conclusion.

6At loop level one should take into account appropriate powers
of t’Hooft coupling constant g2Nc, which were suppressed here.

L. V. BORK and A. I. ONISHCHENKO PHYS. REV. D 97, 126013 (2018)

126013-4



In the case of N supersymmetries Z ¼ ðλα; μ _α; χrÞ ∈
T ¼ C4jN , W ¼ ðμ̃; λ̃; χ̃Þ ∈ T�, and Z ·W ¼ λαμ̃

α þ
μ _αλ̃ _α þ χrχ̃r, where χ, χ̃ are fermionic, α ¼ 0, 1, _α ¼ _0,
_1, and r ¼ 1;…;N is the R-symmetry index. The point
ðx; θ; θ̃Þ in nonchiral super Minkowski space corresponds
to a quardric CP1 × CP1 parametrized by ðλ; λ̃Þ spinors.
The correspondence is realized by the standard twistor
incidence relations

μ _α ¼ iðxα _α þ iθrαθ̃ _α
r Þλα; χr ¼ θrαλα; ð3:2Þ

μ̃α ¼ −iðxα _α − iθrαθ̃ _α
rÞλ̃ _α; χ̃r ¼ θ̃ _α

r λ̃ _α: ð3:3Þ

It is easy to check that this quardric lies in Z ·W ¼ 0.
The four-dimensional ambitwistor string consists from

world-sheet spinors ðZ;WÞ with values in T × T � and
GLð1;CÞ gauge field a acting as a Lagrange multiplier for
the constraint Z ·W ¼ 0. In the conformal gauge the action
is given by7

S ¼ 1

2π

Z
Σ
W · ∂̄Z − Z · ∂̄W þ aZ ·W þ SJ; ð3:4Þ

where ∂̄ ¼ dσ̄∂ σ̄ (σ, σ̄ are some local holomorphic and
antiholomorphic coordinates on Riemann surface Σ) and SJ
is the action for a world-sheet Kac-Moody current algebra
J ∈ Ω0ðΣ; KΣ ⊗ gÞ for some Lie algebra g. Here KΣ
denotes the canonical bundle on surface Σ and the
remaining world-sheet fields take values in

Z ∈ Ω0ðΣ; K1=2
Σ ⊗ TÞ; ð3:5Þ

W ∈ Ω0ðΣ; K1=2
Σ ⊗ T �Þ; ð3:6Þ

a ∈ Ω0;1ðΣÞ; ð3:7Þ

where powers of the canonical bundle denote field con-
formal weights. The above action is invariant under a gauge
symmetry,

ZI → eγZI; WI → e−γWI; a → a − 2∂̄γ; ð3:8Þ

that separates the target space into equivalence classes with
respect to the action of Z · ∂Z −W · ∂W . The gauge fixing
of world-sheet diffeomorphism symmetry8 and the above
gauge redundancy via standard Becchi-Rouet-Stora-Tyutin
(BRST) procedure leads to the introduction of the standard

reparametrization (Virasoro) ðb; cÞ together with GL(1)
ðu; vÞ ghost systems:

c ∈ ΠΩ0ðΣ; TΣÞ; v ∈ ΠΩ0ðΣÞ; ð3:9Þ

b ∈ ΠΩ0ðΣ; K2
ΣÞ; u ∈ ΠΩ0ðΣ; KΣÞ; ð3:10Þ

where TΣ denotes the tangent bundle on surface Σ and
ΠΩ0ðΣ; EÞ denotes the space of fermion-valued sections of
E. The full world-sheet action is then given by

S ¼ 1

2π

Z
Σ
W · ∂̄Z − Z · ∂̄W þ b∂̄cþ u∂̄vþ SJ; ð3:11Þ

and the BRST operator takes the form

Q ¼
I

cT þ vZ ·W þQgh; ð3:12Þ

where T ¼ W · ∂Z − Z · ∂W þ TJ is the world-sheet
stress-energy tensor.

B. String vertex operators and their
correlation functions

To calculate string scattering amplitudes we need vertex
operators. In general they are given by first-quantized wave
functions of external states translated into world-sheet
operator insertions. Penrose transform allows us to relate
solutions to massless field equations in Minkowski space to
cohomology classes on projective twistor space. In the case
of Yang-Mills theory ambitwistor string vertex operators
are obtained by pairing pullbacks of general ambitwistor
space wave functions α ∈ H1ðPA;OÞ [∂̄-closed world-
sheet (0,1) forms] with Kac-Moody currents J · Ta to get
Va ¼

R
Σ αJ · Ta. For two types of momentum eigenstates

(pullbacks from either twistor or dual twistor space) we
get [11]

Va ¼
Z

dsa
sa

δ̄2ðλa − saλÞeisað½μλ̃a�þχr η̃arÞJ · Ta; ð3:13Þ

Ṽ 0
a ¼

Z
dsa
sa

δ̄2ðλ̃a − saλ̃Þeisaðhμ̃λaiþχ̃rη
r
aÞJ · Ta; ð3:14Þ

where δ̄ðzÞ ¼ ∂̄ð1=2πizÞ for complex z. Note that these
vertex operators are Q closed9 and satisfy fQ;Vag ¼
fQ; Ṽ 0

ag ¼ 0. To facilitate further comparison with
Grassmannian integral representation, it is convenient to
introduce a slightly different representation for the second

7It is obtained by chiral pullback of contact structure on
ambitwistor space Θ ¼ i

2
ðZ · dW −W · dZÞ [11]. Note that sim-

ilar action first appeared in [2] in the context of open twistor
string theory.

8In a general gauge, the ∂̄ operator in (3.4) is replaced by
operator ∂̄ ẽ ¼ ∂̄ þ ẽ∂ parametrizing the world-sheet diffeomor-
phism freedom.

9It should be noted that in general this theory is anomalous
and has nonzero central charge, so that Q2 ≠ 0 [11,94], but one
can adjust the central charge of Kac-Moody current algebra to get
Q2 ¼ 0 at least for a lower genus Rieman surface [10].
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vertex operator. It is obtained by a Fourier transform10 of
the η’s into η̃’s:

Ṽa ¼
Z

dsa
sa

δ̄2jN ðλ̃a − saλ̃jη̃a − saχ̃Þeisahμ̃λaiJ · Ta: ð3:15Þ

In the case ofN ¼ 3 these vertex operators together encode
all 16 degrees of freedom of N ¼ 4 SYM theory. For
N ¼ 4, on the other hand, each of them contains allN ¼ 4
SYM on-shell states. In our consideration of N ¼ 4 SYM
to obtain maximally supersymmetric superamplitudes we
will use the second option and these vertex operators
interchangeably.
Nk−2MHV superamplitudes may then be obtained, for

example, as correlation functions of k operators from dual
twistor space and n − k operators from twistor space [11]
(here and below we omit color structures and already work
with color ordered objects):

Ak;n ¼ hṼ1 � � � ṼkVkþ1 � � �Vni: ð3:16Þ
Instead of computing the infinite number of contractions
required by exponentials in vertex operators, it is conven-
ient to take exponentials into the action as sources,

Z
Σ

Xk
i¼1

isihμ̃λiiδ̄ðσ−σiÞþ
Xn

p¼kþ1

ispð½μλ̃p�þχη̃pÞδ̄ðσ−σpÞ:

The corresponding equations of motion from this new
action are then given by

∂̄σZ ¼ ∂̄ðλ; μ; χÞ ¼ Xk
i¼1

siðλi; 0; 0Þδ̄ðσ − σiÞ; ð3:17Þ

∂̄σW ¼ ∂̄ðμ̃; λ̃; χ̃Þ ¼ Xn
p¼kþ1

spð0; λ̃p; η̃pÞδ̄ðσ − σpÞ: ð3:18Þ

As ðZ;WÞ fields are world-sheet spinors the solutions to the
above equations are unique11 and given by

ZðσÞ ¼ ðλ; μ; χÞ ¼
Xk
i¼1

siðλi; 0; 0Þ
σ − σi

; ð3:19Þ

WðσÞ ¼ ðμ̃; λ̃; χ̃Þ ¼
Xn

p¼kþ1

spð0; λ̃p; η̃pÞ
σ − σp

: ð3:20Þ

Then the path integrals over ðZ;WÞ fields localize on the
solutions (3.19) and (3.20), while the current correlator
contributes the Parke-Taylor factor and for the color
ordered on-shell amplitude we get [11]

An;k ¼
Z

1

VolGLð2;CÞ
Yn
a¼1

dsadσa
saðσa − σaþ1Þ

×
Yn

p¼kþ1

δ̄2ðλp − spλðσpÞÞ

×
Yk
i¼1

δ̄2jN ðλ̃i − siλ̃ðσiÞ; η̃i − siχ̃ðσiÞÞ: ð3:21Þ

Note that ghosts c and v develop12 nc ¼ 3 (number of
conformal Killing vectors on sphere) and nv ¼ 1 zero
modes correspondingly, which result in the GLð2;CÞ
quotient above. In terms of homogeneous coordinates on
Riemann sphere σα ¼ 1

s ð1; σÞ the W and Z fields rescaled
by a factor of 1=s could be written as

ZðσÞ ¼
Xk
i¼1

ðλi; 0; 0Þ
ðσσiÞ

; WðσÞ ¼
Xn

p¼kþ1

ð0; λ̃p; η̃pÞ
ðσσpÞ

;

ð3:22Þ
where ðijÞ ¼ σiασ

α
j . Then the final formula for the above

amplitude takes the form [11]

An;k ¼
Z

1

VolGLð2;CÞ
Yn
a¼1

d2σa
ðaaþ 1Þ

Yn
p¼kþ1

δ̄2ðλp − λðσpÞÞ

×
Yk
i¼1

δ̄2jN ðλ̃i − λ̃ðσiÞ; η̃i − χ̃ðσiÞÞ: ð3:23Þ

The scattering equations then follow from the support of
the delta functions,

ka · PðσaÞ ¼ λαaλ̃
_α
aPα _αðσaÞ ¼ λαaλ̃

_α
aλαðσaÞλ̃ _αðσaÞ ¼ 0:

ð3:24Þ
It is important to note that the exact form of scattering
equations themselves and scattering equation representa-
tions for amplitudes depends on which particle vertex
operators were taken as Ṽi and which as Vi in (3.16).
So, we have several equivalent representations for Ak;n.
Their existence, as we will see in Sec. V, is related to the
GLðkÞ “gauge invariance” of Grassmannian integral rep-
resentation for scattering amplitudes.

IV. GENERALIZED VERTEX OPERATORS

In the previous section we saw the explicit form of the
world-sheet vertex operators that corresponds to the on-
shell states of the N ¼ 4 SYM field theory. In this section
we will suggest construction of composite world-sheet
operators in the ambitwistor string theory that will corre-
spond to local and nonlocal gauge invariant operators in
N ¼ 4 SYM.

10Note that in [11] instead a Fourier transform for the first
operator from η’s to η̃’s was performed. The Grassmann part of
the delta function is defined as usual: δ0jN ðη̃Þ ¼ QN

r¼1 η̃r.11There no fermion zero modes on sphere.

12This is easy to see with the help of the Riemann-Roch
theorem recalling that degTΣ ¼ − degKΣ ¼ 2g − 2, where g is
the genus of the Riemann surface.
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In [70] it was conjectured that it may be possible to
obtain such operators considering appropriate terms in
operator product expantion (OPE) of standard vertex
operators (namely, OPE for Kac-Moody currents).
Also ideologically similar attempts to construct generali-
zation of vertex operators that should describe off-
shell states was taken in [95,96] in the context of bosonic
string theory. We, however, found such OPE based
approaches unfitting for our purpose, though we do not
claim that one cannot eventually succeed considering this
direction.
Instead we want to leave the world-sheet structure of

operators intact and consider external kinematics as only
adjustable parameters. Namely, as our new generalized
vertex operators Vgen.. we want to consider the convolution
of products of vertex operators Vi (3.13) with “target space
wave functions” ψðfλi; λ̃i; ηig;…Þ—some rational func-
tions on ambitwistor space. Here by “convolution” we
mean the integration with respect to components of on-shell
momenta pi ¼ λiλ̃i on which vertex operators depend13

Vgen ¼
Z

ψðfλi; λ̃i; ηig;…Þ
Y
i

Vi
d2λid2λ̃i

Vol½GLð1Þ� d
4η̃i: ð4:1Þ

Here we will understand integration with respect to d2λid2λ̃i
as multidimensional contour integrals which in turn will be
evaluated by residues. We will sometimes refer to this
convolution as gluing operation. The … in ψ corresponds
to possible dependence on parameters other than on-shell
supermomenta λi, λ̃i, ηi. To describe local and nonlocal
operators in N ¼ 4 SYM field theory target space wave
functions ψ should carry appropriate quantum numbers, so
it is natural to take them in the form proportional to
minimal form factors—tree level form factors of the
corresponding operator with the minimal possible number
of on-shell states. Such objects can be found from general
symmetry arguments in the same lines as MHV3 and
MHV3 amplitudes [97] or simply by explicit evaluation.14

Another heuristic argument in favor of such a con-
struction is the following: to obtain a vertex operator in
ordinary string theory we usually consider a product of an
appropriate polarization vector with a combination of
world-sheet fields. For example, in the case of bosonic
string theory the vertex operator Vgr describing the graviton
state is given by

Vgr ¼ ϵμν� Vμν; Vμν ¼
ffiffiffi
g

p
gab∂aXμ∂bXν expðipρXρÞ;

ð4:2Þ
where Xμ are world-sheet fields, pρ are on-shell momenta
of graviton, and ϵμν� is the polarization vector of graviton
corresponding to momenta pρ. In suggested construction
the target space wave functions ψ is some kind of genera-
lization of the polarization vector of the corresponding
state, but instead of an ordinary scalar product we have
integrations with respect to on-shell degrees of freedom we
want to eliminate and instead of local world-sheet operator
Vμν we are considering multilocal operators

Q
iVi.

The suggested construction in principle should describe
any gauge invariant operator in N ¼ 4 SYM field theory.
Initially it was successfully tested for the Wilson line
operators (Reggeon state creation/annihilation operators)
[84]. Here we want to give more details about derivation of
this result as well as consider another new simple but
important example of application of our construction.
Namely, we want to suggest world-sheet generalized vertex
operators that should describe theN ¼ 4 SYM field theory
stress-tensor supermultiplet.

A. Generalized world-sheet vertex operator for
N = 4 SYM field theory Wilson line operator

Following the conjectures presented above for construc-
tion of generalized vertex operator VWL which should
describe the field theory Wilson line operator, we have to
choose target space wave functions ψ proportional to the
minimal Wilson line A�

2;2þ1. Namely, we will consider

ψðfλj; λ̃j; ηjgiþ1
j¼i ; fk; λp; λ̃pgÞ ¼ A�

2;2þ1ðg�;Ωi;Ωiþ1Þ
× color projectors: ð4:3Þ

This choice of ψ was first considered in [84]. Here, as was
mentioned before, and in Appendix A we will give a more
detailed derivation of the results of [84].
So proceeding this way the ambitwistor string general-

ized vertex operator VWL for field theory Wilson line
operator insertion could be written as

VWL
i;iþ1 ¼

Z Yiþ1

j¼i

d2λjd2λ̃j
Vol½GLð1Þ� d

4η̃jA�
2;2þ1ðg�;Ωi;Ωiþ1Þjλ→−λ

× ViViþ1jTaTb→ifabcTc→Tc ; ð4:4Þ
where the vertex is supposed to be inserted at points σi,
σiþ1, c is the color index of off-shell gluon, and we have
used projection of the tensor product of two adjoint on-shell
gluon color representations onto off-shell gluon adjoint
color representation. Also because the on-shell state con-
tents of Vi and Ṽi are identical, we actually consider
combinations ViViþ1, ViṼiþ1, and ṼiṼiþ1 in the definition
of VWL

i;iþ1 on equal footing. The minimal off-shell amplitude
A�
2;2þ1ðg�;Ωi;Ωiþ1Þ is given by [63]

13The conjectured vertex operator should also belong to BRST
cohomology because the action of the Q operator trivially com-
mutes with the convolution considered here and the action of Q
on Vgen.. reduces to the action of Q on individual Vi.14Of course, it would be highly desirable to obtain some
universal geometrical description of such target space wave
functions. The possible direction to obtain such a description
is to consider an appropriate polynomial solution of the classical
(self-dual) equation of motion [98].
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A�
2;2þ1ðg�;Ωi;Ωiþ1Þ ¼

1

κ�
Y4
A¼1

∂
∂η̃Ap

�
δ4ðkþ λiλ̃i þ λiþ1λ̃iþ1Þδ8ðλpη̃p þ λiη̃i þ λiþ1η̃iþ1Þ

hpiihiiþ 1ihiþ 1pi
�

¼ δ4ðkþ λiλ̃i þ λiþ1λ̃iþ1Þ
κ�

δ4ðη̃ihpiþ 1i þ η̃iþ1hpiiÞ
hpiihiiþ 1ihiþ 1pi : ð4:5Þ

Here p is the off-shell gluon direction and κ� was defined in
Sec. II when introducing kT decomposition of the off-shell
gluon momentum k. It should be noted that each of the V
operators above could be exchanged for the Ṽ operator, so
that this vertex operator representation is not unique. Note
also that the ambitwistor string vertex operator we got is
nonlocal, which may be related to the fact that the Wilson
line is a nonlocal object itself. The integrations over helicity
spinors λi, λ̃i can be performed explicitly. The details of this
computation can be found in Appendix A; see also [74].

After integrations we get (here and below we always
assume the action of the projection operator ∂4

η̃p
acting

on VWL
i;iþ1 and all correlation functions containing it)

VWL
i;iþ1 ¼

hξpi
κ�

Z
dβ2
β2

Z
dβ1
β1

1

β21β2
ViViþ1jTaTb→ifabcTc→Tc ;

ð4:6Þ

where

λi ¼ λ
i
þ β2λiþ1

; λ̃i ¼ β1λ̃i þ
ð1þ β1Þ

β2
λ̃
iþ1

; η̃i ¼ −β1η̃
i
; ð4:7Þ

λiþ1 ¼ λ
iþ1

þ ð1þ β1Þ
β1β2

λ
i
; λ̃iþ1 ¼ −β1λ̃iþ1

− β1β2λ̃i; η̃iþ1 ¼ β1β2η̃
i
; ð4:8Þ

with

λ
i
¼ λp; λ̃i ¼

hξjk
hξpi ; η̃

i
¼ η̃p; λ

iþ1
¼ λξ; λ̃

iþ1
¼ hpjk

hξpi ; η̃
iþ1

¼ 0; ð4:9Þ

where λξ ≡ hξj is some arbitrary spinor. It is useful to identify it with the spinor λq coming from helicity spinor
decomposition of auxiliary vector q arising in kT decomposition of off-shell gluon momentum k.
The off-shell amplitude with one off-shell and n on-shell legs is then given by the following ambitwistor string correlation

function (let us remind the reader that we are considering an already color ordered object):

A�
k;nþ1 ¼ hṼ1 � � � ṼkVkþ1 � � �VnVWL

nþ1;nþ2i: ð4:10Þ

Evaluating the first ambitwistor string correlator of on-shell vertexes with the help of (3.21) we get

A�
k;nþ1 ¼

hξpi
κ�

Z
dβ2
β2

Z
dβ1
β1

1

β21β2

1

VolGLð2;CÞ

×
Z Ynþ2

a¼1

dsadσa
saðσa − σaþ1Þ

Ynþ2

p¼kþ1

δ̄2ðλp − spλðσpÞÞ
Yk
i¼1

δ̄2j4ðλ̃i − siλ̃ðσiÞ; η̃i − siχ̃ðσiÞÞ: ð4:11Þ

We want to remind the reader that in this formula
kinematical variables fλi; λ̃i; ηignþ2

i¼nþ1 depend on β1 and
β2 according to (4.7)–(4.9).
Next we want to perform integrations with respect to β1

and β2 to obtain formulas similar to (3.23). It is rather
complicated to perform integrations over β1 and β2 in the
expression above due to the nonlinear structure of delta

function arguments with respect to β1 and β2. So wewant to
linearize them first. For this purpose we are introducing
unity decomposition in the form [26]

1 ¼ 1

VolGLðkÞ
Z

dk×ðnþ2ÞCdk×kLðdetLÞnþ2δk×ðnþ2Þ

× ðC − L · CV ½s; σ�Þ; ð4:12Þ
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where the integral over the L matrix is an integral over GLðkÞ linear transformations and CV ½σ� denotes the Veronese map
from ðC2Þnþ2=GLð2Þ to Grðk; nþ 2Þ Grassmannian [26] (see also [70]),

CV ½s; σ� ¼

0
BBB@

..

. ..
. � � � ..

.

σV ½s1; σ1� σV ½s2; σ2� � � � σV ½snþ2; σnþ2�
..
. ..

. � � � ..
.

1
CCCA; σV ½s; σ�≡

0
BBBBB@

ξ

ξσ

..

.

ξσk−1

1
CCCCCA
; ð4:13Þ

where [4,70]

ξi ¼ s−1i
Yk

j¼1;j≠i
ðσj − σiÞ−1; i ∈ ð1; kÞ; ð4:14Þ

ξi ¼ si
Yk
j¼1

ðσj − σiÞ−1; i ∈ ðkþ 1; nþ 2Þ: ð4:15Þ

Rearranging (4.11) we can write it as

A�
k;nþ1 ¼

hξpi
κ�

Z
dβ2
β2

Z
dβ1
β1

1

β21β2

1

VolGLðkÞ
×
Z

dk×ðnþ2ÞCFðCÞδk×2ðC · λ̃Þδk×4ðC · η̃Þδðnþ2−kÞ×2ðC⊥ · λÞ; ð4:16Þ

where

FðCÞ ¼
Z

1

VolGLð2;CÞ
Ynþ2

a¼1

dsadσa
saðσa − σaþ1Þ

dk×kLδk×ðnþ2ÞðC − L · CV ½s; σ�Þ; ð4:17Þ

and

δk×2ðC · λ̃Þ≡Yk
a¼1

δ2
�Xn

i¼1

caiλ̃i

�
; δðnþ2−kÞ×2ðC⊥ · λÞ≡ Ynþ2

b¼kþ1

δ2
�Xnþ2

j¼1

c⊥bjλj
�
;

δk×4ðC · η̃Þ≡Yk
a¼1

δ4
�Xnþ2

i¼1

caiη̃i

�
; ð4:18Þ

where the C⊥ matrix is defined by identity C · ðC⊥ÞT ¼ 0
and it is assumed that all matrix manipulations are
performed after GLðkÞ gauge fixing. The delta functions
above should be thought of as δðxÞ ¼ 1=x, so that the
corresponding contour integral computes the residue at
x ¼ 0 [99]. Note that now arguments of delta functions are
linear in integration variables cai. Also it is implemented
that appropriate integration contour Γ is chosen for
dk×ðnþ2ÞC integration. We will label such a contour as
Γtree
k;nþ2. We will make some comments about explicit

construction of Γtree
k;nþ2 in the next section.

Next, by construction FðCÞ contains ðk − 2Þ × ðn − kÞ
delta function factors forcing the integral over C’s to have a
Veronese form [26]. In general FðCÞ is a rather complicated
rational function of minors of the C matrix; see the

discussion in Sec. V. However, it could be shown that
the choice of FðCÞ in the form

FðCÞ ¼ 1

ð1 � � � kÞð2 � � � kþ 1Þ � � � ðnþ 2 � � � k − 1Þ ð4:19Þ

correctly reproduces the results of subsequent integration
over Grassmannian (C matrixes). Here we use standard
notations (i1 � � � ik) to denote minors of the C matrix
constructed from columns of C with numbers i1;…; ik.

15

Because of this important step in our construction, we give

15We hope there will be no confusion with previous definition
ðijÞ ¼ σiασ

α
j used in d2σa integrals over homogeneous coordi-

nates on Riemann sphere.
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a detailed discussion of this derivation, based on [99] in the
next chapter.
Now we can perform a change of variables cai that

will simplify dependence on β1 and β2 in the integrand
(linearize the dependence on β1 and β2 in the denominator),
so that the integrals can be evaluated by residues. The
computational details of this change of variables can be
found in Appendix A.
To evaluate the residues we found it most convenient to

use the notion of composite residue [22]. For that purpose
let us define the set S of points in Cn, such that S ¼ fzjz ∈
Cn; sðzÞ ¼ 0g and sðzÞ is some holomorphic function (in
our case polynomial). Next, consider n form ω ¼ hðzÞ=
sðzÞdz, where dz ¼ dz1 ∧ � � � dzn and hðzÞ is some other

holomorphic function (in our case it is some rational
function), and define the (n − 1) form,

resj½ω� ¼ ð−1Þj−1
�

hðzÞ
∂zjsðzÞ

�				
S
dz½j�; ð4:20Þ

with dz½j� ¼ dz1 ∧ � � �∧ dzj−1 ∧ dzjþ1 ∧ � � �∧ dzn. Using
this definition iteratively we may define (n −m) forms as

resm½ω� ¼ resm∘ � � � ∘res1½ω�: ð4:21Þ

These forms are also known as composite residue forms.
Considering our integral (4.16) as such a residue form

ω ¼ hξpi
κ�

Z
dβ1 ∧ β2
β1β2

Z
dk×ðnþ2ÞC
VolGLðkÞ

δk×2ðC · λ̃Þδk×4ðC · η̃Þδðnþ2−kÞ×2ðC⊥ · λÞ
ð1 � � � kÞ � � � ðn − kþ 2 � � �nþ 1Þ � � � ðnþ 2 � � � k − 1Þ ; ð4:22Þ

where we used notations for minors of C matrix,

ðnþ 21 � � � k − 1Þ ¼ ð1þ β1Þðnþ 1 1 � � � k − 1Þ þ β1β2ðnþ 2 1 � � � k − 1Þ; ð4:23Þ

ðn − kþ 2 � � �nþ 1Þ ¼ ðn − kþ 2 � � � nþ 1Þ þ β2ðn − kþ 2 � � � n nþ 2Þ; ð4:24Þ

and for kinematical variables

λ
i
¼ λi; i ¼ 1;…n; λ

nþ1
¼ λp; λ

nþ2
¼ ξ;

λ̃
i
¼ λ̃i; i ¼ 1;…n; λ̃

nþ1
¼ hξjk

hξpi ; λ̃
nþ2

¼ −
hpjk
hξpi ;

η̃
i
¼ η̃i; i ¼ 1;…n; η̃

nþ1
¼ η̃p; η̃

nþ2
¼ 0; ð4:25Þ

we can take residue as resβ1¼−1∘resβ2¼0. This will give us the following result:

resβ1¼−1∘resβ2¼0½ω� ¼ A�
k;nþ1; ð4:26Þ

or more explicitly

A�
k;nþ1 ¼

Z
Γtree
k;nþ2

dk×ðnþ2ÞC
Vol½GLðkÞ�Reg

δk×2ðC · λ̃Þδk×4ðC · η̃Þδðnþ2−kÞ×2ðC⊥ · λÞ
ð1 � � � kÞ � � � ðnþ 1 � � � k − 2Þðnþ 2 1 � � � k − 1Þ ; ð4:27Þ

where16

Reg ¼ hξpi
κ�

ðnþ 2 1 � � � k − 1Þ
ðnþ 1 1 � � � k − 1Þ : ð4:28Þ

This expression is in complete agreement with our previous derivation [63]. We will make some comments on the choice of
integration contour Γtree

k;nþ2 in Sec. V.

16Reg. notation for this combination of minors is chosen because such insertion regulates the behavior of A�
k;nþ1 with respect to the

soft holomorphic limit in kinematical variables with labels nþ 1 or nþ 2 [63].
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Using (4.27) as the starting point we can perform the
inverse operation—that is, taking partial integrations
and reducing the integral in (5.8) to the integral over
Grð2; nþ 2Þ Grassmannian,17

A�
k;nþ1 ¼

Z Ynþ2

a¼1

d2σa
ðaaþ 1Þ

Reg:V

VolGLð2;CÞ
Ynþ2

p¼kþ1

δ̄2ðλ
p
− λðσpÞÞ

×
Yk
i¼1

δ̄2j4ðλ̃
i
− λ̃ðσiÞ;η

i
− χ̃ðσiÞÞ; ð4:29Þ

where RegV factor is given by

RegV ¼ hξpi
κ�

ðk nþ 1Þ
ðk nþ 2Þ ð4:30Þ

and doubly underlined functions are defined as

ðλ; μ; χÞ ¼
Xk
i¼1

ðλ
i
; 0; 0Þ
ðσσiÞ

; ðμ̃; λ̃; χ̃Þ ¼
Xnþ2

p¼kþ1

ð0; λ̃
p
; η

p
Þ

ðσσpÞ
:

ð4:31Þ

This should be equivalent to taking integrals over β1
and β2 directly in (4.11). Equation (4.29) can also be
considered as RSV (scattering equation) representation for
the Wilson line form factor. Scattering equations in this
case are given by (3.24) where λðσÞ’s and λ̃ðσÞ’s are taken
from (4.31).
The result for the case of amplitudes with multiple off-

shell legs A�
k;mþn could be obtained along the same lines as

previous discussions. In the case with first m particles on-
shell and last n being off-shell, making identical assump-
tions as in the n ¼ 1 case about the form of the FðCÞ
function, we would get for A�

k;mþn,

A�
k;mþn ¼

Z
Γtree
k;mþ2n

dk×ðmþ2nÞC
Vol½GLðkÞ�Regðmþ 1;…; mþ nÞ

×
δk×2ðC · λ̃Þδk×4ðC · η̃Þδðmþ2n−kÞ×2ðC⊥ · λÞ

ð1 � � � kÞ � � � ðm � � �mþ k − 1Þðmþ 1 � � �mþ kÞ � � � ðmþ 2n � � � k − 1Þ ; ð4:32Þ

where the external kinematical variables are chosen as

λ
i
¼ λi; i ¼ 1;…; m; λ

mþ2j−1 ¼ λpj
; λ

mþ2j
¼ ξj; j ¼ 1;…; n;

λ̃
i
¼ λ̃i; i ¼ 1;…; m; λ̃

mþ2j−1 ¼
hξjjkmþj

hξjpji
; λ̃

mþ2j
¼ −

hpjjkmþj

hξjpji
; j ¼ 1;…; n;

η̃
i
¼ η̃i; i ¼ 1;…; m; η̃

mþ2j−1
¼ η̃pj

; η̃
mþ2j

¼ 0; j ¼ 1;…; n; ð4:33Þ

and the Regðmþ 1;…; mþ nÞ function is given by the products of ratios of minors of the C matrix:

Regðmþ 1;…; mþ nÞ ¼
Yn
j¼1

RegðjþmÞ;

RegðjþmÞ ¼ hξjpji
κ�j

ð2jþm 2jþ 1þm � � � 2jþ k − 1þmÞ
ð2j − 1þm 2jþ 1þm � � � 2jþ k − 1þmÞ : ð4:34Þ

This result also coincides with the Grassmannian integral representation for A�
k;mþn first conjectured in [64]. Also note that if

the number of VWL
i;iþ1 operators is greater than Ṽi, which is given by k, then the correlation function is equal to 0. Ṽi from

which VWL
i;iþ1 may be constructed also are taken into account. It is also possible to rewrite this result in RSV (scattering

equation) form:

A�
k;mþn ¼

Z Ynþ2

a¼1

d2σa
ðaaþ 1Þ

RegVðmþ 1;…; mþ nÞ
VolGLð2;CÞ

Ymþ2n

p¼kþ1

δ̄2ðλ
p
− λðσpÞÞ

×
Yk
i¼1

δ̄2j4ðλ̃
i
− λ̃ðσiÞ; η

i
− χ̃ðσiÞÞ; ð4:35Þ

17The Grð2; nþ 2Þ Grassmannian is embedded into the Grðk; nþ 2Þ Grassmannian again with the help of the Veronese map; see, for
example, [70].
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where

RegVðmþ 1;…; mþ nÞ ¼
Yn
j¼1

RegVðjþmÞ; RegVðjþmÞ ¼ hξjpji
κ�j

ðk2j − 1þmÞ
ðk2jþmÞ ; ð4:36Þ

and doubly underlined functions of σ as before are defined in (4.31). Note that now doubly underlined kinematical variables
in (4.31) should be taken from (4.33). At the end, we want to stress that the explicit form of (4.30) and (4.36) is not unique
and is in fact related to the GLðkÞ gauge choice in (4.27) and (4.32).

B. Generalized world-sheet vertex operators for N = 4 SYM field theory
stress-tensor supermultiplet operators insertion

Let us now consider different choice of target space wave functions ψ . Namely, let us choose ψ as

ψðfλj; λ̃j; ηjgiþ1
j¼i ; fq; γ−gÞ ¼ F2;2ðΩn;Ωnþ1; T Þ × color projectors: ð4:37Þ

Here F2;2 is the minimal form factor of operators from theN ¼ 4 SYM stress tensor supermultiplet.18 This choice of target
space wave function should correspond to the world-sheet generalized vertex operator VST which should describe the
insertions of operators from the N ¼ 4 SYM stress-tensor supermultiplet in the on-shell amplitude, i.e., the corresponding
form factor

VST
i;iþ1 ¼

Z Yiþ1

j¼i

d2λjd2λ̃j
Vol½GLð1Þ� d

4η̃jF2;2ðΩi;Ωiþ1; T Þjλ→−λViViþ1jTaTb→δab→1; ð4:38Þ

where, as in the previous case, the vertex is supposed to be inserted at points σi, σiþ1 and we have used projection of the
tensor product of two adjoint on-shell state color representations onto singlet color representation. Note that the initial
correlation function of vertex operators (3.16) is a colored object. The singlet projection considered here will effectively
lead to the situation when on the level of color ordered objects we will have to consider all possible positions19 of VST

i;iþ1

(“gluing positions”) starting from i ¼ 1 up to i ¼ nþ 1. The minimal form factor F2;2ðΩi;Ωiþ1; T Þ itself is given by [74]

F2;2ðΩi;Ωiþ1; T Þ ¼ δ2ðλ̃iÞδ4ðη̃iÞδ2ðλ̃iþ1Þδ4ðη̃iþ1
Þ ð4:39Þ

with (q and γ− are the operator’s momentum and supermomentum correspondingly)

λ̃i ¼ λ̃i −
hiþ 1jq
hiþ 1ii ; η̃−

i
¼ η̃−i −

hiþ 1jγ−
hiþ 1ii ; η̃þ

i
¼ η̃þi ; ð4:40Þ

λ̃iþ1 ¼ λ̃iþ1 −
hijq

hiiþ 1i ; η̃−
iþ1

¼ η̃−iþ1 −
hijγ−

hiiþ 1i ; η̃þ
iþ1

¼ η̃þiþ1: ð4:41Þ

Integrating over helicity spinors λi, λ̃i we get

VST
i;iþ1 ¼ −hξAξBi2

Z
dβ1

Z
dβ2ViViþ1jTaTb→δab→1; ð4:42Þ

where

λi ¼ ξA − β1ξB; λ̃i ¼
1

β1β2 − 1

hξBjq
hξBξAi

þ β2
β1β2 − 1

hξAjq
hξAξBi

; ð4:43Þ

18More accurately it is chiral truncation [91].
19Let us remind the reader that we consider combinations ViViþ1, ViṼiþ1, and ṼiṼiþ1 in the definition of VST

i;iþ1 on equal footing.
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λiþ1 ¼ ξB − β2ξA; λ̃iþ1 ¼
1

β1β2 − 1

hξAjq
hξAξBi

þ β1
β1β2 − 1

hξBjq
hξBξAi

; ð4:44Þ

and

η̃−i ¼ 1

β1β2 − 1

hξBjγ−
hξBξAi

þ β2
β1β2 − 1

hξAjγ−
hξAξBi

; η̃þi ¼ 0; ð4:45Þ

η̃−iþ1 ¼
1

β1β2 − 1

hξAjγ−
hξAξBi

þ β1
β1β2 − 1

hξBjγ−
hξBξAi

; η̃þiþ1 ¼ 0: ð4:46Þ

The evaluation of the string correlation function with stress-tensor vertex operator insertion (here we are a considering color
ordered object)

Fk;n ¼ hṼ1 � � � ṼkVkþ1 � � �VnVST
nþ1;nþ2i þ other gluing positions ð4:47Þ

closely follows the corresponding calculation for the case of the Wilson line vertex operator insertion presented above. We
also want to simplify arguments of delta functions. For that purpose we introduce unity decomposition [26] in the form
(4.12) and use conjecture that FðCÞ can be chosen as (4.19). This give us the following expression:

Fk;n ¼ −hξAξBi2
Z

dβ2dβ1

Z
dk×ðnþ2ÞC
Vol½GLðkÞ�FðCÞδ

k×2ðC · λ̃Þδk×4ðC · η̃Þδðnþ2−kÞ×2ðC⊥ · λÞ

þ other gluing positions: ð4:48Þ

Note once more that here in the expression above in all terms λi, λ̃i; η̃i are functions of β1 and β2 according to (4.43)–(4.46).
In the first term explicitly written here i ¼ nþ 1, in the second i ¼ n, etc. After an appropriate change of variables, which is
given in Appendix A, we can rewrite (4.48) as (similar to the previous case we understand integration over β1, β2 as residue
form ω, though in this case it does not bring any simplifications)

ω ¼ −hξAξBi2
Z

dβ1 ∧ dβ2
ð1 − β1β2Þ

Z
dk×ðnþ2ÞC
Vol½GLðkÞ� δ

k×2ðC0 · λ̃Þδk×4ðC0 · η̃Þδðnþ2−kÞ×2ðC0⊥ · λÞ

×
1

ð1 � � � kÞ � � � ðn − kþ 2 � � � nnþ 1Þ � � � ðnþ 2 1 � � � k − 1Þ þ other gluing positions: ð4:49Þ

Here the following notations were used for minors:

ðn − kþ 2 � � � nnþ 1Þ ¼ ðn − kþ 2 � � � nnþ 1Þ − β1ðn − kþ 2 � � � n nþ 2Þ;
ðnþ 2 1 � � � k − 1Þ ¼ ðnþ 2 1 � � � k − 1Þ − β2ðnþ 1 1 � � � k − 1Þ; ð4:50Þ

and for kinematical variables,

λ
i
¼ λi; i ¼ 1;…; n; λ

nþ1
¼ ξA; λ

nþ2
¼ ξB;

λ̃
i
¼ λ̃i; i ¼ 1;…; n; λ̃

nþ1
¼ −

hξBjq
hξBξAi

; λ̃
nþ2

¼ −
hξAjq
hξAξBi

;

η̃þ
i
¼ η̃þi ; i ¼ 1;…; n; η̃þ

nþ1
¼ 0; η̃þ

nþ2
¼ 0;

η̃−
i
¼ η̃−i ; i ¼ 1;…; n; η̃−

nþ1
¼ −

hξBjγ−
hξBξAi

; η̃−
nþ2

¼ −
hξAjγ−
hξAξBi

: ð4:51Þ

Taking residues at β�1 ¼ ðn−kþ2���nnþ1Þ
ðn−kþ2���nnþ2Þ and β

�
2 ¼ ðnþ21���k−1Þ

ðnþ11���k−1Þ we reproduce the result of [74] (computational details can also be

found in Appendix A)
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Fk;n ¼ resβ1¼β�
1
∘resβ2¼β�

1
½ω�; ð4:52Þ

where (here we write explicitly only the first term corresponding to VST
i;iþ1 positioned in i ¼ nþ 1)

Fk;n ¼
Z
Γtree;nþ1
k;nþ2

dk×ðnþ2ÞC
Vol½GLðkÞ�Reg

δk×2ðC · λ̃Þδk×4ðC · η̃Þδðnþ2−kÞ×2ðC⊥ · λÞ
ð1 � � � kÞð2 � � � kþ 1Þ � � � ðnþ 2 � � � k − 1Þ

þ other gluing positions; ð4:53Þ

with20

Reg ¼ hξAξBi2
Y

1 − Y
; Y ¼ ðn − kþ 2 � � � n nþ 1Þðnþ 2 1 � � � k − 1Þ

ðn − kþ 2 � � � n nþ 2Þðnþ 1 1 � � � k − 1Þ : ð4:54Þ

The additional label in Γtree;nþ1
k;nþ2 corresponds to the fact that for each term corresponding to different VST

i;iþ1 positions
integration contours should be, in general, chosen separately [74].
Using expression (4.53) obtained above as in the previous discussion, we can perform the inverse operation—that is, take

partial integrations and reduce the integral in (5.8) to the integral over Grð2; nþ 2Þ Grassmannian

Fk;n ¼
Z Ynþ2

a¼1

d2σa
ðaaþ 1Þ

Reg
VolGLð2;CÞ

Ynþ2

p¼kþ1

δ̄2ðλ
p
− λðσpÞÞ

Yk
i¼1

δ̄2j4ðλ̃
i
− λ̃ðσiÞ; η

i
− χ̃ðσiÞÞ

þ other gluing positions; ð4:55Þ

where the Reg factor is now given by [70]

Reg ¼ hξAξBi2
Y

1 − Y
; Y ¼

Yn
j¼nþ2−k

ðjnþ 1Þ
ðjnþ 2Þ

Yk−1
i¼1

ðnþ 2iÞ
ðnþ 1iÞ ð4:56Þ

and doubly underlined functions are defined as in the case
of Wilson line insertion,

ðλ; μ; χÞ ¼
Xk
i¼1

ðλ
i
; 0; 0Þ
ðσσiÞ

; ðμ̃; λ̃; χ̃Þ ¼
Xnþ2

p¼kþ1

ð0; λ̃
p
; η

p
Þ

ðσσpÞ
:

ð4:57Þ

This should be equivalent to direct calculation of β1;2
integrals in (4.10). This also can be considered as an analog
of RSV (scattering equation) representation of form factors
of the stress tensor supermultiplet operator.
Let us remind the reader once more that in the formula

above the termþ other gluing positions denotes all other
insertion positions of the minimal form factor in the color
ordered on-shell amplitude. Note that the original string
correlation function contains all these terms corresponding
to different gluing positions from the very beginning.
At the and of this section let us make the following

comment regarding results presented in the literature

[70,100]. Scattering equation representation obtained here
is different from the main result of [70] (see 2.11 there). We
want to stress that we reproduce results of [74] starting
from the vertex operator correlation function and our
definition of generalized vertex operator (4.37), at least
if we fix “appropriate” integration order and will take
integrals with respect to β1;2 in (4.48) as the last one.
Scattering equation representation (4.55) also obviously
coincides with the results of the application of the Veronese
map to individual terms of Grassmannian representation of
[74]. We also have checked that we reproduce answers for
next to maximally helicity violating (NMHV) n¼3, 4, 5
point and next to next to maximally helicity violating
(NNMHV) n ¼ 4 point form factors, similar to [74] if we
use the integration ordering described above. We think that
both scattering equation representations, i.e., [70] and
(4.55), give in the end (after integration) identical results,
and the explanation to this is that the different functions can
have a coinciding subset of residues.

C. Symmetry properties of form factors and
correlation functions in N = 4 SYM

Here we want to share some observations regarding
the properties of the results obtained for the form factors
and correlation functions with respect to dual conformal

20Similar to the previous case Reg insertion regulates the soft
holomorphic limit with respect to kinematical variables with
labels nþ 1 and nþ 2 [73].
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symmetry. It is known [31] that the tree level amplitudes
in N ¼ 4 SYM are invariant with respect to dual
conformal transformations, which can be considered as
the consequence of integrability of N ¼ 4 SYM [32,34].
At first glance, the results obtained in [63,64] and
reproduced here in (4.27) and (4.32) are in general not

dual conformal invariant. The dual conformal invariance
will be restored only in the soft holomorphic limit
[53,63] with respect to auxiliary on-shell momenta
pξ ¼ ξξ̃. To illustrate this statement let us transform
(4.27) into momentum twistor representation [63]. The
result will be given by

A�
k;nþ1

A�
2;nþ1

¼ ωk
nþ2½Γk;nþ2�;

ωk
nþ2½Γ� ¼

Z
Γ

dðk−2Þ×ðnþ2ÞD
Vol½GLðk − 2Þ�

1

1þ hpξi
hp1i

ðnþ22���k−2Þ
ð1���k−2Þ

δ4ðk−2Þj4ðk−2ÞðD · ZÞ
ð1 � � � k − 2Þ � � � ðnþ 2 � � � k − 3Þ ; ð4:58Þ

with

δ4ðk−2Þj4ðk−2ÞðD · ZÞ ¼
Yk−2
a¼1

δ4j4
�Xnþ2

i¼1

DaiZi

�
; ð4:59Þ

where momentum (super)twistors Z1;…;Zn describe the on-shell momenta of particles and Znþ1;Znþ2 describe
the off-shell momenta carried by the Wilson line operator insertion [63,74]. Their bosonic components are given by
ðλp; xnþ1λpÞ and ðξ; xnþ2ξÞ correspondingly. Factor hpξi=hp1i can be written as a product of the bosonic
components of Z1 and Znþ1;Znþ2 with infinity twistor IAB [35], which, at first glance, is explicit indication
of the breakdown of dual conformal invariance. A similar situation also occurs for the stress tensor supermultiplet
form factors [74].
Note, however, that the Wilson line form factors and correlation functions should be independent of the particular

choice jξi [53,63]. This allows one to choose jξi ¼ j1i and cancel out the hpξi=hp1i factor. As an explicit example let
us consider the ratio A�

3;4þ1=A
�
2;4þ1 of the form factors written in momentum twistor representation (see [63] for details):

A�
3;4þ1

A�
2;4þ1

ðΩ1;…;Ω4; g�5Þ ¼
1

1þ hpξi
hp1i

h1345i
h3456i

½13456� þ 1

1þ hpξi
hp1i

h1235i
h2356i

½12356� þ ½12345�: ð4:60Þ

After substitution jξi ¼ j1i we obtain

A�
3;4þ1

A�
2;4þ1

ðΩ1;…;Ω4; g�5Þ ¼
1

1þ h1345i
h3456i

½13456� þ 1

1þ h1235i
h2356i

½12356� þ ½12345�; ð4:61Þ

which should be dual conformal invariant. Note that in the
expression above Z6 ¼ ðλ1; x6λ1Þ, due to the choice of jξi,
so Z6 scales identical to Z1 and the ratios h1345i=h6345i,
h1235i=h6235i should be dual conformal invariant.
Such a choice of jξi, however, may be singular in a sense

that in the intermediate expression when one transforms
(4.27) into (4.58) one can encounter 0=0 uncertainties. Note
also that the same considerations as above are also true for
the stress tensor supermultiplet form factors [74].
In the light of recent results [101,102] these observations

still give us hope that the dual conformal invariance can be
observed, in some form, in all correlation functions and
form factors of the gauge invariant operators including the
cases considered here.

V. GRASSMANNIANS, SCATTERING
EQUATIONS, AND LINK REPRESENTATIONS

In derivation of Grassmannian representations (4.27) and
(4.53) from ambitwistor string world-sheet correlation
functions (4.10) and (4.47) it was crucial that we can
choose the FðCÞ function in the form of (4.19). So for self-
consistency here we want to present a detailed discussion
and give arguments that such a choice is indeed possible.
Our discussion will be based mostly on [26], so if the reader
is familiar with the content of [26] he/she can skip reading
to the end of this section where explicit example is
considered for the Wilson line field theory operator form
factor with nþ 2 ¼ 6 and k ¼ 3.
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Let us look at the case of the Wilson line operator form
factors and consider (4.16). For stress tensor supermultiplet
operator form factors we will have a similar expression but
with different β1;2 dependence. For fixed values of β1;2
parameters the integrand of (4.16) looks like

Int ¼
Z

dk×ðnþ2ÞC
VolGLðkÞFðCÞδ

k×2ðC · λ̃Þδk×4ðC · η̃Þ

× δðnþ2−kÞ×2ðC⊥ · λÞ: ð5:1Þ

All dependence on β1;2 is accumulated in this expression in
fλi; λ̃i; ηignþ2

i¼nþ1 and is given by (4.7). Here

FðCÞ ¼
Z

1

VolGLð2;CÞ
Yn
b¼1

dsbdσb
saðσb − σbþ1Þ

×
Y
a∈f
i∈g

δ

�
cai −

sasi
σa − σi

�
; ð5:2Þ

with f, g denoting index sets f ¼ 1;…; k and g ¼ kþ 1;
…; nþ 2

21 Note that FðCÞ is completely kinematically
independent and will have the same form also for the case
of stress tensor supermultiplet form factors. In fact Int is
identical to the RSV representation of the nþ 2 point
Nk−2MHV amplitude: Int ¼ Ak;nþ2 (it is implemented that
appropriate integration contour Γ is chosen) with appro-
priately chosen kinematics. So let us forget for now about
β1;2 integrals completely and concentrate on the RSV
representation of Ak;nþ2. Let us transform the expression
for (5.1) into a form more suitable for our purpose. For that
it is convenient to rearrange delta functions of kinematical
constraints in the form [22]

δk×2ðC · λ̃Þδðnþ2−kÞ×2ðC⊥ · λÞ

¼ δ4
�Xnþ2

j¼1

λjλ̃j

�
Jðλ; λ̃Þ

×
Z

dðk−2Þðn−kÞτA
Y
a∈f
i∈g

δðcai − caiðτjkinÞÞ; ð5:3Þ

where Jðλ; λ̃Þ is the Jacobian of transformation and
caiðτjkinÞ is a general solution of the underdetermined
system of linear equations [22,103]

caiλa ¼ −λi;

caiλ̃i ¼ −λ̃a; ð5:4Þ

with a ∈ f, i ∈ g. The solution depends on external kine-
matical data λi, λ̃i as well as on the arbitrary ðk − 2Þðn − kÞ
parameters τA. The explicit form of caiðτjkinÞ for general n
and k can be found in [103]. For example [22], for
nþ 2 ¼ 6, k ¼ 3, f ∈ ð1; 3; 5Þ, and g ∈ ð2; 4; 6Þ, we have
caiðτjkinÞ¼c�aiþϵaa1a2ϵii1i2ha1a2i½i1i2�τ, where c�ai is some
particular solution of (5.4). Using the representation (5.3)
we can remove integration over dk×ðnþ2ÞC=Vol½GLðkÞ�.
Next, let us for simplicity fix helicities of external particles
in such a way that Grassmann delta functions δk×4 go to 1.22

All these manipulations reduce our initial expression
(5.1) to

Ak;nþ2 ¼ δ4
�Xnþ2

j¼1

λjλ̃j

�
Jðλ; λ̃Þ

×
Z
Γ
dðk−2Þðn−kÞτAFðCÞjcai↦caiðτjkinÞ; ð5:5Þ

with the appropriate choice of integration contour Γ.
Now one can try to evaluate the function FðCÞ for

general values of n and k in terms of matrix elements cai
[103]. It is a rather complicated expression. The most
studied case is k ¼ 3 [4,26,104], and it is believed that for
k > 3 the behavior will be essentially the same as in the
k ¼ 3 case [26]. Then let us also concentrate on the k ¼ 3
case as representative, yet a simple enough example. In this
case we can rewrite the FðCÞ function in terms of minors of
the C matrix and get [26,104]

Fk¼3ðCÞ ¼ HðCÞ 1

S6 � � � Snþ2

;

HðCÞ ¼
Qnþ1

j¼6 ð12jÞð23j − 1ÞQnþ1
i¼5 ð13iÞ

ðnþ 1nþ 21Þð123Þð234Þ ; ð5:6Þ

and (j ¼ 6;…; nþ 2)

Sj ¼ ðj − 2j − 1jÞðj12Þð23j − 2Þðj − 113Þ
− ðj − 1j1Þð123Þð3j − 2j − 1Þðj2j − 2Þ: ð5:7Þ

Note that it is different from our choice (4.19).
Let us summarize what we have learned so far. We have

explicitly evaluated integral (5.2) for k ¼ 3 and found
that the result of evaluation is naively different from what
we have conjectured. Presumably k > 3 will be no better.

21This particular form of f and g is related to the GLðkÞ gauge
choice. Namely, f contains the numbers of columns constituting
the unity matrix. The different choices of f and g sets with given
total numbers of elements #f ¼ k, #g ¼ n − kþ 2 in each set
correspond to different gauge choices and also to different
rearrangements of Va and Ṽa vertex operators among themselves
in the correlation function. All gauges should lead to the same
result.

22This is always possible for appropriate GLðkÞ gauge and
external state choices. For example, for nþ 2 ¼ 6, k ¼ 3, and
f ¼ 2, 4, 6, g ¼ 1, 3, 5 the appropriate choice of the external
particle helicities will be (þ −þ −þ−) [22].
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To see how this contradiction resolves, let us consider
representation of the amplitude Ak;nþ2 in terms of the
integral over Grassmannian Grðk; nþ 2Þ

Ak;nþ2 ¼
Z
Γtree
k;nþ2

dk×ðnþ2ÞC
Vol½GLðkÞ�

×
δk×2ðC · λ̃Þδk×4ðC · η̃Þδðnþ2−kÞ×2ðC⊥ · λÞ

ð1 � � � kÞ � � � ðnþ 1 � � � k− 2Þðnþ 21 � � �k− 1Þ :

ð5:8Þ

Using the same manipulations as before [namely, (5.3) and
(5.4)] we will arrive at a similar expression (5.5) [26], but
with different forms of the FðCÞ function, which we will
denote now as FGrðCÞ,

Anþ2;k ¼ δ4
�Xnþ2

j¼1

λjλ̃j

�
Jðλ; λ̃Þ

×
Z
Γtree
k;nþ2

dðk−2Þðn−kÞτAFGrðCÞjcai↦caiðτjkinÞ; ð5:9Þ

where for k ¼ 3

Fk¼3
Gr ðCÞ ¼ H̃ðCÞ 1

S̃6 � � � S̃nþ2

;

H̃ðCÞ ¼
Qnþ1

j¼6 ð12jÞð23j − 1Þ
ðnþ 1nþ 21Þð123Þð234Þ ; ð5:10Þ

and

S̃j ¼ ðj − 2j − 1jÞðj12Þð23j − 2Þ; j ¼ 6;…; nþ 2:

ð5:11Þ

The Fk¼3
Gr ðCÞ function is given by an essentially rearranged

cyclic factor [26],

Fk¼3
Gr ðCÞ ¼ 1

ð123Þð234Þ � � � ðnþ 212Þ : ð5:12Þ

Note that now this form of FðCÞ corresponds to our
choice (4.19).
As a side note let us point out that one can consider

the Sj or S̃j function as the explicit construction of the
map S ¼ ðS̃6;…; S̃nþ2Þ, S∶ Cðn−3Þ ↦ Cðn−3Þ, which zeros
determine the integration contour23 Γ ¼ Γtree

3;nþ2.
So the natural question is how can these different

expressions [FðCÞ and FGrðCÞ] provide us with the

representation of the same object? The answer to this
question and also the resolution of our contradiction was
given in [26,104]. It turns out that there actually exists a
family of functions Fk¼3ðCjt6;…; tnþ2Þ depending on
parameters t6;…; tnþ2, such that

Fk¼3ðCjt6;…; tnþ2Þ ¼ HðCÞ 1

S6ðt6Þ � � � Snþ2ðtnþ2Þ
;

HðCÞ ¼
Qnþ1

j¼6 ð12jÞð23j − 1ÞQnþ1
i¼5 ð13iÞ

ðnþ 1nþ 21Þð123Þð345Þ ;

ð5:13Þ

with (j ¼ 6;…; nþ 2)

SjðtÞ ¼ ðj − 2j − 1jÞðj12Þð23j − 2Þðj − 113Þ
− tjðj − 1j1Þð123Þð3j − 2j − 1Þðj2j − 2Þ; ð5:14Þ

so that the result of evaluating by residues at zeros of the
SðtÞ ¼ ðS6ðt6Þ;…; Snþ2ðtnþ2ÞÞ map the integral (5.5) is tj
independent [26],

∂tj

Z
SðtÞ¼0

dðn−kÞτAFk¼3ðCjt6;…; tnþ2Þjcai↦caiðτjkinÞ ¼ 0;

for j ¼ 6;…; nþ 2: ð5:15Þ

The case tj ¼ 0 corresponds to the representation of the
amplitude obtained from the Grassmannian integral repre-
sentation, while the case tj ¼ 1 corresponds to the repre-
sentation obtained from scattering equation representation,

Fk¼3ðCj1;…; 1Þ ¼ Fk¼3ðCÞ;
and Fk¼3ðCj0;…; 0Þ ¼ Fk¼3

Gr ðCÞ: ð5:16Þ

The obtained relation thus supports the assertion that the
Grassmannian integral representation has a stringy origin.
As an illustration let us consider the simplest case k ¼ 3,

nþ 2 ¼ 6. In this case we have integral over single
complex parameter τ [it is assumed that in all minors
the replacement cai ↦ caiðτjkinÞ was performed],

A6;3 ¼
Z
SðtÞ¼0

dτ
ð135Þ

ð123Þð345Þð561Þ
1

SðtÞ ;

SðtÞ ¼ tð123Þð345Þð561Þð246Þ − ð234Þð456Þð612Þð351Þ;
ð5:17Þ

where minors (123), (345), (561), and SðtÞ are the linear
function of τ. According to Cauchy theorem, the different
residues are related with each other as

fSðtÞg ¼ −fð123Þg − fð345Þg − fð561Þg: ð5:18Þ

23It is also important to mention that for k > 3 analogs of
ðS̃6;…; S̃nþ2Þ maps S∶ Cðk−2Þðn−kÞ ↦ Cðk−2Þðn−kÞ may also be
constructed [103,105], and thus the explicit form of Γtree

k;nþ2

integration contours is known.
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Here f� � �g denotes the integral residue at the corresponding
pole. Note that for ð123Þ ¼ 0, ð345Þ ¼ 0, or ð561Þ ¼ 0 the
term in SðtÞ proportional to t vanishes, and as a conse-
quence we have

∂tfð123Þg ¼ ∂tfð345Þg ¼ ∂tfð561Þg ¼ 0: ð5:19Þ

So, in the computation of the above integral we can put SðtÞ
to Sð0Þ and get

ð135Þ
ð123Þð345Þð561Þ

1

Sð0Þ ¼
1

ð123Þ � � � ð612Þ : ð5:20Þ

In the case nþ 2 > 6 the situation is similar, but now one
must deal with multiple integrations over complex variables
and use global residue theorem [26,104]. The explicit
computations were also preformed for the k ¼ 4 case in
[26], and it is believed that one can use the FðCÞ function in
the form of

FðCÞ ¼ FGrðCÞ

¼ 1

ð1 � � � kÞð2 � � � kþ 1Þ � � � ðnþ 2 � � � k − 1Þ ð5:21Þ

for general values of n and k, which is why we also used the
FðCÞ function in the form of (4.19) in our considerations in
the previous chapter. However, as far as we know there is
no general proof of this assertion.
Let us once more stress that in all considerations above

we never used the explicit form of kinematical dependence
of [i.e., the explicit form of the solution of (5.4)] minors of
matrix C. So the construction presented above will be valid
not only for the Ak;nþ2 amplitude but also for the integrand
of (4.16) and in the analogous expression for the form
factors of operators from the stress tensor supermultiplet,
where, in both cases, some λ’s and η’s are rational functions
of β1;2 parameters. This is why we can replace FðCÞ with
FGrðCÞ according to (4.19).
At the end of this section, as an example, let us consider

the simple nontrivial case of nþ 2 ¼ 6, k ¼ 3 and check
that we indeed get the same result independent of whether
we faithfully use (5.2) or replace it with (5.21) as the FðCÞ
function in (4.16). Computing the string correlation func-
tion from the previous section for the A�

3;4þ1 amplitude we
end up with the following expression [let us stress once
again that in this formula λi, λ̃i; η̃i for i ¼ 5, 6 are functions
of β1;2 according to (4.7)]:

A�
3;4þ1 ¼

hξpi
κ�

Z
dβ1 ∧ dβ2

β1β2

1

β21β2

1

VolGLð3Þ
×
Z

d3×6CFðCÞδk×2ðC · λ̃Þ

× δ3×4ðC · η̃Þδð3Þ×2ðC⊥ · λÞ; ð5:22Þ

where FðCÞ is given by (5.6) with n ¼ 4. Performing the
change of variables (see also Appendix A) and evaluating
the composite residue at points resβ1¼−1∘resβ2¼0, we end up
with

A�
3;4þ1 ¼

Z
S¼0

dτF̃ðCÞ; F̃ðCÞ ¼ ð135Þ
ð123Þð345Þð561Þ

1

S
;

S ¼ ð123Þð345Þð561Þð245Þ − ð234Þð456Þð512Þð351Þ;
ð5:23Þ

and all minors, according to (5.4), are functions of external
kinematical data defined as (4.25) with n ¼ 4, k ¼ 3. If we
replace FðCÞ with (5.12) according to our previous dis-
cussion, we will obtain

A�
3;4þ1 ¼

Z
Γ
dτF̃0ðCÞ;

where F̃0ðCÞ ¼ ð612Þ
ð512Þ

1

ð123Þ � � � ð612Þ ; ð5:24Þ

which is equivalent to (5.23) as expected, after an appro-
priate choice of Γ, which should encircle poles at (123),
(345), and (561). Also from this example we see that in
the case of A�

3;nþ1 off-shell amplitudes we can explicitly
construct integration contours for their Grassmannian
integral representations [i.e., the maps S ¼ ðS̃6;…; S̃nþ2Þ,
S∶Cðn−3Þ ↦ Cðn−3Þ, whose zeros determine the integration
contours Γtree

3;nþ2 in (5.8)]. The latter are given by

S̃j ¼ ðj − 2j − 1jÞðj12Þð23j − 2Þ; j ¼ 6;…; nþ 1;

S̃nþ2 ¼ ðnnþ 1nþ 2Þðnþ 112Þð23nÞ: ð5:25Þ

This expression is easily obtained by considering integra-
tion contour (S̃6;…; S̃nþ2) for the nþ 2 point on-shell
amplitude and accounting for the Reg ∼ ðnþ 212Þ=
ðnþ 112Þ factor. It is believed that in the case k > 3 the
integration contours can be constructed in a similar fashion.
At the end of this section let us make the following

remark. Conditions (5.14) in general and for nþ 2 ¼ 6 in
particular can be interpreted as conditions for six points that
lie on a conic. For example,

Sð1Þ ¼ ð123Þð345Þð561Þð246Þ
− ð234Þð456Þð612Þð351Þ ¼ 0 ð5:26Þ

is the condition that six points in Grassmannian CP2 lie on a
single conic (any general five points determines a conic, so
this is a condition that point 6 also belongs to the conic). It is
natural to ask if there is any geometrical interpretation for

S ¼ ð123Þð345Þð561Þð245Þ − ð234Þð456Þð512Þð351Þ ¼ 0;

ð5:27Þ

L. V. BORK and A. I. ONISHCHENKO PHYS. REV. D 97, 126013 (2018)

126013-18



which appears in our construction. We found the conditions
on matrix C to be of Veronese form, S ¼ 0 are equivalent to
σ6 ¼ σ5, and σ1;…; σ5 are arbitrary (here as in [26] we
rescaled all si to 1); i.e., we interpret this condition as point 6
belongs to the conic and coincides with point 5. This is
probably not very surprising. The dimensionality of the
Grassmannian is related to the number of independent
kinematical variables. In the case of off-shell amplitudes
(Wilson line form factors) we use axillary spinors λp and λξ
in the description of off-shell momenta. But in the final result
dependence on λξ drops out [53,63,64], so effectively we
have fewer variables than naively expected.

VI. GLUING PROCEDURE AND AMPLITUDES

Let us return once again to the formula (4.16). We have
seen in the previous sections that if we leave integrals with
respect to β1;2 intact and concentrate on integrations with
respect to dsadσa, the result (after an appropriate choice
of integration contours) will be proportional to the Ak;nþ2

on-shell amplitude where the dependence on β1;2 is con-
densed in kinematical variables fλi; λ̃i; ηignþ2

i¼nþ1 [see (4.7)
and (4.9)].
So we can think of some integral operator Â which

directly transforms on-shell amplitudes into Wilson line
form factors and correlation functions:

Â∶ Ak;nþ2 ↦ A�
k;nþ1: ð6:1Þ

We will call this operator the gluing operator and will
label it Âi;iþ1. Label i corresponds to the position of the
kinematical variables on which this operator acts. Another
way to introduce this operator is simply to consider
convolution (in the seance of discussion at the beginning
of Sec. IV) of the A�

2;2þ1 minimal off-shell amplitude with
some function of fλi; λ̃i; ηig. In this sense the gluing
operation (for Wilson line form factors and correlation
functions) discussed in Sec. IV is given by the action of the
gluing operator.
From a practical point of view it is useful because one

can immediately utilize a large library of answers for
on-shell amplitudes into Wilson line form factors and
correlation functions, which in turn can be interpreted as
Reggeon amplitudes.
Note also that a similar procedure should work for the

form factors of operators from the stress tensor super-
multiplet, i.e., for different choices of the ψ target space
wave function, which participates in the gluing procedure,
though we will not discuss it in detail. We leave this topic
for a separate publication. Here we will concentrate on the
simplest case of Wilson line form factors and correlation
functions.
So more formally let us define gluing operator

Ânþ1;nþ2½� � �� acting on the space of functions f of
fλi; λ̃i; ηignþ2

i¼1 variables as

Ânþ1;nþ2½f�≡
Z Ynþ2

i¼nþ1

d2λid2λ̃id4η
Vol½GLð1Þ�A

�
2;2þ1

× fðfλi; λ̃i; ηignþ2
i¼1 Þ: ð6:2Þ

Performing integration over λ̃nþ1, λ̃nþ2, η̃nþ1, and η̃nþ2

variables as in Appendix A we get

Ânþ1;nþ2½f� ¼
hpξi
κ�

Z
dβ1
β1

∧ dβ2
β2

1

β21β2
fðfλi; λ̃i; η̃ignþ2

i¼1 Þj�;

ð6:3Þ

where j� denotes substitutions fλi; λ̃i; ηignþ2
i¼nþ1 ↦

fλiðβÞ; λ̃iðβÞ; η̃iðβÞgnþ2
i¼nþ1 with

λnþ1ðβÞ ¼ λ
nþ1

þ β2λnþ2
;

λ̃nþ1ðβÞ ¼ β1λ̃nþ1
þ ð1þ β1Þ

β2
λ̃
nþ2

;

η̃nþ1ðβÞ ¼ −β1η̃
nþ1

; λnþ2ðβÞ ¼ λ
nþ2

þ ð1þ β1Þ
β1β2

λ
nþ1

;

λ̃nþ2ðβÞ ¼ −β1λ̃nþ2
− β1β2λ̃nþ1

; η̃nþ2ðβÞ ¼ β1β2η̃
nþ1

;

ð6:4Þ

and

λ
nþ1

¼ λp; λ̃
nþ1

¼ hξjk
hξpi ; η̃

n
¼ η̃p;

λ
nþ2

¼ λξ; λ̃
nþ2

¼ hpjk
hξpi ; η̃

nþ2
¼ 0: ð6:5Þ

Here we also understand integration with respect to β1;2 as a
residue form, and we will always evaluate it at points
resβ2¼0∘resβ1¼−1. After this formal introduction we are
ready to consider several examples of action of Âi;iþ1 on
on-shell amplitudes.

A. Tree level

So let us test how our gluing operator works on some
explicit examples. The simplest case is given by the action
of Â on k ¼ 2, nþ 2 ¼ 4 point amplitude A2;4. We expect
that we will reproduce the A�

2;2þ1 off-shell amplitude
(Wilson line operator form factor) by the action of operator
Â34½� � �� on the A2;4 on-shell amplitude. Note also that the
next steps are actually identical for all k ¼ 2 amplitudes
with arbitrary n. Indeed, in the case of the A2;4 amplitude
we have

A2;4ðΩ1;…;Ω4Þ ¼ δ4ðp1234Þ
δ8ðq1234Þ

h12ih23ih34ih41i : ð6:6Þ
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Introducing notations24

p1���n ≡
Xn
i¼1

pi ≡
Xn
i¼1

λiλ̃i; p2
1���n ¼ p2

1;n; q1���n ≡
Xn
i¼1

λiη̃i; ð6:7Þ

the A2;4 amplitude with j� substitution applied takes the form

A2;4j� ¼ δ4ðp12 þ kÞ δ8ðq12pÞβ21β2
h12iðh2pi þ β2h2ξiÞhpξiðβ1β2h1ξi þ ð1þ β1Þh1piÞ

: ð6:8Þ

Now, evaluating the integral over β1, β2 by means of composite residue resβ1¼−1∘resβ2¼0½� � �� we get

Â34½A2;4ðΩ1;…;Ω4Þ� ¼ δ4ðp12 þ kÞ δ
8ðq12pÞ
κ�h12i resβ2¼0∘resβ1¼−1½ω� ¼ A�

2;2þ1ðΩ1;Ω2; g�3Þ; ð6:9Þ

where

ω ¼ dβ2 ∧ dβ1
β2β1ðh2pi þ β2h2ξiÞðβ1β2h1ξi þ ð1þ β1Þh1piÞ

; ð6:10Þ

and (the projector ∂4
ηp acting on A�

2;nþ1 is implemented)

A�
2;2þ1ðΩ1;Ω2; g�3Þ ¼ δ4ðp12 þ kÞ 1

κ�
δ8ðq12pÞ

hp1ih12ih2pi : ð6:11Þ

This is in agreement with results of [53,63] for A�
2;2þ1.

Proceeding in a similar way let us consider the action of Ânþ1nþ2 on theA2;nþ2 on-shell amplitude.We expect that the result
will be given by the A�

2;nþ1 Wilson line form factor. Indeed, it is easy25 to see that

Ânþ1nþ2½A2;nþ2ðΩ1;…;Ωnþ2Þ� ¼ A�
2;nþ1ðΩ1;…;Ωn; g�nþ1Þ ¼

δ4ðp1���n þ kÞ
κ�

δ8ðq1���pÞ
hp1ih12i � � � hnpi : ð6:12Þ

This is once more in agreement with the results of [53,63]
for A�

2;nþ1.
Proceeding further in a similar way we can also reproduce

other results obtained from BCFW recursion [53,63] for
component off-shell amplitudes (Wilson line operator
form factors) A�

3;3þ1ð1−2−3þg�4Þ and A�
3;4þ1ð1þ2þ3−4−g�5Þ

[53,63]. We expect to obtain them from the on-shell
amplitudes A3;5ð1−2−3þ4−5þÞ and A3;6ð1þ2þ3−4−5−6þÞ
by means of the action of Â45½� � �� and Â56½� � �� correspond-
ingly. Performing simple computations (the explicit details
and answers can be found in Appendix B) we see that indeed
the following relations holds:

Â45½A3;5ð1−2−3þ4−5þÞ� ¼ A�
3;3þ1ð1−2−3þg�4Þ; ð6:13Þ

Â56½A3;6ð1þ2þ3−4−5−6þÞ� ¼ A�
3;4þ1ð1þ2þ3−4−g�5Þ;

ð6:14Þ

in agreement with previously obtained results for Wilson line
form factors [53,63].
As a final example we would like to consider the case

with multiple gluing operations applied. Let us consider a
quite nontrivial example of such a situation; namely, let us
consider the correlation function of three Wilson line
operators A�

3;0þ3ðg�1; g�2; g�3Þ. According to our construction
of generalized world-sheet vertex operators, it should be
given by

A�
3;0þ3ðg�1; g�2; g�3Þ ¼ hVWL

1;2 V
WL
3;4 V

WL
5;6 i: ð6:15Þ

It was first computed in [53] by means of BCFW recursion
and later reproduced in [64] from Grassmannian integral
representation. The result is given by

24Here for simplicity we also drop spinorial and SUð4ÞR
indices.

25It can be obtained by simple spinor relabelings from a
previous example.
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A�
3;0þ3ðg�1; g�2; g�3Þ ¼ δ4ðk1 þ k2 þ k3Þð1þ P0 þ P02Þf̃;

f̃ ¼ hp1p2i3½p2p3�3
κ3κ

�
1hp2jk1jp3�hp1jk3jp2�hp2jk1jp2�

:

ð6:16Þ
Here P0 is the permutation operator that now shifts all
spinor and momenta labels by þ1 mod 3.
We want to show that A�

3;0þ3 can be reproduced from the
NMHV6 point on-shell amplitude A3;6ð1−2þ3−4þ5−6þÞ by
application of the following product of gluing operators
Â12∘Â34∘Â56. Indeed (see Appendix B for details), the
following relation holds:

A�
3;0þ3ðg�1;g�2;g�3Þ¼ ðÂ12∘Â34∘Â56Þ½A3;6ð1−2þ3−4þ5−6þÞ��;

ð6:17Þ
where the A3;6ð1−2þ3−4þ5−6þÞ amplitude is given by

A3;6 ¼ δ4ðp1���6Þð1þ P2 þ P4Þf;

f ¼ h13i4½46�4
h12ih23i½45�½56�h3j1þ 2j6�h1j5þ 6j4�p2

456

;

ð6:18Þ
and P is the permutation operator shifting spinor labels by
þ1 mod 6.
So we have seen in multiple examples that are presented

at the beginning of this section that gluing operator Âi;iþ1

allows one to convert on-shell amplitudes into Wilson line
form factors and correlation functions at tree level.
At the end of this subsection we would like to point out

the formal analogy between the action of Âiiþ1 operators on
Ak;n amplitudes and the action of R matrices on some
vacuum state of integrable spin chain. Indeed, it looks like
the Âiiþ1 operator creates “excitation” (Wilson line operator
insertion) in the “vacuum” consisting from on-shell states.
We think that this analogy being properly investigated may
provide us with the answer to the question “what is the
appropriate description of Wilson line form factors in terms
of some integrable system?”
It is also interesting to note that the integration with

respect to β1, β2 variables, which was performed by taking
residues, is, in fact, equivalent to the choice of a specific
kinematical limit for the momenta pnþ1 and pnþ2 of the
initial on-shell amplitude. If we naively take consecutive
limits β1 → −1, β2 → 0 in the definitions of momenta
pnþ1ðβÞ and pnþ2ðβÞ, which is equivalent to residue
evaluation, we would get the finite result26

pnþ1 ¼ λ
nþ1

λ̃
nþ1

; pnþ2 ¼ λ
nþ2

λ̃
nþ2

: ð6:19Þ

On the other hand, for all ω forms that we have encountered
in previous examples we may use the global residue
theorem to relate multiple residues at β1 ¼ −1, β2 ¼ 0
with the multiple residues at β1 ¼ 0, β2 ¼ 0. If we take the
limits β1 → 0, β2 → 0 (regardless of the order of limits) in
the definitions of pnþ1ðβÞ and pnþ2ðβÞ momenta, we will
get the singular result

pnþ1 ¼
1

β2
λ
nþ1

λ̃
nþ2

þ λ
nþþ2

λ̃
nþ2

þOðβ2Þ;

pnþ2 ¼
1

β2
λ
nþ1

λ̃
nþ2

þ λ
nþ1

λ̃
nþ1

þOðβ2Þ; ð6:20Þ

which is equivalent to BCFW shift ½nþ 1; nþ 2i of
pnþ1 ¼ λ

nþ2
λ̃
nþ2

and pnþ2 ¼ λ
nþ1

λ̃
nþ1

momenta evaluated
at large z. The behavior of amplitudes in the limit z → ∞
may be interpreted as a special kinematical limit with some
particles with large (complex) lightlike momenta traveling
in the soft background [106]. So in this sense our gluing
procedure is closely related to the specific high energy
kinematical limit of the ordinary on-shell amplitudes.

B. Integrands

So far we have seen that by means of gluing operator
Âi;iþ1 we can convert on-shell amplitudes into Wilson
line form factors and correlation functions at tree level,
formally without any reference to ambitwistor string or
Grassmannian representation, though the explicit form of
this operator is, of course, motivated heavily by our
construction of generalized vertex operators.
But what about loops? Since our gluing operator acts in a

simple manner on rational functions, it is natural to try to
verify conjecture that using Âi;iþ1 we can convert inte-
grands of on-shell amplitudes into integrands of Wilson
line form factors and correlation functions as well.
To see whether this conjecture is reasonable, let us

consider the simplest possible example of k ¼ 2, nþ 1 ¼ 3

point one loop amplitude A�ð1Þ
2;2þ1 and show that the gluing

operator applied to the integrand of the Að1Þ
2;4 amplitude will

give us the desired expression for the integrand of the

A�ð1Þ
2;2þ1 amplitude.
But first we need to obtain the integrand of the A�ð1Þ

2;2þ1

amplitude itself. The easiest way to get it is to try to
reconstruct it from the k2 channel unitarity cut. Considering
the latter (taking residues of the integrand with respect to
the poles of 1=l21 and 1=l22 propagators; see Fig. 1) we
have27

26Note that if we would take the limits in opposite order, the
results for pnþ1, pnþ2 momenta would diverge, but the expression
for off-shell amplitudes would still be finite.

27The necessary manipulations are similar to the case of the s-
channel cut of the Að1Þ

2;4 amplitude. ðpqÞ here stands for standard
Mincovskian scalar product.
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A�ð1Þ
2;2þ1jk2cut¼

Z
d4ηl1d

4ηl2A
�
2;2þ1ðl1;l2;g�ÞA2;4ðl1;l2;Ω2;Ω1Þ

¼A�
2;2þ1ðl1;l2;g�Þ

Trðkp21Þ
ðpl2Þðl22Þ

: ð6:21Þ

The Tr factor can be transformed into k2ðpþ p2Þ2 ¼
ðp1 þ p2Þ2ðp2 þ pÞ2 with the help of momentum conser-
vation kþ p1 þ p2 ¼ 0, and kT decomposition conditions

ðpkÞ ¼ 0. Thus, the expression for the A�ð1Þ
2;2þ1ðΩ1;Ω2; g�Þ

amplitude is given by

A�ð1Þ
2;2þ1ðΩ1;Ω2; g�Þ ¼ A�

2;2þ1ðΩ1;Ω2; g�Þ
Z

dDl

×
ðp1 þ p2Þ2ðp2 þ pÞ2

l2ðlþ p2Þ2ðlþ p1 þ p2Þ2ðplÞ
;

ð6:22Þ
which contains one loop scalar box integral with one of the
propagators, namely, 1=l2 replaced by its eikonal counter-
part 1=ðplÞ; see Fig. 2.
Now let us turn to the integrand of the Að1Þ

2;4 amplitude:

Að1Þ
2;4ðΩ1;…;Ω4Þ ¼ A2;4ðΩ1;…;Ω4Þ

Z
dDl

×
ðp1 þ p2Þ2ðp2 þ p3Þ2

l2ðlþ p2Þ2ðlþ p1 þ p2Þ2ðl − p3Þ2
:

ð6:23Þ

It should be noted that the notion of the integrand is
uniquely defined only in dual variables. So, to be accurate
we should consider the gluing operation in such variables
(momentum twistors) also. Here however, we will use
helicity spinors in a hope that possible loop momentum
rearrangement will not cause any trouble. It turns out that it
is indeed the case as we will see in a moment. Acting with

the Â34 operator on the Að1Þ
2;4ð1; 2; 3; 4Þ integrand

Int ¼ A2;4ðΩ1;…;Ω4Þ

×
ðp1 þ p2Þ2

l2ðlþ p2Þ2ðlþ p1 þ p2Þ2
ðp2 þ p3Þ2
ðl − p3Þ2

; ð6:24Þ

and using momentum definitions (B5) we get

Â34½Int� ¼ A�
2;2þ1ðΩ1;Ω2; g�3Þ

×
ðp1 þp2Þ2

l2ðlþp2Þ2ðlþp1 þp2Þ2
ðp2 þpÞ2

ðlpÞ ; ð6:25Þ

which is exactly the integrand expression for the A�ð1Þ
2;2þ1

amplitude.
This example gives us hope that a more accurate and

general consideration of the gluing procedure at the level of
integrands will also be successful and will provide us with
the prescription for obtaining A�ðlÞ

k;mþn integrands from the

corresponding AðlÞ
k;mþ2n integrands by the application of

appropriate combinations of Âiiþ1 operators.

VII. CONCLUSION

In this paper we presented results for the derivation
of scattering equations (RSV) and Grassmannian represen-
tations for form factors of local and Wilson line operators
in N ¼ 4 SYM from corresponding four-dimensional
ambitwistor string theory. In the case of local operators
we restricted ourselves to the case of form factors of
operators from stress-tensor operator supermultiplet.
The obtained results are in agreement with previously
obtained Grassmannian integral representations. As a by-
product we discovered an easy and convenient gluing
procedure, which allows us to obtain the required form
factor expressions from already known amplitude expres-
sions. The construction of composite string vertex oper-
ators for the analyzed local or Wilson line operators was
inspired by the mentioned gluing procedure. An interest-
ing future research direction, which we are planning to
pursue, will be to consider pullbacks of composite
operators defined on twistor or Lorentz harmonic chiral
superspace [77–83]. We hope that our consideration
along these lines could be extended to arbitrary local
composite operators.
Next, it would be very interesting to fully uncover the

geometrical picture behind Grassmannian and scattering

FIG. 2. Scalar box integrals contributing to Að1Þ
2;2þ1 and A�ð1Þ

2;2þ1

amplitudes correspondingly. The line with the coil denotes
eikonal propagator 1=ðplÞ.

FIG. 1. Unitarity cut of the A�ð1Þ
2;2þ1 amplitude in the k2¼

ðp1þp2Þ2 channel.
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equation representations for form factors of local and
Wilson line operators. It is interesting to see if the
amplituhedron picture could be extended to all possible
gauge invariant observables in N ¼ 4 SYM, for which
representations under global gauge transformations may
differ from singlet representation.
Having obtained scattering equation representations, one

may wonder what is the most efficient way to get final
expressions for particular form factors with a given number
of particles and their helicities. In the case of amplitudes we
know that it is given by computation of global residues with
the methods of computational algebraic geometry [107–
109]; see also [105]. It would be interesting to see how this
procedure works in the case of tree level form factors and
their loop level integrands, and to provide necessary details
needed when writing computer codes.
Finally, it would be interesting to consider loop corrections

to form factors of Wilson line operators (gauge invariant off-
shell amplitudes). Also, it is extremely interesting to see how
the presented approach works in other theories, for example,
in gravity and supergravity (see recent discussion [110] of
super gravity (SUGRA) amplitudes in a similar context
considered here), where in the case of gauge invariant off-
shell amplitudes we have a well developed framework based
on a high-energy effective Lagrangian [111–115]; see also
[116–120] for similar research along this direction.
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APPENDIX A: GLUING PROCEDURE AND
GRASSMANNIANS

In this appendix we are going to present computational
details from Sec. IV of the main text.

Before proceeding with actual formulas, let us make the
following remark. The gluing procedure (gluing operator)
introduced in [74] was, in fact, implicitly used to obtain
both the Grassmannian integral representation for form
factors of operators from the stress tensor supermultiplet
[74] and off-shell amplitudes with one leg off-shell [63].
The idea was to take a top-cell diagram for amplitude,
perform a sequence of square and merge/unmerge moves
until we get a box (assume it is possible for the diagram
under consideration) on the boundary, and replace it with
the corresponding minimal form factor or off-shell ampli-
tude. Graphically, this relation reads28 Fig. 3 where the box
at the legs nþ 1 and nþ 2 was replaced for the sake of
concreteness. We got a similar relation of form factor on-
shell diagrams to the amplitude on-shell diagrams in
[73,76] based on the soft limit procedure. The correspond-
ing box diagram was deformed by an extra soft factor, so
that it became equivalent to the corresponding minimal
form factor.
It turns out, however, that there is a simpler gluing

procedure, which we used in our consideration. Namely, we
can glue (perform the on-shell phase space integration—
perform convolution with) minimal form factor or off-shell
amplitude directly to the amplitude top cell diagram with-
out cutting off the boxes mentioned above.
Now let us return to actual computations. Let us consider

the case of Wilson line operators first. Let us consider
(4.11) once more. If we choose FðCÞ according to (4.17),
we can rewrite (4.11) as29

A�
k;nþ1 ¼

Z Ynþ2

i¼nþ1

d2λid2λ̃i
Vol½GLð1Þ� d

4η̃iA�
2;2þ1ðg�;Ωnþ1;Ωnþ2Þjλ→−λAk;nþ2; ðA1Þ

where Ak;nþ2 stands for the corresponding Grassmannian integral—top-cell diagram (which can be evaluated into the
Nk−2MHV nþ 2 point on-shell amplitude if the appropriate integration contour is chosen),30

28We have borrowed this nice picture from [74].
29Without loss of generality we may choose the off-shell leg to lie between legs 1 and n.
30Here we left the integration contour unspecified.

FIG. 3. Gluing procedure.
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Ak;nþ2 ¼
Z

dk×ðnþ2ÞC
Vol½GLðkÞ�

δk×2ðC · λ̃Þδk×4ðC · η̃Þδðnþ2−kÞ×2ðC⊥ · λÞ
ð1 � � � kÞð2 � � � kþ 1Þ � � � ðnþ 2 � � � k − 1Þ ; ðA2Þ

and the minimal off-shell vertex A�
2;2þ1ðg�; nþ 1; nþ 2Þ is given by [63]

A�
2;2þ1ðg�;Ωnþ1;Ωnþ2Þ ¼

1

κ�

Z
d2×3C

Vol½GLð2Þ�
δ4ðC · λ̃Þδ8ðC · η̃Þδ4ðC⊥ · λÞ

ðpnþ 1Þðnþ 1nþ 2Þðnþ 2pÞ
¼ 1

κ�

Z
dβ1
β1

dβ2
β2

δ2ðλp þ β1λnþ1 − β1β2λnþ2Þδ2ðλ̃nþ1Þδ2ðλ̃nþ2Þ

× δ4ðη̃nþ1 þ β1η̃pÞδ4ðη̃nþ2 þ β2η̃nþ1Þ ðA3Þ

with λ̃nþ1 ¼ λ̃nþ1 þ hnþ2jk
hnþ2jnþ1i and λ̃nþ2 ¼ λ̃nþ2 þ hnþ1jk

hnþ1jnþ2i. Here p is the off-shell gluon direction and k is its momentum.
Now, the integration steps up to final integrations in β1 and β2 follow closely those in [63]. That is, performing integrations
over λ̃nþ1, λ̃nþ2, η̃nþ1, and η̃nþ2, we get

λ̃nþ1 ¼ −
hnþ 2jk

hnþ 2jnþ 1i ; λ̃nþ2 ¼ −
hnþ 1jk

hnþ 1jnþ 2i ; ðA4Þ

η̃nþ1 ¼ −β1η̃p; η̃nþ2 ¼ β1β2η̃p: ðA5Þ

The Vol½GLð1Þ�2 redundancy in the remaining integrations over λ is removed using their parametrization as in [74]

λnþ1 ¼ ξA − β3ξB; λnþ2 ¼ ξB − β4ξA; ðA6Þ

where ξA and ξB are two arbitrary but linearly independent reference spinors. Then hnþ 1 nþ 2i ¼ ðβ3β4 − 1ÞhξBξAi,
Z

d2λnþ1

Vol½GLð1Þ�
d2λnþ2

Vol½GLð1Þ� ¼ −hξAξBi2
Z

dβ3dβ4; ðA7Þ

and

A�
k;nþ1 ¼

1

κ�
hξAξBi2

Z
dk×ðnþ2ÞC
Vol½GLðkÞ�

dβ1
β1

dβ2
β2

dβ3dβ4
ð1 − β3β4Þ2

× δ2ðλp þ β1ð1þ β2β4ÞξA − β1ðβ2 þ β3ÞξBÞ

×
1

ð1 � � � kÞ � � � ðnþ 2 � � � k − 1Þ δ
k×2ðC0 · λ̃Þδk×4ðC0 · η̃Þδðnþ2−kÞ×2ðC0⊥ · λÞ: ðA8Þ

Here, we introduced the following notation:

C0
nþ1 ¼

1

1 − β3β4
Cnþ1 þ

β3
1 − β3β4

Cnþ2; C0⊥
nþ1 ¼ C⊥

nþ1 − β4C⊥
nþ2;

C0
nþ2 ¼

1

1 − β3β4
Cnþ2 þ

β4
1 − β3β4

Cnþ1; C0⊥
nþ2 ¼ C⊥

nþ2 − β3C⊥
nþ1; ðA9Þ

and

λ
i
¼ λi; i ¼ 1;…; n; λ

nþ1
¼ ξA; λ

nþ2
¼ ξB;

λ̃
i
¼ λ̃i; i ¼ 1;…; n; λ̃

nþ1
¼ hξBjk

hξBξAi
; λ̃

nþ2
¼ −

hξAjk
hξBξAi

;

η̃
i
¼ η̃i; i ¼ 1;…; n; η̃

nþ1
¼ η̃p; η̃

nþ2
¼ 0: ðA10Þ
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The factor of 1=ð1 − β3β4Þ2 in (A8) is the Jacobian from reorganizing theC⊥ · λ delta functions (see [74] for further details).
Next, rewriting the first delta function in (A8) as

δ2ðλp þ β1ð1þ β2β4ÞξA − β1ðβ2 þ β3ÞξBÞ

¼ 1

β21β2hξAξBi
δ

�
β3 −

hξApi
β1hξAξBi

þ β2

�
· δ

�
β4 −

hξBpi
β1β2hξAξBi

þ 1

β2

�
; ðA11Þ

choosing ξA ¼ λp, ξB ¼ ξ, and taking integrations over β3, β4, we get

A�
k;nþ1 ¼

1

κ�
hξpi

Z
dk×ðnþ2ÞC
Vol½GLðkÞ�

dβ1dβ2
β1β

2
2

δk×2ðC0 · λ̃Þδk×4ðC0 · η̃Þδðnþ2−kÞ×2ðC0⊥ · λÞ
ð1 � � � kÞð2 � � � kþ 1Þ � � � ðnþ 2 � � � k − 1Þ ; ðA12Þ

where now

C0
nþ1 ¼ −β1Cnþ1 þ β1β2Cnþ2; C0⊥

nþ1 ¼ C⊥
nþ1 þ

1þ β1
β1β2

C⊥
nþ2;

C0
nþ2 ¼ −β1Cnþ2 þ

1þ β1
β2

Cnþ1; C0⊥
nþ2 ¼ C⊥

nþ2 þ β2C⊥
nþ1; ðA13Þ

and

λ
i
¼ λi; i ¼ 1;…; n; λ

nþ1
¼ λp; λ

nþ2
¼ ξ;

λ̃
i
¼ λ̃i; i ¼ 1;…; n; λ̃

nþ1
¼ hξjk

hξpi ; λ̃
nþ2

¼ −
hpjk
hξpi ;

η̃
i
¼ η̃i; i ¼ 1;…; n; η̃

nþ1
¼ η̃p; η̃

nþ2
¼ 0: ðA14Þ

Introducing the inverse C-matrix transformation

Cnþ1 ¼ C0
nþ1 þ β2C0

nþ2;

Cnþ2 ¼
1þ β1
β1β2

C0
nþ1 þ C0

nþ2 ðA15Þ

minors of the Cmatrix containing both nþ 1 and nþ 2 columns when rewritten in terms of minors of the C0 matrix acquire
an extra − 1

β1
factor. For example, for (nþ 1 � � � k − 2) minor we have

ðnþ 1 � � � k − 2Þ ¼ −
1

β1
ðnþ 1 � � � k − 2Þ0: ðA16Þ

This will generate a total power of ðβ1Þk−1 in the numerator. Minors containing either nþ 1 or nþ 2 column transform as

ðnþ 2 1 � � � k − 1Þ ¼ 1þ β1
β1β2

ðnþ 1 1 � � � k − 1Þ0 þ ðnþ 2 1 � � � k − 1Þ0; ðA17Þ

ðn − kþ 2 � � � nþ 1Þ ¼ ðn − kþ 2 � � � nþ 1Þ0 þ β2ðn − kþ 2 � � � n nþ 2Þ0; ðA18Þ

while all other minors remain unchanged ð� � �Þ ¼ ð� � �Þ0. Finally, accounting for the Jacobian of transformation ð− 1
β1
Þk

we get

A�
k;nþ1 ¼ −

hξpi
κ�

Z
dk×ðnþ2ÞC0

Vol½GLðkÞ�
dβ1dβ2
β1β2

δk×2ðC0 · λ̃Þδk×4ðC0 · η̃Þδðnþ2−kÞ×2ðC0⊥ · λÞ

×
1

ð1 � � � kÞ0 � � � ðnþ 2 � � � k − 1Þ0


1þ β2

ðn−kþ2���n nþ2Þ0
ðn−kþ2���n nþ1Þ0Þðβ1β2 þ ð1þ β1Þ ðnþ1 1���k−1Þ

ðnþ2 1���k−1Þ
� :
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Now, understanding the integral over β1;2 as a residue form and taking resβ1¼−1∘resβ2¼0, we recover our result from [63]

A�
k;nþ1 ¼

Z
Γtree
k;nþ2

dk×ðnþ2ÞC0

Vol½GLðkÞ�Reg
δk×2ðC0 · λ̃Þδk×4ðC0 · η̃Þδðnþ2−kÞ×2ðC0⊥ · λÞ

ð1 � � � kÞ0 � � � ðnþ 1 � � � k − 2Þ0ðnþ 2 1 � � � k − 1Þ0 ; ðA19Þ

with

Reg ¼ hξpi
κ�

ðnþ 2 1 � � � k − 1Þ0
ðnþ 1 1 � � � k − 1Þ0 : ðA20Þ

Now let us consider form factors of stress tensor supermultiplet operators. Let us consider (4.48). In this case we can write
it as

Fk;n ¼
Z Ynþ2

i¼nþ1

d2λid2λ̃i
Vol½GLð1Þ� d

4η̃iF2;2ðΩnþ1;Ωnþ2; T Þjλ→−λAk;nþ2 þ other gluing positions; ðA21Þ

where the minimal form factor F2;2ðΩnþ1;Ωnþ2; T Þ is given by (4.39). Performing next on-shell integrations for particles
nþ 1 and nþ 2 as above31 we get (here we are considering only a single term, corresponding to the gluing of minimal form
factor between legs 1 and n; other terms come from gluing between legs i and iþ 1, i ¼ 1 � � � n − 1)

Fk;n ¼ −hξAξBi2
Z

dβ1dβ2
ð1 − β1β2Þ2

Z
dk×ðnþ2ÞC
Vol½GLðkÞ�

δk×2ðC0 · λ̃Þδk×4ðC0 · η̃Þδðnþ2−kÞ×2ðC0⊥ · λÞ
ð1 � � � kÞð2 � � � kþ 1Þ � � � ðnþ 2 � � � k − 1Þ ; ðA22Þ

where

C0
nþ1 ¼

1

1 − β1β2
Cnþ1 þ

β1
1 − β1β2

Cnþ2; C0⊥
nþ1 ¼ C⊥

nþ1 − β2C⊥
nþ2;

C0
nþ2 ¼

1

1 − β1β2
Cnþ2 þ

β2
1 − β1β2

Cnþ1; C0⊥
nþ2 ¼ C⊥

nþ2 − β1C⊥
nþ1; ðA23Þ

and

λ
i
¼ λi; i ¼ 1;…; n; λ

nþ1
¼ ξA; λ

nþ2
¼ ξB;

λ̃
i
¼ λ̃i; i ¼ 1;…; n; λ̃

nþ1
¼ −

hξBjq
hξBξAi

; λ̃
nþ2

¼ −
hξAjq
hξAξBi

;

η̃þ
i
¼ η̃þi ; i ¼ 1;…; n; η̃þ

nþ1
¼ 0; η̃þ

nþ2
¼ 0;

η̃−
i
¼ η̃−i ; i ¼ 1;…; n; η̃−

nþ1
¼ −

hξBjγ−
hξBξAi

; η̃−
nþ2

¼ −
hξAjγ−
hξAξBi

: ðA24Þ

The transition from the integration over the Cmatrix to the integration over the C0 matrix is again done similar to the case of
the off-shell amplitude considered above. This way our form factor is written as

Fk;n ¼ −hξAξBi2
Z

dk×ðnþ2ÞC0

Vol½GLðkÞ�
dβ1dβ2

ð1 − β1β2Þ
δk×2ðC0 · λ̃Þδk×4ðC0 · η̃Þδðnþ2−kÞ×2ðC0⊥ · λÞ

×
1

ð1 � � � kÞ0 � � � ðnþ 2 � � � k − 1Þ0


1 − β1

ðn−kþ2���n nþ2Þ0
ðn−kþ2���n nþ1Þ0Þð1 − β2

ðnþ1 1���k−1Þ
ðnþ2 1���k−1Þ

� :

31See [74] for details.
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Finally, taking residues at β1 ¼ ðn−kþ2���nnþ1Þ0
ðn−kþ2���nnþ2Þ0 and β2 ¼ ðnþ2 1���k−1Þ0

ðnþ1 1���k−1Þ0 we reproduce the result of [74]

Fk;n ¼
Z

dk×ðnþ2ÞC
Vol½GLðkÞ�Reg

δk×2ðC · λ̃Þδk×4ðC · η̃Þδðnþ2−kÞ×2ðC⊥ · λÞ
ð1 � � � kÞð2 � � � kþ 1Þ � � � ðnþ 2 � � � k − 1Þ ; ðA25Þ

where now

Reg ¼ hξAξBi2
Y

1 − Y
; Y ¼ ðn − kþ 2 � � � n nþ 1Þðnþ 2 1 � � � k − 1Þ

ðn − kþ 2 � � � n nþ 2Þðnþ 1 1 � � � k − 1Þ : ðA26Þ

In the formula above we assumed a sum over different top-cell forms corresponding to different gluing positions of the
minimal form factor. Note that the string correlation function knows about these different top cells by construction.

APPENDIX B: GLUING OPERATOR FOR THE TREE AMPLITUDES

In this appendix we present computational details for the application of gluing operator Âi;iþ1 to the tree level on-shell
amplitudes. First of all, let us once more define Âi;iþ1:

Âi;iþ1½f�≡
Z Ynþ2

i¼nþ1

d2λid2λ̃id4η
Vol½GLð2Þ� A

�
2;2þ1 × fðfλi; λ̃i; ηignþ2

i¼1 Þ: ðB1Þ

Performing integration over λ̃nþ1, λ̃nþ2, η̃nþ1, and η̃nþ2 variables as in Appendix A, we get

Â½f� ¼ hpξi
κ�

Z
dβ1
β1

∧ dβ2
β2

1

β21β2
fðfλi; λ̃i; η̃ignþ2

i¼1 Þj�; ðB2Þ

where j� denotes substitutions fλi; λ̃i; ηignþ2
i¼nþ1 ↦ fλiðβÞ; λ̃iðβÞ; η̃iðβÞgnþ2

i¼nþ1 with

λnþ1ðβÞ ¼ λ
nþ1

þ β2λnþ2
; λ̃nþ1ðβÞ ¼ β1λ̃nþ1

þ ð1þ β1Þ
β2

λ̃
nþ2

; η̃nþ1ðβÞ ¼ −β1η̃
nþ1

;

λnþ2ðβÞ ¼ λ
nþ2

þ ð1þ β1Þ
β1β2

λ
nþ1

; λ̃nþ2ðβÞ ¼ −β1λ̃nþ2
− β1β2λ̃nþ1

; η̃nþ2ðβÞ ¼ β1β2η̃
nþ1

; ðB3Þ

and

λ
nþ1

¼ λp; λ̃
nþ1

¼ hξjk
hξpi ; η̃

n
¼ η̃p; λ

nþ2
¼ λξ; λ̃

nþ2
¼ hpjk

hξpi ; η̃
nþ2

¼ 0: ðB4Þ

We understand integration with respect to β1;2 as a residue form, and we will always evaluate it at points resβ2¼0∘resβ1¼−1.
The following formulas are useful in computations. The transformed momenta for nþ first and nþ second particles are

then given by

pnþ1ðβÞ ¼ −β1λnþ1
λ̃
nþ1

þ 1þ β1
β2

λ
nþ1

λ̃
nþ2

− β1β2λnþ2
λ̃
nþ1

þ ð1þ β1Þλnþ2
λ̃
nþ2

;

pnþ2ðβÞ ¼ −β1λnþ2
λ̃
nþ2

−
1þ β1
β2

λ
nþ1

λ̃
nþ2

þ β1β2λnþ2
λ̃
nþ1

þ ð1þ β1Þλnþ1
λ̃
nþ1

; ðB5Þ

and using definitions above it is easy to see that

k ¼ λnþ1ðβÞλ̃nþ1ðβÞ þ λnþ2ðβÞλ̃nþ2ðβÞ;
λpηp ¼ λnþ1ðβÞη̃nþ1ðβÞ þ λnþ2ðβÞη̃nþ2ðβÞ; ðB6Þ

for all values of β1 and β2.
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First of all, let us make a comment for example (6.9) considered in the main text that the gluing operation commutes with
projectors on particular physical particles provided we identify nþ 1 and nþ 2 particles with gluons with −þ
polarizations. Indeed from the previous example we have [53,63] [A2;4 ≡ A2;4ðΩ1;…;Ω4Þ]

∂4
η̃2
∂4
η̃p
Â½A2;4� ¼ Â½∂4

η̃2
∂4
η̃3
A2;4� ¼

δ4ðp12 þ kÞ
κ�h12i resβ1¼−1∘resβ2¼0½ω� ¼ A�

2;2þ1ð1þ2−g�3Þ; ðB7Þ

where ω is now given by

ω ¼ ðh2pi þ β2h2ξiÞ3dβ2 ∧ dβ1
β2β1ðβ1β2h1ξi þ ð1þ β1Þh1piÞ

: ðB8Þ

Now let us proceed with more involved examples considered in the text and reproduce results for A�
3;3þ1ð1−2−3þg�4Þ and

A�
3;4þ1ð1þ2þ3−4−g�5Þ amplitudes from [63]. In the case of the A�

3;3þ1ð1−2−3þg�4Þ amplitude we have to start with the
A3;5ð1−2−3þ4−5þÞ amplitude (here and below c−1 ¼ hpξi),

∂4
η̃1
∂4
η̃2
∂4
η̃4
A3;5ðΩ1;…;Ω5Þ ¼ A3;5ð1−2−3þ4−5þÞ ¼ δ4ðp12345Þ

½35�4
½12�½23�½34�½45�½51� ; ðB9Þ

so that

A3;5ð1−2−3þ4−5þÞj� ¼
δ4ðp123 þ kÞβ21β2ðκ�c−1½p3� þ β2½34�Þ4

k2c−1½12�½23�ð−β1β2½34� þ ð1þ β1Þc−1κ�½3p�Þð½1p�c−1κ� þ β2½14�Þ
: ðB10Þ

Now, recalling that k2 ¼ −κ�κ, we get [63]

Â45½A3;5ð1−2−3þ4−5þÞ� ¼
δ4ðp123 þ kÞ½p3�3
κ½12�½23�½p1� ¼ A�

2;3þ1ð1−2−3þg�4Þ; ðB11Þ

and the integration with respect to β’s was performed by taking composite residue resβ1¼−1∘resβ2¼0½� � ��.
In a similar fashion for the A3;5ð1þ2þ3−4−5−6þÞ amplitude we have

∂4
η̃3
∂4
η̃4
∂4
η̃5
A3;5ðΩ1;…;Ω6Þ ¼ A3;5ð1þ2þ3−4−5−6þÞ ¼ Aþ B; ðB12Þ

with

A ¼ h3j1þ 2j6�3
½45�½56�

δ4ðp1���6Þ
h12ih23ip2

1;3h1j2þ 3j4� ;

B ¼ h5j3þ 4j2�3
h56ih61i

δ4ðp1���6Þ
½23�½34�p2

2;4h1j2þ 3j4� : ðB13Þ

Next, it is not hard to see that [½xj≡ h3jð1þ 2Þ, jyi≡ ð3þ 4Þj2�]

Aj� ¼
β21β2ð½px�c−1κ� þ β2½5x�Þ3

c−1κκ�ðβ21β2½45� þ ð1þ β1Þ½4p�κ�c−1Þ
δ4ðp1234 þ kÞ

h12ih23ip2
1;3h1j2þ 3j4� ;

Bj� ¼
β21β2ðhpyi þ β2hξyiÞ3

cðh1ξiβ1β2 þ ð1þ β1Þhp1iÞ
δ4ðp1234 þ kÞ

½23�½34�p2
2;4h1j2þ 3j4� : ðB14Þ
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Now, defining

ωA ¼ ð½px�c−1κ� þ β2½5x�Þ3
c−1κκ�ðβ1β2½45� þ ð1þ β1Þ½4p�κ�c−1Þ

dβ2 ∧ dβ1
β1β2

;

ωB ¼ ðhpyi þ β2hξyiÞ3
cðh1ξiβ1β2 þ ð1þ β1Þhp1iÞ

dβ2 ∧ dβ1
β1β2

; ðB15Þ

we get

Â56½A�¼
δ4ðp1234þkÞ

h12ih23ip2
1;3h1j2þ3j4�

1

c−1κ�
resβ1¼−1∘resβ2¼0½ωA�

¼1

κ

δ4ðp1234þkÞh3j1þ2jp�3
h12ih23i½4p�p2

1;3h1j2þ3j4� ðB16Þ

and

Â56½B� ¼
δ4ðp1234 þ kÞ

½23�½34�p2
2;4h1j2þ 3j4�

1

c−1κ�
resβ1¼−1∘resβ2¼0½ωB�

¼ 1

κ�
δ4ðp1234 þ kÞhpj3þ 4j2�3
hp1i½23�½34�p2

2;4h1j2þ 3j4� : ðB17Þ

So, as expected [63],

Â56½A3;5ð1þ2þ3−4−5−6þÞ� ¼ A�
3;4þ1ð1þ2þ3−4−g�5Þ:

ðB18Þ

As a final example, let us consider the following
example. Let us reproduce the A�

3;0þ3ðg�1; g�2; g�3Þ Wilson
line correlation function from the A3;6ð1−2þ3−4þ5−6þÞ on-
shell amplitude. According to our previous discussion,
A�
3;0þ3 could be written as

A�
3;0þ3ðg�1;g�2;g�3Þ¼ ðÂ12∘Â34∘Â56Þ½A3;6ð1−2þ3−4þ5−6þÞ��;

ðB19Þ

where the A3;6ð1−2þ3−4þ5−6þÞ amplitude is given by

A3;6 ¼ δ4ðp1���6Þð1þ P2 þ P4Þf; f

¼ h13i4½46�4
h12ih23i½45�½56�h3j1þ 2j6�h1j5þ 6j4�p2

456

ðB20Þ

and P is the permutation operator shifting spinor labels by
þ1 mod 6. The algebraic manipulation related to the

actions of Âiiþ1 operators are identical to those already
discussed. The factors 1=β21β2 in the definition of gluing
operators will cancel with corresponding factors in the
amplitude after substitutions are applied, while integrals are
evaluated by composite residues resβ1¼−1∘resβ2¼0. So, in
what follows we will present only the results of applying
gluing operators Âiiþ1 to the on-shell amplitude. For the f
term we have

Â56½f� ¼ δ4ðp1234 þ k3Þ

×
h13i4½4p3�3

κ3h12ih23ih3j1þ 2jp3�h1jk3j4�p2
123

ðB21Þ

and

ðÂ34∘Â56Þ½f�
¼ δ4ðp12 þ k2 þ k3Þ

×
h1p2i4½p2p3�3

κ3h12ih2p2ihp2j1þ 2jp3�h1jk3jp2�hp2jk3jp2�
: ðB22Þ

Note that the ordinary propagator 1=p2
123 transformed into

eikonal one 1=ðp2k3Þ after the action of the gluing operator.
Finally

ðÂ12∘Â34∘Â56Þ½f� ¼ δ4ðk1þ k2þ k3Þ

×
hp1p2i3½p2p3�3

κ3κ
�
1hp2jk1jp3�hp1jk3jp2�hp2jk1jp2�

;

ðB23Þ

where we used that hp2jk3jp2� ¼ hp2jk1jp2�. Other terms
can be obtained by similar computations or just by careful
relabeling of indexes. The final result takes the form

A�
3;0þ3 ¼ ðÂ12∘Â34∘Â56Þ½A3;6ð1−2þ3−4þ5−6þÞ�

¼ δ4ðk1 þ k2 þ k3Þð1þ P0 þ P02Þf̃;

f̃ ¼ hp1p2i3½p2p3�3
κ3κ

�
1hp2jk1jp3�hp1jk3jp2�hp2jk1jp2�

: ðB24Þ

Here P0 is the permutation operator that now shifts all
spinor and momenta labels by þ1 mod 3. The expression
obtained is in full agreement with previous computations
using both Grassmannian integral representation [64] and
BCFW recursion [53].
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