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We present a covariant Euclidean wormhole solution to Einstein Yang-Mills system and study scalar
perturbations analytically. The fluctuation operator has a positive definite spectrum. We compute the
Euclidean Green’s function, which displays maximal antipodal correlation on the smallest three sphere at
the center of the throat. Upon analytic continuation, it corresponds to the Feynman propagator on a compact
bang-crunch universe. We present the connection matrix that relates past and future modes. We thoroughly
discuss the physical implications of the antipodal map in both the Euclidean and Lorentzian geometries and
give arguments on how to assign a physical probability to such solutions.
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I. INTRODUCTION

Euclidean wormholes [1–3] are extrema of the Euclidean
action whose interpretation is still partially shrouded in
mystery. Originally they were proposed as a resolution to
the cosmological constant problem [4], and as objects that
lead to a loss of quantum coherence causing an inherent
uncertainty in the fundamental constants of nature [2,5,6].
An alternative interpretation was given in [7] within the
context of the Wheeler-de Witt equation. Besides several
problems specific to these proposals, a basic general
question that remains unanswered is whether such solutions
are stable (and thus minima of the Euclidean action), or if
they should alternatively be thought of as bounces (or
maxima) that might nevertheless contribute to the path
integral in some nonperturbative fashion akin to [8].
On a parallel note, defining quantum gravitational

observables in closed universes is an acute problem [9]

whose few proposed resolutions suffer from closed time-
like curves and other intricacies [10].
Inspired by these questions, we study a Euclidean meron

wormhole [11] in light of the antipodal Z2 mapping
proposed by ’t Hooft. We find a positive definite spectrum
for scalar perturbations, whose Euclidean Green’s function
exhibits large antipodal correlation localized near the
smallest sphere at the center of the throat after performing
the antipodal map. The analytic continuation of this
solution results in a finite bang-crunch geometry [12],
with temporal and spatial boundaries, opening up a
possible handle on the problem of observables.

II. THE MERON WORMHOLE

Consider the Euclidean Einstein-Yang Mills system:

S ¼
Z

d4x
ffiffiffi
g

p �
−

1

16πGN
Rþ 1

4
ðFa

μνÞ2
�

in units ℏ ¼ c ¼ 1, where R is the Ricci scalar and Fa
μν, the

field strength for the SUð2Þ (possibly embedded in SUðNÞ)
gauge field Aa

μ. The field strength is defined as Fa
μν ≔

∂μAa
ν − ∂νAa

μ þ gYMϵabcAb
μAc

ν. In addition to the Yang-
Mills equations of motion DμFa

μν ¼ 0 and the correspond-
ing Bianchi identities, the Einstein equations of motion are
given by
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Rμν −
1

2
gμνR ¼ 8πGNTμν

where Rμν ¼ Rλ
μλν and Tμν ¼ Fa

μρFa
ν
ρ − 1

4
gμνðFa

μνÞ2. The
meron configuration Aa

μ ¼ ηaμνxνg−1YMx
−2 yields the field

strength

Fa
μν ¼

1

gYM

�
ηaμν

f1
x2

þ ðxμηaργxγ − xρηaμγxγÞ
f2
x2

�
;

with f1 ¼ f2 ¼ −1. Here, ηaμν are the ’t Hooft Eta symbols
[13]—whose conventions we follow—that mix the gen-
erators of space-time SOð4Þ with those of the SUð2Þ gauge
symmetry. The summation over all lower indices is carried
out by the flat metric δμν; however, owing to the conformal
nature of the Yang-Mills equations, this is a solution in any
conformally flat background. The meron configuration was
one of the first proposed mechanisms for confinement
[14,15]. This meron-pair solution has a unit topological
instanton charge split equally between the two points at
x ¼ 0 and x ¼ ∞; the pair may be brought closer together
with a conformal transformation [16]. Unlike the Belavin-
Polyakov-Schwartz-Typkin (BPST) instanton [13,17,18],
this solution is not self-dual. The meron’s magnetic field
lines provide the required locally-negative energy density
to support a wormhole throat and source the right hand side
of the Einstein equations which are solved by the metric

ds2 ¼
�
1þ r21

x

�
2

δμνdxμdxν r21 ¼ πGNg−2YM;

ds2 ¼ dr2 þ ðr2 þ 4r21ÞdΩ2
3 ð1Þ

with x ¼ ffiffiffiffiffiffiffiffiffi
xμxμ

p
≥ 0 and r ¼ x − r21x

−1. This transforma-
tion maps the regions x ≶ r1 to the two sides of the
wormhole r ≶ 0 and the smallest sphere to x ¼ r1.
The geometry is that of a two-sided Euclidean space (with
the two asymptotic regions at r ¼ �∞) connected by a
wormhole throat of smallest size 2r1; it has the curious
property that the regime of its semiclassical validity
coincides with the perturbative regime of the YM theory.
The metric admits a natural analytic continuation r ¼ it
into a big bang-big crunch universe, with singularities at
r ¼ �2r1 [12]. It is an open problem to find general
multimeron solutions specified by functions f1ðx2Þ
and f2ðx2Þ, constrained by both Einstein and Yang-Mills
equations.
Let us mention here that the Euclidean action is

logarithmically divergent. This is easy to see since the
Ricci scalar vanishes (R ¼ 0) and, from the Yang-Mills
Lagrangian, one finds the usual log-divergence of the
meron configuration ∼ logðL=aÞ where L is the system
size (IR-cutoff) and a is a UV-cutoff [19]. This problem has
been discussed in the past, for example in [11] and later in
[20]. The UV problem is evaded by the finite size of the

throat. The IR divergence can be evaded by considering
similar solutions in the presence of a small cosmological
constant that provides a natural regulator for such IR
divergences. This is one possible and known way of
making sense of similar configurations; however, a
satisfactory solution for asymptotically flat space-times
is not known. Inspired by the work of Kosterlitz and
Thouless [21] (whose relevance to merons is sketched in
[19]), we propose that the seemingly infinite classical
action must be compared with the entropy of such
configurations. A known issue with the pure meron back-
ground [19] is that one needs to regulate the meron core
with an ad-hoc procedure which results in a violation of the
equations of motion for the regulated configurations. This
UV problem is evaded by the meron wormhole owing to its
finite-sized throat, a fact that will become even more
transparent in our novel interpretation—using an antipodal
identification—of the wormholes as holes of nothing.

A. Symmetries of the background

Flat space has ten killing vectors (KVs) and five
conformal KVs (CKVs). Since the wormhole is confor-
mally flat, its symmetries may be found by studying if the
former remain KVs and if any of the latter get promoted to
KVs. It may be checked that while rotations remain killing
vectors of the wormhole background, translations become
CKVs. Additionally, none of the five CKVs (dilatation and
special conformal transformations) of flat space are pro-
moted to KVs. Finally, the wormhole background pos-
sesses a discrete inversion symmetry under xμ → r21x

μx−2.
In the r coordinates, it reads r → −r. This is an antipodal
mapping when appended with appropriate maps on the
three-sphere, similar to the one considered in [22,23] in the
context of ’t Hooft’s black hole S-Matrix.

III. SCALAR PERTURBATIONS

The action governing the fluctuations of a charged scalar
field in this background, is given by Sð2Þϕ ¼ R d4x ffiffiffi

g
p

Lð2Þ
ϕ ≡R

d4x
ffiffiffi
g

p
ϕ⋆Mϕϕ with

Lð2Þ
ϕ ¼ ½jDμϕj2 þ ðm2 þ ζRÞjϕj2�;

where Dμϕ ≕ ð∇μ þ igYMAμ;aÞϕ. In order to explicitly
evaluate the spectrum of the operator Mϕ, it is first useful
to define the following space-time operators, which re-
present rotations in the two invariant SU(2) subgroups of
the rotation group SO(4):

La
1 ≔ −

1

2
iηaμνxμ∂ν and La

2 ≔ −
1

2
iη̄aμνxμ∂ν

with ½La
p;Lb

q�¼iδpqϵabcLc
p and L1

2 ¼L2
2¼L2¼−ð1=8Þ×

ðxμ∂ν−xν∂μÞ2. Owing to the SUð2Þ projection of these
operators, the eigenvalues of L2 are given in terms of
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half-integers l via L2 ¼ lðlþ 1Þ. Furthermore, for scalars,
isospin rotations are generated by the operators Ta with
eigenvalues T2 ¼ tðtþ 1Þ, with an arbitrary total isospin t.
The operatorMϕ (whose vacuum counterpart we callM0)
can now be written as

Mϕ ¼ −∇2 þ x2½T2 þ 4ðT · La
1Þ�

ðx2 þ r21Þ2
þm2;

where∇2 is the Laplace-Beltrami operator of the wormhole
background. In order to calculate the spectrum (of
the vacuum and the wormhole background), it turns
out to be convenient to solve the rescaled operator
equation Vϕ;0ϕ ¼ λr−21 ϕ, with Vϕ;0 ≔ AMϕ;0A;A ¼
ðx2 þ r21Þ2=ð4r21x2Þ [13]. This corresponds to solving the
Schrödinger equation

�
∂2
xþ
�

3

2x
−

2r21
xðx2þ r21Þ

�
∂x−

J21
x2

þ16r21ðλ− r21m
2Þ

ðx2þ r21Þ2
�
ϕ¼ 0;

ð2Þ

where J1 ≔ T þ 2L1. In order to solve this equation,
we expand the field in three-sphere harmonics that
satisfy −∇2

S3Ykl̃ m̃ðΩÞ ¼ kðkþ 2ÞYkl̃ m̃ðΩÞ with ðkþ 1Þ2-
fold degeneracy since m̃ ¼ −l̃;…; l̃ and l̃ ¼ 0; 1;…; k.
Similarly, J21Ykl̃ m̃ðΩÞ ¼ j1ðj1 þ 2ÞYkl̃ m̃ðΩÞ with j1 ¼ k −
t;…; kþ t provided j1 ≥ 0. The Schrödinger equation (2)
then reduces to a one-dimensional problem whose
solutions are associated Legendre polynomials. To bring
them into canonical form, we redefine the field ϕ
as ϕ ¼ ð1 − y2Þ1=2ψ=ð2r1Þ and change variables as
y ¼ ðr21 − x2Þ=ðr21 þ x2Þ. In these coordinates, the two
boundaries x ¼ 0;∞ are at y ¼ �1 while the smallest
sphere x ¼ r1 lies at y ¼ 0. As it does on the r coordinate,
the discrete Z2 map acts as a reflection y → −y on this
coordinate. The Schrödinger equation (2) then reduces to
the canonical associated Legendre form�
ð1 − y2Þ∂2

z − 2y∂z þ
�
νðνþ 1Þ − μ2

1 − y2

��
ψ ¼ 0 ð3Þ

whose two linearly independent solutions are Pμ
νðyÞ

and Qμ
νðyÞ with ν ¼ 1

2
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16λ − 16r21m

2
p

− 1Þ and
μ ¼ j1 þ 1. Since the order μ is an integer, the normalisable
solutions (in the domain y ∈ ½−1; 1�) to this equation are
given by demanding that the degree ν also be an integer.
Therefore, for the spectrum, we find

λn;j1 − r21m
2 ¼ 1

4
ðn2 þ nÞ; n ≥ j1 þ 1:

Of immediate note is the fact that the spectrum is positive
definite and the wormhole stable under (Gaussian) scalar
perturbations. Furthermore, since the meron wormhole

breaks all the noncompact symmetries of flat space, there
are no zero modes either. The vacuum spectrum is
calculated most easily in the original r coordinates and
the vacuum regulated one-loop determinant of scalar
fluctuations detMϕ=detM0 can be calculated following
the prescription in [13]. Instead, in what follows we turn to
a calculation of the Green’s function for the scalar
perturbations.

IV. CORRELATION FUNCTION

The Euclidean Green’s function can be written in terms
of the homogeneous solutions (λ ¼ 0) to (3) and
the Wronskian determinant WðPμ

ν ; Q
μ
νÞ ¼ Pμ

νðxÞQ0μ
νðxÞ−

P0μ
νðxÞQμ

νðxÞ, with a prime indicating a derivative with
respect to the argument x. This two-point function
with homogeneous boundary conditions for the field ψ
is given by

GEðx;Ω; y;Ω0Þ ¼
X∞
k¼0

Xkþtþ1

μ¼k−tþ1

Xμ−1
l̃¼0

Xl̃
m̃¼−l̃

×

�
Θðy − xÞPμ

νðxÞQμ
νðyÞ þ x ↔ y

ð1 − y2ÞWðPμ
ν ; Q

μ
νÞðyÞ

�
× Yðμ−1Þl̃ m̃ðΩÞYðμ−1Þl̃ m̃ðΩ0Þ:

The corresponding correlator for ϕ is achieved by the
rescaling that relates the fields. First we perform the sum
over the indices l̃ and m̃ and then the sum over μ using
addition theorems [24]. The result for t ¼ 0 is

GEðx;Ω; y;Ω0Þ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x2Þð1 − y2Þ

p
4π2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p Q1
νðξÞ

where ξ ¼ xyþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x2Þð1 − y2Þ

p
cos ðδΩÞ and cos ðδΩÞ

is the angular difference, on the three-sphere, between Ω
and Ω0. A nonvanishing isospin requires an extra finite
summation that can be performed but is not presented here.
Taking the massless limit m2 → 0, we find

GE
m2¼0

ðx;Ω; y;Ω0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x2Þð1 − y2Þ

p
4π2ð1þ ξÞð1 − ξÞ : ð4Þ

As it must, the function displays maximal correlation when
ðx;ΩÞ coincides with ðy;Ω0Þ. Rather beautifully, however,
we find maximal correlation in equal measure when
ðy;Ω0Þ ¼ ð−x; Ω̄Þ is the reflected-antipodal point of
ðx;ΩÞ, allowing for a natural Z2 identification between
the two sides of the wormhole ðy;ΩÞ≡ ð−y; Ω̄Þ. This is
further corroborated by the fact that modes on either side
are related by a Unitary mapping through Legendre
function connection formulae [24]. After the identification,
the correlation between antipodal points, on the same side
of the wormhole, is a local effect near the smallest sphere.
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This may be seen from the following observation: With
x; y ≥ 0, and Ω0 ¼ Ω̄, the antipodal point of Ω, the
correlation is maximal when x ¼ y ¼ 0. That is when they
lie on the smallest sphere. As we move away from the
center of the throat into the single exterior, the correlation
on antipodal points of the three sphere diminishes, render-
ing the maximal entanglement a local effect near the
center of the throat. This is a concrete realisation of the
antipodal identification suggested in [22,23]. As in that
case, the spectrum is naturally halved owing to the
following relation between three-sphere harmonics on
antipodal points: Yj1 l̃ m̃

ðΩ̄Þ ¼ ð−1Þj1Yj1 l̃ m̃
ðΩÞ.

The x, y dependence of the massless correlator (4) can be
entirely written in terms of a cross-ratio ½ðy3−y1Þðy4−y2Þ=
ðy3−y2Þðy4−y1Þ�1=2 with y1;2;3;4 ¼ ðy; x; 1=x; 1=yÞ. This
cross-ratio is invariant under the entire projective linear
group of Möbius transformations. Moreover, the Z2 map-
ping renders the manifold nonorientable. It is curious to
note that this is reminiscent of string theory which admits
such vacua, in the presence of orientifolds, that contribute
to the path integral.
Having discussed the antipodal mapping, we now return

to the issue of the divergence of the Euclidean action.1 As
we saw above, after the said antipodal map, one is left
with flat space from which a ball of radius r1 is excised. Let
us now consider an arbitrary Euclidean spacetime region of
volume L4. This hole with a rough “core volume” of r41
could be centered at any spacetime point in this volume.
The probability of such a configuration appearing is
thus ðL=r1Þ4e−c logL=r1 , (with c ∼ 1=g2YM) containing an
“entropic” prefactor and of course, the action [25].
Therefore, when computing the free energy, this entropic
term competes against the on-shell action. For appropriate
gYM, the entropic term may dominate the classical action
signalling a phasewhere the previous wormholes (now holes
of nothing) proliferate.A transition between such a phase and
the usual phase of gravity would be analogous to the
unbinding transition of vortices in the Kosterlitz-Thouless
example [21]. Furthermore, since r21 ∼ GN=g2YM, the result
also depends on the running of the gravitational coupling
constant. Of course this argument is incomplete, and one
needs to perform a complete one loop computation of
fluctuations on such a background because it directly affects
the entropic prefactor. Since this would be an extremely
interesting phase of gravity, we intend to address such a
possibility in full detail in future work [26].

V. BIG-BANG BIG-CRUNCH UNIVERSE

The euclidean meron-wormhole metric (1) yields a
closed big-bang big-crunch universe upon analytically
continuing r → it ¼ 2ir1 tanhT:

ds2 ¼ −dt2 þ ð4r21 − t2ÞdΩ2
3; t ∈ ½−2r1; 2r1�

¼ 4r21
cosh2T

ð−dT2 þ dΩ2
3Þ; T ∈ ð−∞;∞Þ:

The end points of this closed universe represent bang and
crunch singularities. This geometry is depicted in Fig. 1.
The early universe begins to expand at t ¼ −2r1 and after
reaching maximum size at t ¼ 0, collapses into a crunch at
t ¼ 2r1. In conformal time, the geometry captures the
complete Einstein static universe.
Defining μ̃ ¼ νþ 1

2
and ν̃ ¼ μ − 1

2
, a good basis of

solutions is P�μ̃
ν̃ ðtanhTÞ. When μ̃ is real, the solutions

blow up at T → �∞ and result in an instability. For
purely imaginary μ̃ (that is, for m2 > 1=16), the
solutions oscillate in conformal time as exp ð�ijμ̃jTÞ or
exp ð∓ijμ̃jTÞ as T → �∞. Moreover, the modes are related
by complex conjugation Pþμ̃

ν̃ ðtanhTÞ ¼ ½P−μ̃
ν̃ ðtanhTÞ��.

Therefore, the scalar field can consistently be quantized
via ψðT; ΩÞ ¼ P

j1;l̃;m̃
aj1 l̃ m̃P

μ̃
j1þ1=2ðtanh TÞYj1 l̃ m̃

ðΩÞ þ
a†
j1 l̃ m̃

P−μ̃
j1þ1=2ðtanh TÞYj1 l̃ m̃

ðΩÞ, with the creation and anni-

hilation operators obeying canonical commutation rela-
tions. The vacuum is then defined by aj1 l̃ m̃j0i ¼ 0. The

expanding modes P�μ̃
ν̃ ð− tanhTÞ may be obtained from the

contracting ones P∓μ̃
ν̃ ðtanhTÞ via the connection matrix

 
α β

β� α�

!
¼

0
B@

Γðν̃þμ̃þ1Þ
Γðν̃−μ̃þ1Þ

sin πðμ̃þν̃Þ
sin ðπμ̃Þ − sin ðπν̃Þ

sin ðπμ̃Þ

−
h
sin ðπν̃Þ
sin ðπμ̃Þ

i� h
Γðν̃þμ̃þ1Þ
Γðν̃−μ̃þ1Þ

sin πðμ̃þν̃Þ
sin ðπμ̃Þ

i�
1
CA

This is a canonical matrix with unit determinant, thereby
gaining an interpretation of a Bogolyubov matrix in T
coordinates. Relative probability of particle creation in a
given mode per unit volume can now be calculated to be
jβj2jαj−2 ¼ sechðπμ̃Þ. This is similar to the corresponding
result in de-Sitter space [27].

FIG. 1. Left: The bang-crunch universe in real time with Ωi

being antipodal to Ω̄i. Right: Antipodal identification results in
half of the Einstein static universe in conformal time, with half
a three sphere (whose coordinates are collectively represented
by Ω) at the future boundary T ¼ 0. The solid line inside is null.

1A similar argument might also work for the usual interpre-
tation of meron wormholes but would be more involved.
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VI. QUANTUM OBSERVABLES AND
HOLOGRAPHY

Big-bang big-crunch universes such as this pose a
serious problem of defining consistent quantum observ-
ables in the theory. While AdS has a conformal boundary at
spatial infinity where correlators may be defined, the future
and past null infinity of flat space allow for an S-matrix to
be defined. While dS possesses a future boundary in
conformal time, the case at hand is more difficult for there
is neither a boundary in space, nor in time. Nevertheless,
there is a possible resolution to this issue arising from the
antipodal correlation between modes at either side of
zero time.
Since the antipodal mapping acts on the coordinates x, y

just as it acts on the coordinate r—as a reflection—the
Green’s function (4) may easily be analytically continued
by x → ix and y → iy. It may be checked that the maximal
antipodal correlation on either side of T ¼ 0 survives this
continuation, rendering the Z2 mapping legitimate. Upon
this identification, one obtains a big-bang universe natu-
rally possessing a future boundary in time, at t ¼ T ¼ 0;
this is a spatial section of the geometry that is an
antipodally identified three-sphere. Should a holographic
dual exist, we would expect it to have a finite Hilbert space
of states, owing to the compactness of the geometry. This
boundary could then provide for a natural habitat for
definition of observables in the quantum theory in a similar
fashion to the dS proposed dualities.
Finally, it is worth mentioning that at t ¼ 0, half of a

Euclidean meron wormhole may be glued to extend space-
time. This may be done in two distinct ways. One is by
gluing the smallest three-sphere of the Euclidean wormhole
to the largest one of the expanding universe. Another is
by gluing together antipodally identified three-spheres of
the euclidean and time-dependent geometries at r ¼ 0 and
t ¼ 0 respectively. Of course, additional possibilities arise
when AdS and dS versions of the euclidean meron worm-
holes of [11,12] are considered.

VII. CONCLUSIONS

In this article we have reinterpreted euclidean wormholes
as “holes of nothing”; after the antipodal map, the single
exterior is that of flat space from which a sphere of size 2r1
has been excised. We analytically computed the spectrum
and the two-point function of scalar fluctuations on a
Euclidean meron wormhole. The solution is found to be
stable under probe scalar perturbations. We showed that
the Green’s function exhibits large antipodal correlation
near the center of the throat. This gives good reason to

thoroughly study the stability [26] of this solution under
generic metric and gauge field perturbations. Should there
be negative modes as predicted in [1,12,20,28], it would be
interesting to see if the antipodal identification projects
them out. Returning to the logarithmic divergence of the
classical Euclidean action, we note that the solution we use
is naturally UV regulated by the size of the hole of nothing
(after antipodal identification). We can nevertheless make
sense of such solutions by comparing the Euclidean action
to their entropy in a given volume of space. For a complete
semiclassical treatment though, one needs to study all the
field fluctuations on the background up to one-loop.
Technically one computes a complete one loop determinant
with the modes split in terms of their spin and where ghost
degrees of freedom are properly introduced to account for
gauge invariance. This calculation has not been performed
for a reason, in the literature. The Yang-Mills fluctuations
are coupled to the gravitational ones on such a background.
This mixing results in an intricate calculation. In ongoing
work [26], we find that this task is technically involved but
possible to achieve. For instance, we find that spin-2
fluctuations have no negative modes and are stable. We
hope to report on the complete 1-loop computation in the
near future [26].
On another note, in AdS, finding large correlation

between the two exteriors (as we found in this work)
could address several CFT puzzles raised in [12]. It would
also be interesting to revisit instabilities of other euclidean
wormholes in this light. The antipodal map’s role in
confinement is worth exploring in the light of center
symmetry in SU(N) YM theory. It is also of importance
to further investigate the “wrong-sign” problem of the
conformal mode of the metric upon the background
coupling to the longitudinal mode of the gauge field,
perhaps also in conjunction with the antipodal identifica-
tion; this may provide interesting constraints on the
swampland in view of the weak gravity conjecture.
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