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We consider scattering of massless higher-spin particles in the eikonal regime in four dimensions. By
demanding the absence of asymptotic superluminality, corresponding to positivity of the eikonal phase, we
place constraints on the possible cubic couplings which can appear in the theory. The cubic couplings come
in two types: lower-derivative non-Abelian vertices and higher-derivative Abelian vertices made out of
gauge-invariant curvature tensors. We find that the Abelian couplings between massless higher spins lead to
an asymptotic time advance for certain choices of polarizations, indicating that these couplings should be
absent unless new states come in at the scale suppressing the derivatives in these couplings. A subset of
non-Abelian cubic couplings are consistent with eikonal positivity, but are ruled out by consistency of the
four-particle amplitude away from the eikonal limit. The eikonal constraints are, therefore, complementary
to the four-particle test, ruling out even trivial cubic curvature couplings in any theory with a finite number
of massless higher spins and no new physics at the scale suppressing derivatives in these vertices.
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I. INTRODUCTION

Interactions of massless higher-spin particles in four-
dimensional flat spacetime are strongly constrained by
classic no-go theorems [1]. Perhaps most prominent
amongst these is Weinberg’s soft theorem [2]. When
combined with the Weinberg-Witten theorem [3], as
suitably strengthened by [4], these arguments essentially
rule out the possibility of massless particles with spin
J ≥ 2 interacting either with a graviton described by
Einstein gravity, or with anything that interacts with such
a graviton [5]. There are also on-shell versions of these
arguments which arrive at the same conclusion by demand-
ing consistent factorization of four-particle amplitudes into
their constituent three-point amplitudes [6–10]. This rules
out higher-spin theories of the Yang-Mills or Einstein
type: those with minimal-derivative cubic vertices which
require a nonlinear deformation of the gauge symmetry of
the linear theory. In light of these restrictions, massless

high-spin particles won’t be discovered interacting with the
degrees of freedom that we observe in nature, unless our
understanding of quantum field theory is deeply flawed.
Nevertheless, it is important to understand not only the

quantum field theories realized in nature but also the space
of possible consistent theories. The aforementioned four-
particle test renders inconsistent a wide swath of higher-
spin theories, but there remains a class of higher-spin
theories that are unconstrained by all of these no-go
arguments: massless higher-spin particles interacting
through their linearized curvature tensors. A massless spin
J field has a J-derivative linear curvature tensor which is
invariant under the linearized higher spin’s gauge sym-
metries [11]. Interactions can trivially be constructed using
products of these linearized curvatures. These are all
higher-derivative interactions. They do not include any-
thing that might be called minimal coupling to gravity and
they do not survive the soft limit; i.e., they cannot mediate
long range forces. This is all in agreement with the
Weinberg soft theorem and the other no-go theorems.
These curvature interactions are unconstrained by all of

the gauge invariance requirements and 4-particle factori-
zation constraints that rule out the non-Abelian vertices. It
is, therefore, of interest to develop different complementary
constraints to constrain these curvature interactions. The
constraint we will use comes from positivity of eikonal
scattering amplitudes. Like the 4-particle test, this is an on-
shell S-matrix criterion. As such it is an unambiguous
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constraint, independent of the Lagrangian, field redefini-
tions, etc., It is typically imposed because of its relation to
superluminality in shockwave backgrounds [12,13] and
leads to nontrivial constraints on higher-curvature correc-
tions to Einstein gravity [14] and on theories of massive
spin-2 particles [15–17]. Though we do not have a
fundamental derivation of eikonal positivity from, e.g.,
analyticity or microlocality in flat space, it is satisfied in
known ultraviolet-complete examples [18].1 Therefore,
even in the absence of a fundamental derivation, it is
worthwhile to determine the constraints that positivity of
the eikonal phase places on theories of massless higher-spin
particles.
Here we investigate eikonal scattering of massless

higher-spin particles in four dimensions. In the cubic
vertices, we introduce two mass scales: M and Λ. The
scaleM suppresses powers of the field and sets the scale of
loop corrections while Λ is the scale suppressing deriva-
tives. Weak coupling requires Λ ≪ M. The lowest scale

suppressing interactions in this theory is denoted by Λc ¼
ðMΛJ1þJ2þJ3−2Þ 1

J1þJ2þJ3−1 where Jn represents the spin of
each of the three particles. This is where we would expect
tree-level unitarity to break down and thus Λc sets the
cutoff of the effective field theory (EFT). In what follows,
we show that higher-spin theories interacting at cubic order
through their linearized gauge-invariant curvatures experi-
ence asymptotic time advances for certain choices of
polarizations. The assumption that consistent theories
should not have measurable time advances thus renders
these cubic vertices inconsistent, unless new physics enters
at the scale Λ which is generically much lower than Λc. In
particular, any interacting theory containing only a finite
number of massless higher spins cannot have any cubic
vertices if no new physics enters at Λ (though it may be
possible with an infinite number of massless higher spins).
Interestingly, these constraints are complementary to

those coming from the four-particle test. Eikonal con-
straints restrict couplings through curvatures, but only
partially constrain the minimal-derivative couplings which
require a nonlinear deformation of the linear gauge sym-
metry. This work generalizes the case of the massless spin-
2 field: there, the minimal derivative vertex is constrained
by the 4-particle test to be that of Einstein-Hilbert and to
satisfy the equivalence principle, and never gives a time
advance (rather, it gives the Shapiro delay), whereas the
Riemann cubed vertex is unconstrained by the 4-particle
test but is constrained to vanish by asymptotic super-
luminality, unless new states come in [14].2

Taken together, our constraints and those of the classic
no-go theorems rule out all interacting massless higher-spin

vertices in four dimensions. This closes a loophole in
various arguments against higher-spin particles, which
either explicitly or implicitly assume that higher spins
interact through vertices which require a nonlinear com-
pletion of the gauge symmetry.

II. EIKONAL SCATTERING

The eikonal regime of 2 → 2 scattering is the kinematic
regime where the center of mass energy is taken to be large
with the impact parameter held fixed. The eikonal kin-
ematics for massless particles are reviewed in Appendix A.
With these kinematics, the leading contribution to scatter-
ing is given by the sum of ladder and crossed ladder
diagrams in the t-channel. These diagrams exponentiate in
impact parameter space and the amplitude in the eikonal
limit is given by (suppressing polarization labels) [26–28]

iMeikonalðs; tÞ ¼ 2s
Z

d2b⃗eiq⃗·b⃗ðeiδðs;b⃗Þ − 1Þ; ð1Þ

where b⃗ is the impact parameter, the Fourier conjugate to
the exchanged momentum q⃗, and where the eikonal phase,
δ, is given by

δðs; b⃗Þ ¼ 1

2s

Z
d2q⃗
ð2πÞ2 e

−iq⃗·b⃗M4ðs;−q⃗2Þ; ð2Þ

with M4ðs; tÞ the tree-level t-channel amplitude evaluated
in the eikonal limit. The eikonal approximation captures the
leading interactions between two highly boosted particles.
The eikonal phase is related to the delay in light-cone
coordinate time, Δx−, experienced by the particle moving
in the xþ direction after interacting with the other particle
moving in the x− direction [13,14,16]

Δx− ¼ 1

jp−j δðs; bÞ: ð3Þ

The expectation is that, in theories which obey micro-
causality, particles will only ever experience time delays
(Δx− ≥ 0) from interactions, corresponding to positivity of
the eikonal phase, δ > 0. We therefore want to see what
constraints positivity of the eikonal phase places on
theories containing massless higher-spin particles.
The leading eikonal amplitude only depends on the on-

shell three-point scattering amplitudes, which can be seen
by performing a complex deformation of the integration
contour in (2) [14]. This contour integral picks up a
t-channel pole, and on this complex factorization channel
the exchanged particle goes on-shell and the eikonal phase
is given by a product of on-shell three point amplitudes,
which can be represented as differential operators acting on
the propagator of the exchanged particle. This results in the
expression

1In anti–de Sitter space, it is related to positivity constraints
on dual operator anomalous dimensions, which follow from
bootstrap-type considerations [19–22].

2See also [23–25] for similar arguments and conclusions.
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δðs; bÞ ¼
P

IM
13I
3 ði∂ b⃗ÞMI24

3 ði∂ b⃗Þ
2s

Z
d2q⃗
ð2πÞ2

e−iq⃗·b⃗

q⃗2

¼
P

IM
13I
3 ði∂ b⃗ÞMI24

3 ði∂ b⃗Þ
2s

1

2π
log

�
L
b

�
; ð4Þ

where the I index sums over the polarizations of the
exchanged particle. In the last equality, we have introduced
an infrared regulator, L.3

III. CUBIC COUPLINGS OF
MASSLESS HIGHER SPINS

We want to compute the eikonal amplitude (4), which
requires enumerating the possible cubic vertices for mass-
less higher spins. The cubic couplings between higher-spin
particles are so strongly constrained by Lorentz invariance
that there are only a finite number of possible couplings
between particles with spins J1, J2, J3. These three-point
amplitudes can be constructed using many different
approaches [6,30–47]. The degrees of freedom of the
ath massless particle (a ¼ 1, 2, 3) are carried by a trans-
verse-traceless polarization tensor ϵμ1���μJa . It is convenient
to introduce auxiliary variables, zμa, which are null (z2a ¼ 0)
and transverse (pa · za ¼ 0). After constructing the on-shell
vertices in terms of the z’s, we can make the replacement
zμ1a � � � zμJaa ↦ ϵ

μ1���μJa
a to reintroduce the polarization ten-

sors. The scattering amplitude with spins fJ1; J2; J3g must
be homogeneous of order Ja in each of the za. Gauge
invariance in this language corresponds to invariance under
the shift za ↦ za þ ϵpa. After accounting for momentum
conservation (

P
ap

μ
a ¼ 0), and the masslessness of external

particles (p2
a ¼ 0), a convenient set of building blocks for

massless on-shell cubic amplitudes is given by (all
momenta ingoing)

A ¼ ðp1 · z3Þðz1 · z2Þ þ ðp3 · z2Þðz1 · z3Þ
þ ðp2 · z1Þðz2 · z3Þ; ð5Þ
B ¼ ðp1 · z3Þðp2 · z1Þðp3 · z2Þ; ð6Þ

Ca ¼ ðpaþ1 · zaÞ: ð7Þ

The structures A and B are anti-symmetric in the 1,2,3
labels (they are just the two independent cubic vertices of

three massless spin-1 particles) while Ca is anti-symmetric
in the arguments ≠ a (it is the spin-0–spin-0–spin-1 cubic
vertex).
If we order the three spins as (without loss of generality)

J1 ≤ J2 ≤ J3, the list of possible gauge-invariant three-
point structures is

M1 ¼ AJ1CJ2−J12 CJ3−J13 ;

M2 ¼ AJ1−1BCJ2−J12 CJ3−J13 ;

..

.

Mjþ1 ¼ AJ1−jBjCJ2−J12 CJ3−J13 ;

..

.

MJ1þ1 ¼ BJ1CJ2−J12 CJ3−J13 ¼ CJ11 C
J2
2 C

J3
3 : ð8Þ

There are J1 þ 1 possible vertices, which start with J2 þ
J3 − J1 derivatives and count up by two up to a vertex with
J1 þ J2 þ J3 derivatives.
A massless spin-J field possesses a linearized curvature

tensor of the form (see, e.g., [48])

F μ1ν2���μJνJ ∼ Y½J;J�∂μ1∂μ2 � � � ∂μJlν1���νJ ; ð9Þ

where Y½J;J� is the Young projector onto the Young diagram
. This curvature is invariant under the linearized

gauge transformation of the spin-J field,

δlμ1���μJ ¼ ∂ðμ1Λμ2���μJÞ: ð10Þ

Here lμ1���μJ is the symmetric double-traceless spin-J field
in the Fronsdal formulation [49], andΛμ1���μJ−1 its symmetric
traceless gauge parameter. The maximal-derivative cou-
pling,MJ1þ1, is the one resulting from the product of three
of these generalized curvatures. It is these couplings which
are unconstrained by four-particle consistency but which
will be constrained by eikonal scattering.
In four dimensions, not all of the 3-point amplitudes in

(8) are nontrivial. This is because the amplitudes depend on
the five vectors fp1; p2; z1; z2; z3g, but in four dimensions,
it is not possible for five vectors to be linearly independent.
There is an identity which expresses this fact [46]

ϵμ1μ2μ3μ4μ5ϵ
ν1ν2ν3ν4ν5pμ1

1 p1ν1p
μ2
2 p2ν2z

μ3
1 z1ν3z

μ4
2 z2ν4z

μ5
3 z3ν5 ¼ 0:

ð11Þ

After using the on-shell conditions and the fact that z is
transverse and null, this identity reduces to the statement
that AB ¼ 0, where A and B are the structures defined in
(5) and (6), respectively. This means that, in four dimen-
sions, all the middle structures in the list (8) identically
vanish and we are left with only M1 and MJ1þ1. We can

3The presence of a logarithmic dependence in the eikonal
phase might be somewhat distressing. At large impact parameter,
b > L, this appears to lead to a negative phase shift. This is
related to infrared divergences inherent in massless scattering in
four dimensions. More properly, the eikonal phase should be
compared to the same phase in, e.g., Einstein gravity and should
be positive compared to this. This is effectively the criterion of
[29] that signals cannot propagate faster than allowed by the
asymptotic causal structure of a spacetime. In practice, we will be
concerned with the small impact parameter behavior of the
eikonal phase, where these infrared effects are irrelevant.
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think ofM1 as the analogue of the Einstein–Hilbert vertex,
which deforms the gauge symmetry and has J2 þ J3 − J1
derivatives, whereas MJ1þ1 is the curvature-cubed inter-
action vertex which has J1 þ J2 þ J3 derivatives. The
middle vertices are the analogues of the Gauss–Bonnet
vertex which is trivial in four dimensions. In what
follows, we will specialize to the four-dimensional case.
In this case, there are also some parity-odd vertices which
become nontrivial; we will impose parity and will not
consider these.

IV. EIKONAL AMPLITUDE

Let’s consider the general situation where three particles
of spins J1 ≤ J2 ≤ J3 interact through an arbitrary linear
combination of the two vertices M1 and MJ1þ1. These
vertices are

M1 ¼
1

MΛJ2þJ3−J1−2

× ½ðp1 · z3Þðz1 · z2Þ þ ðp3 · z2Þðz1 · z3Þ
þ ðp2 · z1Þðz2 · z3Þ�J1ðp3 · z2ÞJ2−J1ðp1 · z3ÞJ3−J1 ;

MJ1þ1 ¼
1

MΛJ1þJ2þJ3−2
ðp2 · z1ÞJ1ðp3 · z2ÞJ2ðp1 · z3ÞJ3 :

ð12Þ
We have introduced two mass scales,Λ andM. The scale

M is the analogue of a Planck mass; it suppresses powers of
the field relative to the kinetic term and sets the scale of
loop corrections.4 Λ is a scale that suppresses derivatives; if
the higher derivative term were the result of integrating out
massive particles, Λ would be the mass of these particles.
As discussed in [14], the regime in which we work is the
regime in which energies are large compared to Λ so that

we are in the eikonal regime and probing the nonlinearities
of the higher derivative terms, but smaller than M (or any
intermediate strong coupling scale) so that we remain
weakly coupled. Thus we must have Λ ≪ M. If we find
that a vertex leads to a negative phase shift, it means that
new physics must come in at the scale Λ in order to cure it,
otherwise the vertex must be zero.5

The general 4-point interaction constructed from these
vertices is somewhat complicated, because any of the
three constituent particles can appear on the internal line.
However, in the eikonal regime the contribution from spin-
J exchange grows as δ ∼ sJ−1 [14], and so the amplitude is
dominated by exchange of the particle with the largest
spin, J3.
The leading eikonal phase then arises from the t-channel

exchange of the spin-J3 particle:

ð13Þ

along with three other diagrams which interchange the spin
J1 and J2 particles on either the top rail, the bottom rail, or
both.6 In the eikonal limit, the light-cone momenta are
taken to be large, pþ; p− → ∞. A drastic simplification in
this limit follows from the fact that the momentum on the
external lines is much larger than the internal rung
momentum. This means that the Nþ1���þJ3

−1���−J3
component

of the internal propagator (A10) gives the leading con-
tribution. In practice, this means that zμI points along the þ
direction in the top vertex and in the − direction in the
bottom vertex. Putting the vertices on-shell and taking the
eikonal limit, we obtain the product of on-shell cubic
amplitudes from the sum of all t-channel diagrams:

X
I

M13I
3 MI24

3 ¼ sJ3

2J3M2

�
1

ΛJ2þJ3−J1−2
ðei1���iJ11 e

i1���iJ1 jJ1þ1���jJ2
3 þ e

i1���iJ1
3 e

i1���iJ1 jJ1þ1���jJ2
1 ÞqjJ1þ1

� � � qjJ2

þ gð−1ÞJ1
ΛJ1þJ2þJ3−2

ðei1���iJ11 e
j1���jJ2
3 þ e

i1���iJ1
3 e

j1���jJ2
1 Þqi1 � � � qiJ1qj1 � � �qjJ2

�

×

� ð−1ÞJ2−J1
ΛJ2þJ3−J1−2

ðei1���iJ12 e
i1���iJ1 jJ1þ1���jJ2
4 þ e

i1���iJ1
4 e

i1���iJ1 jJ1þ1���jJ2
2 ÞqjJ1þ1

� � �qjJ2

þ gð−1ÞJ2
ΛJ1þJ2þJ3−2

ðei1���iJ12 e
j1���jJ2
4 þ e

i1���iJ1
4 e

j1���jJ2
2 Þqi1 � � � qiJ1qj1 � � �qjJ2

�
: ð14Þ

4It is worth emphasizing, however, that we are not making any assumptions about the power-counting structure of the theory beyond
cubic order. Even in a situation where derivatives in other interactions are suppressed by a scale parametrically above Λ, our analysis
applies and new physics must enter at the scale Λ if a time advance is possible.

5More precisely, its coefficient must be sufficiently small as to make it effectively suppressed by the scale M rather than Λ.
6Under interchanging the 1 and 2 particles, the amplitudes in (12) pick up a factor of ð−1ÞJ3 . In the case that this is negative, there

must be appropriate color factors in order to restore the correct bosonic statistics. In what follows, we leave these factors implicit, but
ensure that the resulting eikonal amplitude is appropriately symmetric.
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Here, g is a (dimensionless) coupling constant to distinguish the MJþ1 vertex and we have normalized the M1 vertex to
have unit coefficient. From this expression, it is straightforward to write down the phase shift using (4),

δðs; bÞ ¼ sJ3−1

2J3þ1M2

�
1

ΛJ2þJ3−J1−2
ðei1���iJ11 e

i1���iJ1 jJ1þ1���jJ2
3 þ e

i1���iJ1
3 e

i1���iJ1 jJ1þ1���jJ2
1 Þ∂bjJ1þ1

� � � ∂bjJ2

þ g
ΛJ1þJ2þJ3−2

ðei1���iJ11 e
j1���jJ2
3 þ e

i1���iJ1
3 e

j1���jJ2
1 Þ∂bi1

� � � ∂biJ1
∂bj1

� � � ∂bjJ2

�

×

�
1

ΛJ2þJ3−J1−2
ðei1���iJ12 e

i1���iJ1 jJ1þ1���jJ2
4 þ e

i1���iJ1
4 e

i1���iJ1 jJ1þ1���jJ2
2 Þ∂bjJ1þ1

� � � ∂bjJ2

þ g
ΛJ1þJ2þJ3−2

ðei1���iJ12 e
j1���jJ2
4 þ e

i1���iJ1
4 e

j1���jJ2
2 Þ∂bi1

� � � ∂biJ1
∂bj1

� � � ∂bjJ2

�
1

2π
log

�
L
b

�
: ð15Þ

In order to ascertain whether a particle will experience a positive or negative phase shift in scattering, we should
diagonalize δ to determine the phase shifts of the eigen-polarizations. At sufficiently small impact parameter, the amplitude
is dominated by

δ ≃ g2
sJ3−1

2J3þ1M2Λ2J1þ2J2þ2J3−4
ðei1���iJ11 e

j1���jJ2
3 þ e

i1���iJ1
3 e

j1���jJ2
1 Þðek1���kJ12 e

l1���lJ2
4 þ e

k1���kJ1
4 e

l1���lJ2
2 Þ

× ∂bi1
� � � ∂biJ1

∂bj1
� � � ∂bjJ2

∂bk1
� � � ∂bkJ1

∂bl1
� � � ∂blJ2

1

2π
log

�
L
b

�
: ð16Þ

There are two possible polarization choices for each of the incoming and outgoing particles, and the most general possible
scattering process involves an admixture of particles with spin J1 and J2 carrying a linear combination of their two possible
polarizations in all the external lines. Utilizing the basis of polarizations described in Appendix A, we can diagonalize this
amplitude, as described in Appendix B. At the end, we find the eigenshifts,

δðs; bÞ ≃�g2
ð4ðJ1 þ J2Þ − 2Þ!!

2J1þJ2þJ3þ1π

Λ2

M2

�
s
Λ2

�
J3−1 1

ðΛ2b2ÞJ1þJ2
; ð17Þ

with multiplicity 4. We see that regardless of the sign of the coupling, g, some polarizations will experience a time advance.
Such a time advance will be measurable at impact parameters b ∼ Λ−1, which is parametrically within the regime of validity
of the effective theory. Therefore, we must either set the coupling g to be zero or some new physics must enter at the scaleΛ,
which is parametrically below the scale at which perturbative unitarity is lost.
After setting g ¼ 0, the phase shift is given by

δðs; bÞ ¼ sJ3−1

2J3þ1M2Λ2J2þ2J3−2J1−4
ðei1���iJ11 e

i1���iJ1 jJ1þ1���jJ2
3 þ e

i1���iJ1
3 e

i1���iJ1 jJ1þ1���jJ2
1 Þ

× ðei1���iJ12 e
i1���iJ1 jJ1þ1���jJ2
4 þ e

i1���iJ1
4 e

i1���iJ1 jJ1þ1���jJ2
2 Þ∂bjJ1þ1

� � � ∂bjJ2
∂bjJ1þ1

� � � ∂bjJ2

1

2π
log

�
L
b

�
: ð18Þ

In the case J2 ¼ J1, the amplitude is diagonal, with the
phase shifts

δJ2¼J1ðs; bÞ ¼
1

2J3þ2π

Λ2

M2

�
s
Λ2

�
J3−1

log

�
L
b

�
; ð19Þ

which are positive, consistent with asymptotic causality. In
the more general case where J2 > J1, a further computation
is required, which is detailed in Appendix B, leading to the
phase shifts,

δJ2>J1ðs; bÞ ¼ � ð2ðJ2 − J1Þ − 2Þ!!
2J3þJ2−J1þ1π

Λ2

M2

�
s
Λ2

�
J3−1

×
1

ðΛ2b2ÞJ2−J1 ; ð20Þ

with multiplicity 8. Here, we see that some polarization
combinations will experience a time advance, so even non-
Abelian couplings between massless higher spins must be
set to zero if J2 > J1.
The net result is that we have to set the curvature-cubed

couplings to zero; in the case of non-Abelian couplings, we
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are allowed to have cubic couplings which deform the
gauge symmetry between two particles with the same spin,
and a particle with larger or equal spin.7 Other non-Abelian
cubic couplings must also be set to zero.

V. CONCLUSIONS

We have enumerated the constraints that positivity of the
eikonal phase places on theories of interacting massless
higher-spin particles in four dimensions. These constraints
are fairly strong; they rule out cubic interactions between
particles through their linear gauge invariant curvature
tensors, unless new physics appears at the scale suppressing
their derivatives. Additionally, amongst cubic couplings
which require deformations of the linearized gauge sym-
metries, only interactions between particles of the same
spin through exchange of a higher-spin particle are con-
sistent with having an asymptotic time delay. These
constraints are complementary to other arguments against
higher-spin cubic interactions, which rule out interactions
that require a deformation of the linearized gauge sym-
metry. Taken together, this rules out all cubic interactions
between massless higher-spin particles in four dimensions.
There remain some loopholes to this general no-go.

There is still room for curvature couplings between mass-
less higher spins which start at fourth order and are
therefore not captured by the leading-order eikonal analy-
sis. It would be interesting to see if these could be
constrained by considering subleading corrections to the
eikonal approximation.8 We have restricted our attention to
four dimensions which reduces the number of relevant
three-point vertices to two. In higher dimensions, there are
more possibilities. To the extent that scattering in higher
dimensions can be localized to a four-dimensional sub-
space, we expect our arguments to hold for the highest-
derivative vertices, but it is possible that some of the
intermediate vertices are compatible with eikonal positivity.
Finally, it is possible that in a hypothetical flat space higher
spin theory with an infinite tower of all higher spins, along
the lines considered in [34,50–52], there could be miracu-
lous re-summations among the whole tower that render the

eikonal phase positive, and it would be interesting to
explore this possibility.
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APPENDIX A: EIKONAL KINEMATICS
AND POLARIZATIONS

Here we collect some expressions used in the scattering
computation described in the main text. We work in light-
cone coordinates ðx−; xþ; xiÞ, x� ¼ 1ffiffi

2
p ðx0 � x1Þ, where the

Minkowski metric takes the form

ημν ¼

0
B@

0 −1 0

−1 0 0

0 0 δij

1
CA; ðA1Þ

with i, j ¼ 1, 2 running over the transverse directions.
The amplitude is computed with the following kinemat-

ics which are well adapted to the eikonal limit,

pμ
1 ¼

�
pþ;

q⃗2

8pþ ;
qi

2

�
; pμ

2 ¼
�

q⃗2

8p− ; p
−;−

qi

2

�
; ðA2Þ

pμ
3 ¼

�
pþ;

q⃗2

8pþ ;−
qi

2

�
; pμ

4 ¼
�

q⃗2

8p− ; p
−;
qi

2

�
: ðA3Þ

These square to zero: p2
1 ¼ p2

3 ¼ p2
2 ¼ p2

4 ¼ 0, and con-
serve momentum pμ

1 þ pμ
2 ¼ pμ

3 þ pμ
4. The independent

Mandelstam invariants are

s ¼ −ðp1 þ p2Þ2 ¼ 2pþp− þ q⃗2

2
þ 1

2pþp−
q⃗4

16
; ðA4Þ

t ¼ −ðp1 − p3Þ2 ¼ −q⃗2: ðA5Þ

We construct polarization tensors out of the following
transverse spin-1 polarization tensors:

ϵμTðp1Þ ¼
�
0;
q⃗ · e⃗1
2pþ ; ei1

�
; ϵμTðp2Þ ¼

�
−
q⃗ · e⃗2
2p− ; 0; ei2

�
;

ðA6Þ

ϵμTðp3Þ ¼
�
0;−

q⃗ · e⃗3
2pþ ; ei3

�
; ϵμTðp4Þ ¼

�
q⃗ · e⃗4
2p− ; 0; ei4

�
:

ðA7Þ

Here the ei are normalized vectors that point in the plane
transverse to xþ; x−; there are 2 independent such vectors.

7Although there does not exist a fully gauge-invariant Smatrix
for vertices which deform the gauge symmetry involving spins
J > 2, the eikonal amplitude is only sensitive to the on-shell
cubic vertices in the t-channel exchange, which do not know
about the failure of gauge invariance at quartic order. Thus the
eikonal amplitude using these minimal derivative vertices can be
made sense of and is consistent with positivity of the eikonal
phase.

8It is also possible that a refinement of our argument could rule
out some of the non-Abelian couplings that experience a time
delay, but are known to be inconsistent from the four-particle
arguments (for example the coupling of two massless spin-2
particles to a massless spin-4 particle). In particular, we have
considered the leading high-energy behavior, at smaller values of
s it seems possible that these couplings could lead to time
advances.
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To construct the massless spin-J polarization tensors, we
take the product

ϵμ1���μJT ðpaÞ ¼ ϵμ1T ðpaÞ � � � ϵμJT ðpaÞ; ðA8Þ

and in this expression, we replace

ei1 � � � eiJ ↦ ei1���iJ ; ðA9Þ

where ei1���iJ is a symmetric, traceless tensor with indices
that take on two values, so it is an SO(2) representation and
therefore has two independent helicity components.
The eikonal limit then corresponds to the limit of

large pþ; p−.
We also need the spin-J propagator numerator, the only

part needed in the eikonal limit is

Nα1���αJ
μ1���μJ ¼ δðα1ðμ1 � � � δ

αJÞ
μJÞ þ � � � : ðA10Þ

Diagonalizing the eikonal phase requires an explicit
basis of helicity-J polarizations. This means we need a
basis for traceless symmetric tensors ei1���iJ in two dimen-
sions. One construction is the following: take as a basis of
the plane transverse to pþ; p− the standard unit vectors

eð1Þi ¼
�
1

0

�
; eð2Þi ¼

�
0

1

�
: ðA11Þ

If we take the linear combinations of these unit vectors

eð�Þ
i ¼ 1ffiffiffi

2
p ðeð1Þi � ieð2Þi Þ; ðA12Þ

under a counterclockwise rotation, they pick up a phase:

eð�Þ
i ↦ e∓iθeð�Þ

i : ðA13Þ

These are states of definite helicity, the usual circular
polarizations in electromagnetism. Note that they are null
but not orthogonal:

eð�Þ · eð�Þ ¼ 0 eð�Þ · eð∓Þ ¼ 1: ðA14Þ

To create helicity �J states, we take a product of J of

the eð�Þ
i ,

eð�JÞ
i1���iJ ¼ eð�Þ

i1
� � � eð�Þ

iJ
: ðA15Þ

These tensors are traceless and symmetric by virtue of the
fact that the eð�Þ are null. These tensors are not orthogonal,
but if we take the linear combinations

eð⊕JÞ
i1���iJ ¼

1ffiffiffi
2

p
�
eðþJÞ
i1���iJ þ eð−JÞi1���iJ

�
; ðA16Þ

eð⊗JÞ
i1���iJ ¼ −

iffiffiffi
2

p
�
eðþJÞ
i1���iJ − eð−JÞi1���iJ

�
; ðA17Þ

these are orthonormal,

eð⊕JÞ · eð⊕JÞ ¼ eð⊗JÞ · eð⊗JÞ ¼ 1 eð⊕JÞ · eð⊗JÞ ¼ 0:

ðA18Þ
It will be useful to have expressions for contractions of the
polarization tensors (when J2 > J1):

e
ð⊕J1

Þ
i1���iJ1e

ð⊕J2
Þ

i1���iJ1 jJ1þ1���jJ2 ¼
1ffiffiffi
2

p e
ð⊕J2−J1 Þ
jJ1þ1���jJ2 ;

e
ð⊗J1

Þ
i1���iJ1e

ð⊗J2
Þ

i1���iJ1 jJ1þ1���jJ2 ¼
1ffiffiffi
2

p e
ð⊕J2−J1 Þ
jJ1þ1���jJ2 ðA19Þ

e
ð⊕J1

Þ
i1���iJ1e

ð⊗J2
Þ

i1���iJ1 jJ1þ1���jJ2 ¼
1ffiffiffi
2

p e
ð⊗J2−J1 Þ
jJ1þ1���jJ2 ;

e
ð⊗J1

Þ
i1���iJ1e

ð⊕J2
Þ

i1���iJ1 jJ1þ1���jJ2 ¼ −
1ffiffiffi
2

p e
ð⊗J2−J1 Þ
jJ1þ1���jJ2 : ðA20Þ

APPENDIX B: EIKONAL AMPLITUDE

Here, we write out the explicit form of the eikonal
amplitude. It is convenient to organize the phase
shift (16) as a matrix of the 42 × 42 possible polarization
combinations.
We use the basis for the polarizations described in

Appendix A. It is also helpful to make the following
definition involving derivatives with respect to the impact
parameter and the polarization vectors from which the
polarization tensors are built:

e⃗ð�Þ · ∂⃗b ≡ 1ffiffiffi
2

p D� ¼ 1ffiffiffi
2

p ð∂b1 � i∂b2Þ: ðB1Þ

In simplifying the following expressions, it is useful to note
that D�D∓ ¼ ∇2 is the two-dimensional Laplacian.
With these definitions, the contraction between the ⊕ or

⊗ polarization tensors of a spin-J particle and impact
parameter derivatives is given by

eð⊕JÞ
i1���iJ∂bi1 � � � ∂biJ ¼

1

2
Jþ1
2

½ðDþÞJ þ ðD−ÞJ� ðB2Þ

eð⊗JÞ
i1���iJ∂bi1 � � � ∂biJ ¼ −

i

2
Jþ1
2

½ðDþÞJ − ðD−ÞJ�: ðB3Þ

With these simplifications, the amplitude (16) can be
written for explicit polarizations as

δ ≃
g2

4

sJ3−1

2J1þJ2þJ3M2Λ2J1þ2J2þ2J3−4
PT
3;4ŜP1;2

1

2π
log

�
L
b

�
:

ðB4Þ
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Here, Pa;b is a vector of incoming/outgoing polarization coefficients and Ŝ ¼ S ⊗ S, where S is the 4 × 4 matrix

S ¼

0
BBB@

0 0 ðDþÞJ1þJ2 þ ðD−ÞJ1þJ2 iðD−ÞJ1þJ2 − iðDþÞJ1þJ2

0 0 iðD−ÞJ1þJ2 − iðDþÞJ1þJ2 −ðDþÞJ1þJ2 − ðD−ÞJ1þJ2

ðDþÞJ1þJ2 þ ðD−ÞJ1þJ2 iðD−ÞJ1þJ2 − iðDþÞJ1þJ2 0 0

iðD−ÞJ1þJ2 − iðDþÞJ1þJ2 −ðDþÞJ1þJ2 − ðD−ÞJ1þJ2 0 0

1
CCCA:

ðB5Þ

Using the formula

ðD�Þα log
�
L
b

�
¼ ð−1Þαð2α − 2Þ!! 1

ðb1 ∓ ib2Þα ðB6Þ

and choosing the impact parameter to lie along the 1 direction yields (17) after diagonalization.
Once we have set g ¼ 0. the leading amplitude is given by (18). In the case where J2 ¼ J1, the amplitude is diagonal and

the eikonal phase shift is manifestly positive. In the other case where J2 > J1, we can use the formulas (A19) and (A20), in
addition to the ones used at leading order, we obtain the following expression for the eikonal amplitude in terms of explicit
polarizations

δ ¼ sJ3−1

2J2−J1þ2M2Λ2J2þ2J3−2J1−4
PT
3;4Ŝ

0P1;2
1

2π
log

�
L
b

�
; ðB7Þ

where in this case Ŝ0 ¼ S̃ ⊗ S̃ where S̃ is the 4 × 4 matrix

S̃ ¼

0
BBB@

0 0 ðDþÞJ2−J1 þ ðD−ÞJ2−J1 iðD−ÞJ2−J1 − iðDþÞJ2−J1
0 0 iðDþÞJ2−J1 − iðD−ÞJ2−J1 ðDþÞJ2−J1 þ ðD−ÞJ2−J1

ðDþÞJ2−J1 þ ðD−ÞJ2−J1 iðDþÞJ2−J1 − iðD−ÞJ2−J1 0 0

iðD−ÞJ2−J1 − iðDþÞJ2−J1 ðDþÞJ2−J1 þ ðD−ÞJ2−J1 0 0

1
CCCA:

ðB8Þ

Using Eq. (B6) again, we obtain the phase shifts (20).
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