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Finite-temperature corrections to the effective potential and the energy-momentum tensor of a scalar
field are computed in a perturbed Minkoswki spacetime. We consider the explicit mode decomposition of
the field in the perturbed geometry and obtain analytical expressions in the nonrelativistic and
ultrarelativistic limits to first order in scalar metric perturbations. In the static case, our results are in
agreement with previous calculations based on the Schwinger-DeWitt expansion which indicate that
thermal effects in a curved spacetime can be encoded in the local Tolman temperature at leading order in
perturbations and in the adiabatic expansion. We also study the shift of the effective potential minima
produced by thermal corrections in the presence of static gravitational fields. Finally, we discuss the
dependence on the initial conditions set for the mode solutions.
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I. INTRODUCTION

Finite-temperature corrections to the effective potential
in quantum field theory play a fundamental role in the
description of phase transitions in the early Universe. In
particular, symmetry restoration at high temperatures is an
essential ingredient of the Higgs mechanism for electroweak
symmetry breaking. In flat spacetime, such thermal correc-
tions were computed for the first time in the seminal papers
of Dolan and Jackiw [1] and Weinberg [2] using thermal
Green functions methods. The possibility of extending those
methods to more realistic scenarios incorporating spacetime
curvature meets certain difficulties since finite-temperature
field theory is only well defined provided the geometry
possesses a global timelike Killing field. Thus, for example,
for static or stationary spacetimes, the thermal Green
functions method has been applied for homogeneous and
isotropic Einstein static spaces in [3]. These methods were
extended to conformally static Robertson-Walker back-
grounds in [4]. The conditions for the construction of a

thermal field theory in more general expanding universes
(not strictly static) were discussed in [5,6], where the
adiabatic techniques were introduced.
An alternative approach to the adiabatic expansion for

thermal field theory in general curved spacetime is the so-
called Schwinger-DeWitt [7,8] expansion of the effective
action. Both approaches are known to agree in the results
for the ultraviolet divergences in zero-temperature field
theory. The Schwinger-DeWitt expansion, being a local
curvature expansion, is manifestly covariant, but it is not
sensitive to the global properties of the spacetime such as
the presence of boundaries and does not contain informa-
tion about the nonlocal part of the effective action. Going
beyond the Schwinger-DeWitt approximation requires
brute force methods based on explicit mode summation
[9]. Thus, for example, in [10], phase transitions in
homogeneous but anisotropic Bianchi I and Kasner cos-
mologies were studied using explicit modes sum. In recent
works [11,12], we started this program in the case of weak
inhomogeneous gravitational fields by studying the one-
loop corrections to the vacuum expectation value (VEV) of
the energy-momentum tensor and the effective potential of
a massive scalar field. Thus, in [11], using a regularization
procedure based on a simple comoving cutoff, a non-
vanishing contribution of metric perturbations to the
effective potential was obtained. However, the renormal-
ization procedure required the use of noncovariant counter-
terms. In contrast, dimensional regularization was used in
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[12] to isolate the divergences, applying techniques devel-
oped specifically to deal with nonrational integrands. In this
case, the renormalized effective potential, being explicitly
covariant, did not contain contributions from the inhomo-
geneous gravitational fields at the leading order in metric
perturbation and in the adiabatic expansion in both static
and cosmological spacetimes.
In this work, we extend these methods to include

finite-temperature effects. The inclusion of the Bose-
Einstein factor, accounting for the statistical distribution
of the energy states, produces a smooth behavior of all
quantities involved at large energies, making it unnec-
essary to apply any regularization technique (once the
vacuum contribution is renormalized). As mentioned
above, in order to compute the aforementioned contri-
bution, we apply the “brute force” method described in
[11,12], i.e., performing a summation over the perturbed
modes of the quantum field obtained as solutions of the
Klein-Gordon equation. We are able to get analytical
expressions for the effective potential and the energy-
momentum tensor in the nonrelativistic and the ultra-
relativistic limits. In the static limit, we find that local
gravitational effects can be taken into account through the
Tolman temperature [13]. This is in accordance with
computations of the energy-momentum tensor of a scalar
field at finite temperature in a static spacetime using the
Schwinger-DeWitt approach, [14,15]. However, we also
obtain the explicit time dependence of the expectation
values for finite times, which shows that the Tolman
temperature can only be defined in the asymptotic time
regions.
The work is organized as follows. Section II describes

the general approach to compute an expectation value over
a thermal state in a perturbed FRW metric. The particular
expressions to be computed in the case of static spacetimes
are presented in Sec. III. Sections IV and V explain the
approximations applied to obtain the final result in the
nonrelativitic and ultrarelativistic limits, respectively. Shifts
in the minimum of the effective potential produced by
thermal correction are discussed in Sec. VI. Our conclu-
sions are presented in Sec. VII.

II. FINITE-TEMPERATURE CORRECTIONS

Given a scalar field ϕ, with potential VðϕÞ, its classical
action in a (Dþ 1)-dimensional spacetime with metric
tensor gμν can be written as

S½ϕ; gμν� ¼
Z

dDþ1x
ffiffiffi
g

p �
1

2
gμν∂μϕ∂νϕ − VðϕÞ

�
: ð1Þ

As is well known, the solutions ϕ ¼ ϕ̂ of the classical
equation of motion,

□ϕ̂þ V 0ðϕ̂Þ ¼ 0; ð2Þ

are those that minimize the action. On the other hand,
quantum fluctuations around the classical solution
δϕ ¼ ϕ − ϕ̂ satisfy the equation of motion,

ð□þm2ðϕ̂ÞÞδϕ ¼ 0; ð3Þ

with

m2ðϕ̂Þ ¼ V 00ðϕ̂Þ: ð4Þ

Let us consider a metric which can be written as a
scalar perturbation around a flat Robertson-Walker back-
ground,

ds2¼a2ðηÞf½1þ2Φðη;xÞ�dη2− ½1−2Ψðη;xÞ�dx2g; ð5Þ

where η is the conformal time, aðηÞ the scale factor, and Φ
andΨ are the scalar perturbations in the longitudinal gauge.
Given this geometry, the mode solutions δϕk to (3) can be
found using a WKB approximation to first order in metric
perturbations and to the leading adiabatic order as [12]

δϕkðη;xÞ ¼ δϕð0Þ
k ðη;xÞð1þ Pkðη;xÞ þ iδθkðη;xÞÞ; ð6Þ

where

δϕð0Þ
k ðη;xÞ ¼ 1

ð2πÞD=2

1

aðηÞðD−1Þ=2 ffiffiffiffiffiffiffiffi
2ωk

p eik·x−i
R

η
ωkðη0Þdη0

ð7Þ

are the unperturbed mode solutions with

ω2
kðηÞ ¼ k2 þm2a2ðηÞ: ð8Þ

The explicit expressions for Pkðη;xÞ and δθkðη;xÞ in
Fourier space are shown in Appendix A.
The effects of quantum fluctuations on the classical field

configuration can be taken into account using the one-loop
effective potential [12,16]

Veffðϕ̂Þ ¼ Vðϕ̂Þ þ 1

2

Z
m2ðϕ̂Þ

0

dm2hδϕ2i; ð9Þ

where Vðϕ̂Þ is the tree-level potential and the expectation
value of the operator hδϕ2i is taken over a particular
quantum state of the field. Taking into account (6) and (7)
and assuming that the quantum state has a fixed number of
particles per mode nk, the one-loop contribution to the
effective potential reads
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1

2

Z
m2ðϕ̂Þ

0

dm2hδϕ2i ¼ 1

ð2πÞDaD−1ðηÞ
1

2

Z
m2ðϕ̂Þ

0

dm2

Z
dDk

�
1

2
þ nk

�
1þ 2Pkðη;pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2a2ðηÞ

p
¼ 2

ð2πÞDaD−1ðηÞ
2πðD−1Þ=2

ΓððD − 1Þ=2Þ
1

2

Z
m2ðϕ̂Þ

0

dm2

Z
∞

0

dkkD−1
�
1

2
þ nk

�
1þ P̂kðη;pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2a2ðηÞ

p ð10Þ

where we have defined

P̂kðη;pÞ ¼
Z

1

−1
dx̂ð1 − x̂2ÞðD−3Þ=2Pkðη;pÞ; ð11Þ

where x̂ ¼ k · p=ðkpÞ and including the general integration
measure in D dimensions.
From now on, we consider a thermal quantum state.

Then, the number of particles per mode is given by the
Bose-Einstein distribution,

nTk ¼ 1

eωk=T − 1
; ð12Þ

where T is the temperature of the state, for the moment
understood as a parameter of the Bose-Einstein distribution
(see next section).
Let us define V1ðϕ̂Þ as the one-loop quantum vacuum

contribution, i.e.,

V1ðϕ̂Þ ¼
1

ð2πÞDaD−1ðηÞ
2πðD−1Þ=2

ΓððD − 1Þ=2Þ
Z

m2ðϕ̂Þ

0

dm2

×
Z

∞

0

dkkD−1 1

2

1þ P̂kðη;pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2a2ðηÞ

p ; ð13Þ

and VTðϕ̂Þ as the term that includes finite-temperature
corrections,

VTðϕ̂Þ ¼
1

ð2πÞDaD−1ðηÞ
2πðD−1Þ=2

ΓððD − 1Þ=2Þ
Z

m2ðϕ̂Þ

0

dm2

×
Z

∞

0

dkkD−1nTk
1þ P̂kðη;pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2a2ðηÞ

p ; ð14Þ

so that we can write the one-loop effective potential at finite
temperature as

Veffðϕ̂Þ ¼ Vðϕ̂Þ þ V1ðϕ̂Þ þ VTðϕ̂Þ: ð15Þ

It is important to notice that both the vacuum and the
thermal contributions have a homogeneous term, corre-
sponding to the background geometry, and an inhomo-
geneous one, proportional to the perturbations. Then,

V1ðϕ̂Þ ¼ Vh
1ðϕ̂Þ þ V i

1ðϕ̂Þ; ð16Þ

VTðϕ̂Þ ¼ Vh
Tðϕ̂Þ þ V i

Tðϕ̂Þ: ð17Þ

The homogeneous part due to vacuum effects Vh
1ðϕ̂Þ, after

applying the minimal substraction scheme MS in dimen-
sional regularization with D ¼ 3þ ϵ, is given by [12]

Vh
1ðϕ̂Þ ¼

m4ðϕ̂Þ
64π2

�
ln
�
m2ðϕ̂Þ
μ2

�
−
3

2

�
: ð18Þ

A detailed analysis of the inhomogeneous part of the
vacuum V i

1ðϕ̂Þ was performed in [11] with a cutoff
regularization and in [12] using dimensional regularization.
When a cutoff Λ is used, the result turns out to be
proportional to m2ðϕ̂ÞΛ2Φ in the static case; i.e., only
the quadratic divergence appears. In dimensional regulari-
zation, we find to first order in perturbations and to the
leading adiabatic order that

V i
1ðϕ̂Þ ¼ 0 ð19Þ

in agreement with the absence of logarithmic divergences
in the cutoff case.
In this work, we focus on the thermal contribution

VTðϕ̂Þ. The corresponding inhomogeneous contribution
can, in turn, be split in the terms proportional toΦ andΨ as

VTðϕ̂Þ ¼ Vh
Tðϕ̂Þ þ VΦ

T ðϕ̂Þ þ VΨ
T ðϕ̂Þ ð20Þ

It is important to note that expression (9) defines the
potential except for the addition of an arbitrary function
which could depend on the spacetime coordinates and the
temperature. This function does not modify the dynamics
of the field (2) since it does not introduce any dependence
on mðϕ̂Þ.
In the same fashion, the thermal contribution to the

components of the energy-momentum tensor can be
obtained from the expressions given in Ref. [12] including
the number of particles per mode nTk , thus,

hT0
0ðη;pÞi ¼ ρðη;pÞ ¼ 1

ð2πÞD
1

aDþ1

Z
dDk

�
1

2
þ nTk

�
ωk

�
1þ 2

k2

ω2
k

ΨðpÞ þ 2Pkðη;pÞ þ 2i
k · p
ω2
k

δθkðη;pÞ
�

ð21Þ
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hTi
iðη;pÞi ¼ − piðη;pÞ ¼ −

1

ð2πÞD
1

aDþ1

Z
dDk

�
1

2
þ nTk

��
k2i
ωk

ð1þ 2ΨðpÞ þ 2Pkðη;pÞÞ þ 2i
kipi

ωk
δθkðη;pÞ

�
ð22Þ

hTi
0ðη;pÞi ¼

1

ð2πÞD
1

aDþ1

Z
dDk

�
1

2
þ nTk

��
ki

�
1þ 2Pkðη;pÞ þ 2i

k · p
ω2
k

δθkðη;pÞ
�
þ ipiδθkðη;pÞ

�
ð23Þ

hTi
jðη;pÞi ¼ −

1

ð2πÞD
1

aDþ1

Z
dDk

�
1

2
þ nTk

��
kikj
ωk

ð1þ 2ΨðpÞ þ 2Pkðη;pÞÞ þ i
kipj þ kjpi

ωk
δθkðη;pÞ

�
ð24Þ

hTμ
μðη;pÞi ¼

1

ð2πÞD
1

aDþ1

Z
dDk

�
1

2
þ nTk

��
m2

ωk
ð1þ 2Pkðη;pÞÞ

�
: ð25Þ

Let us divide the energy-momentum tensor, in the same
way as for the potential case, in a vacuum contribution,
which does not depend on the number of particles per mode
nTk , and a thermal contribution.

hTμ
νðη;pÞi ¼ hTμ

νðη;pÞivac þ hTμ
νðη;pÞiT: ð26Þ

each one having a homogeneous and an inhomogeneous
part. It can be shown [12] that the energy-momentum tensor
of the vacuum is given by hTμ

νðη;pÞivac ¼ ρvacδ
μ
ν, where

the energy density ρvac and pressure pvac are given in the
M̄S renormalization scheme with D ¼ 3þ ϵ by

ρvac ¼ −pvac ¼
m4

64π2

�
log

�
m2

μ2

�
−
3

2

�
: ð27Þ

This implies that the inhomogeneous part of the vacuum
contribution is zero when dimensional regularization is
used, therefore metric perturbations do not contribute to the
leading adiabatic order. In this paper, we compute the
homogeneous and inhomogeneous parts of hTμ

νðη;pÞiT .

III. STATIC SPACETIMES

Although the expressions for the perturbed solutions
given in Appendix A are valid for general perturbed FRW
spacetimes, in this work we focus on static spacetimes; i.e.,
we will take a ¼ 1 and Φ ¼ ΦðxÞ, Ψ ¼ ΨðxÞ. The general
case is of great interest for cosmological scenarios, never-
theless the time dependence of the scale factor increases the
complexity of the computations, making extremely difficult
to obtain analytical expressions. In addition, in order to
define a thermodynamic temperature, there must be a
timelike Killing vector field; namely, the spacetime must
be static or stationary.
In order to compute VTðϕ̂Þ and the energy-momentum

tensor hTμ
νðη;pÞiT thermal contributions, our first step will

be to expand the Pkðη;pÞ and δθkðη;pÞ functions in powers
of pη (Appendix B). These expansions allow us to find a
common structure of the integrals involved.

A. Effective potential

Taking into account (B1) and (10), it is clear that we have
to deal with the following kind of integrals,

1

2

Z
m2ðϕ̂Þ

0

dm2

Z
∞

0

dkkD−1 1

eωk=T − 1

1

ωk

�
k
ωk

�
2α
�
m
ωk

�
2n

α ¼ 0; 1; 2;… n ¼ 0; 1; 2; ð28Þ

to compute the finite-temperature correction to the effective
potential.
It is convenient to use the dimensionless variables

u ¼ ωk=T and x ¼ m=T instead of k and m, respectively.
In terms of these new variables, the integral reduces to
(extracting a global factor TDþ1)

IXα;n≡
Z

X

0

dx
Z

∞

x
du

1

eu−1

x1þ2n

u2αþ2n ðu2−x2ÞD=2þα−1; ð29Þ

where X ≡mðϕ̂Þ=T.
It is also useful to interchange the order of integration of

this integral and divide it in the following way,

IXα;n ¼
�Z

X

0

du
Z

u

0

dxþ
Z

∞

X
du

Z
X

0

dx

�

×

�
1

eu − 1

x1þ2n

u2αþ2n ðu2 − x2ÞD=2þα−1
�
; ð30Þ

where the first part takes into account the contribution from
modes with energies below the mass of the field, while the
second part includes the contribution from modes with
energies above the mass of the field.

B. Energy-momentum tensor

To compute the energy-momentum tensor, the following
integrals appear:
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Z
∞

0

dkkD−1 1

eωk=T − 1
ωk

�
k
ωk

�
2α
�
m
ωk

�
2n

α ¼ 0; 1; 2;… n ¼ 0; 1; 2: ð31Þ

Using the same dimensionless variables u and x, we get
(also extracting a global factor TDþ1)

JXα;n ≡
Z

∞

X
du

1

eu − 1

X2n

u2αþ2n−2 ðu2 − X2ÞD=2þα−1: ð32Þ

Only modes with energies above the mass of the field
contribute to the energy-momentum tensor.
In the following, we compute the integrals IXα;n (30) and

JXα;n (32) in the nonrelativistic and the ultrarelativistic
limits.

IV. NONRELATIVISTIC LIMIT

A. Effective potential

In the nonrelativistic limit mðϕ̂Þ=T → ∞ (or X → ∞),
the contribution from modes with energies above the
mass of the field is exponentially damped because of the
Bose-Einstein factor; hence, the leading contribution in the
nonrelativistic limit is given by the first part of (30) when
taking X ¼ ∞,

I∞α;n ¼
Z

∞

0

du
Z

u

0

dx
1

eu − 1

x1þ2n

u2αþ2n ðu2 − x2ÞD=2þα−1

¼ ΓðD=2þ αÞn!
2ΓðD=2þ αþ nþ 1ÞD!ζðDþ 1Þ; ð33Þ

where ζðxÞ is the Riemann Zeta function.
Therefore, using expression (10) together with the result

for the integral (33) and the expansion of P̂kðη;pÞ (B1), we
obtain (assumingD ¼ 3) for the leading contributions after
resummation of the series in pη

Vh
TðLÞðϕ̂Þ ¼

π2

90
T4 ð34Þ

VΦ
TðLÞðϕ̂Þ ¼

π2

90
T4ΦðpÞ × 4

�
3
sinðpηÞ
ðpηÞ3 − 3

cosðpηÞ
ðpηÞ2 − 1

�
ð35Þ

VΨ
TðLÞðϕ̂Þ ¼

π2

90
T4ΨðpÞ × 12

��
6

ðpηÞ4 −
1

ðpηÞ2
�
cosðpηÞ

þ
�

3

ðpηÞ3 −
6

ðpηÞ5
�
sinðpηÞ

�
: ð36Þ

Note that there is no dependence on the field (which may
appear through mass terms). Therefore, these expressions
do not affect the field dynamics and they can be neglected.
On the other hand, even though we are considering static

backgrounds, there is an explicit time dependence of the
result. This can be traced back to the particular mode choice
in (A1) and (A2). In particular, taking the η → ∞ limit,
which corresponds to setting initial conditions for the
modes in the remote past, we recover static results for
the effective potential.
In the static limit η → ∞, the following expression is

obtained:

VTðLÞðϕ̂Þ ¼
π2

90
T4ð1 − 4ΦðpÞÞ: ð37Þ

It can be shown that the leading inhomogeneous effect in
the static limit only depends on the Φ potential and, in fact,
it can be obtained from the homogeneous result replacing
the temperature by the local Tolman temperature [13],

TTolman ¼
Tffiffiffiffiffiffi
g00

p ≃ Tð1 −ΦðpÞÞ: ð38Þ

Notice, however, that in the results for finite time given
in (35) and (36), the explicit time dependence of the
effective potential prevents the introduction of a Tolman
temperature.

The next-to-leading correction, VðNLÞ
T , including terms

OðT=mðϕ̂ÞÞ, can be obtained by applying a modified
version of the Laplace method to the following integral,1

IXα;n − I∞α;n ≃ −
Z

∞

X
du

Z
u

X
dxe−u

x1þ2n

u2αþ2n ðu2 − x2ÞD=2þα−1

¼
Z

∞

X
du

1

2
e−uuD

�
BX2=u2ð1þ n;D=2þ αÞ

−
Γð1þ nÞΓðD=2þ αÞ
ΓðD=2þ αþ nþ 1Þ

�
; ð39Þ

where we have replaced the Bose-Einstein factor by the
Boltzmann factor. Bzða; bÞ is the incomplete Beta function.
When u=X ≫ 1, the integrand is exponentially damped as
e−u=X. Then, we Taylor expand the expression inside the
brackets around X2=u2 ¼ 1 to obtain

IXα;n − I∞α;n ∼ −
Z

∞

X
du

1

Dþ 2α
e−uuD

�
1 −

X2

u2

�
D=2þα

¼ −
Z

∞

X
du

1

Dþ 2α
exp

�
−uþD logðuÞ

þ
�
D
2
þ α

�
log

�
1 −

X2

u2

��
: ð40Þ

1The symbol ≃ stands for an approximation in the Taylor
sense, while ∼ stands for an asymptotic approximation, namely
the quotient between both results equals 1 in the appropriate limit.
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The expression inside the exponential has a maximum at
u ∼ X when X → ∞.2 Taylor expanding the argument of
the exponential around u ¼ X up to order OðuÞ (including
the logarithmic divergence), the integration in u can be
performed to get the following result,

IXα;n − I∞α;n ∼ −23ðD=2þαÞþ1ΓðD=2þ αÞe−X

×
XDþ1

ð4X −Dþ 6αÞD=2þαþ1

∼ −2D=2þα−1ΓðD=2þ αÞe−XXD=2−α; ð41Þ

which does not depend on n. Because of the factor XD=2−α

in the last expression, the expansion in pη mixes with the
expansion in Xð¼ mðϕ̂Þ=TÞ.
Finally, the next-to-leading contribution to the potential

for pη ≪ 1 is given by

VTðNLÞðϕ̂Þ ¼ −
T4

2
ffiffiffi
2

p
π3=2

e−mðϕ̂Þ=T
�
mðϕ̂Þ
T

�3=2

×

�
1þ 3ΨðpÞ − ðpηÞ2

2
ΦðpÞ

�
: ð42Þ

A better approximation for smaller values of X is obtained
if we do not drop α in the denominator in (41). This
improved approximation is shown in Fig. 1 (right panel). It

is important to note that each order in ðpηÞ is suppressed by
a factor ½T=mðϕ̂Þ� with respect to the previous order,
because of the mixing discussed above. For instance, the
correction proportional to Ψ does not depend on ðpηÞ to
leading order in ½T=mðϕ̂Þ� [see Eq. (42)], then the depend-
ence on ðpηÞ2 proportional to Ψ is suppressed by a factor
½T=mðϕ̂Þ� with respect to the ðpηÞ2 correction proportional
to Φ, as shown in Fig. 1 (right panel).
Because of the mixing between the expansion in

Xð¼ mðϕ̂Þ=TÞ and pη we cannot obtain a result valid
for arbitrary scales p and times η. However, it is possible to
obtain the static result by taking the limit η → ∞ directly on
(10). According to this procedure, we get

VTðNLÞðϕ̂Þ ¼ −
T4

2
ffiffiffi
2

p
π3=2

e−mðϕ̂Þ=T
�
mðϕ̂Þ
T

�3=2

×

�
1 −

35

8
ΦðpÞ −

�
mðϕ̂Þ
T

�
ΦðpÞ

�
: ð43Þ

As can be checked in a straightforward way from (43),
also for the next to leading contribution in the static limit,
the inhomogeneous correction can be obtained from the
homogeneous result by replacing the temperature with the
Tolman temperature [13].

B. Energy-momentum tensor

The leading order of the energy-momentum tensor is
already exponentially damped, since only modes with
energies above the mass of the field contribute. We write
the integral (32) as

JXα;n ≃
Z

∞

X
due−u

X2n

u2αþ2n−2 ðu2 − X2ÞD=2þα−1 ð44Þ
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m T eq. 35
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FIG. 1. Left panel: Points correspond to the numerical value of the thermal contributions to the potential proportional to Φ and Ψ
taking mðϕ̂Þ=T ¼ 10, whereas the solid lines represent the leading approximations (35) and (36). Right panel: Points are the difference
between the numerical values of the potential and the approximations (35) (blue points) and (36) (black points) for mðϕ̂Þ=T ¼ 10. The
next-to-leading correction for mðϕ̂Þ=T ¼ 10 up to ðpηÞ2 (dashed lines) and ðpηÞ30 (solid lines) is shown for comparison.

2Here we are dropping a term linear in α in the expression for
the maximum. This means that we cannot allow α → ∞. Since α
is related with the order of the expansion in pη, the results are
only valid if the series appearing in (B1) is truncated at some
order such that α ≪ X. Although it could be done for arbitrary α,
it would not be very useful if the expression cannot be resummed.
Nevertheless, it will be shown that the l-term is suppressed by a
factor 1=Xl, thus only the first terms are relevant in this limit
(X → ∞).
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where the Bose-Einstein factor has been replaced by the Boltzmann factor. Applying the Laplace’s method again
we get

JXα;n ≃ X2n

Z
∞

X
du exp

�
−u − 2ðαþ n − 1Þ logðuÞ þ

�
D
2
þ α − 1

�
log ðu2 − X2Þ

�

∼ 23ðD=2þαÞ−1ΓðD=2þ αÞe−X XDþ1

ð4X −Dþ 6αþ 8n − 6ÞD=2þα

∼ 2D=2þα−1ΓðD=2þ αÞe−XXD=2−αþ1 ð45Þ

Then, taking into account the expressions given in Sec. II
and the result (45), the energy-momentum tensor for
pη ≪ 1 is given by

ρT ≡ hT0
0ðη;pÞiT

∼
T4

2
ffiffiffi
2

p
π3=2

e−mðϕ̂Þ=T
�
mðϕ̂Þ
T

�5=2

×

�
1þ 3ΨðpÞ − ðpηÞ2

2
ΦðpÞ

�
ð46Þ

−pT ≡ hTi
iðη;pÞiT

∼ −
T4

2
ffiffiffi
2

p
π3=2

e−mðϕ̂Þ=T
�
mðϕ̂Þ
T

�3=2

×

�
1þ 5ΨðpÞ − 5ðpηÞ2

6
ΦðpÞ

�
ð47Þ

hTi
0ðη;pÞiT∼ −

T4

2
ffiffiffi
2

p
π3=2

e−mðϕ̂Þ=T
�
mðϕ̂Þ
T

�5=2

ðipiÞηΦðpÞ

ð48Þ

hTi
jðη;pÞiT ∼ −

T4

2
ffiffiffi
2

p
π3=2

e−mðϕ̂Þ=T
�
mðϕ̂Þ
T

�3=2

× ði2pipjÞη2ΦðpÞ i ≠ j ð49Þ

where ρT and pT are the energy density and pressure
produced by the thermal corrections. We have only retained
the leading order inmðϕ̂Þ=T. Further correctionsOððpηÞ2lÞ
are suppressed by a factor ðmðϕ̂Þ=TÞl.
In the nonrelativistic case, it is not possible to take the

static limit in the final expressions since we only have the
results for pη ≪ 1 as discussed before. However, the static
expression can be obtained by taking the static limit in the
original expressions (25)

ρT ≡ hT0
0ðη;pÞiT ∼

T4

2
ffiffiffi
2

p
π3=2

e−mðϕ̂Þ=T
�
mðϕ̂Þ
T

�5=2�
1 −

39

8
ΦðpÞ −

�
mðϕ̂Þ
T

�
ΦðpÞ

�
ð50Þ

−pT ≡ hTi
iðη;pÞiT ∼ −

T4

2
ffiffiffi
2

p
π3=2

e−mðϕ̂Þ=T
�
mðϕ̂Þ
T

�3=2�
1 −

35

8
ΦðpÞ −

�
mðϕ̂Þ
T

�
ΦðpÞ

�
: ð51Þ

Once again, in the static limit, the inhomogeneous correc-
tions, depending only on the Φ potential and can be
obtained from the homogenous one by introducing the
Tolman temperature.

V. ULTRARELATIVISTIC LIMIT

A. Effective potential

In the ultrarelativistic limit,mðϕ̂Þ=T → 0 (or X → 0), the
dominant contribution comes from modes with energies
higher than the mass of the field. Therefore, the second part
of (30) gives

IXα;n ≃
Z

∞

X
du

Z
X

0

dx
1

eu − 1

x1þ2n

u2αþ2n ðu2 − x2ÞD=2þα−1

¼
Z

∞

X
du

1

2

uD

eu − 1
BX2=u2ð1þ n;D=2þ αÞ

≃
Z

∞

X
du

1

2

uD−2n−2

eu − 1

X2þ2n

1þ n
ð52Þ

where we have expanded the incomplete Beta function
Bzða; bÞ for X ≪ 1 in the last line. The leading contribution
comes from n ¼ 0. Replacing the lower limit of integration
by 0 we get in that limit
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IXα;0 ≃
Z

∞

0

du
1

2

uD−2

eu − 1
X2

¼ 1

2
ΓðD − 1ÞLiD−1ð1ÞX2 ð53Þ

where LinðzÞ is the polylogarithm function.
Therefore, from (30) and using the expansion of P̂kðη;pÞ

in (B1) and the result (53), we can resum this contribution
to get the leading contribution

Vh
TðLÞðϕ̂Þ ¼

T4

24

�
mðϕ̂Þ
T

�2

ð54Þ

VΦ
TðLÞðϕ̂Þ ¼

T4

12

�
mðϕ̂Þ
T

�2

ΦðpÞ ×
�
sinðpηÞ
pη

− 1

�
ð55Þ

VΨ
TðLÞðϕ̂Þ ¼

T4

12

�
mðϕ̂Þ
T

�2

ΨðpÞ ×
�
sinðpηÞ
pη

�
ð56Þ

The explicit time dependence of the general results
obtained in a static metric can be traced back to the initial
conditions of the modes. Taking the limit η → ∞ in (55)
and (56), the initial conditions are washed out and the
remaining correction in Fourier space is

VTðLÞðϕ̂Þ ¼
T4

24

�
mðϕ̂Þ
T

�2

ð1 − 2ΦðpÞÞ: ð57Þ

In this case we can also obtain the inhomogeneous result by
replacing the temperature by the local Tolman temperature
[13] in the homogeneous result.
To get the real space result in the static limit, one has to

compute the Fourier transform of the complete expression
and then take the static limit, η → ∞. Following this
procedure, it is possible to get the real space result for
arbitrary perturbation (see Appendix C) which reads

VTðLÞðϕ̂Þ ¼
T4

24

�
mðϕ̂Þ
T

�2

ð1 − 2ΦðrÞÞ: ð58Þ

Therefore, as expected, the static limit and the Fourier
transform commute [compare (57) and (58)]. This is a
general conclusion for the functions in Fourier space
appearing in this paper due to the results of Appendix C.
In real space, the corrections due to Newtonian pertur-

bations ΦNðpÞ and ΨNðpÞ given by

ΦNðpÞ ¼ ΨNðpÞ ¼ −4π
GM
p2

ð59Þ

ΦNðrÞ ¼ ΨNðrÞ ¼ −
GM
r

; ð60Þ

inside the light cone (r < jηj) are

VΦN
TðLÞðϕ̂Þ ¼

T4

12

�
mðϕ̂Þ
T

�2

ΦNðrÞ ×
�

r
jηj − 1

�
ð61Þ

VΨN
TðLÞðϕ̂Þ ¼

T4

12

�
mðϕ̂Þ
T

�2

ΨNðrÞ ×
�

r
jηj

�
ð62Þ

while on and outside the light cone (r ≥ jηj) are

VΦN
TðLÞðϕ̂Þ ¼ 0 ð63Þ

VΨN
TðLÞðϕ̂Þ ¼

T4

12

�
mðϕ̂Þ
T

�2

ΨNðrÞ: ð64Þ

The next-to-leading order corrections can be obtained by
computing the first part of Eq. (30) plus next-to-leading
terms coming from Eq. (52) (see Appendix D). Finally,
after resummation of the series expansion (B1) we get for
VTðNLÞ, [up to Oððm=TÞ5Þ]

Vh
TðNLÞðϕ̂Þ ¼ T4

�
mðϕ̂Þ
T

�3�
−

1

12π
þ 1

32π2

�
mðϕ̂Þ
T

��
log

�
T
M

�
þ 3

4
− γ þ logð4πÞ

��
ð65Þ

VΦ
TðNLÞðϕ̂Þ ¼ T4

�
mðϕ̂Þ
T

�3

ΦðpÞ
�
−

1

12π
ðJ0ðpηÞ − 1Þ þ 1

32π2

�
mðϕ̂Þ
T

�
ðcosðpηÞ − 1Þ þ 1

720π

�
mðϕ̂Þ
T

�2

pηJ1ðpηÞ
�

ð66Þ

VΨ
TðNLÞðϕ̂Þ ¼ T4

�
mðϕ̂Þ
T

�3

ΨðpÞ
�
−

1

12π

�
J0ðpηÞ þ

J1ðpηÞ
pη

�
þ 1

32π2

�
mðϕ̂Þ
T

��
cosðpηÞ þ 2 sinpη

pη

�

þ 1

720π

�
mðϕ̂Þ
T

�2

ðpηJ1ðpηÞ − 3J0ðpηÞÞ
�

ð67Þ

where γ is Euler’s constant and JnðxÞ Bessel functions. The leading and next-to-leading inhomogeneous thermal corrections
of VT are shown in Fig. 2.
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Considering Newtonian perturbations ΦN and ΨN , in
real space we get for the region inside the light cone
(r < jηj)

VΦN
TðNLÞðϕ̂Þ ¼ T4

�
mðϕ̂Þ
T

�3

ΦNðrÞ

×

�
1

12π
−

1

6π2
arcsin

�
r
jηj

��
ð68Þ

VΨN
TðNLÞðϕ̂Þ ¼ T4

�
mðϕ̂Þ
T

�3

ΨNðrÞ

×

�
−

1

12π2
r
η

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r2

η2

s
−

1

4π2
arcsin

�
r
jηj

��
;

ð69Þ

and outside and on the light cone (r ≥ jηj)

VΦN
TðNLÞðϕ̂Þ ¼ 0 ð70Þ

VΨN
TðNLÞðϕ̂Þ ¼ T4

�
mðϕ̂Þ
T

�3

ΨNðrÞ ×
�
−

1

8π

�
: ð71Þ

Here for simplicity we have only shown the Oðm=TÞ3
contributions.

In the static limit η → ∞ one gets

VTðNLÞðϕ̂Þ ¼ −
T4

12π

�
mðϕ̂Þ
T

�3

ð1 −ΦðpÞÞ; ð72Þ

which is also valid in real space replacing ΦðpÞ by ΦðrÞ
(see Appendix C). Here again we find that the inhomo-
geneous result can be obtained by replacing the temperature
in the homogeneous contribution by the local Tolman
temperature.

B. Energy-momentum tensor

The leading contribution is given by the integral (32)
when n ¼ 0

JXα;0 ¼
Z

∞

X
du

1

eu − 1

1

u2α−2
ðu2 − X2ÞD=2þα−1

≃
Z

∞

0

du
uD−2

eu − 1
ðu2 þ ð1 −D=2 − αÞX2Þ

¼ ΓðD − 1Þ½ðD − 1ÞDζðDþ 1Þ
þ ð1 −D=2 − αÞζðD − 1ÞX2� ð73Þ

where we have replaced the lower limit of integration by 0
and expanded the integrand around X ¼ 0 in the second
line. Therefore, we get for the energy-momentum tensor

ρT
T4

¼ hT0
0ðη;pÞiT
T4

≃
π2

30

�
1 − 4ΦðpÞ þ 4 sinðpηÞ

pη
ðΦðpÞ þ ΨðpÞÞ

�

−
1

24

�
mðϕ̂Þ
T

�2�
1þ

�
2 cosðpηÞ þ 4 sinðpηÞ

pη

�
ΨðpÞ þ ð2 cosðpηÞ − 2ÞΦðpÞ

�
ð74Þ

pT

T4
¼ −

hTi
iðη;pÞiT
T4

≃
π2

90

�
1 − 4ΦðpÞ þ 4 sinðpηÞ

pη
ðΦðpÞ þΨðpÞÞ

�

−
1

24

�
mðϕ̂Þ
T

�2�
1þ

�
2

3
cosðpηÞ þ 8 sinðpηÞ

3pη

�
ΨðpÞ þ

�
2

3
cosðpηÞ þ 4 sinðpηÞ

3pη
− 2

�
ΦðpÞ

�
ð75Þ

hTi
0ðη;pÞiT
T4

≃
�
i
pi

p

�
2π2

15

�
cosðpηÞ

pη
−
sinðpηÞ
ðpηÞ2

�
ðΦðpÞ þ ΨðpÞÞ

þ
�
i
pi

p

�
1

12

�
mðϕ̂Þ
T

�2�
sinðpηÞΦðpÞ þ

�
sinðpηÞ þ 2

sinðpηÞ
ðpηÞ2 − 2

cosðpηÞ
pη

�
ΨðpÞ

�
ð76Þ

hTi
jðη;pÞiT
T4

≃
�
i2
pipj

p2

�
2π2

15

�
sinðpηÞ
pη

þ 3
cosðpηÞ
ðpηÞ2 − 3

sinðpηÞ
ðpηÞ3

�
ðΦðpÞ þΨðpÞÞ þ

�
i2
pipj

p2

�
1

12

�
mðϕ̂Þ
T

�2

×

��
sinðpηÞ
pη

− cosðpηÞ
�
ΦðpÞ þ

�
6
sinðpηÞ
ðpηÞ3 −

sinðpηÞ
pη

− 6
cosðpηÞ
ðpηÞ2 − cosðpηÞ

�
ΨðpÞ

�
i ≠ j ð77Þ
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hTμ
μðη;pÞiT
T4

≃
1

12

�
mðϕ̂Þ
T

�2�
1þ

�
2 sinðpηÞ

pη
− 2

�
ΦðpÞ þ 2 sinðpηÞ

pη
ΨðpÞ

�
; ð78Þ

which does not correspond to a perfect fluid.3

In real space, we have for Newtonian perturbations inside the light cone (r < jηj)

ρT
T4

¼ hT0
0ðη; rÞiT
T4

≃
π2

30

�
1 − 4

��
1 −

r
jηj

�
ΦNðrÞ −

r
jηjΨNðrÞ

��
−

1

24

�
mðϕ̂Þ
T

�2�
1 − 2ΦNðrÞ þ 4

r
jηjΨNðrÞ

�
ð79Þ

pT

T4
¼ −

hTi
iðη; rÞiT
T4

≃
π2

90

�
1− 4

��
1−

r
jηj

�
ΦNðrÞ−

r
jηjΨNðrÞ

��
−

1

24

�
mðϕ̂Þ
T

�2�
1− 2

�
1−

2

3

r
jηj

�
ΦNðrÞ þ

8

3

r
jηjΨNðrÞÞ

�
ð80Þ

hTi
0ðη; rÞiT
T4

≃
π2

45η2
∂i½r3ðΦNðrÞ þ ΨNðrÞÞ� −

1

36η2

�
mðϕ̂Þ
T

�2

∂iðr3ΨNðrÞÞ ð81Þ

VT for m Φ T 0.1

Eq. 55 for m Φ T 0.1
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FIG. 2. Left upper panel: Points show the numerical value of the thermal contribution to the potential taking mðϕ̂Þ=T ¼ 0.1 and the
continuous line corresponds to the approximations in (55) and (56). Right upper panel: Difference between the numerical value of the
potential for mðϕ̂Þ=T ¼ 0.1 and the approximations (55) (blue points) or (56) (black points). The next-to-leading corrections
[Oððm=TÞ3Þ] given by (66) (green solid line) and (67) (red solid line) for mðϕ̂Þ=T ¼ 0.1. Left bottom panel: Difference between the
numerical value and the Oððm=TÞ3Þ approximation (blue and black points). The Oððm=TÞ4Þ correction is plotted as a solid line. Right
bottom panel: Difference between the numerical value and the Oððm=TÞ4Þ approximation (blue and black points). The Oððm=TÞ5Þ
correction is plotted as a solid line.

3The energy-momentum tensor given by Eqs. (74)–(77) is conserved.
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hTi
jðη; rÞiT
T4

≃ −
π2

300jηj3 ∂i∂j½r5ðΦNðrÞ þ ΨNðrÞÞ�

þ 1

240jηj3
�
mðϕ̂Þ
T

�2

∂i∂jðr5ΨNðrÞÞ i ≠ j

ð82Þ

hTμ
μðη; rÞiT
T4

≃
1

12

�
mðϕ̂Þ
T

�2�
1 − 2

�
1 −

r
jηj

�
ΦNðrÞ

þ 2
r
jηjΨNðrÞ

�
: ð83Þ

Outside the light cone (r > jηj), we get

ρT
T4

¼ hT0
0ðη; rÞiT
T4

≃
π2

30
ð1þ 4ΨNðrÞÞ −

1

24

�
mðϕ̂Þ
T

�2

½1þ 6ΨNðrÞ� ð84Þ

pT

T4
¼ −

hTi
iðη; rÞiT
T4

≃
π2

90
ð1þ 4ΨNðrÞÞ

−
1

24

�
mðϕ̂Þ
T

�2�
1þ 10

3
ΨNðrÞÞ

�
ð85Þ

hTi
0ðη;rÞiT
T4

≃−
2π2η

45
∂iðΦNðrÞþΨNðrÞÞ

þ η

12

�
mðϕ̂Þ
T

�2

∂i

�
ΦNðrÞþ

5

3
ΨNðrÞ

�
ð86Þ

hTi
jðη;rÞiT
T4

≃−
2π2η2

225
∂i∂jðΦNðrÞþΨNðrÞÞ

þ η2

36

�
mðϕ̂Þ
T

�2

∂i∂j

�
ΦNðrÞþ

7

5
ΨNðrÞ

�
i≠ j

ð87Þ

hTμ
μðη; rÞiT
T4

≃
1

12

�
mðϕ̂Þ
T

�2

½1þ 2ΨNðrÞ�; ð88Þ

and on the light cone (r ¼ jηj), the results are

ρT
T4

¼hT0
0ðη;rÞiT
T4

≃
π2

30
ð1þ4ΨNðrÞÞ−

1

24

�
mðϕ̂Þ
T

�2

½1−ΦNðrÞþ5ΨNðrÞ�

ð89Þ

pT

T4
¼−

hTi
iðη;rÞiT
T4

≃
π2

90
ð1þ4ΨNðrÞÞ−

1

24

�
mðϕ̂Þ
T

�2�
1−

1

3
ΦNðrÞþ3ΨNðrÞ

�
ð90Þ

hTi
0ðη; rÞiT
T4

≃ −
2π2η

45
∂iðΦNðrÞ þ ΨNðrÞÞ

þ η

12

�
mðϕ̂Þ
T

�2

∂i

�
ΦNðrÞ þ

5

3
ΨNðrÞ

�
ð91Þ

hTi
jðη; rÞiT
T4

≃ −
2π2η2

225
∂i∂jðΦNðrÞ þ ΨNðrÞÞ

þ η2

36

�
mðϕ̂Þ
T

�2

∂i∂j

�
ΦNðrÞ þ

7

5
ΨNðrÞ

�
i ≠ j ð92Þ

hTμ
μðη; rÞiT
T4

≃
1

12

�
mðϕ̂Þ
T

�2

½1þ 2ΨNðrÞ�: ð93Þ

In the static limit, the energy density and pressure are

ρT
T4

¼ hT0
0ðη;pÞiT
T4

≃
π2

30
ð1 − 4ΦðpÞÞ − 1

24

�
mðϕ̂Þ
T

�2

ð1 − 2ΦðpÞÞ ð94Þ

pT

T4
¼ −

hTi
iðη;pÞiT
T4

≃
π2

90
ð1 − 4ΦðpÞÞ − 1

24

�
mðϕ̂Þ
T

�2

ð1 − 2ΦðpÞÞ ð95Þ

hTμ
μðη;pÞiT
T4

≃
1

12

�
mðϕ̂Þ
T

�2

ð1 − 2ΦðpÞÞ; ð96Þ

the nondiagonal terms being zero. Once again, these results
can be interpreted as being the corresponding energy
density and pressure for a classical gas at the local
Tolman temperature [13] in agreement with [14,15]. The
same expressions for the static limit apply in real space (see
Appendix C).

VI. THERMAL SHIFT OF THE EFFECTIVE
POTENTIAL MINIMA

Once the effective potential is obtained, the value of the
field for which

Veff
0ðϕ̂Þ ¼ 0 ð97Þ

FINITE-TEMPERATURE CORRECTIONS TO THE ENERGY- … PHYS. REV. D 97, 125017 (2018)

125017-11



determines the value attained by the classical field ϕ̂.
The inhomogeneous contributions to the effective potential
will now induce a spatial dependence on ϕ̂ which can be
written as

ϕ̂ðη;xÞ ¼ ϕ̂0 þ Δϕ̂ðη;xÞ; ð98Þ

where ϕ̂0 is the minimum of the potential in the absence of
metric perturbations, but including the one-loop correc-
tions, i.e.,

Vh
eff

0ðϕ̂0Þ ¼ V 0ðϕ̂0Þ þ Vh
1
0ðϕ̂0Þ þ Vh

T
0ðϕ̂0Þ ¼ 0; ð99Þ

then to first order in metric perturbations and taking into
account that Vi

1 ¼ 0 in dimensional regularization, we get

Δϕ̂ ¼ −
V i
T
0ðϕ̂0Þ

Vh
eff

00ðϕ̂0Þ
¼ −

1

Vh
eff

00ðϕ̂0Þ
dm2

dϕ̂

				
ϕ̂¼ϕ̂0

dV i
T

dm2

				
ϕ̂¼ϕ̂0

:

ð100Þ

Thus, the relative classical field variation is given by the
temperature correction

Δϕ̂ ¼ −
V 000ðϕ̂0Þ
Vh
eff

00ðϕ̂0Þ
dV i

T

dm2

				
ϕ̂¼ϕ̂0

: ð101Þ

The perturbation is therefore proportional to the third
derivative of the tree-level potential, so that variations in
the field expectation value are only generated in theories
with self-interactions.
In the nonrelativistic limit and in the static limit we get in

Fourier space

Δϕ̂Tðη;pÞ ¼
e−mðϕ̂Þ=T

4
ffiffiffi
2

p
π3=2

�
mðϕ̂Þ
T

�3=2

× V 000ðϕ̂0Þ
�

T2

Vh
eff

00ðϕ̂0Þ

�
ΦðpÞ: ð102Þ

In the ultrarelativistic limit, we obtain for arbitrary η

Δϕ̂ðη;pÞ ¼ −
V 000ðϕ̂0Þ

12

�
T2

Vh
eff

00ðϕ̂0Þ

���
sinðpηÞ
pη

− 1

�
ΦðpÞ

þ
�
sinðpηÞ
pη

�
ΨðpÞ

�
: ð103Þ

which in the static limit reduces to

Δϕ̂ðpÞ ¼ V 000ðϕ̂0Þ
12

�
T2

Vh
eff

00ðϕ̂0Þ

�
ΦðpÞ; ð104Þ

valid also in real space replacing ΦðpÞ by ΦðrÞ. In
particular, in real space, we get for Newtonian potentials
inside the light cone (r < jηj)

Δϕ̂ðη; rÞ ¼ −
V 000ðϕ̂0Þ

12

�
T2

Vh
eff

00ðϕ̂0Þ

�

×

��
r
jηj − 1

�
ΦNðrÞ þ

r
jηjΨNðrÞ

�
; ð105Þ

while outside and on the light cone (r ≥ jηj)

Δϕ̂ðη; rÞ ¼ −
V 000ðϕ̂0Þ

12

�
T2

Vh
eff

00ðϕ̂0Þ

�
ΨNðrÞ: ð106Þ

Thus, we see that outside and on the light cone (r ≥ jηj), the
result reduces to minus the static limit result (104). Inside
the light cone (r < jηj), the thermal shift depends on time
and approaches asymptotically the static case.
From these results we see that there is a negligible shift in

the classical field ϕ̂ at low temperature because of the
exponential suppression, however, depending on the form
of the tree-level potential, the shift generated by metric
perturbations in the ultrarelativistic limit could be relevant
in certain cases.
Now, let us focus on the critical temperature of the phase

transition Tc defined by [16]

Veffðϕ̂0 þ Δϕ̂Þ ¼ Veffð0Þ ð107Þ

where Veff , ϕ̂0 and Δϕ̂ depend on the temperature T.
Expanding Eq. (107) around the critical temperature in
the absence of metric perturbations T0

c , we get for the
leading order

Vh
effðϕ̂0Þ ¼ Vh

effð0Þ ð108Þ

which is the definition of T0
c . Considering the next to

leading order and solving for δTc ¼ Tc − T0
c, we obtain the

following expression for the shift in the critical temperature
produced by metric perturbations4

δTc ¼ −
V i
effðϕ̂0Þ

d
dT ðVh

effðϕ̂0ÞÞ

				
T¼T0

c

: ð109Þ

It can be shown (see Appendix E) that in the static limit

4To get this expression we have redefined the effective
potential by adding a function of the temperature in such a
way that Vh

effð0Þ ¼ 0 and d
dT V

h
effð0Þ ¼ 0 for every T. This does

not change the dynamics of the field since the aforementioned
function of the temperature does not depend on the field ϕ
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V i
effðϕ̂0Þ

d
dT ðVh

effðϕ̂0ÞÞ
¼ −TΦðpÞ ð110Þ

therefore, in that case, the shift in the critical temperature is
given by

δTc

T0
c
¼ ΦðpÞ: ð111Þ

i.e., once again the curvature perturbation Ψ does not
contribute to the shift.

VII. CONCLUSIONS

Considering a scalar field at finite temperature in an
inhomogeneous static spacetime, we have computed the
one-loop corrections to the effective potential and to the
energy-momentum tensor induced by static scalar metric
perturbations around a Minkowski background to first
order in metric perturbations. To this aim, we have applied
the formalism developed in [11,12]. In particular we have
used the explicit expressions for the perturbed field modes
together with the assumptions of adiabatic evolution of the
field. In order to obtain analytical expressions, the non-
relativistic and ultrarelativistic limits have been considered.
In the nonrelativistic limit, we obtained the corresponding

expressions in the static limit and also the limits for large-
scale perturbations (small p) or times close to the initial time.
In the ultrarelativistic limit, we obtain the complete results
for arbitrary p and η up to Oðm=TÞ5. In the static limit, our
results agree with those in [14,15] which were obtained by
means of the Schwinger-DeWitt expansion. The energy
density and pressure in the static limit are consistent with
a local thermal distributions at the local Tolman temperature.
Besides, our results are sensitive to the initial conditions set
at the initial time for the mode solutions.
We have also discussed the space-dependent shift in

the classical field induced by the metric perturbations. As
expected, in the nonrelativistic limit the shift is Boltzmann
suppressed. However, in the ultrarelativistic case and
depending on the shape of the potential, the shift could
be non-negligible.
The results of the paper have shown that mode summa-

tion is a useful technique to obtain explicit expressions for
one-loop quantities at zero and finite temperature. Unlike
the more standard Schwinger-DeWitt expansion, this
method allows to calculate not only the local contributions
to the effective action, but also the finite nonlocal ones
which will appear at second order in the perturbative
expansion. Future work along this line will allow to explore
this possibility.
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APPENDIX A: PERTURBED MODE SOLUTION

The expression for Pkðη;pÞ and δθkðη;pÞ is given by
[12] (see also [17,18]),

Pkðη;pÞ ¼
Z

η

0

e−ik·pβkðη;η0Þ
Hkðη0;pÞ
2ωkðη0Þ

dη0

þ e−ik·pβkðη;0ÞPkð0;pÞ; ðA1Þ

δθkðη;pÞ ¼
Z

η

0

e−ik·pβkðη;η0ÞGkðη0;pÞdη0

þ e−ik·pβkðη;0Þδθkð0;pÞ; ðA2Þ

where Pkð0;pÞ, δθkð0;pÞ are the initial conditions, and

βkðηf; ηiÞ ¼
Z

ηf

ηi

dη0

ωkðη0Þ
ðA3Þ

Hkðη;pÞ ¼ ωkQ0
kðη;pÞ þ Tkðη;pÞ ðA4Þ

Qkðη;pÞ ¼ −i
k · p
ω2
k

δθkðη;pÞ þ
�
D −

k2

ω2
k

�
Ψðη;pÞ ðA5Þ

Tkðη;pÞ ¼ p2δθkðη;pÞ − ik · p½Φðη;pÞ − ðD − 2ÞΨðη;pÞ�
ðA6Þ

Gkðη;pÞ ¼ −ωk

�
Φðη;pÞ þ k2

ω2
k

Ψðη;pÞ
�
: ðA7Þ

Pkð0;pÞ is fixed by the orthonormalization condition of
the modes while δθkð0;pÞ remains arbitrary. The arbitrari-
ness in δθkð0;pÞ can also be absorbed in a change of the
lower integration limit in (A2). As we will see, only setting
the time origin to η0 → −∞, which is equivalent to taking
η → ∞, corresponds to the exact static limit.
Full details about the solutions (A1) and (A2), and about

the orthonormalization condition, are given in [12].

APPENDIX B: EXPANSION IN pη
FOR STATIC SPACETIMES

The following expansions have been used for the
computation of the potential and the energy-momentum
tensor,
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P̂kðη;pÞ ¼
�
3 −

k2

ω2
k

�
ΨðpÞ þ

X∞
l¼1

ð−1Þl
ð2lþ 1Þ! ðpηÞ

2l

�
k
ωk

�
2l 1

k2ω2
k

× ½ð2k4 þ ð3þ 2lÞk2m2ÞðΦðpÞ þΨðpÞÞ þ ð1þ 2lÞm4ΦðpÞ�: ðB1Þ

Z
1

−1
dx̂

�
ikpx̂
ω2
k

�
Pkðη;pÞ ¼ i

X∞
l¼1

ð−1Þl
ð2l− 1Þ!ðpηÞ

2l

�
k
ωk

�
2l

×

�
1

ð2lþ 1Þk2ωkη
ðð2lþ 1Þm4ΦðpÞþ 3k4ðΦðpÞþΨðpÞÞþ k2m2ðð2lþ 3ÞΨðpÞþ 2ðlþ 2ÞΦðpÞÞÞ

−
ωk

ð2l− 1Þk2ηðm
2ΦðpÞþ k2ðΦðpÞþΨðpÞÞÞ

�
ðB2Þ

δθkðη;pÞ ¼
X∞
l¼0

ð−1Þlþ1

ðlþ 1Þ! η
lþ1

�
ik · p
ωk

�
l 1

ωk
½m2ΦðpÞ þ k2ðΦðpÞ þΨðpÞÞ� ðB3Þ

δθ̂kðη;pÞ ¼ − 2
X∞
l¼0

ð−1Þl
ð2lþ 1Þ! ðpηÞ

2l

�
k
ωk

�
2l ωkη

2lþ 1

��
m
ωk

�
2

ΦðpÞ þ
�

k
ωk

�
2

ðΦðpÞ þ ΨðpÞÞ
�

ðB4Þ

Z
1

−1
dx̂

�
ikpx̂
ω2
k

�
δθkðη;pÞ ¼ 2

X∞
l¼1

ð−1Þl
ð2lþ 1Þ! ðpηÞ

2l

�
k
ωk

�
2l
��

m
ωk

�
2

ΦðpÞ þ
�

k
ωk

�
2

ðΦðpÞ þ ΨðpÞÞ
�
: ðB5Þ

Z
1

−1
dx̂

�
ikpx̂
ω2
k

�
2

δθkðη;pÞ ¼ − 4
X∞
l¼1

ð−1Þl
ð2lþ 1Þ! ðpηÞ

2l

�
k
ωk

�
2l l
ωkη

��
m
ωk

�
2

ΦðpÞ þ
�

k
ωk

�
2

ðΦðpÞ þ ΨðpÞÞ
�
: ðB6Þ

Both P̂kðη;pÞ and
R
1
−1 dx̂ðikpx̂ω2

k
Þδθkðη;pÞ are the main terms

appearing in the computation, while the remaining ones can
be obtained from these expressions.

APPENDIX C: MULTIPOLE EXPANSION AND
FOURIER TRANSFORM

1. Fourier transform in three dimensions

In this discussion we follow [19]. The Fourier transform
of a function fðrÞ is defined as5

fðpÞ ¼
Z

d3rfðrÞe−ip·r ðC1Þ

Then, the inverse transform is given by

fðrÞ ¼
Z

d3p
ð2πÞ3 fðpÞe

ip·r ðC2Þ

We are interested in the following integrals,

IlmðpÞ ¼
Z

d3rfðrÞYlmðr̂Þe−ip·r ðC3Þ

IlmðrÞ ¼
Z

d3p
ð2πÞ3 fðpÞYlmðp̂Þeip·r; ðC4Þ

where Ylmðx̂Þ are the usual spherical harmonics. Using the
Rayleigh expansion,

eip·r ¼
X∞
l¼0

ð2lþ 1ÞiljlðprÞPlðp̂ · r̂Þ; ðC5Þ

where jlðxÞ are spherical Bessel functions and PlðxÞ are the
Legendre polynomials, the addition theorem for spherical
harmonics,

Plðp̂ · r̂Þ ¼ 4π

2lþ 1

Xl

m¼−l
Ylmðr̂ÞY�

lmðp̂Þ; ðC6Þ

and the orthonormalization of the spherical harmonics,Z
dΩpY�

lmðp̂ÞYl0m0 ðp̂Þ ¼ δll0δmm0 ; ðC7Þ

5With the usual abuse of notation for using the same label for
the function and for its Fourier transform. Note the nonunitary
convention (the factor 1=ð2πÞ3 is introduced when going from
Fourier space to real space).
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IlmðpÞ and IlmðrÞ can be written as

IlmðpÞ ¼ 4πð−iÞlYlmðp̂Þ
Z

∞

0

drr2fðrÞjlðprÞ ðC8Þ

IlmðrÞ ¼
il

2π2
Ylmðr̂Þ

Z
∞

0

dpp2fðpÞjlðprÞ: ðC9Þ

2. Multipole expansion in Fourier space

An arbitrary potential generated by a finite static matter
distribution ρðxÞ can be written as a multipole expansion
in spherical coordinates in the region outside the matter
distribution as

ΦðrÞ ¼ −
1

r

X∞
l¼0

Xl

m¼−l

Qlm

rl

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
Ylmðr̂Þ ðC10Þ

whereQlm are the spherical multipole moments of the mass
distribution given by

Qlm ¼
Z

ρðr0Þr0l
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
Y�
lmðr̂0Þd3r0 ðC11Þ

The Fourier transform of the potential is

ΦðpÞ ¼ −
4π

p2

X∞
l¼0

ð−iÞl
ð2l − 1Þ!!

Xl

m¼−l
Qlmpl

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
Ylmðp̂Þ:

ðC12Þ

where we have used the following result,

lim
λ→0þ

Z
∞

0

drr2
e−λr

rðlþ1Þ jlðprÞ ¼
pl−2

ð2l − 1Þ!! ; ðC13Þ

where we have introduced a regularizing factor e−λr [which
in fact it is only necessary for l ¼ 0, the remaining cases
being convergent].
To get the results for potential and energy-momentum

tensor in real space we have to compute the following
integrals:

1

ð2πÞ3
Z

ΦðpÞ sinðpηÞ
ðpηÞ2kþ1

eip·rd3p

¼p0¼pη 1

η3
1

ð2πÞ3
Z

Φðp0=ηÞ sinðp0Þ
ðp0Þ2kþ1

eip
0·r=ηd3p0: ðC14Þ

Taking into account the multipole expansion of the
potential in Fourier space (C12), it can be shown for each
multipole that the integral will be proportional to

1

ηlþ1

Z
∞

0

dp0e−λpp02p0l−2 sinðp0Þ
ðp0Þ2kþ1

jlðp0r=ηÞ; ðC15Þ

where we have introduced a regularizing factor e−λp. Since
the spherical Bessel functions of the first kind are finite, in
particular at the origin, we get that in the static limit η → ∞,
the integral goes to zero. The same argument applies for the
integrals involving cosine functions.

APPENDIX D: NEXT-TO-LEADING TERMS IN
THE ULTRARELATAVISTIC LIMIT

Next to leading-order corrections can be obtained by
expanding the Bose-Einstein factor and performing the
integration term by term. For instance, the integrals we are
interested in are of the following form,

X4

Z
∞

1

fðũÞ
eXũ − 1

dũ; ðD1Þ

where ũ ¼ u=X and X ¼ mðϕ̂Þ=T. Using the Taylor
expansion of the Bose-Einstein factor,

1

eXũ − 1
¼

X∞
k¼0

Bk

k!
ũk

ũ
Xk−1; ðD2Þ

the next-to-leading corrections in X can be obtained as far
as the integrals are convergent. Bk are the Bernoulli
numbers. The function fðũÞ appearing in the calculations
behaves as ∼ 1

ũ3 in the limit ũ → ∞; therefore, the integrals
can be performed up to k ¼ 2.

APPENDIX E: EXPRESSION FOR Vi
eff

AND d
dT V

i
eff IN THE STATIC LIMIT

Let us define (following [16])

JνðxÞ ¼
Z

∞

x

2ðu2 − x2Þν=2
eu − 1

du ðE1Þ

FðνÞðXÞ ¼
Z

X

0

x2−νJνðxÞdx: ðE2Þ

Then, in the static limit we have

Vh
eff ¼

T4

4π2
Fð1Þ

�
mðϕ̂Þ
T

�
ðE3Þ

and

V i
eff ¼−

T4

4π2

�
2Fð1Þ

�
mðϕ̂Þ
T

�
þFð−1Þ

�
mðϕ̂Þ
T

��
ΦðpÞ; ðE4Þ

which can be read from Eq. (10). The derivative with
respect to the temperature of the homogeneous effective
potential is given by
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d
dT

ðVh
effðϕ̂0ÞÞ

¼ T3

4π2

�
4Fð1Þ

�
mðϕ̂Þ
T

�
−
�
mðϕ̂Þ
T

�2

Jð1Þ
�
mðϕ̂Þ
T

��
: ðE5Þ

The second term in the right-hand side of the last equation
can be written as

�
mðϕ̂Þ
T

�2

Jð1Þ
�
mðϕ̂Þ
T

�
¼

Z
mðϕ̂Þ=T

0

d
dx

ðx2Jð1ÞðxÞÞdx

¼ 2Fð1Þ
�
mðϕ̂Þ
T

�
− Fð−1Þ

�
mðϕ̂Þ
T

�
;

ðE6Þ

where we have used the following property of JðvÞðxÞ

∂JðνÞðxÞ
∂x ¼ −νxJðν−2ÞðxÞ: ðE7Þ

Therefore, Eqs. (E5) and (E6) give us

V i
effðϕ̂0Þ

d
dT ðVh

effðϕ̂0ÞÞ
¼ −TΦðpÞ: ðE8Þ
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