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In this work we consider a two-dimensional quantum black hole sourced by the trace anomaly of a
conformal field theory. By using holography, we are able to prove that the black hole size is always
proportional to the number of states inside the black hole, a result that might be interpreted as a two-
dimensional version of the Bekenstein entropy law. Finally, we also show that such a black hole has a
minimal size (a remnant). Extrapolating this result for higher dimensions, we show that this would imply
that the remnant has a size way larger than the Planck length and is, therefore, always weakly coupled.
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I. INTRODUCTION

Below the Planck energy, quantum gravity fluctuations
may be ignored and the spacetime metric is determined by
the semiclassical Einstein equations [1]

Rμν −
1

2
Rgμν þ Λgμν ¼ κ2dhψ jTμνjψi; ð1Þ

where jψi is the vacuum state of the system and Λ is a

cosmological constant. The constant κ2d ≡ ðlðdÞ
p Þd−2, where

lðdÞ
p is the Planck length in d dimensions [1].
The two-dimensional case is very special. There, the

Einstein tensorGμν ¼ Rμν − 1
2
Rgμν vanishes identically and

κ2 is dimensionless. Then, (1) reduces to

Λgμν ¼ κ22hψ jTμνjψi: ð2Þ

A black hole solution (2) with a conformal field theory
(CFT) can be found by inserting a mass μ. In the
“Schwarzschild” gauge it reads [2]

ds2 ¼ −ðλ2x2 þ 2μjxj − 1Þdt2 þ dx2

λ2x2 þ 2μjxj − 1
; ð3Þ

where λ2 is related to the trace anomaly of the CFT [1]

hTi ¼ −cR; ð4Þ

via the relation

λ2 ¼ 48πΛ
N − 1

κ−22 ; ð5Þ

where the central charge of the CFT jcj ¼ N−1
24π ,

1 N is the
number of degrees of freedom of the CFT.
We will here only consider the case Λ > 0. Note that in

the absence of the mass μ, the metric (2) would be the one
of an anti de Sitter space in two-dimensions.
The fact that in two dimensions k2 is dimensionless,

precludes us to define a scale at which the semiclassical
approximation (1) breaks down. From a path integral
perspective, this means that there is no any energy scale
below which the classical gravitational saddle point domi-
nates over others, and so this has to be checked case by
case, dependently on the observable chosen. Quite generi-
cally though, since in two dimensions the Einstein-Hilbert
action is a total derivative, any correlation functions from
the path integral can be calculated by “only” considering
topological (gravitational) diversities, real and complex,
with the same boundary conditions.
A step towards this full integration has been done in [3].

There, it was noticed that the quantum system described
above, with semiclassical real metric (3), is a combination of
twoLiouville field theories, a timelike (theblackhole interior)
and a spacelike (the black hole exterior) matched at the black
hole horizon. In the same paper, it was then shown that
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1In the paper [3], it has been shown that the black hole solution
we have considered can be described as a matching of two
Liouville theories. The inside of the black hole corresponds to a
timelike Liouville theory while the exterior is a spacelike one.
The two theories, matched at the horizon, only differ by a change
of sign in the central charge, see for example [4].
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observables living inside the black hole and described by
heavy operators (i.e., semiclassical operators) are only
correctly calculated by considering two distinct saddle points,
one real, corresponding to the metric (3), and one complex.
Unfortunately, given the high complexity of Liouville field
theories any step forwards would be an incredibly hard task.
For this reason we will take an alternative route: holography.
In the Maldacena AdS/CFT conjecture [5] gravity in dþ

1 dimensions is dual to a CFT living at the (Minkowskian)
boundary of AdS. Any other slice of AdS space, away from
its boundary, contains a local gravitational field. Therefore,
cutting the AdS space at any slice away from the AdS
boundary, immediately introduces gravity in the dual CFT.
Of course, this nontrivial cut comes with the price of
introducing a local energy (a tension) of the cut. Precisely
this tension parametrizes the local gravitational strength and
therefore theUV cutoff of the theory. In this respect, theAdS
boundary is a zero tension brane so that the effective
gravitational strength vanishes and the CFT has no cutoff.
The geometrical construction of cutting and pasting an

AdS space is the so-called Randall-Sundrum II braneworld
(RS) [6] and the new “AdS” boundary is called the brane.
One of the first interesting result of this variant of the

AdS/CFT has been found by a reinterpretation of the results
of [7] by [8]. In [7], it has been proven that a gravitational
collapse of a ball of dust, stuck on a RS brane, would not
end into a Schwarzschild black hole, as it would happen in
classical general relativity. Rather, a ball of dust would
generate a time dependent solution sourced by a stress
tensor matching the trace anomaly of the would-be black
hole. Motivated by this result, the authors of [8] have then
conjectured that

“The black hole solutions localised in the brane in the
AdSdþ1 braneworld which are found by solving the
classical bulk equations in AdSdþ1 with the brane
boundary conditions, correspond to quantum-corrected
black holes in d dimensions, rather than classical ones.”

In [9], this conjecture has been tested further. There,
strong evidences are given towards the interpretation of the
result of [7] in terms of a Hawking flux of the would be
Schwarzschild black hole.
In [10], it has been shown that the quantum metric (3) is

found by brane slicing a BTZ black hole. This brane is
formed by two intersecting strings which can be the (dual)
reason why quantum correlation functions of heavy oper-
ators on the black hole (3), are given by two saddle points
of the gravitational path integral, as discussed in [3].
In this paper we take again seriously the conjecture of [8]

and show that, quite unexpectedly, the two dimensional
black hole studied in [10] has a minimal size, a remnant.

II. 1-BRANE BLACK HOLE IN BTZ BULK

In this section we review and extend the analysis of [10].

A spherically symmetric asymptotically AdS black hole
solution in 2þ 1 dimensions, solution of Einstein gravity,
is the BTZ black hole

ds2 ¼ −FðrÞdt2 þ dr2

FðrÞ þ r2dθ2; ð6Þ

where FðrÞ ¼ r2

L2 −m, L is the AdS3 length, M≡m=L is
the “mass” of the black hole. Finally, conversely to AdS3,
the coordinate θ is identified as θ ∼ θ þ 2π so that r ¼ 0
cannot be analytically extended. For this reason the
“singularity” at r ¼ 0 of (6), hidden by the horizon at
rh ¼

ffiffiffiffi
m

p
L, is not a singularity in the curvature, but rather a

point of geodesic incompleteness (i.e., a causal singularity).
From the perspective of AdS3, that is extendible to negative
values of r, the identification of θ would generate closed
timelike curves and therefore must be discarded [11]. In
short, BTZ is only defined in the coordinate range r > 0.
We are now interested in constructing a braneworld with

a BTZ bulk. To do so, we will cut the BTZ geometry by a 1-
brane which will act as the boundary of our new spacetime.
More geometrically, we will first slice the BTZ space into
two parts delimited by a 1-brane. We will then select one
them to be copied and pasted on the other side of the brane
such that the final space is Z2 symmetric with respect to
the brane.
Calling Σ the brane, we have that our braneworld is

described by the action

S½gαβ; hαβ� ¼
1

2κ23

Z
d3x

ffiffiffiffiffiffi
−g

p �
Rþ 2

L2

�

þ 1

κ23

Z
Σ
d2y

ffiffiffiffiffiffi
−h

p
ðKþ þ K−Þ

−
2σ

κ23

Z
Σ
d2y

ffiffiffiffiffiffi
−h

p
; ð7Þ

where 1=κ23 is the 3-dimensional Planck mass, K� are the
extrinsic curvatures with respect to the brane calculated on
the right and on the left of the brane itself. Finally, hαβ is the
induced metric on the brane and σ is the brane’s tension.
The variation with respect to gαβ is nothing else than the

Einstein equations which are solved by (6) while the
variation with respect to hαβ gives

Kαβ ¼ σhαβ: ð8Þ

where, given the Z2 symmetry, K ≡ Kþ.
As in [10] we consider the following profile for the

1-brane

Σ∶ 0 ¼ Θðr; θÞ ≔ θ − ΨðrÞ; Ψ ∼Ψþ 2π: ð9Þ

In order to construct Kαβ ¼ 1
2
£ngαβ we need the normal

vector nα to the 1-brane. This is
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nα ¼
�∂μΘffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij∂μΘ∂μΘjp ¼ �Að0;−Ψ0ðrÞ; 1Þ; ð10Þ

where Ψ0ðrÞ ≔ d
drΨðrÞ and A ¼ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

FðrÞðrΨ0ðrÞÞ2þ1
p .

With this, Eq. (8) are simultaneously solved by the
following two profiles

Ψ�ðrÞ ¼ �
log

�
2σ2L4mþ2σL2

ffiffiffi
m

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ð1−σ2L2Þþσ2L4m

p
Lr

�
ffiffiffiffi
m

p : ð11Þ

These two solutions correspond to two strings symmetric
with respect to the x-axis wrapping around the center of the
space an infinite number of times (see Fig. 1).
From Eq. (11) we see that one has to impose σ2L2 < 1

for a real solution of an infinitely large brane. The induced
metric on either Ψþ or Ψ− is

ds2 ¼ −
�
r2

L2
−m

�
dt2 þ ϕðrÞ

r2

L2 −m
dr2; ð12Þ

being ϕðrÞ ¼ 2αr2

Lðβr2þα2Þ, α ¼ 2σ2L3m and β ¼ 4σ2L2mð1−
σ2L2Þ.
Changing into Schwarzschild-like coordinates we have

ds2 ¼ −F̃ðρÞdt2 þ dρ2

F̃ðρÞ ; ð13Þ

with

F̃ðρÞ ¼ 1 − σ2L2

L2
ρ2 −

m
ð1 − σ2L2Þ ; ð14Þ

and

ρðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − σ2L2Þr2 þ σ2L4m

p
1 − σ2L2

: ð15Þ

To construct a braneworld we however need to cut the
space into two separate parts. Since each one of the strings
wrap around an infinite amount of times we cannot use
neither of those to be the boundary of our spacetime. Then,
a way to construct a 2-dimensional brane black hole is to
consider the space delimited by the first intersection of the
two strings, as depicted in Fig. 2. The geometry of two
intersecting strings is however the same of a pinched string.
The pinching can be reinterpreted as an insertion of a point
mass in the position of the pinching. Thus, this construction
will be a solution of (7) with an additional boundary
mass term.
The radius at which Ψþ and Ψ− intersect are given by

rn ¼ L
4σ2L2enπ

ffiffiffi
m

p
m

e2nπ
ffiffiffi
m

p
− 4σ2L2ð1 − σ2L2Þm ; ð16Þ

with n ∈ Z and Ψ� approaching infinity with an asymp-
totic angle

θ∞ðσ2Þ ¼ � 1

2
ffiffiffiffi
m

p logð4σ2L2ð1 − σ2L2ÞmÞ: ð17Þ

Indeed, when θ∞ðσ2Þ=π ∈ Z the branches become parallel
for large r, the denominator in (16) vanishes for n ¼
θ∞ðσ2Þ=π and therefore the last intersection point lies at
infinity. It is easy to check that drndn < 0 ð∀σ; m; nÞ, so when
θ∞ðσ2Þ=π ∉ Z there exists a last intersecting point given by
rnmax

, being

nmaxðσ2Þ ¼
h1
π
θ∞ðσ2Þ

i
→
; ð18Þ

r=rnmax

y

x

Ψ+
Ψ-

FIG. 1. Schematic representation of the strings wrapping
around the center of the BTZ black hole. FIG. 2. Ψ� solutions. The shaded region is the braneworld.
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where the operator ½·�→ takes the first integer coming after
the R-number it contains. For r > rnmax

the branches do not
intersect and approach infinity with asymptotic angle given
by (17).
Finally, the 1-brane of our braneworld (Σ) can be

constructed by cutting out the parts of Ψþ and Ψ− at
which r < rnmax

, and gluing the remaining branches, that
we will refer to as Σþ and Σ− respectively, in the last
intersection point r ¼ rnmax

(see Fig. 2).
Let us first study the branch Σþ. Introducing the

coordinate x ≔ ρ − ρðrnmax
Þ, 0 < x < ∞, the metric on

Σþ reads

ds2Σþ ¼−ðλ2x2þ2Mx−NÞdt2þ dx2

λ2x2þ2Mx−N
; ð19Þ

where

λ2 ¼ 1 − σ2L2

L2
;

M ¼ 1

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2nmax

L2
ð1 − σ2L2Þ þ σ2L2m

s
;

N ¼ m −
r2nmax

L2
: ð20Þ

Doing a similar procedure on Σ−, but defining x ≔
−ðρ − ρðrnmax

ÞÞ, −∞ < x < 0 instead, allows us to write
down the induced metric on Σ in the compact form

ds2Σ ¼ −fðxÞdt2 þ dx2

fðxÞ ; ð21Þ

where fðxÞ ≔ λ2x2 þ 2Mjxj − N.
The horizon of (21) lies at

jxhj ¼
−M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ λ2N

p

λ2
; ð22Þ

and it will only exist if N > 0, i.e., if the last intersecting
point is inside the BTZ horizon. In other words, we need
rnmax

<
ffiffiffiffi
m

p
L. Finally, as in this construction N > 0, we

can rescale the coordinates as x̃ ¼ xffiffiffi
N

p and t̃ ¼ ffiffiffiffi
N

p
t, and the

metric becomes

ds2Σ ¼ −f̃ðx̃Þdt̃2 þ dx̃2

f̃ðx̃Þ ; ð23Þ

where f̃ðx̃Þ ¼ λ2x̃2 þ 2μjx̃j − 1, μ ¼ Mffiffiffi
N

p ≥ 0 (from now on

we remove the tildes). This is the same quantum metric (3)
obtained from the two-dimensional gravity coupled to a
CFT. However, here a comment is necessary. The brane-
world relation between the three-dimensional and the

two-dimensional Planck scale is κ23 ∼
k2
2

σ [12]. As we are
using a classical bulk κ23 < ∞. Then, the limit σ → 0 would
also imply k22 → 0, i.e., absence of gravity in the two-
dimensional theory. Therefore, in order to interpret our
braneworld metric (23) as the two-dimensional metric from
the semiclassical gravity equations (2), we would need to
avoid the σ → 0 limit.
So far, we have reviewed [10], in the following we will

analyze further the brane solution (23) and show that, in the
limit of large bulk black hole mass, the brane black hole
has, at leading order in m, a minimal size. Thus, if (23)
holographically represents the quantum two-dimensional
black hole as in the [8] conjecture, the two-dimensional
quantum black hole has a remnant.
Before moving on, at this point we would like to discuss

the case in which the BTZ mass, m, could also take
negative values. The BTZ black hole with m < 0 does not
contain an event horizon, so it exhibits a naked singularity.
Consequently, one cannot expect having an horizon on the
brane. At the same time, inspection of the quantum black
hole (3) tells us that the horizon lies at

jxhj ¼
−μþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ λ2

p
λ2

and, hence, it exists for all μ ≠ 0 (the case μ ¼ 0 corre-
sponds to AdS2 which has no event horizon). That is, the
geometry on the brane for m < 0 does not coincide with
that of the quantum black hole (3). This is in agreement
with latest strong evidences that the cosmic censorship is
not violated in the context of AdS/CFT [13]. Despite of
this, one might still wonder if some construction could be
performed in the case that the brane hit the bulk naked
singularity. Solving the brane equation in the negative mass
BTZ bulk, which reduces to solving

d
dr

Ψ ¼ � σL2

r
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − σ2L2Þr2 − σ2L4jmj
p ;

one sees that the brane is only defined in the region

r >
σL2

ffiffiffiffiffiffiffijmjp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − σ2L2

p

and consequently it does not intersect the naked singularity
at r ¼ 0.

III. ANALYSIS OF THE BLACK HOLE
SOLUTION ON Σ

The use of a classical BTZ solution in the bulk makes
only sense for a mass much larger than the inverse AdS
length. In addition, for a classical definition of an AdS
length, Lmust be much longer than the Planck length. This
comes in the following hierarchies of scales
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m ≫ 1; L ≫ k−23 : ð24Þ

A necessary condition to have the black hole on Σ is that the
last intersecting point between the branes must lie inside
the BTZ horizon, that is

rnmax
<

ffiffiffiffi
m

p
L: ð25Þ

The condition (25) for m > 1 is violated in the intervals

ð∪0
n¼−∞ ½σ2nH; σ2n−�Þ ∪ ½σ20þ; L−2� ð26Þ

where

σ2n� ¼ 1

2L2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

exp ð2nπ ffiffiffiffi
m

p Þ
m

r �
; ð27Þ

and

σ2nH ¼ 1

2L2

�
1þ expðnπ ffiffiffiffi

m
p Þffiffiffiffi
m

p

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ expðnπ ffiffiffiffi

m
p Þffiffiffiffi
m

p
�

2

−
expð2nπ ffiffiffiffi

m
p Þ

m

s �
: ð28Þ

Where (27) and (28) are respectively solutions of

iÞ n¼ 1

π
θ∞ðσ2n�Þ ∀ n≤0; iiÞ rnðσ2nHÞ¼

ffiffiffiffi
m

p
L: ð29Þ

Therefore, σ2n� are the tensions at which rn lies at infinity,
and σ2nH the tension at which rn lies at the BTZ horizon.
The result (26) is schematically represented in Fig. 3, and
has a clear geometrical interpretation:

(i) Whenever σ2 ∈ ðσ20−; σ20þÞ, the last intersecting
point is r1, and r1 <

ffiffiffiffi
m

p
L ∀ σ2 ∈ ð0; 1Þ. That is,

r1 is always inside the horizon. Therefore, the black
hole is allowed in ðσ20−; σ20þÞ.

(ii) For σ2 ∈ ½σ20þ; 1Þ, the branes bend in such a way that
the intersecting point r0 appears from infinity and
becomes the last intersecting point. In that interval of
tensions, r0 >

ffiffiffiffi
m

p
L and, hence, there cannot be a

black hole on the brane.
(iii) For σ2 ∈ ð0; σ20−�, the branes bend again and a new

intersecting point appears from infinity. In that
situation the black hole on Σ can only be constructed
whenever that point enters the horizon. Subsequent
lowering of the tension would again produce new
bending and therefore new intersecting points com-

ing from infinity. This process leads to the spectrum
of forbidden intervals shown in (26).

As we have already mentioned, our brane solution only
makes sense in the limit m ≫ 1. In BTZ, this limit also
means high temperature as TBTZ ∼

ffiffiffiffi
m

p
[14]. We will then

analyze the brane geometry found before in the large TBTZ

limit by expanding in the small parameter ϵ≡ 1=
ffiffiffiffi
m

p
. In

particular, we are interested in studying the size of the black
hole horizon. Defining the dimensionless parameter
μ̃≡ μ=λ, the horizon of our 1-brane black hole is given by

jxhj ¼
−μ̃þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
μ̃2 þ 1

p
λ

: ð30Þ

Furthermore, expansion in ϵ of (26) gives

1

L2
ð∪0

n¼−∞ ½Onðϵ2Þ;Onðϵ2Þ�Þ ∪
�
1 −

ϵ2

4
þOðϵ3Þ; 1

�
:

Therefore, in the large TBTZ limit the central region of
Fig. 3 is the only one relevant as the region on the left of σ20−
would not be dual to any quantum gravity (there gravity
decouples from the CFT, as explained before). Hence, to
study the horizon we restrict to L2σ2 ∈ ðϵ2

4
; 1 − ϵ2

4
Þ. We

remind the reader that in this interval nmax ¼ þ1. In such
region, jxhj is a monotonically decreasing function of σ and
hence, it exhibits upper and lower bounds. Precisely the
opposite happens for μ as a function of σ.
In the large TBTZ limit, the bounds on jxhj are given by

				xmax
h

�
ϵ2

4L2

�				
nmax¼1

≃
1

λð ϵ2

4L2Þ
; ð31Þ

and

jxmin
h ðL−2Þjnmax¼1 ≃

L
2
: ð32Þ

The maximal size give us no surprises as it is exactly equal
to the 2-dimensional AdS length. In fact, note that in two
dimensions the larger is the mass the smaller the black hole
is, conversely to the higher dimensional cases. Therefore, in
the limit μ → 0 the only horizon surviving is the AdS
horizon. Of course strictly speaking a black hole is only
such for μ ≠ 0 (otherwise it is simply AdS). It is however
quite a surprise to see the existence of a minimum size and
we will discuss this in the next section.

IV. CONCLUSIONS: CONSTRAINTS ON THE
QUANTUM BLACK HOLE AND REMNANT

We can now use the AdS/CFT dictionary [15], valid for
N ≫ 1, to relate the number of fields in the CFT to the
three-dimensional quantities

FIG. 3. In red the interval of the tensions in which no brane
black hole can be constructed. L ¼ 1 units are chosen here.
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N ¼ 12πL
κ23

; ð33Þ

to find

jxmin
h j ¼ N

lð3Þ
p

24π
: ð34Þ

We can interpret the previous minimal length by defining a

universal minimal cell of size lmin ≡ lð3Þp

24π. Then a black hole
with N degrees of freedom cannot occupy less space than
N times lmin. Note that lmin does not depend on the BTZ
mass and/or the AdS length and therefore it will not change
by changingm and/or L. If the same result applied to larger
dimensions, we would obtain a black hole remnant that
would have a size way larger than the quantum gravity
scale and thus be weakly coupled (note that our results are

valid also for N ∼ 24π where jxmin
h j ∼ lð3Þ

p ). To prove this
statement one can use the fact that k2d−1 ∼ k2dσ and that, to

be in the classical braneworld regime, σ ≪ k2=ð2−dÞd .

Therefore, lðdÞ
p ≫ lðd−1Þ

p which proves that the remnant
is in the weak gravity regime.
It is interesting to rewrite the minimal radius (34) in

terms of only the two-dimensional constants. One finds that

jxmin
h j ∼ N

24πμmax
; ð35Þ

where μmax ¼ μðσ ¼ L−1Þ ≃ L−1.
The entropy of a two-dimensional conformal field theory

is given by the Cardy formula [16]

SC ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c
6

�
ER −

c
24

�s
ð36Þ

where, for the remnant, E ¼ μmax is the energy [10] and
R ¼ jxmin

h j the size of the system.
From Eq. (35) and by using that jcj ∼N , we then

immediately find that SC ∼N and so

SC ∼
jxmin

h j
lmin

: ð37Þ

This resembles the Bekenstein entropy law. Namely that a
larger black hole has larger entropy and therefore contains
larger number of states.
The fact that the black hole size is proportional to the

entropy must also be true for any black hole size and not
only for the minimal one. As we have already commented,
the maximal radius of our two-dimensional black hole is
the two-dimensional AdS length and corresponds to the
minimal tension ϵ=2. In this case, one finds

jxmax
h j ¼ 2jxmin

h j; ð38Þ

and thus, jxhj ¼ Oð1Þjxmin
h j. Therefore,

jxhj ∼ lminSC; ð39Þ

which is what we were expecting.
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