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The generalized uncertainty principle is a phenomenological model whose purpose is to account for a
minimal length in quantum and classical systems. However, the analysis of problems in classical physics is
usually approached using a different formalism than the one used for quantum systems, and vice versa.
Potentially, the two approaches can result in inconsistencies. Here, we eliminate such inconsistencies by
proposing particular meanings and relations between the variables used to describe physical systems,
resulting in a precise form of the Legendre transformation. Furthermore, we introduce two different sets of
canonical variables and the relative map between them. These two sets allow for a complete and
unambiguous description of classical and quantum systems.
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I. INTRODUCTION

A common feature of many quantum approaches to
gravity is the existence of a minimal length scale [1–9],
contradicting and requiring a modification of the
Heisenberg principle. A phenomenological approach,
known as the generalized uncertainty principle (GUP),
has been described from different points of view. In
particular, some works have focused on a quantum
description of GUP considering a deformation of the
canonical commutator between position and momentum
operators [10,11]. A different set of works have considered
a classical description of GUP through the modification of
the canonical Poisson bracket between position and
momentum inspired by the modified commutator in the
previous point [12,13].
In previous studies, little attention has been paid to

comparing the Lagrangian and Hamiltonian approaches to
problems with a minimal length. An exception in the case
of relativistic spin is Ref. [14]. The two formalisms are in
fact usually assumed to be equivalent. More specifically,
when GUP is considered in the quantum domain, the
usual tools of quantum mechanics are implemented, rooted
in the Hamiltonian formalism (see, for example also
Refs. [15–17]). On the other hand, for a description of
classical systems or in quantum field theory, the machinery
of the Lagrangian formalism is preferred (see, for example
Refs. [18–20]). However, the direct application of these
formalisms, connected through a to-be-specified Legendre
transformation, may lead to inconsistencies, as we will see

below, related with the actual form of the Lagrangian and
Hamiltonian functions.
To see how these inconsistencies arise, let us consider a

GUP model for a three-dimensional system between the
position q⃗ and the momentum p⃗ [11]

½qi; pj� ¼ iℏ

�
δij − γδ

ffiffiffiffiffiffiffiffiffiffi
pkpk

p �
δij þ

pipj

pkpk

�

þ γ2pkpk

�
ϵδij þ ð2ϵþ δ2Þ pipj

pkpk

��
; ð1Þ

where the Einstein summation convention is used and
where δ, ϵ, and γ are three real parameters. The description
using three parameters, instead of two, has the practical
purpose of separating the parameters defining the particular
model, δ and ϵ, from the parameter defining the scale at
which one would expect GUP effects to become relevant, γ.
One usually assumes γ ¼ 1=ðMPlcÞ, where MPl is the
Planck mass. Furthermore, the same parametrization was
proved useful in perturbation theory [16]. Finally, notice
that Eq. (1) represents an effective model giving rise to a
minimal length of order l ∼ ℏγ. It has to be considered as
an expansion up to second order in γ of a more fundamental
model derived from a full quantum theory of gravity. Given
its nature, the results of this paper, based on this effective
model, have to be considered up to second order in γ.
In this framework, the “physical” momentum p⃗ is often

expanded in terms of a “nonphysical” one, p⃗0, correspond-
ing to the generator of translations

pi ¼ p0;i½1 − γδ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0;kp0;k

p þ γ2ðϵþ δ2Þp0;kp0;k�;

with p0;i ¼ −iℏ
∂

∂q0;i such that ½q0;i; p0;j� ¼ iℏδij; ð2Þ
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where q⃗0 is the generalized coordinate operator to which p⃗0

is the conjugate momentum. Notice that this expansion is
consistent with the modified commutator (1). The depend-
ence on p⃗0 only in the first relation of Eq. (2) is a direct
consequence of the fact that the modified commutator
depends only on the momentum. On the other hand,
considering terms depending on the position in Eq. (2)
implies position-dependent terms in the modified commu-
tator (1). These terms correspond to a minimal uncertainty
in momentum, as explained in Ref. [10]. We will not
consider this case in this paper. In principle, one can also
assume a relation between q⃗0 and q⃗ ¼ q⃗ðq⃗0Þ. However, it is
easy to prove that q⃗ ¼ q⃗0 is the only relation that can fulfill
Eqs. (1) and (2). Being therefore equivalent, in the
following we will represent the generalized coordinate
by qi, omitting the subscript 0.
As we stated above, some incongruences may arise when

the Lagrangian and Hamiltonian approaches are compared.
Let us then consider for the moment a free system in the
Hamiltonian formalism, that is described by a Hamiltonian
of the form

H ¼ pipi

2m
: ð3Þ

It is easy to show that in the Heisenberg picture, one finds

_qi¼
1

iℏ
½qi;H� ¼pi

m
½1−2γδ

ffiffiffiffiffiffiffiffiffiffi
pkpk

p þ γ2ð3ϵþδ2Þpkpk�

¼p0;i

m
½1−3γδ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0;kp0;k

p þ2γ2ð2ϵþ3δ2Þp0;kp0;k�; ð4aÞ

_pi ¼ −
1

iℏ
½pi;H� ¼ 0: ð4bÞ

On the other hand, when the free Lagrangian is
considered

L ¼ 1

2
m _qi _qi; ð5Þ

one obtains for the momentum conjugate to qi

∂L
∂ _qi ¼ m _qi: ð6Þ

This last relation differs from both the expressions for _q⃗ in
terms of p⃗ or p⃗0 in Eq. (4a), contradicting the definition of
p⃗0 as the momentum conjugate to q⃗ given in Eq. (2). As a
consequence, the connection between the Hamiltonian H
and the Lagrangian L is not clear. In fact, given the problem
above, it is not clear which object will take the place of the
momentum in a Legendre transformation. In what follows,
we will resolve these ambiguities in the context of classical
mechanics.

The paper is structured as follows. In Sec. II, we analyze
the correct form of the Legendre transformation with a
minimal length, therefore prescribing the connection
between Hamilton and Lagrange formalism. In Sec. III,
we study how interactions propagate from one formalism to
the other, with particular attention to the minimal coupling.
In Sec. IV, we introduce a canonical transformation to a
new set of variables in which the physical momentum p⃗
appears as canonical momentum. In Sec. V, we illustrate
two examples as applications of the results of the paper.
Finally, in Sec. VI, we conclude the paper by summarizing
the main results and proposing the next steps in this line of
research.

II. LEGENDRE TRANSFORMATION WITH GUP

In this section, we study the connection between the
Lagrangian and Hamiltonian in the presence of a minimal
length, sorting out the ambiguities found in the previous
section. We first introduce some definitions inspired by the
usual connection between classical and quantum mechan-
ics. In particular, the analogy between the (quantum)
Heisenberg and the (classical) Hamilton equations

_qi ¼
1

iℏ
½qi; H� ↔ _qi ¼ fqi; Hg; ð7Þ

is preserved with GUP only by using the following
definitions:

ðquantumÞ qi ¼ iℏ
∂

∂p0;i
in p representation;

ðclassicalÞ fA;Bg ¼
X
i

�∂A
∂qi

∂B
∂p0;i

−
∂A
∂p0;i

∂B
∂qi

�
: ð8Þ

In fact, these are the only definitions that imply Eq. (4a) in
both quantum and classical mechanics. The Poisson brack-
ets fqi; pjg can then be computed once the relation
between p⃗ and p⃗0 is defined. For this purpose, we will
assume the relation (2). From these definitions, we obtain
the following fundamental Poisson brackets:

fqi; qjg ¼ 0; ð9aÞ

fpi; pjg ¼ 0; ð9bÞ

fqi; pjg ¼ δij − γδ
ffiffiffiffiffiffiffiffiffiffi
pkpk

p �
δij þ

pipj

pkpk

�

þ γ2pkpk

�
ϵδij þ ð2ϵþ δ2Þ pipj

pkpk

�
: ð9cÞ

To achieve a consistent description in the Lagrangian
formalism, we need to assign to p⃗0 a deeper meaning than a
mathematical tool. In fact, the requirement of p⃗0 being the
momentum conjugate to q⃗, as suggested by Eq. (2), implies
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that the Hamiltonian H and the Lagrangian L have to be
related by the following Legendre transformation [21]:

L¼ ½ _qip0;i−H�p0;i¼p0;iðqi; _qiÞ

¼ 1

2
m _qi _qi

h
1þ2γδm

ffiffiffiffiffiffiffiffiffi
_qj _qj

q
−2γ2ðϵ−3δ2Þm2 _qj _qj

i
; ð10Þ

where we have used the inverse relation

p0;ið _q⃗Þ ¼ m _qi
h
1þ 3γδm

ffiffiffiffiffiffiffiffiffi
_qj _qj

q
− 4γ2ðϵ − 3δ2Þm2 _qj _qj

i
:

ð11Þ

This implies

∂L
∂ _qi¼m _qi

h
1þ3γδm

ffiffiffiffiffiffiffiffiffi
_qj _qj

q
−4γ2ðϵ−3δ2Þm2 _qj _qj

i
¼p0;i;

ð12Þ

which is consistent with what we saw before.
We can easily find that this result can be obtained as a

consequence of the form of the Legendre transformation
and of Hamilton’s equations. Let us then consider a generic
Lagrangian L and the corresponding Hamiltonian obtained
through a Legendre transformation

H ¼ p̄i _qi − L; where p̄i ¼
∂L
∂ _qi : ð13Þ

In this case, p̄i is just the momentum conjugate to qi. Here
we do not assume any relation between p̄i and pi or p0;i.
Assuming Hamilton’s equations

_qi ¼
∂H
∂p0;i

; ð14Þ

we find

_qi ¼
∂2L

∂ _qj∂p0;i
_qj þ

∂L
∂ _qj

∂ _qj
∂p0;i

−
∂L
∂p0;i

¼ ∂p̄j

∂p0;i
_qj: ð15Þ

Therefore ∂p̄j

∂p0;i
¼ δij or p̄i ∝ p0;i. Furthermore, since in the

standard theory p̄i ¼ p0;i, this must be the case with GUP
as well. It is furthermore worth mentioning that imposing
the condition (14) ensures that the inverse Legendre
transformation has the same form as the direct one

L ¼ p0;i _qi −H; where _qi ¼
∂H
∂p0;i

: ð16Þ

It is interesting to note that the same Legendre trans-
formation, when applied to the free Lagrangian

L ¼ 1

2
m _qi _qi; ð17Þ

results in a different Hamiltonian than Eq. (3). In fact, in
this case the Hamiltonian is

H ¼ p0;ip0;i

2m
: ð18Þ

Hence, we are led to an ambiguity as to which approach
gives the correct description of a free system: the one
described by the free Lagrangian (17) (which will produce
a description identical to theories without GUP), the one
described by the free Hamiltonian in Eq. (3) (as it is
commonly assumed when GUP is considered), or an
intermediate description, different from the previous two.
At present, no direct element that could distinguish
between and make us prefer any of these cases is available.
Nonetheless, phenomenological arguments and sensible
assumptions allow us to discard the first and the third
descriptions in favor of the second. Consider, for example,
a one-dimensional quantum harmonic oscillator, described
by the (quantum) Hamiltonian

H ¼ p̄2

2m
þ 1

2
mω2q2; ð19Þ

where no assumption is made concerning p̄. The existence
of a zero-point energy is usually associated with the
uncertainty relation between position and momentum.
With the standard uncertainty relation, one obtains the
usual zero-point energy E0 ¼ ℏω=2. On the other hand, it is
easy to see that a modified uncertainty relation produces
deviations from the standard zero-point energy (see for
example Ref. [10]). Therefore, the Hamiltonian (19) with
p̄ ¼ p0 cannot reproduce the effects of a minimal length.
However, when the relation p̄ ¼ p is considered, the same
Hamiltonian does produce such a deviation, suggesting for
a free Hamiltonian the form in Eq. (3). Furthermore, since
Eq. (3) represents a free Hamiltonian, consisting of the
kinetic term only, it is natural to assume that the momentum
appearing in this relation is the physical momentum p.
Having settled the questions concerning the forms of the

Lagrangian and Hamiltonian for a free system, we are now
going to include interactions.

III. EQUATIONS OF MOTION

Given the results of the previous section, in particular the
connection between the Lagrangian and Hamiltonian with a
minimal length, we are now going to study the cases of
interacting systems, specifically through position- and
velocity-dependent potentials.
First, we notice that the particular relation (2), and

specifically the fact that p⃗ is proportional to p⃗0, where
the proportionality factor is a function of jp⃗0j, implies that
the physical momentum p⃗ inherits some of the properties of
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the generator of translations. For example, for a free
system, both p⃗0 and p⃗ are constants of motion. Furthe-
rmore, since we derived the Lagrangian in Eq. (10) starting
from the free Hamiltonian in Eq. (3), we can interpret this
particular Lagrangian as the kinetic energy of a system
described by the generalized coordinate q⃗. However, when
a potential is considered, a straightforward application of
the Legendre transformation above allows us to find the
Lagrangian of the system starting from the Hamiltonian and
vice versa.
Let us consider the particular case of a conservative,

position-dependent force F⃗ðq⃗Þ. We find that _p⃗0 is given by
the usual Newton’s second law, while in terms of the
physical momentum the equations of motion are

_p0;i ¼ _pj

�
δij þ γδ

ffiffiffiffiffiffiffiffiffiffi
pkpk

p �
δij þ

pipj

pkpk

�

− γ2ðϵ − δ2Þpkpk

�
δij þ 2

pipj

pkpk

��
¼ Fiðq⃗Þ; ð20Þ

where we used the relation

p0;i ¼ pi½1þ γδ
ffiffiffiffiffiffiffiffiffiffi
pjpj

p − γ2ðϵ − δ2Þpjpj�: ð21Þ
This result can be found using either the Euler-Lagrange or
Hamilton equations.
As for the case of a velocity- and position-dependent

potential, let us consider the following Lagrangian:

L ¼ 1

2
m _qi _qi

h
1þ 2γδm

ffiffiffiffiffiffiffiffiffi
_qj _qj

q
− 2γ2ðϵ − 3δ2Þm2 _qj _qj

i
− Vðq⃗; _q⃗Þ; ð22Þ

consisting of the terms in Eq. (10), considered as the
kinetic terms, and a potential Vðq⃗; _q⃗Þ. Defining P0;i ¼
p0;i þ ∂V=∂ _qi, we then find

p0;i ¼m _qi
h
1þ 3γδm

ffiffiffiffiffiffiffiffiffi
_qj _qj

q
− 4γ2ðϵ− 3δ2Þm2 _qj _qj

i
−
∂V
∂ _qi ;
ð23Þ

_qi ¼
P0;i

m
½1 − 3γδ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0;jP0;j

p þ 2γ2ð2ϵþ 3δ2ÞP0;jP0;j�;
ð24Þ

H ¼ P0;i _qi −
dV
d _qi

_qi − L

¼ 1

2

P0;iP0;i

m
½1 − 2γδ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0;jP0;j

p þ γ2ð2ϵþ 3δ2ÞP0;jP0;j�

−
∂V
∂ _qi _qi þ Vðq⃗; _q⃗Þ

¼ 1

2

PiPi

m
−
∂V
∂ _qi _qi þ V; ð25Þ

where

Pi ¼ P0;i½1 − γδ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0;jP0;j

p þ γ2ðϵþ δ2ÞP0;jP0;j�: ð26Þ

Notice that this last relation is equivalent to Eq. (2).
Furthermore, we see that

_p0;i ¼ −
∂H
∂qi ¼ −

∂V
∂qi ; ð27Þ

that is, also in this case, the evolution of p⃗0 is given by the
same equations of standard classical mechanics.

A. Electromagnetic interaction

As an example, consider the case of a vector potential A⃗
and a scalar potential ϕ. In our notation we have
Vðq⃗; _q⃗Þ ¼ −e½Aiðq⃗Þ _qi − ϕðq⃗Þ�. It is then interesting to
observe that with GUP the minimal coupling consists of
the usual substitution p0;i → P0;i ¼ p0;i − eAi. The
Hamiltonian then becomes

H ¼ PiPi

2m
þ eϕ: ð28Þ

This substitution preserves the equations of motion under a
gauge transformation. Furthermore, when it is considered
in the quantum description, the state covariantly transforms
under a gauge transformation, acquiring a phase in the
exact same way it does in the standard theory. Notice that
this is possible only when the operator p⃗0 is coupled with
the vector potential A⃗ as described above. Any other
prescription fails in covariantly transforming a physical
state under a gauge transformation. Similar results have
also been found in Ref. [22].
It is interesting to note that, using the Hamiltonian above,

the time derivative of p⃗0 is identical to what one would find
in the standard theory

_p0;i ¼ e
∂Aj

∂qi _qj − e
∂ϕ
∂qi ¼ e

�
ð _q⃗ × B⃗Þi þ

dAi

dt
þ Ei

�
; ð29Þ

in agreement with the statements above, where we intro-
duced the magnetic and electric fields

Bi ¼ ϵijk
∂Ak

∂qj ;

Ei ¼ −
∂Ai

∂t −
∂ϕ
∂qi : ð30Þ

Modifications due to GUP appear when the acceleration of
a particle in an electromagnetic field is computed. In fact,
we find

mq̈i ¼ e½ð _q⃗ × B⃗Þi þ Ei�
�
δij − 3γδm

ffiffiffiffiffiffiffiffiffi
_qk _qk

p �
δij þ

_qi _qj
_qk _qk

�

þ γ2ð4ϵ − 3δ2Þm2 _qk _qk

�
δij þ

_qi _qj
_qk _qk

��
: ð31Þ
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Notice that for the parameters δ, ϵ → 0we recover the usual
Lorentz force.
Thus, the scheme that we developed in this paper con-

sistently describes both the Lagrangian and Hamiltonian
with interactions in classical mechanics.

IV. DIFFERENT CHOICE OF
CANONICAL VARIABLES

These arguments show that we need to consider the set of
variables formed by q⃗ and p⃗0 as canonical variables in the
Hamiltonian formalism rather than the set formed by q⃗ and
p⃗. The physical momentum p⃗ can then be defined as a
function of p⃗0. Analogously, one can define a new quantity,

q⃗0, as a function of q⃗ and p⃗0, that will have the role of a
position to which the momentum p⃗ is the conjugate
momentum. To find the actual form of q0i, consider the
following generating function (see the Appendix):

Fðp⃗0; q⃗0Þ ¼ −q0ip0;i½1− γδ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0;kp0;k

p þ γ2ðϵþ δ2Þp0;kp0;k�:
ð32Þ

We then find [21]

pi ¼ −
∂F
∂q0i ¼ p0;i½1 − γδ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0;kp0;k

p þ γ2ðϵþ δ2Þp0;kp0;k�;

ð33aÞ

qi ¼ −
∂F
∂p0;i

¼ q0j

�
δij − γδ

ffiffiffiffiffiffiffiffiffiffi
pkpk

p �
δij þ

pipj

pkpk

�

þ γ2pkpk

�
ϵδij þ ð2ϵþ δ2Þ pipj

pkpk

��
;

ð33bÞ

q0i ¼ qj

�
δij þ γδ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0;kp0;k

p �
δij þ

p0;ip0;j

p0;kp0;k

�

− γ2p0;kp0;k

�
ϵδij þ ð2ϵ − δ2Þ p0;jp0;i

p0;kp0;k

��
: ð33cÞ

This transformation is a canonical transformation, and
since F does not depend on time, the Hamiltonian in the
new set of variables is the same as the Hamiltonian in the
old set. Furthermore, notice that

fq0i; pjgq;p0
¼ δij; ð34Þ

where we indicate by a subscript the variables with respect
to which the Poisson brackets are defined. On the other
hand, since the above transformation is canonical, the
Poisson brackets are invariant

fA; Bgq0;p ¼ ∂A
∂q0i

∂B
∂pi

−
∂B
∂q0i

∂A
∂pi

¼ fA;Bgq;p0
; ð35Þ

as can also be directly shown. Therefore, we also have

fq0i; pjgq0;p ¼ δij: ð36Þ
It is then obvious that the equations of motion can be easily
written choosing the appropriate set of coordinates. In
particular, we see that

_qi ¼
∂H
∂p0;i

¼ fqi; Hgq;p0
;

_pi ¼ −
∂H
∂q0i ¼ fpi;Hgq0;p: ð37Þ

In other words, what we called the physical position and
momentum, q⃗ and p⃗, respectively, belong to two distinct
canonical sets of phase-space variables, connected through
a canonical transformation generated by the function F in
Eq. (32). This feature is common in realizations of GUP,
allowing also a direct connection to doubly special rela-
tivity theories [23].
As a consequence, this new set of variables are relevant

since now the free Hamiltonian (3) is written directly in
terms of canonical variables. On the other hand, when we
apply a Legendre transformation, we easily obtain a
Lagrangian in terms of q⃗0 in the usual form for a free system

L ¼ 1

2
m _q0i _q0i: ð38Þ

Since p⃗ is the momentum conjugate to q⃗0, for a free system
we find

pi ¼ m _q0i; ð39Þ
which, using the relations in Eq. (33), reduce to Eq. (4a).
Finally, it is worth noticing that, in quantum mechanics,

the relation (33b) gives the correct form of the position
operator in momentum space described in Ref. [10].

More generically, promoting q⃗0 and p⃗ to operators, with
½q0i; pj� ¼ iℏ, as suggested by Eq. (34), the relation (33b)
furnishes the appropriate representation of the position
operator in momentum space when the model in Eq. (1) is
considered. Furthermore, it is then possible to construct the
formal eigenfunctions for the position operator. For exam-
ple, in one dimension we can easily find

ψλðpÞ¼
ffiffiffiffiffiffiffiffiffiffiffi
γ

ffiffiffiffiffi
3ϵ

p

π

s
exp

�
−i

λ

ℏγ
ffiffiffiffiffi
3ϵ

p arctan

�
γð3ϵþδ2Þp−δffiffiffiffiffi

3ϵ
p

��
:

ð40Þ

Note that this wave function resembles the one in Ref. [10]
for δ ¼ 0 and ϵ ¼ 1=3.
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V. EXAMPLES

In this section, we will illustrate two examples, showing
how the results of this paper, and in particular the definition
of the new set of canonical variables, allow us to solve
problems in classical mechanics with a minimal length.

A. The harmonic oscillator

A typical example that is usually worked out as an
application of similar analyses is the one concerning a one-
dimensional harmonic oscillator. Following this tradition,
consider the customary Hamiltonian

H ¼ p2

2m
þ 1

2
mω2q2: ð41Þ

In terms of the pair of variables q and p0, we have

H ¼ p2
0

2m
½1 − 2γδp0 þ γ2ð2ϵþ 3δ2Þp2

0� þ
1

2
mω2q2: ð42Þ

Using Eq. (37), we easily obtain

_q ¼ p
m
½1 − 2γδpþ γ2ð3ϵþ δ2Þp2�;

_p ¼ −mω2q½1 − 2γδpþ γ2ð3ϵþ δ2Þp2�: ð43Þ
Combining these two equations together, we find

q̈ ¼ −ω2q½1 − 6γδpþ 12γ2ð3ϵþ δ2Þp2�: ð44Þ
As for the other two canonical variables, we find

_p0 ¼ −mω2q;

_q0 ¼ p
m
− 2mω2q02½γδ − 3γ2ðϵþ δ2Þp�: ð45Þ

We now want to solve this problem using the Hamilton-
Jacobi method, that is, by introducing a generating function
for a canonical transformation Sðp0; α; tÞ such that the new
Hamiltonian vanishes identically [21]. Here, α is, by
definition, a constant of motion. The position q is related
to S via

q ¼ −
∂S
∂p0

: ð46Þ

Substituting it into Eq. (42), we have the following partial
differential equation:

p2

2m
þ 1

2
mω2

� ∂S
∂p0

�
2

¼ −
∂S
∂t ; ð47Þ

where we used p instead of p0 to have a more compact
notation. However note that, since we are considering a
description in terms of q and p0, the quantity p has to be
considered as a function of p0. We now consider the
following ansatz for Hamilton’s principal functions:

Sðp0; α; tÞ ¼ Wðp0; αÞ − αt: ð48Þ

This is motivated by the fact that only the rhs of the
previous differential equation acts on the explicit time
dependence of S. We then find as a solution up to second
order in γ

Sðp0;α; tÞ ¼ ∓ 1

mω

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2αm−p2

q �
p
2
−
2

3
γδð2αm−p2Þ

þ 3

4
γ2ðϵ− δ2Þpðαm−p2Þ

�

þ αm arcsin

�
pffiffiffiffiffiffiffiffiffi
2αm

p
��

1−
3

2
ðϵ− δ2Þγ2αm

��
− αt: ð49Þ

Imposing the boundary conditions

qðt ¼ 0Þ ¼ 0;

p0ðt ¼ 0Þ ¼ p0;0 ⇔ pðt ¼ 0Þ ¼ p;0; ð50Þ
one obtains

α ¼ p2
;0

2m
; ð51Þ

that is, α corresponds to the initial energy. We then find

q ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
;0 − p2

q
mω

¼ � p;0

mω

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
;

where x ¼ p
p;0

: ð52Þ

As for the variable conjugate to α, we have

β ¼ tþ arcsinðxÞ
ω

−
2

ω
γδp;0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
γ

−
3

2ω
ðϵ − δ2Þp2

;0ðarcsin x − x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
Þγ2: ð53Þ

This is a constant of motion by definition as well, and can
be used to find the time dependence of p. From the
boundary conditions, we find

β ¼ π

4ω
½2 − 3ðϵ − δ2Þp2

;0γ
2�: ð54Þ

Using this expression and inverting Eq. (53), we obtain to
second order in γ

p ¼ p;0

�
cosðωtÞ þ 2γδp;0sin2ðωtÞ −

3

2
γ2f2δ2 sinð2ωtÞ

þ ðϵ − δ2Þ½sinð2ωtÞ þ ωt�gp2
;0 sinðωtÞ

�
: ð55Þ

It is interesting to observe that this last equation has a term
proportional to t, and therefore x is unbounded, while from
Eq. (53) x is constrained between −1 and 1. This is due to
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the fact that the last equation is a product of an expansion
in γ, and therefore cannot be considered reliable for large
momenta compared to the Planck momentum and/or for
large time intervals compared to the oscillation period. For
small momenta and/or for small time intervals, in fact, the
contribution of the term proportional to t is negligible. It is
also worth observing that in the linear and quadratic
models, such that δ ¼ ϵ ¼ 1, the same term does not
appear. Finally, for the position we find

q¼ p;0

mω
fsinðωtÞ− γδp;0 sinð2ωtÞþ γ2½3ðϵ− δ2ÞωtcosðωtÞ

þ 3ðϵþ δ2ÞcosðωtÞ sinð2ωtÞ− 4δ2 sinðωtÞ�p2
;0g: ð56Þ

It is interesting to notice that, by either numerically
integrating Eq. (43) or considering Eqs. (55) and (56) for
small values of p;0, one obtains the usual phase-space orbit
for a harmonic oscillator, as shown in Fig. 1(c). In this
picture, a particle of mass m ¼ 1 kg, oscillating with an
angular frequency of ω ¼ 1 Hz and an initial momentum of
p;0 ¼ 10 Ns is considered. Although for these values we
have p;0γ ¼ 1.67, which is a momentum for the point mass
comparable with the Planck momentum, no evidence of
Planck effects appear in the phase-space diagram.

B. Kepler’s problem

Another interesting problem that can be described using
the formalism in this paper is Kepler’s problem. Consider a
two-body system, described by a total mass M, a reduced
mass m, a relative position q⃗, and a relative momentum p⃗.
Since the potential does not depend on the velocities of the
particles, to derive the Hamiltonian from the Lagrangian,
we simply need the functional relation between velocities
and momenta. To find this relation, we can focus on the
kinetic part of the Lagrangian, given in Eq. (10). In
spherical coordinates, we then find

p0;r¼m_rA; p0;θ¼mr2 _θA; p0;ϕ¼mr2sin2θ _ϕA; ð57Þ

where r, θ, ϕ are the radius, the colatitude and longitude
angles, respectively, while

A ¼ ∂L
∂ð _qi _qiÞ ¼ 1þ 3γδm

ffiffiffiffiffiffiffiffi
_qi _qi

p
− 4γ2ðϵ − 3δ2Þm2 _qi _qi;

ð58Þ
where the Lagrangian has the following form:

L¼1

2
m _qi _qi½1þ2γδm

ffiffiffiffiffiffiffiffi
_qi _qi

p
−2γ2ðϵ−3δ2Þm2 _qi _qi�þ

GMm
r

:

ð59Þ
The Lagrangian does not depend on ϕ, and therefore the
conjugate momentum p0;ϕ must be a constant of motion.
We also see that

_qi _qi ¼
1

m2A2

�
p2
0;r þ

p2
0;θ

r2
þ p2

0;ϕ

r2sin2θ

�
: ð60Þ

From this relation, we can find _qi _qi as a function of the
momenta only. In fact, up to second order in γ, we have

_qi _qi ¼
1

m2
Π2½1 − 6γδΠþ γ2ð21δ2 þ 8ϵÞΠ2�; ð61Þ

where

Π2 ¼ p2
0;r þ

ΠΩ
2

r2
; with ΠΩ

2 ¼ p2
0;θ þ

p2
0;ϕ

sin2θ
: ð62Þ

As a consequence, A can be written as

A ¼ 1þ 3γδΠ − γ2ð4ϵ − 3δ2ÞΠ2: ð63Þ
The Hamiltonian of this system is

H ¼ Π2

2m
½1 − 2γδΠþ γ2ð2ϵþ 3δ2ÞΠ2� −GMm

r
: ð64Þ

From Hamilton’s equations, we find

_p0;θ ¼
p2
0;ϕ

msin3θ
½1 − 3γδΠþ 2γ2ð3δ2 þ 2ϵÞΠ2� cos θ: ð65Þ

The momentum p0;θ can then be made a constant of motion
by considering the boundary conditions θðt ¼ 0Þ ¼ π=2
and p0;θðt ¼ 0Þ ¼ 0. As for the radial motion, we have

_r ¼ p0;r

m
½1 − 3γδΠþ 2γ2ð3δ2 þ 2ϵÞΠ2�;

_p0;r ¼
p2
0;ϕ

mr3
½1 − 3γδΠþ 2γ2ð3δ2 þ 2ϵÞΠ2� −GMm

r2
: ð66Þ

It is interesting to observe that, potentially, _r can be reduced
to zero without a vanishing p0;r. On the other hand, one
should notice that such a case corresponds to Π ∼ 1=γ,
that is a momentum of the order of the Planck momentum.
This scale is outside the range of validity of the current
phenomenological model, for in this range higher-order
contributions have to be taken into account.
For a circular orbit, we have _r ¼ 0 and p0;r ¼ 0. Writing

the second equation in Eq. (66) with these conditions, we
find

r2 _ϕ2½1þ 3γδmr _ϕ − 4γ2ðϵ − 3δ2Þm2r2 _ϕ2� ¼ GM
r

: ð67Þ

In general, this equation will have two real roots and two
complex-conjugate roots for the tangential velocity r _ϕ,
which are

ðr _ϕÞ1¼−
ffiffiffiffiffiffiffiffi
GM

p ffiffiffi
r

p
�
1þ3

ffiffiffiffiffiffiffiffi
GM

p
mδγ

2
ffiffiffi
r

p −
GMm2ð3δ2−16ϵÞγ2

8r

�
;

ð68aÞ
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FIG. 1. (a) Time dependence of position (left) and momentum (right) for a quadratic GUP model (δ ¼ 0, ϵ ¼ 1=3) [10] as obtained
from Eq. (43). They describe the motion of a particle of massm ¼ 1 kg, oscillating with an angular frequency of ω ¼ 1 Hz and an initial
momentum of p;0 ¼ 10 Ns. The vertical axes represent the position and momentum in units of p;0=mω and p;0, respectively. Two
aspects are noteworthy: the two functions are no longer sinusoidal, and the period of the oscillation is reduced, becoming less than
T ¼ 2π=ω. (b) Time dependence of position (left) and momentum (right) for a linear and quadratic GUP model (δ ¼ 1, ϵ ¼ 1) [11] as
obtained from Eq. (43). The same parameters and axes of the previous pictures are used. Also in this case, the shape of the functions is
changed and the period is reduced. (c) Phase-space orbit of a harmonic oscillator with GUP. The x and y axes represent the position and
momentum in units of p;0=mω and p;0, respectively. Both quadratic and linear þ quadratic models give the same figure, independently
of the property of the particle.
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ðr _ϕÞ2 ¼
ffiffiffiffiffiffiffiffi
GM

p ffiffiffi
r

p
�
1 −

3
ffiffiffiffiffiffiffiffi
GM

p
mδγ

2
ffiffiffi
r

p −
GMm2ð3δ2 − 16ϵÞγ2

8r

�
;

ð68bÞ

ðr _ϕÞ3 ¼
3δþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16ϵ − 39δ2

p

8mðϵ − 3δ2Þγ þ γ
GMm
r

×
3ð16ϵ − 39δ2Þδ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16ϵ − 39δ2

p
ð8ϵ − 15δ2Þ

2ð16ϵ − 39δ2Þ ;

ð68cÞ

ðr _ϕÞ4 ¼
3δ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16ϵ − 39δ2

p

8mðϵ − 3δ2Þγ þ γ
GMm
r

×
3ð16ϵ − 39δ2Þδþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16ϵ − 39δ2

p
ð8ϵ − 15δ2Þ

2ð16ϵ − 39δ2Þ :

ð68dÞ

The dependence on r of the relations in Eq. (68) is shown
in Fig. 2 for a body of 1 Earth mass. We see that all the
solutions differ from observed velocities on the Solar
System scale by many orders of magnitude. Notice, though,
that we assumed γ ¼ 1=ðMPlcÞ ≃ 0.15ðNsÞ−1. On the other
hand, regarding γ as a free parameter, comparing our results
with observed velocities, and considering only real and
positive solutions, a parameter roughly 30 orders of
magnitude smaller than the one assumed here should be
considered, corresponding therefore to a minimal length 30
orders of magnitude smaller than the Planck length.
Furthermore, the last two solutions are real only for models
such that jδj < 4

ffiffiffiffi
ϵ
39

p
, excluding the case ϵ ¼ 3δ2. These

solutions correspond to finite velocities even for r → ∞,
while for finite radii they decay faster than the Keplerian
velocity for increasing distance from the source of the field.
Notice that in the standard limit, i.e., δ, ϵ → 0, these
solutions diverge. In other words, in this limit these two
solutions are associated with diverging velocities. This is
obviously not acceptable, especially considering the role of
the speed of light as a limiting velocity.

We then see that these results pose serious questions
concerning models with a minimal length in classical
systems. A possible solution is in the actual value of the
parameter γ, as we saw above. On the other hand, when this
phenomenological problem is considered from the point of
view of fundamental constituents, the Planck scale effects are
enormously reducedwith no change in thevalue of γ, because
of the so-called soccer ball problem [24]. Furthermore, a
better analysis has to be looked for in the relativistic
description ofKepler’s problem.As for the particular problem
of the two last solutions in Eq. (68), it is worth recalling that
they are the result of approximated relations expanded in
series of the parameter γ. Therefore, more accurate theories
may justify or eliminate the corresponding problems. We
postpone further analysis on them to future studies.
To derive the equation of motions for the physical

momenta, it is convenient to change variables and to
describe the Hamiltonian in terms of q⃗0 and p⃗. In this
case, the Hamiltonian reads

H ¼ pipi

2m
−

GMm

rðq⃗0; p⃗Þ
; ð69Þ

where we explicitly represent r as a function of q⃗0 and p⃗. In
particular, we find

r2 ¼ q0jq
0
k

�
δjk − 2γδ

ffiffiffiffiffiffiffiffiffi
plpl

p �
δjk þ

pjpk

plpl

�

þ γ2plpl

�
ð2ϵþ δ2Þδjk þ ð4ϵþ 5δ2Þpjpk

plpl

��
: ð70Þ

Since we have

q0jq
0
kδjk ¼ r02; q0jpj ¼ r0pr; ð71Þ

we can rewrite Eq. (70) in spherical coordinates as

r ¼ r0
�
1 −

γδ

Π0

�
2p2

r þ
Π0

Ω
2

r02

�
þ γ2

�
ϵ

�
3p2

r þ
Π0

Ω
2

r02

�

þ δ2
�
−p2

r þ
5

2

Π0
Ω
2

r02
−

Π0
Ω
4

r04Π02

���
; ð72Þ

where

Π02 ¼ pipi ¼ p2
r þ

Π0
Ω
2

r02
; with Π0

Ω
2 ¼ p2

θ þ
p2
ϕ

sin2θ0
:

ð73Þ
We therefore see that the potential term in Eq. (69)

depends on r0 and pr. On the other hand, the Hamiltonian
does not depend on ϕ0. Thus, the conjugate momentum, pϕ,
which is the physical angular momentum for rotations
about the z axis, is a constant of motion. We also get

_ϕ0 ¼ pϕ

mr02sin2θ0
: ð74Þ

FIG. 2. Tangential velocity for circular orbits according to
Eq. (68) and to Kepler’s law. For this plot, we considered a body
of 1 Earth mass moving about another body of 1 solar mass.
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As for the colatitude angle, we have

_θ0 ¼ pθ

mr02
; _pθ ¼

p2
ϕ

mr02
cot θ0

sin2θ0
: ð75Þ

We therefore see that, if we impose the initial conditions
θ0ðt ¼ 0Þ ¼ π=2 and pθðt ¼ 0Þ ¼ 0, then pθ is a constant
of motion. It is worth noting that this condition is
compatible with the previous one about θ and p0;θ. In
other words, if p0;θ is a constant of motion, pθ is a constant
of motion as well. Finally, for the radial equations of
motion, we find

_r0 ¼ pr

m
− γ

GMm

r2ðq⃗0; p⃗Þ
prr0

�
δ

Π0

�
2þ Π0

Ω
2

Π02r02

�

− 2γ

�
3ϵ − δ2

p2
r

Π02

�
1þ Π0

Ω
2

Π02r2

���
; ð76aÞ

_pr ¼
Π0

Ω
2

mr03
−

GMm

r2ðq⃗0; p⃗Þ

�
1 − γδ

p2
r

Π03 ð2p2
r þ 3Π0

Ω
2Þ

þ γ2
�
ϵð3p2

r − Π0
Ω
2Þ − δ2

2

�
2p6

r

Π04 þ 3Π0
Ω
2

���
: ð76bÞ

Hence, we see that both the centripetal and the gravita-
tional forces are changed by GUP, since now they depend on
the momentum p⃗, and in particular on its angular part Π0

Ω.
Furthermore, for the specific case of a quadratic model, the
radial momentum increases the gravitational force, while the
angular part reduces it. On the other hand, for a linear and
quadratic model, for momenta much larger than the Planck
momentum, we have a similar behavior as in the previous
case, while for much lower momenta both the radial and the
angular momenta reduce the gravitational force.
For a radial fall, we need to impose Π0

Ω ¼ 0. This
results in

_r0 ¼ pr

m
− 2γ

GMm
r2

r0½δ − γð3ϵ − δ2Þpr�;

_pr ¼ −
GMm
r2

½1 − 2γδpr þ γ2ð3ϵ − δ2Þp2
r �: ð77Þ

This case isolates the gravitational force from the centrip-
etal one. Also in this case, the role of the radial momentum
in the rate of change of itself is evident.

VI. CONCLUSIONS

GUP is a phenomenological model whose purpose is to
account for the existence of a minimal length. Past works
have studied the influence of this feature, derived from
quantum gravity theories, on quantum and classical sys-
tems. While studies on quantum and classical effects of a
minimal length have been independently pursued, finding
interesting and relevant results in both frameworks, little
attention has been paid to the consistency of the respective

methods, rooted in Hamiltonian and Lagrangian mechan-
ics, respectively. In this paper we fill this gap. In particular,
we derived the necessary form of the Legendre trans-
formation to connect Hamiltonian and Lagrangian func-
tions with a minimal length. Furthermore, we analyzed how
potentials are transformed from one formalism to the other,
with particular attention to the minimal coupling. We then
defines a canonical transformation to a new set of variables,
in which the physical momentum p⃗ appears as canonical
momentum. Finally, we considered the results of the paper
in two illustrative examples, namely the harmonic oscillator
and Kepler’s problem.
Notice that, differently from Ref. [12], we did not

assume any particular form of the Poisson brackets of
position and momentum. Rather, we started from the
relation (2) between the physical and nonphysical
momenta, p⃗ and p⃗0 respectively. Subsequently, we showed
that the Poisson brackets fqi; pjg resemble the quantum
GUP commutator (1), as it is commonly assumed.
This analysis ultimately resolved the problems concern-

ing the choice of the formalism, making the Hamiltonian
and Lagrangian approaches equivalent, and setting the
stage for the study of the structure of phase space with a
minimal length, which is necessary for quantum field
theory. Nonetheless, further study is required, in particular
to extend the current results to the relativistic case. We hope
to address these aspects in future publications.
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APPENDIX: GENERATING FUNCTION Fð p⃗0;q⃗0Þ
Consider an arbitrary functionFðp⃗0; q⃗0Þ that generates the

transformation between the sets fq⃗; p⃗0g and fq⃗0; p⃗g [21],
that is

pi ¼ −
∂F
∂q0i ; qi ¼ −

∂F
∂p0;i

: ðA1Þ

The first of these equations is given by Eq. (2). From that

expression, it is obvious that p⃗i cannot depend on q⃗0.
Therefore, the function F is given in general by

Fðp⃗0; q⃗0Þ ¼ −q0ip0;i½1 − γδ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0;kp0;k

p þ γ2ðϵþ δ2Þp0;kp0;k�
þ Kðp⃗0; tÞ; ðA2Þ

whereK is an arbitrary function of p⃗0 and the time t.We then
find

pi ¼ p0;i½1 − γδ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0;kp0;k

p þ γ2ðϵþ δ2Þp0;kp0;k�; ðA3aÞ
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qi ¼ q0j

�
δij − γδ

ffiffiffiffiffiffiffiffiffiffi
pkpk

p �
δij þ

pipj

pkpk

�
þ γ2pkpk

�
ϵδij þ ð2ϵþ δ2Þ pipj

pkpk

��
−

∂K
∂p0;i

: ðA3bÞ

Inverting this last equation, we find

q0i ¼
�
qj þ

∂K
∂p0;j

��
δij þ γδ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0;kp0;k

p �
δij þ

p0;ip0;j

p0;kp0;k

�
− γ2p0;kp0;k

�
ϵδij þ ð2ϵ − δ2Þ p0;jp0;i

p0;kp0;k

��
: ðA4Þ

Since the function F may depend on time through the function K, the Hamiltonian in the new coordinates is
H0 ¼ H þ ∂F

∂t . Imposing that the function F generates a canonical transformation, is equivalent to demanding that

_q0i ¼
∂H0

∂pi
¼ ∂H

∂qj
∂qj
∂pi

þ ∂H
∂p0;j

∂p0;j

∂pi
þ ∂2K
∂p0;j∂t

∂p0;j

∂pi
; _pi ¼ −

∂H
∂q0i ¼ −

∂H
∂qj

∂qj
∂q0i : ðA5Þ

We then find for the time derivatives

_q0i ¼
�
_qj þ

∂2K
∂p0;j∂t

��
δij þ γδ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0;kp0;k

p �
δij þ

p0;ip0;j

p0;kp0;k

�
− γ2p0;kp0;k

�
ϵδij þ ð2ϵ − δ2Þ p0;jp0;i

p0;kp0;k

��

þ
�
qj þ

∂K
∂p0;j

�
_p0;m

�
γδffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p0;kp0;k
p

�
p0;mδij þ p0;iδjm þ p0;jδmi − p0;m

p0;ip0;j

p0;kp0;k

�

−γ2½2ϵðp0;mδij þ p0;iδjm þ p0;jδmiÞ − δ2ðp0;iδjm þ p0;jδmiÞ�
�
; ðA6aÞ

_pi ¼ _p0;j

�
δij − γδ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0;kp0;k

p �
δij þ

p0;ip0;j

p0;kp0;k

�
þ γ2ðϵþ δ2Þp0;kp0;k

�
δij þ 2

p0;ip0;j

p0;kp0;k

��
: ðA6bÞ

We will also need the following relations:

∂p0;j

∂pi
¼ δij þ γδ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0;kp0;k

p �
δij þ

p0;ip0;j

p0;kp0;k

�
− γ2p0;kp0;k

�
ϵδij þ ð2ϵ − δ2Þ p0;ip0;j

p0;kp0;k

�
; ðA7aÞ

∂qj
∂pi

−
∂2K

∂p0;j∂p0;k

∂p0;k

∂pi
ðA7bÞ

¼ q0l

�
−

γδffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0;kp0;k

p
�
p0;iδjl þ p0;jδli þ p0;lδij −

p0;ip0;jp0;l

p0;kp0;k

�
þ γ2½2ϵðp0;iδjl þ p0;jδli þ p0;lδijÞ þ δ2ðp0;jδli þ p0;lδijÞ�

�

−
∂2K

∂p0;j∂p0;l

�
δil þ γδ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0;kp0;k

p �
δil þ

p0;ip0;l

p0;kp0;k

�
− γ2p0;kp0;k

�
ϵδil þ ð2ϵ − δ2Þ p0;ip0;l

p0;kp0;k

��
ðA7cÞ

¼ ql

�
−

γδffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0;kp0;k

p
�
p0;iδjl þ p0;jδli þ p0;lδij −

p0;ip0;jp0;l

p0;kp0;k

�
þ γ2½2ϵðp0;iδjl þ p0;jδli þ p0;lδijÞ − δ2ðp0;iδjl þ p0;lδjiÞ�

�

−
∂2K

∂p0;j∂p0;l

�
δil þ γδ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0;kp0;k

p �
δil þ

p0;ip0;l

p0;kp0;k

�
− γ2p0;kp0;k

�
ϵδil þ ð2ϵ − δ2Þ p0;ip0;l

p0;kp0;k

��
; ðA7dÞ

∂qj
∂q0i ¼ δij − γδ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0;kp0;k

p �
δij þ

p0;ip0;j

p0;kp0;k

�
þ γ2ðϵþ δ2Þp0;kp0;k

�
δij þ 2

p0;ip0;j

p0;kp0;k

�
: ðA7eÞ

Imposing the relations in Eq. (A5), we then find that K depends only on time. Notice that, since the function KðtÞ
depends only on time, it has no influence on the equations of motion. We can therefore safely set K ¼ 0, obtaining the
generating function in Eq. (32).
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