
 

Magnetic Hopfions in the Faddeev-Skyrme-Maxwell model
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We construct new solutions of the Faddeev-Skyrme-Maxwell model, which represent Hopf solitons
coupled to magnetic fluxes. It turns out that coupling to the magnetic field allows for transmutations of the
solitons; however, the results depend both on the type of the vacuum boundary condition and on the
strength of the gauge coupling. It is shown that the structure of the magnetic fluxes of a gauged Hopfion is
governed by the preimages of the points ϕ3 ¼ �1.
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I. INTRODUCTION

Topological solitons appear as classical solutions in
various nonlinear models, and they have been intensively
studied over the past decades. These regular localized
field configurations with finite energy attracted a lot of
attention; they emerge in a variety of physical, chemical,
and biological systems.
Interesting examples of stable topological solitons exist

in the family of Skyrme-type scalar theories, which can be
considered as deformations of the nonlinear sigma model.
It includes so-called baby Skyrmions in the (2þ 1)-
dimensional Oð3Þ model [1,2], Skyrmions in the conven-
tional (3þ 1)-dimensional Skyrme model [3] and its
modifications [4,5], and the Hopfions in the Faddeev-
Skyrme model [6,7]. A unifying feature of all these models
is that they have the same structure; the corresponding
Lagrangians always include the usual σ-model term, the
Skyrme term, which is quartic in derivatives of the field, and
a potential term, which does not contain the derivatives.
According to Derrick’s theorem [8], the potential is optional
in 3þ 1 dimensions; however, it is obligatory to stabilize the
soliton solutions of the planar baby-Skyrme model.
The solitons of the Faddeev-Skyrme model are some-

what special, because their topology is defined by the first
Hopf map S3 ↦ S2 with the related homotopy group
π3ðS2Þ ¼ Z. It corresponds to the topological charge,
which is the linking number of loops on the compactified
domain space S3.
Notably, all the models of the Skyrme family on a

noncompact domain do not saturate the topological bound.

In order to attain the bound which yields a relation between
the static energy of the solitons and their topological
charges Q, one has to modify the model, preserving its
topological properties, for example, truncate the Faddeev-
Skyrme model [9] or, oppositely, extend the Skyrme model
via coupling it to an infinite tower of vector mesons [10] or
completely change the original theory to the form which
supports self-dual equations [4,5,11,12]. Thus, the energy
of interaction between the solitons is relatively large, and
they may attract each other, forming various multisoliton
configurations; see, e.g., [13,14].
Intuitively, the Hopfions can be constructed by consid-

ering baby Skyrmions restricted to the plane which is
orthogonal to the direction of the position curve of the
stringlike configuration [15]. The topological charge of
such a soliton corresponds to the product of the winding
number of the planar Skyrmions and the number of twists
of the entire configuration in the extra spatial direction.
Physically, solitons of that type can be considered as a
vortex which is bending and twisting. The identification of
the end points of the vortex yields the loop, which can
transform itself into a knot to minimize its energy.
A peculiarity of the interaction potential, in the case of

both Skyrmions and Hopfions, is that the asymptotic decay
of the fields, which defines the character of interaction,
strongly depends on the explicit form of the potential
[4,5,16–20]. Furthermore, various symmetry-breaking
potentials were considered to construct half-Skyrmions
[21–25] or fractional Hopfions [26].
There is another possibility to make alterations to the

structure of multisoliton solutions. In the Faddeev-Skyrme
model, the vacuum boundary condition should be imposed
in such a way that all the points on the boundary are
identified. It yields the compactification of the domain
space from R3 to S3. Hence, the Hopfions are invariant
with respect to the global SOð2Þ symmetry of the
vacuum. This allows us to construct the Uð1Þ gauged
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Faddeev-Skyrme-Maxwell theory by analogy with the
extension of the gauged planar baby-Skyrme model
[27–29]. Clearly, electromagnetic interaction will
strongly affect the usual pattern of interaction in the
system of Hopfions.
Unfortunately, the task of explicit construction of the

solutions of the Faddeev-Skyrme-Maxwell theory has
been hampered by numerous technical obstacles. Since
there are no analytical solutions of the corresponding
field equations, the minimizers of the corresponding
energy functional can be obtained only numerically.
However, it is known that the Hopfions of lowest degrees
Q ¼ 1, 2 are axially symmetric [30–32]; thus, in
Ref. [33], the consideration was restricted to the case
of the static axially symmetric gauged unlinked Hopfions
A1;1 and A2;1. An assumption of axial symmetry sim-
plifies the consideration significantly, since the problem
then can be reduced to the numerical solution of the
system of coupled ordinary differential equations.
However, this symmetry is not a general property of
general solutions of the Faddeev-Skyrme model supple-
mented by the Maxwell term; thus, this problem should
be revisited.
In this paper, we investigate the structure of multisoliton

solutions of the full coupled Faddeev-Skyrme-Maxwell
system. Usually, there is an ambiguity in the choice of
the topological boundary conditions on the scalar field;
however, in the Uð1Þ gauged Faddeev-Skyrme model, it
becomes dependent on the definition of the electromagnetic
group. We consider two choices of the vacuum boundary
conditions: ϕ⃗∞ ¼ ð0; 0; 1Þ and ϕ⃗∞ ¼ ð1; 0; 0Þ. In both
cases, we perform full 3D numerical computations to find
the corresponding magnetic Hopf solitons in the sectors of
degrees up toQ ¼ 8. We study numerically the dependence
of masses of the Hopfions and the corresponding magnetic
fluxes on the gauge coupling constant. We confirm that in
the strong coupling limit the magnetic fluxes of the
Hopfion become quantized in units of 2π.
We found that in a general case the magnetic fluxes of

gauged Hopfions are defined by the preimages of the
vectors ϕ⃗ ¼ ð0; 0;�1Þ, and there is an intrinsic interplay
between the topology of the Hopf map and the structure of
the magnetic field of the configuration.
The rest of the paper is structured as follows. In the

next section, we briefly describe the Faddeev-Skyrme-
Maxwell model. In Sec. III, for the sake of completeness,
we review the rational map approximation used as input
in our numerical simulations. Numerical results are
presented in Sec. IV, where we describe various magnetic
Hopfion solutions. For the sake of compactness, we
restrict the analysis to the solitons with topological
charges up to eight; as a particular example, we present
a more detailed discussion of the evolution of the Q ¼ 5
Hopfions. Conclusions and remarks are formulated in the
last section.

II. Uð1Þ GAUGED FADDEEV-SKYRME MODEL

We consider the Faddeev-Skyrme theory coupled to the
Abelian gauge field in (3þ 1) dimensions. The model is
defined by the rescaled Lagrangian

L ¼
Z

d3x

�
−

1

4g2
F2
μν þDμϕ⃗ ·Dμϕ⃗ −

1

2
ðDμϕ⃗ ×Dνϕ⃗Þ2

�
;

ð1Þ

where the real scalar triplet ϕ⃗ ¼ ðϕ1;ϕ2;ϕ3Þ is constrained
to the surface of a unit sphere, jϕ⃗ · ϕ⃗j ¼ 1, so the target
space is the sphere S2. Since the potential term is optional,
we do not consider it. However, the global SOð3Þ sym-
metry will be broken as we impose the topological vacuum
boundary conditions, like ϕ⃗∞ ¼ ð0; 0; 1Þ, which yield a
one-point compactification of the domain space R3 to S3.
Note that this common choice is not unique; below, we will
also consider another case, ϕ⃗∞ ¼ ð1; 0; 0Þ.
Thus, the field of the Hopfion is a map ϕ⃗∶R3 → S2

which belongs to an equivalence class characterized by the
homotopy group π3ðS2Þ ¼ Z. Explicitly, the Hopf invariant
is defined nonlocally as

Q ¼ 1

16π2

Z
R3

εijkF ijAk; ð2Þ

where F ij ¼ ϕ⃗ · ð∂iϕ⃗ × ∂jϕ⃗Þ and one-form A ¼ Akdxk is
defined via F ¼ dA; i.e., the two-form F is closed,
dF ¼ 0.
The model (1) includes also the usual Maxwell term with

the field strength tensor Fμν ¼ ∂μAν − ∂νAμ. Note that
under a spatial rescaling x → λx, this term in the action
scales as λ−1; i.e., it has the same scaling properties as
the quartic in the derivative Skyrme term. The flat metric
is gμν ¼ diagð1;−1;−1;−1Þ, and the coupling of the
scalar triplet to the gauge field is given by the covariant
derivative [27,28,33,34]

Dμϕ⃗ ¼ ∂μϕ⃗þ Aμϕ⃗ × n⃗; ð3Þ

where the unit vector n⃗ ¼ ð0; 0; 1Þ defines the direction of
the electromagnetic subgroup. Explicitly,

Dμϕ⊥ ¼ ∂μϕ⊥ − iAμϕ⊥; Dμϕ3 ¼ ∂μϕ3; ð4Þ

where ϕ⊥ ¼ ϕ1 þ iϕ2 are planar components of the scalar
field. Thus, the third component ϕ3 remains decoupled
from the gauge potential. However, since the scalar triplet is
restricted to the surface of the unit sphere, coupling of the
planar components ϕ⃗⊥ to the gauge sector still affects the
component ϕ3 indirectly.
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The Abelian gauge transformations act on the fields as

ϕ⊥ → eiαϕ⊥; Aμ → Aμ þ ∂μα; ð5Þ
and, thus, we can make use of this symmetry to
set A0 ¼ 0. Further restricting our analysis to static
configurations, we consider purely magnetic field
B⃗ ¼ ð−∂3A2; ∂3A1; ∂1A2 − ∂2A1Þ.
The static energy functional of the model (1) is

E ¼
Z

d3x

�
1

2g2
B⃗2 þDiϕ⃗ ·Diϕ⃗þ 1

2
ðDiϕ⃗ ×Djϕ⃗Þ2

�
: ð6Þ

Here we are using normalized units of energy, rescaling it
as E → E=ð32π2 ffiffiffi

2
p Þ. The Hopfions correspond to the

stationary points of this functional. Note that the condition
of finiteness of energy implies that Diϕ⊥ ¼ ∂iϕ⊥ −
iAiϕ⊥ !

r→∞
0 as r → ∞. In other words, on the spatial

asymptotic, the field of the gauged Hopfion must lie in
an orbit of the gauge group; it is not necessarily a
constant there.
The complete set of the field equations, which follows

from the variation of the action of the model (1), is

DμJ⃗
μ ¼ 0; ∂μFμν − 2g2n⃗ · J⃗ν ¼ 0: ð7Þ

Here the scalar current is

J⃗μ ¼ ϕ⃗ ×Dμϕ⃗ −Dνϕ⃗ðϕ⃗ ·Dμϕ⃗ ×Dνϕ⃗Þ; ð8Þ

and a source in the corresponding Abelian Maxwell
equations is jμ ¼ n⃗ · J⃗μ. This system is similar to the
corresponding equations of the planar Skyrme-Maxwell
theory [27,29,34]; however, the topological properties of
the fields are different.
Unlike other solitons, the location of the Hopfions

does not correspond to the maximum of the topological
charge density; the Hopfions are extended stringlike
configurations in three-dimensional space. The maxima
of the energy density distribution can be identified as the
curve of positions of the preimage of the point ϕ⃗0 ¼
ð0; 0;−1Þ, which is antipodal to the vacuum [32]. This
curve is usually referred to as the position curve [32]. In the
gauged Faddeev-Skyrme model, this curve has also another
meaning.
Note that we can make use of the trigonometrical

parametrization of the scalar field

ϕ⃗ ¼ ðsinψ cos σ; sinψ sin σ; cosψÞ; ð9Þ

where two functions ψðx; y; zÞ and σðx; y; zÞ satisfy the
boundary conditions on the Hopfion configuration in a
given topological sector. Although this parametrization
is not the most convenient from the point of view of

numerical simulations [35], it automatically takes into
account restriction of the scalar field to S2. This, in particular,
allows for a more transparent understanding of many
peculiarities of the gauged Faddeev-Skyrme model.
In a simple case of the axially symmetric gauged

Hopfions A1;1 and A2;1 [30], the function σ can be
explicitly written in spherical coordinates ðr; θ;φÞ as
σ ¼ nφ −mGðr; θÞ, where two winding numbers n, m ∈
Z correspond to the planar winding and the twisting of
the configuration, respectively. The phase function of the
axially symmetric configuration Gðr; θÞ increases by 2π
after one revolution around the core; thus, the Hopf number
of the soliton is just a product of two windings, Q ¼ mn,
and the axially symmetric configuration of the type Am;n

can be thought of as composed from a planar baby
Skyrmion of charge n twistedm times along the circle [30].
In a general case, by analogy with the similar situation in

the gauged planar Skyrme model [36], the Abelian current
can be written as

ji ¼ ð∂iσ − AiÞ½1 − ϕ2
3 þ ∂jϕ

2
3� − ∂iϕ3∂jϕ3ð∂jσ − AjÞ:

ð10Þ

We can assume that the gauge potential Ai slowly varies
in space. Then, from the second equation in (7), we can see
that in the limit of infinitely large gauge coupling g → ∞
this equation is satisfied only if the Abelian current (10)
becomes zero. Evidently, if ϕ3 ≠ �1, the current is
vanishing when Ai ¼ ∂iσ; i.e., the magnetic potential
becomes a pure gauge everywhere in 3D space apart from
the curves C� ¼ ϕ−1ð0; 0;�1Þ.
Considering the magnetic flux through the area, trans-

verse to the direction of the ϕ3, we can see that

Φ ¼
Z

Bd2x ¼
I
Γ
A⃗ · d⃗l ¼

I
Γ
∇σ · d⃗l ¼ 2πn; ð11Þ

where Γ is a closed contour encircling the points,
where ϕ⃗ ¼ ð0; 0;�1Þ.
The consideration above explains the effective quantiza-

tion of the magnetic fluxes of the gauged axially symmetric
Hopfions of degrees Q ¼ 1, 2 in the strong coupling limit
[33]. It was observed that the configuration is associated
with two magnetic fluxes, one of which represents a
circular vortex, and the second one is orthogonal to the
position curve [37]. In the strong coupling limit, the former
flux is quantized in units of the winding number n, while
the latter flux is quantized in units of m.
Indeed, the position curve of the Hopfion is defined as

the preimage of the point ϕ ¼ ð0; 0;−1Þ on the target
space. On the other hand, for the axially symmetric
Hopfions, the component ϕ3 is approaching the vacuum
on the symmetry axis, so ϕ ¼ ð0; 0; 1Þ as r ¼ 0. Therefore,
there are two associated magnetic fluxes, both becoming
quantized in the strong coupling limit. More generally, the
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curves of ϕ3 ¼ �1 define the structure of the magnetic
fluxes of a gauged magnetic Hopfion.

III. INITIAL APPROXIMATION

The task of finding of multisoliton solutions of the
Faddeev-Skyrme model in a given sector of degree Q is
very complicated; it can be performed only numerically.
Moreover, it involves a rather sophisticated numerical
technique; see, e.g., [32].
As usual, the energy minimization scheme needs an

appropriate initial configuration in a given sector. The most
effective approach here is related with the rational map
approximation, suggested by Sutcliffe [32]. One can con-
sider two complex variables which parameterize the
sphere S3 [32]:

ðZ1; Z0Þ ¼ ðsin fðrÞ sin θeiφ; cos fðrÞ þ i sin fðrÞ cos θÞ;
ð12Þ

where fðrÞ is a monotonically decreasing function
with the boundary values fð0Þ ¼ π and fð∞Þ ¼ 0. The
coordinates Z1, Z0 are restricted to the unit sphere S3, i.e.,
jZ1j2 þ jZ2j2 ¼ 1. This allows us to construct a map
R3 ↦ S3 ∈ C2.
The components of the scalar field ϕ⃗, which are

coordinates on the target space S2, are given by the rational
map W∶S3 ∈ C2 ↦ CP1:

WðZ1; Z0Þ ¼
ϕ1 þ iϕ2

1þ ϕ3

¼ PðZ1; Z0Þ
QðZ1; Z0Þ

; ð13Þ

where the polynomials PðZ1; Z0Þ and QðZ1; Z0Þ have
no common roots on the two-sphere S2. The rational
map ansatz (13) produces a curve in R3; therefore, the
first Hopf map ϕ⃗∶R3 ↦ S2 is equivalent to the rational
map W∶S3 ↦ CP1.
There are three different types of input configurations.

The axially symmetric Hopfions Amn are produced by the
rational map [32]

WðZ1; Z0Þ ¼
Zn
1

Zm
0

: ð14Þ

ThisHopfion has a single position curve C− ¼ ϕ−1ð0; 0;−1Þ.
More generally, we can consider initial configurations,

which are given by maps of the form

WðZ1; Z0Þ ¼
Zα
1Z

β
0

Za
1 þ Zb

0

; ð15Þ

where α is a positive integer and β is a non-negative integer.
These maps have Hopf degree Q ¼ αbþ βa, and the
corresponding configuration is a torus knot Ka;b. In a

particular case when a and b are not coprime integers, the
rational map (15) is degenerated, producing a link with two
or more interlinked and disconnected position curves.
Configurations of that type are labeled as Ln;m

a;b , where
the subscripts label the Hopf indexes of the unknots and the
superscript above each subscript counts the secondary
linking number, which appears due to interlinking with
the other components.
Note that the location of the soliton can be identified

as a collection of curves, which follow the preimages of
two distinct points, for example, C− ¼ ϕ⃗−1ð0; 0;−1Þ and
C1 ¼ ϕ⃗−1ð1; 0; 0Þ. Since these loops are linked Q times,
the definition of the linking number can be related
with the positions of the preimages of these points:
Q ¼ linkðC−; C1Þ. Other choices of the preimages are also
possible [26].
The input for the magnetic potential Ai at a finite value of

the gauge coupling g can be taken as a generalization of the
limiting form of the pure gauge condition above:

Ai ¼ ∂iσðϕ⊥ÞAðϕ3Þ →
g→∞

∂iσðϕ⊥Þ; ð16Þ

where the function σðϕ⊥Þ appeared in the trigonometric
parametrization (9) of the scalar fields. The smooth
function Aðϕ3Þ must satisfy the restrictions Að�1Þ ¼ 0
and Að0Þ ≃ 1, and it agrees with the parametrization used
previously to construct axially symmetric solutions of the
gauged Faddeev-Skyrme model [33]. Thus, we can take
Aðϕ3Þ ¼ 1 − ϕ2

3 as an appropriate choice.

IV. NUMERICAL RESULTS

For our numerical computations, we used the algorithm
of minimization of the energy functional (6) described in
Refs. [28,38]. The fields are discretized on the grid
with 1003 or 1503 points with grid spacing Δx ¼ 0.1.
The initial configurations were produced via the rational
map approximation as above. As a consistency check, we
verify that our algorithm correctly reproduces the known
results for the Hopfion configurations of the usual
decoupled Faddeev-Skyrme model at g ¼ 0 and for the
gauged axially symmetric configurations A11 and A21

previously discussed in Ref. [33].
The solutions of that type, A11 and A21, are global

minima in the sectors of degrees Q ¼ 1, 2, respectively.
They represent axially symmetric unknots with the position
curve C− ¼ ϕ−1ð0; 0;−1Þ forming a single loop. For the
configuration A21, the corresponding linking curve, asso-
ciated with the preimage of the point C1 ¼ ϕ−1ð1; 0; 0Þ, has
two twists around the position curve, as shown in Fig. 1.
Note that, with the usual choice of the vacuum boundary

conditions ϕ⃗∞ ¼ ð0; 0; 1Þ, the vector n⃗, which appears
in the definition of the covariant derivative (3), is parallel
to ϕ⃗∞. Below, we will also consider another situation, when
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Fig. 1. (Continued).
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on the spatial boundary ϕ⃗∞ ¼ ð1; 0; 0Þ and n⃗ is transverse

to ϕ⃗∞.
As the gauge coupling gradually increases from g ¼ 0,

the energy of the configuration decreases, since the
magnetic flux is formed and the core of the Hopfions
shrinks. The magnetic energy is initially increasing;

however, its contribution starts to decrease as g becomes
larger than g ¼ 1 [33]. The structure of the magnetic field
follows the pattern above, in the weak coupling regime
there is a toroidal magnetic field, which encircles the
position curve of the Hopfion. As the gauge coupling
constant increases, the curves of the preimages of the points
C� ¼ ϕ⃗−1ð0; 0;�1Þ pave the way for magnetic flux tubes.

FIG. 1. Isosurfaces of the field components ϕ1 ¼ −0.9 and ϕ3 ¼ −0.9 (first column), the field components ϕ3 ¼ �0.9 (second
column), jBj ¼ 2 isosurfaces of the magnetic field (third column), and E ¼ 5 isosurfaces of the energy density (fourth column) for
Q ¼ 1–8 gauged Hopfions in the model (1) with g ¼ 1 and ϕ⃗∞ ¼ ð0; 0; 1Þ.
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Fig. 2. (Continued).
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Indeed, we can clearly identify two fluxes along these
curves; the first flux is directed along the symmetry axis of
the configuration, and the second circular magnetic flux is
orthogonal to the x − z plane (see Fig. 1). Both fluxes
become quantized in units of 2π in the strong coupling
limit [33].
Further increase of the gauge coupling leads to shrinkage

of the Hopfion, and the magnetic field effectively squeezes
the configuration. This effect is opposite to the isorotations
of the Hopfions, which also affect the structure of the
solutions [39,40].
Note that there is another axially symmetric Hopfion

configuration in the sector of degree two, 2A12

[30,32,41,42]. It can be thought of as two Q ¼ 1

Hopfions stacked one above the other. In the limit
g ¼ 0, this solution is a saddle point configuration, which
has a higher energy than theA21 Hopfion. As g increases, it
still remains as a saddle point (see Fig. 3).
Interestingly, there is a certain similarity between the

structure of the magnetic field of Q ¼ 1, 2 axially sym-
metric Hopfions and toroidal magnetic fields which are
well known in solar and plasma physics; see, e.g., [43].
In the latter case, the magnetic field appears as a solution
of the so-called force-free equation for a plasma current
j⃗ × B⃗ ¼ 0.
In order to see the difference between the cases of the

magnetic field of the gauged Hopfions and the magnetic

FIG. 2. Isosurfaces of the field components ϕ1 ¼ �0.9 (left column), jBj ¼ 2 isosurfaces of the magnetic field (middle column), and
E ¼ 5 isosurfaces of the energy density (right column) for Q ¼ 1–8 gauged Hopfions in the model (1) with g ¼ 1 and ϕ⃗∞ ¼ ð1; 0; 0Þ.
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field in a plasma device, such as a stellerator or tokamak, let
us assume that the scalar current j⃗ is a plasma current.
However, the field-free equation leads to B⃗ ¼ αj⃗; thus, for a
constant α we obtain the Helmholtz equation:

ΔB⃗þ α2B⃗ ¼ 0: ð17Þ

On the other hand, the magnetic field of the Hopfions is
generated by the scalar current (8), which can be written as

j⃗ ¼ K⃗ð1 − ϕ2
3Þ − ∇⃗ϕ3 × ð∇⃗ϕ3 × K⃗Þ; ð18Þ

where K⃗ ¼ ∇⃗σ − A⃗. Thus, the corresponding Maxwell
equation becomes

∇⃗× ð∇⃗× K⃗Þ− 2g2∇⃗ϕ3 × ð∇⃗ϕ3 × K⃗Þ þ 2g2K⃗ð1−ϕ2
3Þ ¼ 0:

ð19Þ

Since in the strong coupling regime the magnetic flux tubes
follow the directions of the curves of preimages of the
vectors ϕ⃗ ¼ ð0; 0;�1Þ, we can assume that outside of these
curves ϕ3 ≃ 0, and thus

∇⃗ × ð∇⃗ × K⃗Þ þ 2g2K⃗ ≃ 0:

Since B⃗ ¼ ∇⃗ × A⃗ ¼ −∇⃗ × K⃗, we can see that the counter-
part of the force-free equation for the magnetic field of the
Hopfions can be written as

ΔB⃗ − 2g2B⃗ ≃ 0: ð20Þ

Notably, this is a London-type equation with the penetra-
tion depth parameter 1ffiffi

2
p

g
, and the mass term here has a sign

opposite to the one in the force-free equation (17). Thus, in
the strong coupling limit, the magnetic field of a Hopfion
exhibit a sort of Meissner effect.

A. Higher-charge gauged Hopfions at ϕ⃗∞ = ð0;0;1Þ
Peculiar feature of the Hopfions of higher degrees is that

in the standard Faddeev-Skyrme model they usually do not
possess any symmetry [32], and the corresponding collec-
tion of position curves is not planar. For example, for the
charge three Hopfion, the energy minimization transforms
the corresponding axially symmetric initial configuration
3A31 into the pretzel-like Hopfion 3Ã31.
Let us now consider the Q ¼ 3 Hopfion solution in the

Faddeev-Skyrme-Maxwell model (1) with the usual boun-

dary condition ϕ⃗∞ ¼ ð0; 0; 1Þ. As the gauge coupling
constant gradually increases from zero, the position curve,
initially bending toward the third direction, smoothly
becomes a planar loop; see Fig. 1. The axially symmetric
gauged Hopfion 3A31 becomes the global minimum in this
sector at g ∼ 0.3; as the gauge coupling increases further,
the deformed Hopfion 3Ã31 does not exist as a local
minimum.
Note that, similar to the case of the Q ¼ 1, 2 Hopfions,

the total energy of the configurations of higher degrees
decreases as the gauge coupling g increases, and this
observation holds in a general case; see Fig. 4.
For Hopf degree Q ¼ 4, there are possibilities to con-

struct initial configurations of types 4A22, 4A41, and 4L11
11.

In the usual Faddeev-Skyrme model without the magnetic
field, the axially symmetric Hopfion A22, which may be
thought of as two adjacent 2A21 solitons in the maximally
attractive channel of interaction, represents the global
minimum [32]. Numerical relaxation of the initial 4A41

configuration yields a buckled Hopfion 4Ã41; however, in
the limit g ¼ 0, its energy is about 2% above the global
minimum. The situation changes as the gauge coupling
increases; the interaction with the magnetic field tends to
straighten out the position curve, and thus the axially
symmetric Hopfion 4A41 has a lower energy than 4A22.
In the usual Faddeev-Skyrme model at g ¼ 0, in the

sector of degree four, the link 4L1;1
1;1 does not exist as a local

minimum. However, this type of solution 5L1;1
2;1 is a

minimizer forQ ¼ 5Hopfions. We observe that an increase
of the gauge coupling transforms it into configuration
of a different type. As g ∼ 1, the magnetic attraction
between the fluxes, associated with the collection of loops
C− ¼ ϕ−1ð0; 0;−1Þ, deforms the position curve; it corre-
sponds to two adjacent loops which are not linked to
each other (see Fig. 1). Furthermore, such a configuration
is not a global minimum in this sector; as g≳ 0.2, the
axially symmetric configuration A51 has a lower energy
(see Fig. 4).
Note that the magnetic field of all axially symmetric

gauged Hopfions An1 represents two magnetic fluxes: one
flux encircles the position curve of the Hopfion, and the
second one is directed along the symmetry axis; this pattern
is illustrated in Fig. 1. As we discussed above, in the strong

FIG. 3. Energy of Q ¼ 1–8 Hopfions with g ¼ 1 and ϕ⃗∞ ¼
ð0; 0; 1Þ and ϕ⃗∞ ¼ ð1; 0; 0Þ.

MAGNETIC HOPFIONS IN THE FADDEEV-SKYRME- … PHYS. REV. D 97, 125014 (2018)

125014-9



coupling limit, both fluxes are quantized in units of 2π and
2πn, respectively.
Considering the structure of the magnetic field of an Ãn1

Hopfion with axial symmetry weakly broken, we observe
that one of the magnetic fluxes follows the position curve
C− ¼ ϕ−1ð0; 0;−1Þ. Another flux is associated with the
direction of the vector n⃗ ¼ ð0; 0; 1Þ in (3). This is also the
case of the Q ¼ 5 Hopfion; as seen in the ninth row in
Fig. 1, the magnetic fluxes follow the loops, which are
preimages of C− ¼ ϕ⃗−1ð0; 0;−1Þ and Cþ ¼ ϕ⃗−1ð0; 0; 1Þ.
The axially symmetric configurations An1 represent

global minima in the strong coupling regime up to
Q ≤ 5. When Q ¼ 6, there are two different links 6L1;1

2;2

and 6L1;1
3;1 and the axially symmetric configurations of two

types, A32 and A61, respectively. As g ¼ 0, the link 6L1;1
2;2

represent the global minimum; it has a lower energy than
other configurations in that sector for all values of g. An
increase of the coupling constant and related magnetic
interaction deforms this initial configuration into an axially
symmetric soliton 6A32; as g ¼ 1, it has an energy about
16% lower than another axially symmetric Hopfion 6A61.
The trefoil knot 7K3;2 is the only minimizer in the sector

of degree seven as g ¼ 0. However, as the gauge coupling
grows, the magnetic fluxes associated with the loops C− ¼
ϕ⃗−1ð0; 0;−1Þ tend to merge because of the attraction
between them. At g ¼ 1, the knot becomes deformed into
a configuration whose position curve represents two con-
tacting loops, which are not interlinked; see Fig. 1. This
structure is similar to the corresponding solution in the
sector Q ¼ 5.
At degree Q ¼ 8, there are three energy minima, which

represent a link 8L1;1
3;3, a knot 8K3;2, and axially symmetric

Hopfions 8A42, respectively. As g ¼ 0, the link L1;1
3;3 has an

energy a little less than the knot 8K3;2. However, as g
increases, the axial symmetry is recovered and the 8A4;2

becomes a global minimizer in that sector as g ¼ 1. This

Hopfion is composed of two 4A41 Hopfions stacked one
above the other with the orientation in the maximally
attractive channel. Another axially symmetric configura-
tion 8A81 in the strong coupling limit has a bit higher
energy. Again, we observe that the structure of the magnetic
fluxes is completely determined by the preimages of C− ¼
ϕ⃗−1ð0; 0;−1Þ and Cþ ¼ ϕ⃗−1ð0; 0; 1Þ; see Fig. 1. As g ¼ 1,
we find that the 8K3;2 Hopfion, similarly to that of Q ¼ 7

and Q ¼ 5, deforms into configurations with two contact-
ing loops; see Fig. 1.

B. Gauged Hopfions at ϕ⃗∞ = ð1;0;0Þ
Unlike the gauged planar baby-Skyrme model [27–29],

in the three-dimensional Faddeev-Skyrme-Maxwell model
(1), the Uð1Þ gauging prescription (3) is not necessarily
correlated with the vacuum boundary condition imposed on
the scalar field. The topological restriction on the scalar
field is that on the spatial boundary ϕ⃗ must approach the
same vacuum value regardless of direction, and then
R3 ↦ S3.
On the other hand, the condition of finiteness of the

energy of the system for any choice of the vacuum requires
the same restrictions on the spatial infinity:

Dμϕ⃗ ¼ 0; Fμν ¼ 0: ð21Þ

Choosing an appropriate gauge, we can just impose
ϕ⃗∞ ¼ const.
In our consideration above, we suppose that the vector

n⃗ ¼ ð0; 0; 1Þ and the vacuum ϕ⃗∞ are parallel; let us
consider another possibility by imposing the boundary
condition [44] ϕ⃗∞ ¼ ð1; 0; 0Þ with the gauging prescription
(3). Evidently, as g ¼ 0, the choice of the vacuum does not
affect the structure of the Hopfion solutions in the model
(1) without a potential, for any particular choice of the ϕ⃗∞,
and the topological properties of the solitons are defined by

FIG. 4. The normalized energyE of the 5A5;1 and 5L
1;1
1;2 gaugedHopfions (left plot) and the correspondingmagnetic energy (right plot) as a

function of the coupling constant g in the Faddeev-Skyrme-Maxwell model (1) for the vacua ϕ⃗∞ ¼ ð0; 0; 1Þ and ϕ⃗∞ ¼ ð1; 0; 0Þ.
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the Hopf charge (2). However, as the gauge coupling
increases, the difference between the directions of ϕ⃗∞ and
n⃗ leads to significant deformations of the configurations.
The results of energy minimization simulations are

summarized in Fig. 2. We confirm that the structure of
the magnetic field of the gauged Hopfion is always deter-
mined by the collection of loops C� ¼ ϕ−1ð0; 0;�1Þ, for
any value of the parameter β.
We observe that, as the parameter β is increasing, the

energy of the Q ¼ 1 Hopfion is decreasing; however, the
static energy of the configurations of higher degrees is
increasing. Rotation of the vacuum with respect to the
direction of the vector n⃗ effectively deforms the soliton; as
g ¼ 1 and ϕ⃗∞ ¼ ð1; 0; 0Þ, the Q ¼ 1 Hopfion is no longer
axially symmetric, and the magnetic field represents two
fluxes, which are linked once. Although the position curve
of this Hopfion remains a single loop, the energy density
distribution of the configuration at g ∼ 1 looks more like
the link; see Fig. 2.
Slightly deformed at g ¼ 1, unknot 2A21 is the minimal

energy configuration in the sector Q ¼ 2; see Figs. 2 and 4.
Interestingly, as the gauge coupling increases, the position
curve of the higher-energy solution 2Ã12 is split into two
contiguous loops; see Fig. 2, third row. However, unlike the
position curve of a link, there is no interlinking of two loops.
Thus, this configuration can be labeled asL0;0

1;1. The magnetic
fluxes, which correspond to the curve Cþ ¼ ϕ−1ð0; 0; 1Þ, are
propagating in the same direction.
More generally, the splitting loops are touching each other

without interlinking at the point where magnetic fluxes are
parallel. Our calculations show that it may happen at the
center of the Hopfion, like for 2A2;1, 3A3;1, 4A2;2, 4A4;1,
6A6;1, and 8A4;2 configurations; see Fig. 2. The point of
contact can also be not at the center of the configuration; it
happens for 2A1;2, 5L1;2, and 6A2;2 Hopfions.
Another possibility is that the curves of C� ¼

ϕ−1ð0; 0;�1Þ lie on top of each other; we observed this type
of behavior for 3A3;1, 4A2;2, 4A4;1, and 5L1;2 Hopfions.
Considering the axially symmetric gauged Hopfions

Ai;j, we found that either they may form symmetric
configurations with a single loop C− ¼ ϕ−1ð0; 0;−1Þ, like
2A2;1, 4A4;1, 6A6;1, etc., or the blobs may appear on the
loops, like 5A5;1, 7A7;1, and 8A8;1 configurations; see
Fig. 2. Notably, the 6A6;1 and 8A4;2 Hopfions possess D6

symmetry and D4 symmetries, respectively.

C. Dependence on gauge coupling for Q= 5

As a particular example of the parametric dependency of
the gauged Hopfions on the coupling constant g, we
considered solitons in the sector of degree Q ¼ 5, in the
case of both the vacuum ϕ⃗∞ ¼ ð0; 0; 1Þ and ϕ⃗∞ ¼ ð1; 0; 0Þ.
In Fig. 4, we have plotted the graphs of total energy of

the gauged 5A5;1 and 5L1;1
1;2 Hopfions, defined by the

functional (6), and the magnetic energy as a function of
the gauge coupling g. As g ¼ 0, both choices of the vacuum
are equivalent, and the energy of the link 5L1;1

1;2 is lower than
the axially symmetric Hopfion 5A5;1. However, as the
gauge coupling increases from zero, the latter configuration
becomes a global minimum in the vacuum ϕ⃗∞ ¼ ð0; 0; 1Þ,
while the link 5L1;1

1;2 still remains the minimal energy

solution in the vacuum ϕ⃗∞ ¼ ð1; 0; 0Þ, as seen in the left
plot in Fig. 4.
A general observation is that, as the gauge coupling

increases, the energy of the gauged Hopfion monotonically
decreases. On the other hand, the magnetic energy initially
increases from zero; it attains its maximum at g ≃ 0.7.
Further increase of the coupling leads to a decrease of the
magnetic energy, as shown in the right plot in Fig. 4. As
expected, the size of the Hopfions decreases as the coupling
g increases.
In Figs. 5 and 6, we display the pattern of evolution of

the initial 5A5;1 and 5L1;1
1;2 configurations, as the gauge

coupling g is growing from zero. In the model (1) with the
usual choice of the vacuum ϕ⃗∞ ¼ ð0; 0; 1Þ, coupling to the

FIG. 5. Isosurfaces of the field components ϕ3 ¼ �0.9 (first
row), jBj ¼ 1 isosurfaces of the magnetic field (second row), and
E ¼ 2 isosurfaces of the energy density (third row) of the Q ¼ 5
Hopfions in the model (6) with the vacuum ϕ⃗∞ ¼ ð0; 0; 1Þ for
g ¼ 0.1, g ¼ 0.5, and g ¼ 1.2.
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magnetic field, directed along the vector n⃗kϕ⃗∞, recovers
the axial symmetry of the 5A5;1 Hopfion, which is violated
as g≲ 0.25. Within that range of values of g, the bent axial
solution 5Ã5;1 is a local energy minimum, and the minimal
energy configuration in this sector remains the link 5L1;1

1;2.
However, as g≳ 0.25, the lowest-energy solution is the
axially symmetric Hopfion 5A5;1. The magnetic fluxes of
this configuration are directed through the center of the
Hopfion and around the symmetry axis, as shown in Fig. 5,
upper panel. In the strong coupling limit, the link 5L1;1

1;2

becomes strongly deformed; see Fig. 5, bottom panel.
Magnetic attraction between the fluxes, associated with the
position curve of the soliton, deforms the curve itself; for

sufficiently large values of g, it is shaped as two contacting
loops without interlinking. As we have seen above, the
magnetic fluxes and the energy density distribution follow
the curves C� ¼ ϕ−1ð0; 0;�1Þ.
The pattern of the evolution of theQ ¼ 5Hopfions in the

(1) with the vacuum ϕ⃗∞ ¼ ð1; 0; 0Þ, following the increase
of g, is somewhat different from what is outlined above.
The position curve of the Q ¼ 5 axially symmetric con-
figuration A5;1 gradually becomes deformed into a loop
with internal twisting; see Fig. 6, upper panel. The link
5L1;1

1;2 has a lower energy as g≳ 0.4, the position curve of
this configuration, is deformed into two twisted unlinked
adjoining rings.

V. CONCLUSIONS

The objective of this work is to investigate properties of
soliton solutions of the Faddeev-Skyrme-Maxwell model.
We have considered the Hopfion solutions with topological
charges up to Q ¼ 8, coupled to the magnetic field. We
found that, as the gauge coupling increased, the back-
reaction of the magnetic field may significantly affect the
structure of the solutions; however, the results depend both
on the type of the vacuum boundary condition and on the
strength of the gauge coupling. We found that the magnetic
fluxes of gauged Hopfions follow the directions provided
by preimages of the vectors ϕ⃗ ¼ ð0; 0;�1Þ. In the strong
coupling limit, the magnetic field of the gauged Hopfion
exhibits behavior similar to the field of the vortex solution
of the Abelian Higgs model.
The work here should be taken further by considering the

electrically charged configurations; another interesting
direction is to investigate the soliton solutions of the
SOð3Þ gauged Faddeev-Skyrme model. It might be also
interesting to consider gauged Hopfions in frustrated
magnets, which combine nearest-neighbor ferromagnetic
and higher-neighbor antiferromagnetic interactions [45].
We hope we can address these issues in our future work.
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FIG. 6. Isosurfaces of the field components ϕ3 ¼ �0.9 (first
row), jBj ¼ 1 isosurfaces of the magnetic field (second row), and
E ¼ 2 isosurfaces of the energy density (third row) of the Q ¼ 5
Hopfions in the model (6) with the vacuum ϕ⃗∞ ¼ ð1; 0; 0Þ for
g ¼ 0.1, g ¼ 0.5, and g ¼ 1.2.
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