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We study supersymmetric Wilson loops in d ¼ 3,N ¼ 3 harmonic superspace, leading to a construction
of a supersymmetrized generalization of the 1

3
-BPS Wilson loop for N ¼ 3 gauge theories. This also

includes the generalization of the 1
6
-BPS loop for ABJM theory. We perform a “one-loop” computation of

the vacuum expectation value of this operator directly in superspace and compare with the known N ¼ 2

localization results at large N. This comparison also lets us identify certain fermionic contributions that do
not receive any subleading corrections.
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I. INTRODUCTION

The power of supersymmetry to simplify computations
and gain insights cannot be overstated. It sheds light on
hidden structures and illuminates relationships among seem-
ingly different objects. A perfect example of this power is
given by the Wilson loops/scattering amplitudes duality in
d ¼ 4,N ¼ 4 super-YangMills (SYM) theory. Even though
evidence for such a duality existed [1–6], only after the
construction of a supersymmetrized Wilson loop (WL) in
superspace [7,8] has the duality been confirmed
for all helicity sectors of the amplitude. In three dimensions,
while similar evidence in the case of the four-point ampli-
tude/four-gluon Wilson loop for N ¼ 6 ABJM theory [9]
exists [10,11], extending beyond four points immediately
forces us into the remaining sectors (in terms of R-symmetry
instead of helicity) of the theory. This motivates us to
construct supersymmetric Wilson loops in superspace.
After the introduction of ABJM theory, various Wilson

loop operators with different amounts of preserved super-
symmetry were studied extensively. Earlier efforts dealt
with construction and perturbative computations of 1

6
-BPS

WL [12–15]. Localization was applied to evaluate the
vacuum expectation value (vev) of this WL in [16], and the
results were found to match the perturbative calculations at
the large N limit. 1

2
-BPS operators were constructed later in

[17] and more calculations followed in [18,19] where even
finite N contributions were computed. Being “cohomolog-
ically equivalent” to the 1

6
-BPS operator, the localization

results do not differ for these two operators. In [20], a
classification was given for Wilson loops preserving
various amounts of supersymmetry in N ¼ 2;…; 6
Chern-Simons (CS) matter theories. New Wilson loops
in N ¼ 4 theories have been constructed recently in [21].
In this ever-expanding literature of construction, classi-

fication, and computation involving Wilson loops, we
present here a supersymmetrization of the simplest WL
operator in three-dimensional CS matter theories including
ABJ(M) theories. Such an attempt has been made in [22]
for the ABJM theory in the framework of “ordinary”N ¼ 6
superspace. It was also pointed out that there are at least
three reasons why such a WL cannot be dual to the
scattering amplitudes of ABJM theory. The main issue is
the nonchiral nature of the superspace that leads to torsion,
which does not allow a straightforward identification of the
kinematics on the two sides of the duality [23]. So we
content ourselves with the well-studied framework of
N ¼ 3 harmonic superspace [24,25] to construct the
supersymmetrized Wilson loop.1 This is to have as much
manifest (off-shell) supersymmetry as possible along with a
notion of chirality (or “harmonic analyticity”) built in.
In the next section, we consider a warm-up exercise of

constructing a supersymmetrized WL inN ¼ 2 superspace
and a sample localization computation. Then we review
the d ¼ 3, N ¼ 3 harmonic superspace in Sec. III before
constructing the supersymmetrized 1

3
-BPS WL in Sec. IV.

This leads to a generalization for 1
6
-BPS WL in ABJ(M)
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theories. In Sec. V, we compute perturbatively the one-loop
vev of this new WL operator directly in harmonic super-
space. Finally, we compare the perturbative result with
localization computation and comment on future outlook
in Sec. VI.

II. WARM-UP

We construct here a supersymmetrized Wilson loop
operator in d ¼ 3, N ¼ 2 superspace with coordinates
fxμðxðαβÞÞ; θα; θ̄αg, where the vector index μ ¼ 0, 1, 2 and
spinorial index α ¼ 1, 2 correspond to the SOð2; 1Þ ≃
SLð2;RÞ group2 Though it is rather straightforward, we
think this analysis has not appeared in the literature in this
form so we discuss it as a warm-up exercise leading to the
less trivial N ¼ 3 superspace in the next section.

The N ¼ 2 supersymmetry algebra has the following
set of gauge-covariant superspace derivatives: fDμðDðαβÞÞ;
Dα; D̄αg. These satisfy the following algebra:

fDα; D̄βg ¼ _ιDαβ þ εαβW; fDα;Dβg ¼ 0

½Dα;Dβγ� ¼ δðβα W̄γÞ

½Dμ;Dν� ¼ _ιF μν: ð2:1Þ

The Jacobi identities give further relations among the
field strengths W, Wα, and F μν. One such relation is
DαW ¼ −_ιW̄α along with the chirality constraint
DαW̄β ¼ 0 [27,28].
The supersymmetrization of the familiar 1

2
-BPS Wilson

loop in chiral superspace then looks like

Wðx; θ; θ̄Þ ¼ 1

dimR
trRP exp

Z
dτ

�
−_ι
2
_xαβA Aαβ þ _θαAα þ j_xAjW

�
≡ 1

dimR
trRPew; ð2:2Þ

where xαβA ¼ xαβ þ _ιθðαθ̄βÞ. We can do the component analysis of the connections and field strengths, leading to the fields of
N ¼ 2 vector multiplet faαβ; σ; λα; λ̄α; Dg along with the field strength fαβ:

Wj ¼ σ; DαWj ¼ λ̄α; D̄αWj ¼ λα; DαD̄βWj ¼ fαβ þ εαβD

D̄ðαAβÞj ¼ aαβ; D̄ · Aj ¼ σ; D̄2Aαj ¼ λα; DαD̄ · Aj ¼ λ̄α; DαD̄2Aαj ¼ D

Aαβ j ¼ aαβ; DαAαβ j ¼ λ̄β; D̄αAαβ j ¼ λβ; DαD̄βAαβ j ¼ D: ð2:3Þ

Here j denotes that all θ’s are set to vanish. Also relevant is DðαD̄2AβÞj ¼ fαβ. It is now trivial to verify that the θ-

independent piece of the exponent in (2.2) reduces to the well-known bosonic expression:
R
dτð_ι_xμAμ þ j_xjσÞ.

It can be easily checked that the Wðx; θ; θ̄Þ preserves some supersymmetry:

δW ≡ εγDγWðx; θ; θ̄Þ ∼ trRP
�
ew

Z
dτ

�
εγDγ

�
−_ι
2
_xαβA Aαβ þ _θαAα þ j_xAjW

���

∼ trRP
�
ew

Z
dτð_ιεαð_xAαβ þ j_xAjεαβÞW̄βÞ

�
: ð2:4Þ

In arriving at the last step, we have used the algebra (2.1) to
convert covariant derivatives acting on connections into the
corresponding field strengths, and terms that look like field-
dependent gauge transformations of the connections, i.e.,
_xA;αβDαβðεγAγÞ, are dropped as Wðx; θ; θ̄Þ is gauge invari-
ant. The BPS condition for the purely bosonic WL requires
xμðτÞ to be an infinite line in Minkowski space or a great
circle on S3 and one can choose it to satisfy j_xj ¼ 1 [16,20].
Since (2.4) for the supersymmetrized case results in a
similar equation, we will also consider j_xAj ¼ 1. This does

not determine θðτÞ completely but only up to a function of
τ: θðτÞ ¼ fðτÞθ0, θ̄ðτÞ ¼ f−1ðτÞθ̄0.3 Hence, constant sol-
utions for ε can still be found for these configurations,
where the condition εαð_xAαβ þ j_xAjεαβÞ ¼ 0 projects half of
the degrees of freedom, thus preserving two real degrees of
freedom, i.e., 1

2
-BPS.

Given the Lagrangian and propagators of [27,28], one
should be able to compute the vev of the WL (2.2)
perturbatively in superspace as well as in components at

2The vector xμ can be traded for a real second-rank symmetric
tensor xαβ ≡ xμðγμÞαβ with the help of d ¼ 3 “gamma” matrices.
We do not need the explicit basis but the relation xαβxαβ ¼
−2xμxμ ≡ −2jxj2 will be quite useful to know.

3It is most likely that one needs to consider superconformal
transformations of the WL operator to fully determine the θðτÞ
profile consistent with the circular bosonic WL. We do not pursue
this exercise here. Thus, we will not evaluate the τ integrals
explicitly and leave all the τ dependence of the coordinates intact.
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different θ orders. However, we will skip this analysis here
and comment on the nonperturbative analysis instead.
Using the localization results of [16] where a N ¼ 2

theory on S3 (of radius r) is considered, we can obtain
an exact result for the vev of the supersymmetrized Wilson
loop. Since the path integral is localized on the vector
multiplet’s scalar field σ ¼ constant and D ¼ − σ

r, we have

Wðx; θ; θ̄Þ ¼ 1

dimR
trRP exp

Z
dτ

�
−_ι
2
_xαβA θαθ̄βD

þ _θ · ðθ̄σ þ θθ̄2DÞ þ j_xAjðσ þ θ · θ̄DÞ
�
:

ð2:5Þ
Even though we do not know fðτÞ explicitly, we can
evaluate hWðx; θ; θ̄Þi formally. Let us denote everything
in the exponent by Θσ, with Θ ¼ 1

2π

R
dτð1þ _ι

2
_xαβA θαθ̄β þ

_θ · θ̄ − θ · θ̄ þ _θ · θθ̄2Þ (also set r ¼ 1). The path integral
reduces to a matrix model in terms of eigenvalues λi of σ
(we choose ABJM for concreteness, which has two UðNÞ’s
as gauge groups and �k as the two Chern-Simons levels),

hWðx; θ; θ̄Þi ¼ 1

N!NZ

Z
dλidλ̂iðe−N

2αλ
2
i−

N
2α̂λ̂

2
i ÞΔðλÞ2

× Δðλ̂Þ2
�X

i

eΘλi
�
× Z1-loop; ð2:6Þ

where α ¼ −α̂ ¼ 2π_ι Nk . We refer the reader to [16] for the
definitions of various factors in the above result as we are
interested in its perturbative limit only. To obtain a
perturbative α expansion, we can expand hWi in λ and
compute the vev using the orthogonal polynomials method
(note that hλ2ki ¼ OðαkÞÞ:

hWðx; θ; θ̄Þi ¼ 1þ 1

2
Θ2α

−
�
1

6

�
1þ 1

2N2

�
Θ2 −

1

24

�
2þ 1

N2

�
Θ4

�
α2

þOðα3Þ: ð2:7Þ

Rewriting Θ ¼ 1þ 1
2
ϑ, we get (note ϑ3 ¼ 0)

hWðx;θ; θ̄Þi ¼ 1þ 1

2

�
ϑþ ϑ2

4

�
α

−
�
1

24

�
5þ 1

N2

�
þ 1

4
ϑ−

1

6

�
1

2
þ 1

N2

�
ϑ2

4

�
α2

þOðα3Þ: ð2:8Þ

In the above expression, we have removed the bosonic
term at OðαÞ by multiplying the result by an overall phase
e−

1
2
α, which is necessary in matching the perturbative

computation [16]. Note that we do not remove the whole

ϑ-dependent term at OðαÞ, since as we will see later there
are indeed fermionic contributions at OðαÞ in perturbative
computation. We will return back to this result in Sec. VI.

III. REVIEW OF N = 3 HARMONIC
SUPERSPACE

Now, we turn to N ¼ 3 supersymmetry. We collect here
the necessary ingredients from three-dimensional N ¼ 3
harmonic superspace literature along with a few explicitly
worked out details that will be relevant for us in later
sections.

A. N = 3 harmonic superspace

The ordinary d ¼ 3, N ¼ 3 superspace with coordi-
nates fxαβ; θαijg has the following algebra of superspace
derivatives:

fDij
α ; Dkl

β g ¼ _ιðεikεjl þ εilεjkÞ∂αβ

Dij
α ¼ ∂ij

α þ _ιθij∂αβ: ð3:1Þ

To obtain constrained superfields in the form of Dij
αΦ ¼ 0,

it is useful to consider the case where Dij
α is given by a

simple partial derivative, indicating the independence of Φ
on certain variables. The obstacle to having a representation
of Dij

α as a partial derivative is its anticommutator algebra.
This can be overcome by the introduction of SUð2Þ=Uð1Þ
harmonics u�i . These bosonic variables satisfy

uþiu−i ¼ 1; u�iu�i ¼ 0; ð3:2Þ

where the raising and lowering of the SUð2Þ index i is done
by contracting with the invariant tensor ϵij. (The contracted
i among u’s will be suppressed most of the time.) These
new variables are to be integrated away using the following
rules: Z

du1 ¼ 1;
Z

duuþði1…u−inÞ ¼ 0: ð3:3Þ

In other words, only the SUð2Þ invariant polynomial with
vanishing Uð1Þ charge survives the integration. The har-
monic variables allow us to linearly recombine the 3 × 2
fermionic coordinates into three new SLð2;RÞ doublets
θα;�� ≡ ui�uj�θαij, θα;0 ≡ uiþuj−θαij. The upshot is that
doing the same for the covariant derivatives, the super-
symmetry algebra now reads,

fDþþ
α ; D−−

β g ¼ 2_ι∂αβ; fD0
α; D0

βg ¼ −_ι∂αβ;

fD��
α ; D��

β g ¼ 0; fD��
α ; D0

βg ¼ 0; ð3:4Þ
where one finds that we can SUð2Þ covariantly isolate a
doublet of commuting fermionic derivatives, for example
Dþþ

α . This implies that we can have a representation for the
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covariant derivatives where Dþþ
α is a simple partial deriva-

tive. This is referred to as the “analytic basis,” and it is
given as the following:

∂αβ → ∂A
αβ

Dij
α →

8>><
>>:

Dþþ
α ¼ ∂þþ

α

D−−
α ¼ ∂−−

α þ 2_ιθ−−β∂A
αβ

D0
α ¼ − 1

2
∂0
α þ _ιθ0β∂A

αβ:

ð3:5Þ

We defined xAαβ ¼ xαβ þ _ιθþþ
ðα θ−−βÞ . In the analytic basis, we

obtain constrained superfields by imposing the ‘analytic’
constraint Dþþ

α Φ ¼ 0, which now implies that Φ does not
depend on θ−−α :

Dþþ
α Φ ¼ 0 ⇒ Φ≡ΦðxAαβ; θþþ

α ; θ0α; uÞ: ð3:6Þ

The introduction of harmonic variables also introduces
R-symmetry covariant derivatives, and are given by4

D�� ≡ ∂�� ¼ u�i
∂

∂u∓i ; D0 ¼ ½Dþþ; D−−�: ð3:7Þ

These have nontrivial commutator algebra with the fer-
mionic derivatives5

½D��; D∓∓
α � ¼ 2D0

α; ½D��; D0
α� ¼ D��

α : ð3:8Þ

B. Chern-Simons matter theories

To study gauge theories, we gauge-covariantize the full
superspace derivatives D → D ¼ Dþ A, which define the
relevant field strengths:

fDþþ
α ;D−−

β g ¼ 2_ιDαβ þ 2εαβW0; fD0
α;D0

βg ¼ −_ιDαβ;

ð3:9Þ

fD��
α ;D��

β g ¼ 0; fD��
α ;D0

βg ¼ �εαβW��: ð3:10Þ

The covariant derivatives, and the field-strengths, transform
as D → eτDe−τ. Choosing a suitable gauge-frame (from
τ → λ) such that Aþþ

α ¼ 0 allows us to define analytic super
fields covariantly while maintaining its implication of
independence on θ−−α : Dþþ

α Φ ¼ Dþþ
α Φ ¼ 0. Note that

choosing such a gauge generates (new) harmonic connec-
tions A��, from which all other connections can be
obtained through Bianchi identities. In particular, Aþþ
turns out to be the unique analytic (Dþþ

α Aþþ ¼ 0) pre-
potential in this formalism. The prepotential transforms
under a gauge variation as usual,

Aþþ0 ¼ eλDþþe−λ ⇒ δλAþþ ¼ −Dþþλ; ð3:11Þ

where λ is an analytic gauge parameter. A convenient gauge
is the Wess-Zumino gauge in which the prepotential has the
following component expansion [25]:

1

2
D0

αD−−
β Aþþj ¼ aαβ;

1

2
ðD0

βÞ2D−−
α Aþþj ¼ 2λα;

1

2
D0

αðD−−
β Þ2Aþþj ¼ 3χ−−α ;

1

2
ðD−−

α Þ2Aþþj ¼ 3ϕ−−;
1

2
ðD0

αÞ2
1

2
ðD−−

β Þ2Aþþj ¼ 3X−−: ð3:12Þ

This is clearly the N ¼ 3 vector multiplet with fields ðaμ; λα; χðijÞα ;ϕðijÞ; XðijÞÞ. Of course, ϕ−− ¼ u−i u
−
j ϕ

ij and so on.
It is now possible to write every other connection and field strength in terms of the analytic prepotential Aþþ. We start

with the following connections:

D0 ¼ ½Dþþ;D−−� ⇒ A−−ðuÞ ¼
X∞
n¼1

ð−1Þn
Z

du1;…;n
Aþþ
1 …Aþþ

n

ðuþuþ1 Þðuþ1 uþ2 Þ…ðuþn uþÞ
·

2D0
α ¼ ½D−−; Dþþ

α � ⇒ A0
α ¼ −

1

2
Dþþ

α A−−;

D−−
α ¼ ½D−−;D0

α� ⇒ A−−
α ¼ D−−A0

α −D0
αA−− þ ½A−−; A0

α�:
−iDαβ ¼ fD0

α;D0
βg ⇒ Aαβ ¼ 2_ιD0

ðαA
0
βÞ ¼ −_ιD0

ðαD
þþ
βÞ A−−: ð3:13Þ

4D0 is strictly speaking not a covariant derivative on SUð2Þ=Uð1Þ. It should be treated as the subgroup generator that defines theUð1Þ
charge for a given operator or field, as in D0ΦðqÞ ¼ qΦðqÞ.

5For completeness, their explicit forms in the analytic basis are given as

D�� → D�� ¼ ∂�� � 2_ιθ��αθ0β∂A
αβ þ 2θ0α∂��

α þ θ��α∂0
α:
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Then the covariant field strengths can be derived from the
connections as follows:

Dþþ
α Wþþ ¼ DþþWþþ ¼ 0 ⇒ Wþþ is analytic:

Wþþ ¼ 1

2
Dþþ

α A0α ¼ −
1

4
ðDþþ

α Þ2A−−:

W0 ¼ 1

2
D−−Wþþ and W−− ¼ D−−W0: ð3:14Þ

The N ¼ 3 matter multiplet consists of two complex
scalars fi transforming as a doublet under SUð2Þ and their
fermionic partners ψ i

α, which are encoded in the following
hypermultiplet superfield,

qþj ¼ fþ; D−−
α qþj ¼ ψ−

α ;
1

2
D0

αD−−
β qþj ¼ −_ι∂αβf−;

q̄þj ¼ −f̄þ; D−−
α q̄þj ¼ ψ̄−

α ;
1

2
D0

αD−−
β q̄þj ¼ _ι∂αβf̄−;

ð3:15Þ

where f� ≡ u�i f
i, f̄� ≡ u�i f̄

i, and similarly for the
fermions.
For the ABJM theory, we have two sets of qþa, with

a ¼ 1, 2. In this representation, the SOð6Þ R-symmetry is
broken: SOð6Þ → SUð2ÞR × SUð2Þext, and the ABJ(M)
action for ULðNÞ ×URðMÞ theory:

S ¼ SCS½Aþþ
L � − SCS½Aþþ

R � þ tr
Z

dζð−4Þq̄þaDþþqþa;

ð3:16Þ

SCS½Aþþ� ¼ _ιk
4π

tr
X∞
n¼2

ð−1Þn
n

Z
d3xd6θdu1;…;n

×
Aþþ
1 …Aþþ

n

ðuþ1 uþ2 Þ…ðuþn uþ1 Þ
; ð3:17Þ

ðDþþqþaÞB̄A ¼ DþþðqþaÞB̄A þ ðAþþ
L ÞBAðqþaÞB̄B

− ðqþaÞĀAðAþþ
R ÞB̄Ā; ð3:18Þ

where A ∈ UðNÞ, Ā ∈ UðMÞ, and q̄þa have “opposite”
gauge charges under the two gauge groups. From the
action, one finds the following equations of motion,

δS
Dq̄þa

¼ ∇þþqþa ¼ 0;
δS

δAþþ ¼ Wþþ þ 4π_ι

k
q̄þa qþa ¼ 0;

ð3:19Þ

with proper ordering of q̄q to match the gauge indices of
Wþþ

L;R. The latter equation of motion implies that scalars
from the vector multiplet get equated to biscalars of
the matter multiplet. One such relation will be relevant
for later use:

W0 ¼ 1

2
D−−Wþþ

⇒ ϕ0 ¼ −
2π_ι

k
u−i

∂
∂uþi ðð−uþj f̄jaÞðuþk fkaÞÞ

¼ 2π_ι

k
ðu−j uþk þ uþj u

−
k Þf̄jafka: ð3:20Þ

This crucial relation is responsible for generating the well-
known sextic potential involving f’s once ϕ’s are integrated
out from the ABJM action.
The CS theories coupled to matter can be quantized

directly in superspace [25], and the resulting propagators
read

hq̄þ1 qþ2 i ¼
1

2π_ι

uþ1 u
þ
2ffiffiffiffiffiffiffi

2ρ2
p ; ð3:21Þ

hAþþ
1 Aþþ

2 i ¼ _ι

2π

1ffiffiffiffiffiffiffi
2ρ2

p δ2ðθþþ
12 Þδð−2;2Þðu1; u2Þ; ð3:22Þ

where

ραβ ¼ xαβA1 − xαβA2 − 2_ιθ0ðα1 θ0βÞ2

−
2_ι

uþ1 u
þ
2

½ðu−1 u−2 Þθþþðα
1 θþþβÞ

2 − ðu−1 uþ2 Þθþþðα
1 θ0βÞ2

− ðuþ1 u−2 Þθ0ðα1 θþþβÞ
2 þ ðu−1 uþ2 Þθþþðα

1 θ0βÞ1

þ ðuþ1 u−2 Þθ0ðα2 θþþβÞ
2 �: ð3:23Þ

The ραβ has quite a complicated expression but in the
presence of δ2ðθþþ

12 Þδðu1; u2Þ, it simplifies in the vector
propagator to the following:

ραβ ¼ ðxαβA Þ12 − 2_ιθ0ðα1 θ0βÞ2

⇒ ρ2 ¼ −2jxA12j2 − 4_ιxA12 · θ
0
1θ

0
2 þ 4θ01

2θ02
2: ð3:24Þ

The vertices are easily read from the relevant actions.

IV. SUPER-WILSON LOOP

There are two main types of Wilson loop operators
that can be considered for d ¼ 3 Chern-Simons theories
[12,16,17,20]: GY type ( 1N -BPS forN ¼ 2, 3, 4, 6) and DT
type (still 1

N -BPS for N ¼ 2, 3 but 1
2
-BPS for N ¼ 4, 6).

We will focus only on the former case here. The 1
3
-BPS

Wilson loop is usually written for N ¼ 3 CS theory as
follows,

W1=3ðxÞ ¼
1

dimR
trRP exp

Z
dτ

�
−_ι
2
_xαβaαβ þ

1

2
_yijϕij

�
;

ð4:1Þ
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where yij ¼ yji are 3 SUð2Þ coordinates. For this operator to locally preserve any supersymmetry, the SUSY parameter εijα
needs to be a solution of

_xαβϵijβ þ _yikϵα;kj ¼ 0; ð4:2Þ

provided that j_xj ¼ j_yj. To incorporate the condition on j_yj, we can rewrite the scalar term in WL as
R
dτj_xjðuþi u−j ÞϕðijÞ

using the harmonic coordinates on SUð2Þ.
Now, we are ready to write down the most general supersymmetrized expression for a Wilson loop (such that (4.1) is its

bosonic component):

Wðx; θ��; θ0Þ ¼ 1

dimR
trRP exp

Z
dτ

�
−1
4

_xA;αβAαβ þ _θþþαA−−
α þ _θ0αA0

α þ
X
�

u�i _u�i A
∓∓ þ 1

2
j_xAjW0

�
: ð4:3Þ

The usual BPS condition on the bosonic WL ðεðijÞγQðijÞ
γ W1=3ðxÞ ¼ 0Þ, which results in (4.2), translates to εðijÞγDðijÞ

γ

W1=3 ¼ 0 (along with _x → _xA) in superspace for obvious reasons (see [29] for an explicit proof). Let us see what that
implies for (4.3),

εðijÞγDðijÞ
γ Wðx; θþþ; θ0Þ ∝

Z
dτ
�
−1
4

_xA;αβεðijÞγF ðijÞ
γ;αβ þ _θþþαεðijÞγF ðijÞ;−−

γ;α þ _θ0αεðijÞγF ðijÞ;0
γ;α

þ 0|{z}
F ðijÞ;∓∓

γ ≡0

þ 1

2
j_xAjεðijÞγDðijÞ

γ W0

�
;

where we use FA;B to represent the field strength arising from the (anti)commutator of fDA;DB�. As we did for the case of
N ¼ 2 WL, we have ignored here terms that look like field-dependent gauge transformations. Since we know that only
F 0;0

γ;α ¼ F��;��
γ;α ¼ 0, we can have only one of the _θ terms above in the Wilson loop. This means either εþþ or ε0 can be the

only unbroken SUSY. However, choosing ε0, we find thatF 0
γ;αβ [25] contains not only theD

0
αW0 term but alsoDþþ

α W−−, so
the above variation cannot vanish. Thus, we are left with εþþ and the remaining couple of terms do vanish in this case
because

F−−
γ;αβ ¼ −_ιðεγαD−−

β W0 þ εγβD−−
α W0Þ; ð4:4Þ

which implies

−
1

2
_xA;αβεþþγF−−

γ;αβ þ j_xAjεþþγD−−
γ W0 ¼ εþþγð_ι_xA;αβεγαD−−

β W0 þ j_xAjD−−
γ W0Þ

¼ _ιεþþ
α ð_xA;αβ − _ιj_xAjεαβÞD−−

β W0 ¼ 0: ð4:5Þ

This expression vanishes (for arbitraryW0) in a way similar to theN ¼ 2 case, and we preserve half of the complex spinor
εþþγ . Thus, the final result for the supersymmetric generalization of the 1

3
-BPS Wilson loop is

W1=3 ¼
1

dimR
trRP exp

Z
dτ

�
−1
4

_xA;αβAαβ þ _θþþαA−−
α þ

X
�

u�i _u�i A
∓∓ þ 1

2
j_xAjW0

�
: ð4:6Þ

To compare with the usual bosonic WL operator, we write the above in component fields:

W1=3 ∼ trRP exp
Z

dτ

�
−_ι
2
_xαβaαβ þ _θþþαθ−−α ϕ0 þ 1

2
j_xAjðϕ0 þ θ0 · χ0Þ þOðθ2Þ

�
: ð4:7Þ

The difference starts at terms of order θ containing fermionic fields (χijα ) and at θ2 order with bosonic fields (ϕij). Higher-
order terms will contain λα, Xij fields too.
With this construction, we can readily give the supersymmetrized generalization of the 1

6
-BPS WL operator for N ¼ 6

ABJM theory in N ¼ 3 harmonic superspace:
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W1=6 ¼
1

dimR
trRP exp

Z
dτ

��
−1
4

_xA;αβAαβ þ _θþþαA−−
α þ

X
�

u�i _u�i A
∓∓ þ 1

2
j_xAjW0

�
L
þ ðL → RÞ

�
: ð4:8Þ

This operator reduces to the canonical bosonic operator in ABJM theory with the matter coupling term MJ
ICJC̄I , where

MJ
I ¼ diagð−1;−1; 1; 1Þ (up to the factor 2πk ) if the u matrix further satisfies uþ1 ¼ ðu−2 Þ−1 ¼ uðτÞ. To show this, we need to

use the equation of motion for Aþþ (3.19) and (3.20) along with a change of notation from fi → CI as discussed in [24].
(Without the constraint on u, this operator has more content due to W0 containing not only ϕ12 ≡MJ

ICJC̄I but also ϕ11

and ϕ22.)

V. COMPUTATION

In this section, we will compute the one-loop vacuum expectation value of theWilson loopW1=3. The constraint on uwill
also be imposed so the operator and the expected vev slightly simplify (with R being the fundamental representation of
UðNÞ gauge group):

W1=3 ¼
1

N
trRP exp

Z
dτ

�
−1
4

_xA;αβAαβ þ _θþþαA−−
α þ 1

2
j_xAjW0

�
ð5:1Þ

hW1=3i ¼ 1þ 1

2N

Z
dτ1dτ2

	�
−1
4

_xA · Aþ _θþþ · A−− þ 1

2
j_xAjW0

�
1

ð� � �Þ2


þ � � � : ð5:2Þ

An important subtlety that occurs repeatedly in the computation is when Dþþ
α ðuÞ ¼ uþi u

þ
j D

ij
α acts on an analytic

superfield which depends on another harmonic variable, say ðθþþ
α ; θ0α; u0Þ. The result is not the naive zero since, using

ðuþu−Þ ¼ 1 and repeated Schouten identities, one can rewrite

Dþþ
α ðuÞ ¼ ðu0þu0−Þ2uþi uþj Dij

α

¼ ½ðuþu0−Þ2Dþþ
α ðu0Þ þ ðuþu0þÞ2D−−

α ðu0Þ − 2ðuþu0−Þðuþu0þÞD0
αðu0Þ�; ð5:3Þ

where we have converted the harmonic dependence of the derivative from u to u0. Note that the charges match on both sides
separately for u’s and u0’s. Thus, for any analytic superfield Φðθþþ

α ; θ0α; u0Þ, we have

Dþþ
α ðuÞΦðu0Þ ¼ ðuþu0þÞ2½D−−

α Φ�ðu0Þ − 2ðuþu0−Þðuþu0þÞ½D0
αΦ�ðu0Þ: ð5:4Þ

Similar manipulations lead to the following list of identities:

ðDþþðuÞÞ2Φðu0Þ ¼ ðuþu0þÞ2ððuþu0þÞ2½ðD−−
α Þ2Φ�ðu0Þ − 4ðuþu0−Þðuþu0þÞ½D−−αD0

αΦ�ðu0Þþ4ðuþu0−Þ2½ðD0
αÞ2Φ�ðu0ÞÞ

D0
αðuÞΦðu0Þ ¼ ðuþu0þÞðu−u0þÞ½D−−

α Φ�ðu0Þ þ ð1 − 2ðuþu0þÞðu−u0−ÞÞ½D0
αΦ�ðu0Þ

D−−
α ðuÞΦðu0Þ ¼ ðu−u0þÞ2½D−−

α Φ�ðu0Þ − 2ðu−u0þÞðu−u0−Þ½D0
αΦ�ðu0Þ: ð5:5Þ

For the sake of convenience, we list generating expressions for component expansions of some connections and field
strengths below [that is, keeping only a single Aþþ in (3.13) and (3.14)]:

AαβðuÞ ¼ −_ι½D0
ðαD

þþ
βÞ A−−�ðuÞ ¼ _ι

Z
du0½D0

ðαD
−−
βÞ A

þþ�ðu0Þ

A−−
α ðuÞ ¼ −

1

2
½ðD−−Dþþ

α þ 2D0
αÞA−−�ðuÞ

¼ −
Z

du0
�
u−u0þ

uþu0þ
½D−−

α Aþþ�ðu0Þ þ 2
u−u0−

uþu0þ
½D0

αAþþ�ðu0Þ
�

WþþðuÞ ¼ −
1

4
½ðDþþ

α Þ2A−−�ðuÞ

¼ −
1

4

Z
du0½ðuþu0þÞ2½ðD−−

α Þ2Aþþ�ðu0Þ − 4ðuþu0−Þðuþu0þÞ½D−− ·D0Aþþ�ðu0Þ�: ð5:6Þ
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Note that all the fields depend on the same θ coordinate. The components can be obtained from the above expressions by
using (3.12) and performing not only theD-algebra but some harmonic algebra too. The simplest component to obtain is the
vector: Aαβ j ¼ 2_ιaαβ. To get the scalars, we need to perform slightly more involved algebra:

Wþþj ¼ −
1

4

Z
du0ðuþu0þÞ2½ðD−−

α Þ2Aþþ�ðu0Þj ¼ 3

Z
du0ðuþu0þÞ2ϕ−−ðu0Þ ¼ uþj u

þ
k ϕ

ðjkÞ ¼ ϕþþ;

W0j ¼
1

2
D−−Wþþj ¼

1

2
ðu−j uþk þ uþj u

−
k ÞϕðjkÞ ¼ ϕ0;

W−−j ¼ D−−W0j ¼ ϕ−−: ð5:7Þ

Other components can be similarly obtained, which we leave as an exercise and refer the reader to [30] for useful identities
involving harmonic variables.
Now we turn to evaluating various contributions to hW1=3i. First, let us consider the contribution from the vector

connection. In general, we have from (3.13):

_xαβA;1 _x
γδ
A;2hA1;αβA2;γδi ¼ −_xαβA;1 _x

γδ
A;2hD0

1αD
þþ
1β A−−

1 D0
2γD

þþ
2δ A−−

2 i

¼ −_xαβA;1 _x
γδ
A;2

	Z
du

D0
1αðu1ÞDþþ

1β ðu1ÞAþþ
1 ðuÞ

ðuþ1 uþÞ2
Z

dv
D0

2γðu2ÞDþþ
2δ ðu2ÞAþþ

2 ðvÞ
ðuþ2 vþÞ2



þ � � � ð5:8Þ

Using (5.6), we find

_xαβA;1 _x
γδ
A;2hA1;αβA2;γδið1Þ ¼ −_xαβA;1 _x

γδ
A;2

Z
du½D0

1αD
−−
1β A

þþ
1 �ðuÞ

Z
dv½D0

2γD
−−
2δ A

þþ
2 �ðvÞ

¼ _xαβA;1 _x
γδ
A;2

Z
duD0

1αD
0
2γD

−−
1β D

−−
2δ

_ι

2π
ffiffiffiffiffiffiffi
2ρ2

p δ2ðθþþ
12 Þ

¼ −_xαβA;1 _x
γδ
A;2

εβδð_ιxA12 − θ01θ
0
2Þαγ

2πðxA122Þ3=2
¼ _xαβA;1 _x

γδ
A;2

εβδθ
0
1αθ

0
2γ

2πjxA12j3
· ð5:9Þ

We used here D−−
α D−−

β ¼ 1
2
εαβD−−2, D−−2δ2ðθþþÞ ¼ 4, _xαβA;1 _x

γδ
A;2εβδx

A
12;αγ ∼ εmnp _xmA;1 _x

n
A;2x

p
A;12 → 0, and expanded 1

ρ2
in

powers of θ0 ’s. The next term (quadratic in Aþþ) in the expansion of A−− also contributes

_xαβA;1 _x
γδ
A;2hA1;αβA2;γδið2Þ ¼

_xA;1 · _xA;2ðjxA12j2 − _ιxA12 · θ
0
1θ

0
2 þ 1

4
θ01

2θ02
2Þ2

4π2jxA12j6
· ð5:10Þ

Let us sketch how we got this result. We require that all δ2ðθþþ
12 Þ be canceled so higher orders of Aþþ cannot contribute as

there are not enough D−−
α derivatives in hA1;αβA2;γδi to cancel more than two such δ functions. After expanding D0

1αD
þþ
1β

using the identities given above, doing two harmonic integrals using the harmonic δ functions in the two propagators and
then hitting the two δ2ðθþþ

12 Þ with correct D−−’s, we are left with
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hA1;αβA2;γδið2Þ ∼
Z

dvdw

ð−ðuþ1 vþÞ2ðwþuþ1 Þðwþu−1 Þ þ ðuþ1 wþÞ2ðvþuþ1 Þðvþu−1 ÞÞ
×ð−ðuþ2 vþÞ2ðwþuþ2 Þðwþu−2 Þεβδεαγ þ ðvþuþ2 Þðvþu−2 Þðwþuþ2 Þ2εβγεαδÞ

ðuþ1 vþÞðwþuþ1 ÞðvþwþÞ2ðuþ2 vþÞðwþuþ2 Þ
ffiffiffiffiffiffiffi
2ρ2

p ffiffiffiffiffiffiffi
2ρ2

p

∼
Z

dvdw

−ðuþ1 vþÞðwþu−1 Þððuþ2 vþÞðwþu−2 Þεβδεαγ þ ðvþu−2 Þðwþuþ2 ÞεβγεαδÞ
−ðuþ1 wþÞðu−1 vþÞððuþ2 vþÞðwþu−2 Þεαδεβγ þ ðvþu−2 Þðwþuþ2 ÞεαγεβδÞ

ðvþwþÞ2ð2ρ2Þ

∼
Z

dvdw

−ððuþ1 wþÞðu−1 vþÞ þ ðvþwþÞÞðvþwþÞεβγεαδ
þðuþ1 wþÞðu−1 vþÞðvþwþÞεαγεβδ

ðvþwþÞ2ð2ρ2Þ

∼
εαγεβδ
ρ2

¼ εαγεβδðjxA12j2 − _ιxA12 · θ
0
1θ

0
2 þ 1

4
θ01

2θ02
2Þ2

jxA12j6
·

Keeping track of various signs and numerical factors above,
we get (5.10).
Let us now evaluate the second contribution to hWi due

to the charged fermionic connection. Using the fact that we
need enough D−−

α to get relevant terms, we ignore terms
with D0

α in the expansion of A−− in (5.6):

_θþþ
1α

_θþþ
2β hA−−α

1 A−−β
2 i

¼ _θþþ
1α

_θþþ
2β

Z
du

�
uþu−1
uþuþ1

�
D−−α

1

�
uþu−2
uþuþ2

�
D−−β

2

_ιδ2ðθþþ
12 Þ

2π
ffiffiffiffiffiffiffi
2ρ2

p
¼ _θþþ

1 · _θþþ
2

�
u−1 u

−
2

uþ1 u
þ
2

� jxA12j2 − _ιxA12 · θ
0
1θ

0
2 þ 1

4
θ01

2θ02
2

2πjxA12j3
·

ð5:11Þ

The u factor in parentheses might look divergent upon
imposing the constraint on the u matrix discussed in
the previous section, but using an explicit parametrization,
one can show that it instead limits to unity up to a Uð1Þ
“charge factor.” We will, however, leave this factor as
it is to account for the correct Uð1Þ charges along
with an understanding that there is no nontrivial u
dependence.
The third contribution to hWi due to a mixed contraction

of the two connections vanishes:

hA1;αβA
−−γ
2 i ¼ −_ι

Z
duD0

1ðαD
−−
1βÞ

�
uþu−2
uþuþ2

�
D−−γ

2

_ιδ2ðθþþ
12 Þ

2π
ffiffiffiffiffiffiffi
2ρ2

p

¼
−ðxA

12;σðαθ
0σ
2 þ _ι

2
θ0
1ðαθ

0
2
2ÞδγβÞ

2πjxA12j3
Z

du

�
uþu−2
uþuþ2

�

¼ 0: ð5:12Þ

The fourth contribution to hWi due to the scalar field
strength is

j_xA;1jj_xA;2jhW0
1W

0
2ið1Þ

¼ 1

64
j_xA;1jj_xA;2jD−−

1 Dþþ
1α

2A−−
1 D−−

2 Dþþ
2β

2A−−
2

¼ j_xA;1jj_xA;2jðθ012 þ θ01 · θ
0
2 þ θ02

2Þ
2πjxA12j3

ð1− 2ðuþ1 uþ2 Þðu−1 u−2 ÞÞ:

ð5:13Þ

This is a contribution from the linear term in A−− and is
straightforward to compute. Like hAαβAγδi, we get a second
contribution from the contraction of quadratic terms in A−−

here too:

j_xA;1jj_xA;2jhW0
1W

0
2ið2Þ

¼ −
j_xA;1jj_xA;2jðjxA12j2 − _ιxA12 · θ

0
1θ

0
2 þ 1

4
θ01

2θ02
2Þ2

4π2jxA12j6
× ð1 − 2ðuþ1 uþ2 Þðu−1 u−2 ÞÞ: ð5:14Þ

This computation proceeds very similarly to the case of the
vector connection, but there are more terms; we sketch
them below (again, various signs and numerical factors
need to be tracked):
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hW0
1W

0
2ið2Þ ∼

Z
dv1;2

D−−
1 Dþþ

1α
2½Aþþðv1ÞAþþðv2Þ�

ðuþ1 vþ1 Þðvþ1 vþ2 Þðvþ2 uþ1 Þ
Z

dw1;2

D−−
2 Dþþ

2β
2½Aþþðw1ÞAþþðw2Þ�

ðuþ2 wþ
1 Þðwþ

1 w
þ
2 Þðwþ

2 u
þ
2 Þ

∼D−−
1 D−−

2

Z
dv1;2

D−−
α ðv1Þ2D−−

β ðv2Þ2
hðuþ

1
vþ
1
Þ4���ffiffiffiffiffi

2ρ2
p δ2ðθþþ

12 Þ ðuþ2 vþ2 Þ4���ffiffiffiffiffi
2ρ2

p δ2ðθþþ
12 Þ

i
ðuþ1 vþ1 Þðvþ1 vþ2 Þðvþ2 uþ1 Þðuþ2 vþ1 Þðvþ1 vþ2 Þðvþ2 uþ2 Þ

∼D−−
1 D−−

2

Z
dv1;2

ðuþ1 vþ1 Þ2ðuþ1 vþ2 Þ2ðuþ2 vþ1 Þ2ðuþ2 vþ2 Þ2
ðuþ1 vþ1 Þðvþ1 vþ2 Þðvþ2 uþ1 Þðuþ2 vþ1 Þðvþ1 vþ2 Þðvþ2 uþ2 Þρ2

∼D−−
1 D−−

2

Z
dv1;2

�ðuþ1 vþ1 Þðuþ1 vþ2 Þðuþ2 vþ1 Þðuþ2 vþ2 Þ
ðvþ1 vþ2 Þ2

�
1

ρ2

∼ ð2 − 4ðuþ1 uþ2 Þðu−1 u−2 ÞÞ
1

ρ2
·

Similarly, we can compute two more mixed contractions between the two connections and W0, but only one is
nonvanishing:

hA−−
1α W

0
2i ¼ −

ð_ιxA12 · θ01 − 1
2
θ02θ

0
2
2Þα

2πjxA12j3
ðu−1 uþ2 Þðu−1 u−2 Þ: ð5:15Þ

One more contribution to hWi needs to be considered (at the order being studied), and this one includes a 3-point vertex
insertion:

	Z
dτ1 _xA;1 · A1

Z
dτ2 _xA;2 · A2

Z
dτ3 _xA;3 · A3




¼ −_ι
Z

dτ1;2;3 _x
αβ
A;1 _x

γδ
A;2 _x

κλ
A;3

Z
dv1;2;3ðD0

αD−−
β AþþÞ1ðD0

γD−−
δ AþþÞ2ðD0

κD−−
λ AþþÞ3

∼
Z

d3τ � � �
Z

d3vðD0
αD−−

β Þ1ðD0
γD−−

δ Þ2ðD0
κD−−

λ Þ3
Z

d3x0d6θ0
dw1;2;3

ðwþ
1 w

þ
2 Þðwþ

2 w
þ
3 Þðwþ

3 w
þ
1 Þ

Y3
i¼1

δ2ðθþþ
0i Þδðvi; wiÞffiffiffiffiffiffiffiffi

2ρ20i
p

∼
Z

d3τ � � �
Z

d3vðvþ1 vþ2 Þðvþ2 vþ3 Þðvþ3 vþ1 Þ
Z

d3x0ðD0
αD−−

β Þ1;2;3
Y3
i¼1

jx0ij2 þ _ιðx0iÞ · ðθþþ
i θ−−i Þ − 1

4
θþþ
i

2θ−−i
2

jx0ij3

∼
Z

d3τ _xαβA;1 _x
γδ
A;2 _x

κλ
A;3

Z
d3vðvþ1 vþ2 Þðvþ2 vþ3 Þðvþ3 vþ1 Þðv−1 vþ2 Þðv−2 vþ3 Þðv−3 vþ1 Þðv−1 v−2 Þðv−2 v−3 Þðv−3 v−1 Þ

×
Z

d3x0

�ðx01Þβγðx02Þδκðx03Þλα
jx01j3jx02j3jx03j3

−
_ιðx01Þβγðx02Þδκθþþ

3;λ θ
−−
3;α

jx01j3jx02j3jx03j3
− � � � þ _ιθþþ

1;β θ
−−
1;γ θ

þþ
2;δ θ

−−
2;κ θ

þþ
3;λ θ

−−
3;α

jx01j3jx02j3jx03j3
�
: ð5:16Þ

The second to last line is obtained after performing theR
d6θ0 in the previous line with the help of three δ2ðθþþ

0i Þ’s,
canceling the divergent harmonic denominator. The last
line then follows by converting D0

i → Dþþ
iþ1 in cyclic order

and acting on the numerator, thus picking out eight terms.
The

R
d3v integral produces only a numerical factor. Note

that the first term in the integral
R
d3x0 is the only

“bosonic” piece given by the well-known integral (6.12)
of [15].
Finally, collecting all the results at one-loop order (we

suppress u-dependent factors from hW0W0i to keep the
expression below manageable), we have
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hW1=3ðx; θ��; θ0Þi ¼ 1þ 1

2

4π

_ιk
N
2

Z
dτ1dτ2

�
_xαβA;1 _x

γδ
A;2εβδθ

0
1αθ

0
2γ þ j_xA;1jj_xA;2jðθ012 þ θ01 · θ

0
2 þ θ02

2Þ
2πjxA12j3

þ _θþþ
1 · _θþþ

2

�
u−1 u

−
2

uþ1 u
þ
2

� jxA12j2 − _ιxA12 · θ
0
1θ

0
2 þ 1

4
θ01

2θ02
2

2πjxA12j3

−
_θþþ
1 · ð_ιxA12 · θ02 − 1

2
θ01θ

0
2
2Þj_xA;2j þ j_xA;1j_θþþ

2 · ð_ιxA12 · θ01 − 1
2
θ01

2θ02Þ
2πjxA12j3ðu−1 uþ2 Þ−1ðu−1 u−2 Þ−1

�

−
1

2

16π2

k2
N2

2

Z
dτ1dτ2

�
_xA;1 · _xA;2 − j_xA;1jj_xA;2j

4π2jxA12j2
�
1 −

2_ιxA12 · θ
0
1θ

0
2

jxA12j2
�

þ
Z

dτ3

Z
d3x0

_xαβA;1 _x
γδ
A;2 _x

κλ
A;3ðx01Þβγðx02Þδκðx03Þλα −Oðθi2Þ
4 × 16π3jx01j3jx02j3jx03j3

�
: ð5:17Þ

VI. COMMENTS

We have constructed a 1
3
-BPS supersymmetrized

Wilson loop operator in d ¼ 3, N ¼ 3 harmonic super-
space for CS theories. This operator readily generalizes
the 1

6
-BPS operator for ABJM theories. We were also

able to use the power of harmonic superspace to
compute the one-loop perturbative corrections directly
in superspace.
Using the component expansion of N ¼ 3 connections

and field strengths, and just focusing on the localization
locus discussed in Sec. II (σ ≡ ϕ0 and D≡ X0 ¼ − σ

r),
we can see that the W1=3 given in (5.1) reduces to (2.5)
once we identify θ, θ̄ with θþþ, θ−−. Then one can expect
that

hW1=3i ¼ 1þ 1

2

�
ϑþ ϑ2

4

�
α

−
�
1

24

�
5þ 1

N2

�
þ 1

4
ϑ −

1

6

�
1

2
þ 1

N2

�
ϑ2

4

�
α2

þOðα3Þ: ð6:1Þ

At order α2, we can directly compare the “bosonic” factor
− 5α2

24
≡ 5π2N2

6k2 above to the corresponding perturbative
expression in (5.17). They exactly match once we perform
the integrals in the latter case for a circular WL, i.e.,
xμ ¼ ð0; sinðτÞ; cosðτÞÞ as one might expect.6

Formally, both (5.17) and (6.1) have nonvanishing
“fermionic” contributions at OðαÞ and Oðα2Þ. However,
without knowing the explicit profile functions of θðτÞ and
uðτÞ, we cannot proceed further. However, we can identify
a contribution at Oðα2Þ that does not receive any Oð1NÞ

corrections.7 These are the Oðθθ̄Þ terms in the ϑ piece of
(6.1) and comparing with (5.17), we can give an explicit
expression for these terms:

ϑjOðθθ̄Þ ¼
2_ι

π2

Z
dτ1dτ2

×
ð_x1 · _x2 − j_x1jj_x2jÞxαβ12ðθ1;αθ̄1;β − θ2;αθ̄2;βÞ

jx12j4

−
_ι

16π3

Z
dτ1;2;3 _x

αβ
1 _xγδ2 _xκλ3

×
Z

d3x0
ðx01Þβγðx02Þδκθ3;λθ̄3;α þ 2more terms

jx01j3jx02j3jx03j3
·

ð6:2Þ

The fermionic pieces from the term proportional to
ð_xA;1 · _xA;2 − j_xA;1jj_xA;2jÞ do not contribute above because
the combination θθ̄ is independent of τ as discussed in
Sec. II. Such fermionic contributions to the Wilson loop
operators do not seem to have been considered in d ¼ 3,
but similar terms have appeared in the d ¼ 4, N ¼ 4 SYM
literature, specifically in the study of supersymmetrized
Maldacena-Wilson loops [29,31]. Thus, a careful study of
the τ dependence of the θ and u coordinates that is
consistent with the “bosonic” circular WL is required to
understand how the general perturbative result (5.17)

6We refer the readers to [15] for evaluation of the relevant
integrals.

7We do not have Oð1NÞ terms at OðαÞ either, but that could still
be treated as a phase factor. The striking feature of the term at
Oðα2Þ is that it remains unchanged even after the removal of the
OðαÞ phase:

hW1=3i ¼ 1 −
�
1

24

�
5þ 1

N2

�
þ 1

4
ϑþ 1

6

�
5

2
−

1

N2

�
ϑ2

4

�
α2

þOðα3Þ:
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reduces to the simpler localization result (6.1) at various θ
orders.8 We leave this exercise for future work.
One can also ask whether the construction of a 1

2
-BPS

WL with “supermatrix” structure [20] is feasible in
harmonic superspace. Our preliminary analysis suggests
that the Uð1Þ charge structure of the supersymmetry
parameters ðε��; ε0Þ and the matter superfield qþ is an
obstacle to constructing a straightforward generalization.
As mentioned in the Introduction, a motivation to study
such supersymmetrized WL operators is to probe the
Wilson loops/scattering amplitudes duality in ABJM

theory. The expectation is that polygonal WL operators
with certain bifundamental vertex insertions would be dual
to the ABJM scattering amplitudes. The matter superfield
ðqþaÞBA in bifundamental representation provides a natural
candidate for such insertions. However, this leads to some
superficial divergences that need to be tamed. Progress on
these aspects will be reported elsewhere.
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