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In gauge theories on a spacetime equipped with a circle, the holonomy variables, living in the Cartan
torus, play special roles. With their periodic nature properly taken into account, we find that a
supersymmetric gauge theory in d dimensions tends to reduce in the small radius limit to a disjoint
sum of multiple (d − 1) dimensional theories at distinct holonomies, called H-saddles. The phenomenon
occurs regardless of the spacetime dimensions, and here we explore such H-saddles for d ¼ 4 N ¼ 1

theories on T2 fibered over Σg, in the limits of elongated T2. This naturally generates novel relationships
between 4d and 3d partition functions, including ones between 4d and 3d Witten indices, and also leads us
to reexamine recent studies of the Cardy exponents and the Casimir energies and of their purported
connections to the 4d anomalies.
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I. GLUING GUAGE THEORIES
ACROSS DIMENSIONS

Gauge theories in a spacetime with a circle admit
holonomy variables as special degrees of freedom. With
the spacetime sufficiently noncompact, the infrared proper-
ties of the theory are often characterized by the vacuum
expectation values (vev) of the Wilson line operator [1], or
the traced holonomy along the circle.
In many theories, the holonomy variables are not exactly

flat at the quantum level and the Wilson line often serves as
an order parameter. For example, 4d N ¼ 1 pure SUðNÞ
Yang-Mills on a large circle, or on a circle with super-
symmetric boudnary condition, are known to admit N
distinct vacua, whose confining nature is dictated by equally
spaced eigenvalues of the holonomy, hence a vanishing
Wilson line expectation value. If we replace the circle by a
sufficiently small thermal circle, with the antiperiodic
boundary condition on gauginos, the eigenvalues become
clustered at the origin, signaling a deconfined phase at high
temperature as evidenced by a nonvanishingWilson linevev.
If supersymmetry is extended enough to ensure that

these variables correspond to genuine flat directions at
quantum level, compactification on the circle generates an
infinite number of superselection sectors, labeled by the

holonomy. A more typical situation with minimal super-
symmetry is, on the other hand, that at generic vev the
supersymmetry is spontaneously broken; one finds some
discrete choices of the holonomy vev with the supersym-
metry intact. In either case, the process of the dimensional
reduction, as the circle size is taken to zero, is typically
ambiguous until we specify at which holonomy vev this is
done. When the holonomy is nontrivial, the net effect is that
of the Wilson line symmetry breaking.
When the space is compact or, more precisely, has no

more than two extended directions, on the other hand, the
special nature of the holonomy variables manifest some-
what differently, as they must be integrated over for the path
integral. For example, the localization for the twisted
partition functions produces integration over gauge hol-
onomy variables at the end of the procedure. This means
that one must be rather careful in taking a small radius limit.
If one naively replaces this integration over the holonomy,
living in the Cartan torus, by one over Rrank, the Cartan
subalgebra, one ends up computing partition function of a
dimensionally reduced theory in one fewer dimension, with
the vev of the holonomy variable naively frozen at the
identity.
As we commented already, however, dimensional reduc-

tion of a single supersymmetric gauge theory on a circle
may produce distinct gauge theories in one fewer dimen-
sion, depending on what holonomy vev’s are available and
chosen. For partition function computations on a compact
spacetime with a circle, then, this ambiguity of the dimen-
sional reduction must also manifest. How does this happen?
Since the original integration range is over the Cartan torus
rather than the Cartan subalgebra and since the periodic
nature of the holonomy variables is not to be ignored so
easily, the answer is quite clear: As we scan the holonomy
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along the Cartan torus, we often find special places where
the Wilson line symmetry breaking leads to supersymmet-
ric gauge theories in one fewer dimension.
This translates to the supersymmetric partition function

ΩG
d of theoryG in d-dimensions reducing, in an appropriate

scaling limit, to a discrete sum of (d − 1)-dimensional
partition functions ZH

d−1 of theories H’s sitting at special
holonomies uH, modulo some prefactors, as

ΩG
d →

X
uH

∼ ZH
d−1; ð1:1Þ

where these uH’s are distributed discretely along the
periodic Cartan torus. In the vanishing radius limit, distinct
uH’s are infinitely far from one another, so that taking the
naive limit of replacing the holonomies by scalars amounts
to concentrating on a small neighborhood near a single uH.
Since uH ≠ 0 would be infinitely far away from uH ¼ 0
from the perspective of dimensionally reduced theories, one
is often mislead to consider the theory at uH ¼ 0, tanta-
mount to replacing the Cartan torus by the Cartan sub-
algeba, and ends up computing a wrong scaling limit ofΩG

d .
We will call these special holonomy values uH’s (and the

supersymmetric theories sitting there) the holonomy sad-
dles, or H-saddles. The authors of Ref. [2] had introduced
this concept and thereby resolved a 15-year-old puzzle
[3–5] on Witten indices of 1d pure Yang-Mills theories
[6–11]; in retrospect, the puzzle had originated from a
simple misconception that only the naive uH ¼ 0 saddle
(and its images under the shift by the center) contributes to
the right-hand side. Since the holonomy moduli space is
present universally for spacetimes with a circle, at least
classically, and since the holonomy must be integrated over
for compact enough space, it is clear that this H-saddle
phenomenon will occur for twisted partition functions
regardless of spacetime dimensions.
For field theory Witten indices [12], for example,

H-saddles dictate how the Witten indices of gauge theories
in adjacent dimensions could be related. Witten indices can
easily differ in different dimensions despite the standard
rhetoric that compactification on torus does not change the
number of vacua. A well-known modern example of such
disparities is how the 1d wall-crossing phenomena does not
manifest in 2d elliptic genera. H-saddles now give us a
rather concrete way to relate such topologically protected
quantities across dimensions, in a very definite manner.
The importance of the holonomy in relating supersym-

metric theories between different dimensions has been
noted elsewhere, if somewhat sporadically. Notable exam-
ples are due to Aharony and collaborators [13,14] who
observed how a Seiberg-dual pair of 4d=3d theories may
translate to multiple such in 3d=2d as well as an even earlier
work in Ref. [15] where, again, a 2d limit of a 3d mirror
symmetry is explored. Our study can be viewed as an effort
to explore such phenomena much more systematically and

concretely, now armed with varieties of exact partition
functions, and to consider other ramifications. Also related
are Refs. [16,17] which found exceptions to the purported
universal connection between the Cardy exponents and
the anomaly coefficients [18]. What we find here is that
such a universal expression is often an artifact of ignoring
H-saddles other than the naive one at uH ¼ 0 and that when
the theory comes with matter fields in gauge representa-
tions bigger than the defining ones, this “exception” tends
to occur generically for all acceptable spacetimes, including
S1 × S3. Furthermore, we will find similar failures for the
Casimir limit in general, although this side proves to be
more subtle.
We wish to emphasize that this phenomenon is inherent

to the supersymmetric gauge theories themselves, rather
than merely a property of the partition functions thereof.
Note that the latter quantities need compact spacetime for
their definition. When the spacetime has at least three
noncompact directions, these special values of the holon-
omy give various superselection sectors where the theories
in one less dimension are equipped with supersymmetry
intact at quantum level. Nevertheless, the partition func-
tions in general and the Witten indices in particular offer
handy tools for classifying these special holonomies, which
is why we concentrate on computation of these quantities in
this paper.
This paper is organized as follows. In the rest of this

introductory section, which also serves as a rough sum-
mary, we will overview supersymmetric twisted partition
functions and give a broad characterization of H-saddle
phenomena. This phenomenon of H-saddles and their
consequences will be studied in the subsequent sections
for a large class of 4d N ¼ 1 theories defined on compact
spacetimes which are T2 fiber bundles over smooth
Riemannian surfaces.
Section II will review a recent construction of A-twisted

partition functions in such backgrounds, and recall the
detailed computational procedure. This is then extended to
the so-called “physical” backgrounds, one special case of
which is the superconformal index (SCI). Section III will
classify the Bethe vacua in the small and the large τ limits.
The Bethe vacua are easily seen to be clustered into
subfamilies, each of which can be regarded as the Bethe
vacua of some 3d theories sitting at special value of the
holonomy. Although the latter viewpoint is physically
better motivated in the small τ limit, which we can really
view as a compactification to 3d, the other limit of large τ
follows the same pattern thanks to SLð2;ZÞ property of the
fiber T2. Even when the SLð2;ZÞ is not available, such as
in SCI’s, such clustering of Bethe vacua do occur as well,
although, as we will see in Sec. IV.
These limiting behaviors of Bethe vacua imply that a 4d

gauge theory typically decomposes into a disjoint sum of
several, potentially distinct 3d theories: The 3d limit of 4d
supersymmetric partition functions becomes a sum of

CHIUNG HWANG, SUNGJAY LEE, and PILJIN YI PHYS. REV. D 97, 125013 (2018)

125013-2



partition functions of these 3d theories, albeit with extra
exponential factors. A special case of this is the 4d Witten
index, reexpressed as a sum of Witten indices of the
associated 3d theories at H-saddles, clearly without the
extra exponential prefactors. In Sec. IV, we explore such
limits for various background geometries and spacetime.
One noteworthy corollary here is that the Cardy exponents,
and even the Casimir energies, to a lesser degree, would
generally deviate from the existing proposals [18–20],
connected to various 4d anomalies. As we will see these
proposals are often tied to the naive uH ¼ 0 saddle which
may or may not be the dominant saddle. We should note,
however, that the Casimir limit of SCI’s is somewhat special
in that the microscopic derivations in Refs. [21,22] and the
anomaly connection thereof proved to be robust, despite the
presence of nontrivial H-saddles. We comment on this
toward the very end of this paper.

A. Twisted partition functions and the Euclidean time

Twisted partition functions, to be denoted by Ω through-
out this paper, are obtained by computing the partition
function with an insertion of the chirality operator ð−1ÞF . A
requisite for ð−1ÞF is that there is a notion of natural
Euclidean time coordinate, forming a circle S1. With the
natural Z2 action of supersymmetry, say, Q, which anti-
commutes with the chirality operator, this insertion allows
generic bosonic states to cancel against fermionic states,
and leaves behind a special subset of the Hilbert space.
When the theory is suitablygappedand the space is taken to

be Td−1, this quantity would compute the Witten index [12],
integral and enumerative of supersymmetric ground states.
In recent years, many types of supersymmetric partition
functions have been proposed with the accompanying com-
putational tricks under the banner of the localization. The
superconformal index [23,24] is one such classofwell-known
and much-computed objects, while the elliptic genera in 2d
[25,26] and the refined Witten indices in 1d have been
developed to a very sophisticated level [27,28].
The length of Euclidean time circle, β, may be inter-

preted as the inverse temperature. For the twisted version,
however, this parameter is often argued to disappear from
the end result, since supercharges Q act as a one-to-one
map for positive energy bosonic and fermionic states. This
disappearance is, of course, a desired feature of the index,
since the latter was designed, to begin with, to count Bose-
Fermi asymmetry of the ground state sector. The twisted
partition functions

Trð−1ÞFe−βQ2 ð1:2Þ

are thus argued to be projected to the ground state sector

TrkernelðQÞð−1ÞF ; ð1:3Þ

which is necessarily integral and enumerative.

This is, however, not quite true in general. If the theory
admits a continuum spectrum whose energies are bounded
below by Egap > 0, the trace (1.2) actually produces

Trð−1ÞFe−βQ2 ¼ TrkernelðQÞð−1ÞF þOðe−βEgapÞ: ð1:4Þ

This subtlety is relatively easy to handle since one may be
able to scale Egap → þ∞ first, without affecting the ground
state counting. When Egap ¼ 0, on the other hand, sepa-
rating out the continuum contributions becomes something
of an art. One popular scheme in the face of such gapless
asymptotic directions is to insert the chemical potentials ν’s
for global symmetries F’s,

Trð−1ÞFeνFe−βQ2

; ð1:5Þ

where ½F;Q� ¼ 0 is needed for this quantity to remain
controllable. We may even have F involving an R-charge,
as long as we choose one particular supercharge Q care-
fully so that the two mutually commute. In many practical
examples, coming out of string theory, this option is
available and exploited.
Although such an insertion of chemical potentials may

appear an innocent device to keep track of global charges of
states, this is true only for theories suitably gapped to begin
with.With gapless theories, this chemical potential modifies
the Lagrangian in such a way that asymptotic directions that
transform under F become massive. Since one gaps the
asymptotic dynamics artificially, one should not expect the
twisted partition function to behave nicely in the ν ¼ 0 limit.
Recovering information about the original theory prior

to turning on ν is hardly straightforward although well-
established routines exist for a handful of classes of
theories. The Atiyah-Patodi-Singer index theorem, appli-
cable to non-linear sigma models onto manifolds with
boundary, is one such classic example while a more recent
one is the 1d gauged quiver quantum mechanics as
explained in Ref. [10]. Beyond these few, however, no
general prescription is known. Despite such difficulties, the
twisted partition functions of such mass-deformed theories
proved to be very useful for some tasks, e.g., most notably,
checking Strong-Weak dualities [19,29–33].
What do we do to actually evaluate such objects? The

popular trick of the localization naturally enters the story
when chemical potentials are turned on. The chemical
potentials ν tend to push the dynamics to a small subset of
the configuration space or even to a small part of the
spacetime; the localization method is then invoked to
amplify this effect maximally, whereby the path integral
is reduced to that of a Gaussian path integral followed by a
finite number of leftover zero-mode integrals from vector
multiplets.
An interesting fact about the localization routine is that,

in the final expression, β as in e−βQ
2

automatically drops
out. This may happen because the system is fully gapped by
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ν so that the naive Bose-Fermi cancellation works perfectly.
In fact, this is the case for main examples of this paper,
namely 4d N ¼ 1 theories which are maximally mass
deformed by ν’s. As such, we will work with

ΩðνÞ≡ Trð−1ÞFeνFe−βQ2
���
localization

: ð1:6Þ

Sometimes this lift of the asymptotic flat direction by ν is
incomplete, which tends to happen in odd spacetime
dimensions. In such cases, the localization still removes
β by computing, implicitly, a limit of β → 0,

Trð−1ÞFeνFe−βQ2
���
localization

¼ lim
β→0

Trð−1ÞFeνFe−βQ2

: ð1:7Þ

This has been first noted for 1d systems [10] and further
checked in Ref. [2].
Although we have described how the Euclidean time

span β naturally drops out in the localization computation,
the resulting twisted partition functionΩ can actually retain
β indirectly, via the chemical potential ν understood as a
holonomy associated with an external flavor gauge field,

i∂t → i∂t þ
νF
β
: ð1:8Þ

In the small β limit, one has an option of keeping ν finite or
keeping the alternate variable ν̃ finite with

ν ¼ βν̃: ð1:9Þ

The so-called “real” masses in 3d are, for example, nothing
but such finite ν̃.
We can think about something similar for the gauge

holonomy variables, u, which enter the localization for-
mulas for Ω as

ΩGðνÞ ¼
Z

drankugGðu; νÞ: ð1:10Þ

We introduced the labelG to denote the theory and gGðu; νÞ
is from the Gaussian integrals over nonzero modes. If we
introduce the similarly rescaled variables ũ ¼ u=β in the
small β limit, the following object where the integral is
taken over ũ instead of u,

∼
Z

drankũ lim
β→0

βrankgGðβũ; βν̃Þ ð1:11Þ

appears naturally. Since β is taken to be arbitrarily small,
the periodic nature of u is now lost. What would such an
integral compute?
To be precise, let us consider a spacetime of type

S1 ×Md−1. In the small radius limit, the dimensional
reduction on S1 produces a theory on Md−1 with the same

field content as the original theory. We will label this theory
on Md−1 by the same label G, whose partition function
would also produce a localized path integral as

ZGðν̃Þ ¼
Z

drankũfGðũ; ν̃Þ: ð1:12Þ

Past experiences with such objects tell us that the limit is
often equipped with an extra exponential factor,

βrankgGðβũ;βν̃Þ→ eS
Cardy
G =βþsubleading termsfGðũ; ν̃Þ as β→ 0;

ð1:13Þ

where SCardyG is the Cardy exponent [34]. Then, the naive
expectation is

ΩGðβν̃Þ→eS
Cardy
G =βþsubleading terms ×ZGðν̃Þ as β→0; ð1:14Þ

where the two partition functions were computed for the
one and the same gauge theory, G, only in two different
dimensions. The exponent SCardyG would dictate “high
temperature behavior” of the twisted partition function.

B. Holonomy saddles: An overview

However, comparing (1.10) and (1.12), one easily
realizes that this is too rash. A limiting formula like
(1.14) would hold if and only if the toroidal du integration
in (1.10) can be opened up to a planar integration in (1.12);
since this is a discontinuous process, this may be justified
only if, in the small β limit, the infinitesimal region around
u ¼ 0 contributes dominantly to the integral.
As a simple counterexample, which may look trivial but is

illuminating nevertheless, consider an SUð2Þ gauge theory
with matter multiplets with integral isospins only. Suppose
that we choose the range of u suitable for the odd isospins,
say [0, 1) in our convention where weight vectors are
normalized to be integral and the holonomies are divided
by 2π. The integrand gðu; zÞ would then be invariant under
the shift related by the center,u → uþ 1=2; the expansion of
g around u ¼ 1=2 will look exactly the same as that around
u ¼ 0, so that the integral near u ¼ 0 and that near u ¼ 1=2
contribute exactly the same amount. Although this particular
problem is easily countermanded by an overall factor 2, it
does warn us of a generic danger in confining ourselves to
small regions near u ¼ 0 when u is a periodic variable.
What happens generically is that the small β limit of

Ωðβν̃Þ is actually a sum of Z ’s for several disjoint theories
on Md−1, such that the limit has the form

ΩGðβν̃Þ→
X
uH

eS
Cardy
H =βþsubleading terms ×ZHðν̃Þ as β→ 0;

ð1:15Þ
instead of (1.14). The summand is labeled by special
holonomies values uH around which the dimensional
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reduction gives a theory H, with potentially smaller field
content than the naive dimensional reduction of the original
theory G. The integration over the toroidal u’s reduces to
patches of planar integrations near such uH’s while con-
tributions from the rest become suppressed by e−1=β.
The accompanying limit in the localization formulas should
be similarly

βrankgGðuH þ βũ; βν̃Þ
→ eS

Cardy
H =βþsubleading terms × fHðũ; ν̃Þ as β → 0

ZHðν̃Þ ¼
Z

drankũfHðũ; ν̃Þ: ð1:16Þ

The discrete locations uH are infinitely separated from one
another, in the limit of β → 0, and thus cannot be captured
by the ũ integration near the origin alone.
With at least one nontrivial uH, one must ask which

of these saddles is dominant in the small β limit; one
might have expected that the theory G at the naive saddle at
uH ¼ 0 is the dominant one, given its largest light field
content, but it turns out this is generally false. In particular,
when Md−1 is Td−1 whereby ΩG and ZH would both
compute the Witten indices, each of admissible uH generi-
cally contributes on equal footing. In other words, (1.15)
would reduce to

IG
d ðβν̃Þ →

X
uH

IH
d−1ðν̃Þ as β → 0: ð1:17Þ

This means that uH must be such that the theory H there
must have supersymmetric vacua.1

Let us take d ¼ 4 N ¼ 1 theories, which will be our
main examples. With generic holonomies, u, the 3d theory
would be a product of freeUð1Þ’s whose vacuummanifolds
are generically lifted by a combination of induced FI
constants or Chern-Simon levels. Light charged multiplets,
say with the charge λ with respect to the Cartan Uð1Þ’s,
would be needed for vacua with unbroken supersymmetry.
This constrains the position u to quantized values, uH,

λ · uH ∈ Z ð1:18Þ

for each such λ. In this manner, a contributing H-saddle is
equipped with a set of unbroken charges λ’s, which in turn
defines the 3d theoryH at uH, modulo UV couplings in the
3d sense inherited and computable from the original 4d
theory G. What we described here is a little simplified; it
turns out that when the matter content is not symmetric
under charge conjugation, one can actually have an

H-saddle with decoupled Uð1Þ’s or pure Yang-Mills
sectors, as long as appropriate Chern-Simons coefficients
are generated from integrating out heavy modes. What
remains unchanged, though, is that contributing uH’s occur
discretely. See Sec. III for a complete characterization of
H-saddles.
What we described above is a generic feature of gauge

theories, due to the special roles played by the holonomy
variables: The toroidal nature of the holonomy variables
appears lost in the small radius limit, yet the periodic nature
should not be ignored. Integrating over such holonomy
variables, such as for gauge theories on compact spacetime
with a circle, we must remember to keep careful track of
these holonomies. For supersymmetric partition functions, it
so happens that there are multiple saddles which contribute
to the total expression, each of which can be understood as a
partition function of some other theories in one fewer
dimension.
In this paper, we will consider implications of H-saddles

in the context of 4d N ¼ 1 theories on T2 fibered over
Riemannian surfaces of arbitrary genus Σg. General parti-
tion functions of this class were given very recently via the
so-called Bethe ansatz equation (BAE) [19]. In this
approach one first consider compactification on T2 reduc-
ing the system to 2d, and vacua and partition functions are
found via the effective 2d twisted superpotential of
Coulombic variables. The vacua thus found is called
Bethe vacua [35]. As such, this construction works for a
restricted class of 4d theories, where, given the matter
content, the superpotential is appropriately suppressed to
allow maximal flavor symmetry. On the other hand, the
construction is ideal for the investigation of the H-saddle
phenomena since the latter turns out to be quite manifest in
the classification of BAE vacuum solution. T2 fiber has two
circles, whose relative size is encoded in the complex
structure τ. In the large and the small τ limit, one of the two
circles becomes very small relative to the other, and as such
the phenomenon of H-saddles emerges on the smaller of
the two circle directions.
The 2d twisted superpotentialW is naturally a function of

the pair of the holonomies along T2, packaged into rank-
many complex coordinates u. Bethe vacua are particular
holonomy values, u�, where e2πi∂W ¼ 1. This vacuum
condition is periodic under integral shifts, u→ uþnþmτ
where τ is the complex structure of T2, which is a gauge
equivalence. What wewill discover is that these Bethe vacua
appear in clusters, scattered at discrete places in the unit cell,

u�=τ ≃ ũH þ σ̃�; u� ≃ uH þ σ�; ð1:19Þ

where ũH ∼ 1=τ and uH ∼ τ with coefficients between 0 and
1 for τ → i0þ; i∞ limits, respectively. Each such H-saddle
would come with multiple and finite σ̃�’s and σ�’s, which
represents supersymmetric vacua in the reduced 3d theory at
such H-saddles. Depending on which circle is called the

1When the theory possesses a gapless asymptotic sector, so
that the twisted partitions do not compute the true index, this
condition should be relaxed since the twisted partition functions
capture the so-called bulk part of the true index.
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Euclidean time, the limit will also compute the Cardy
exponents or the Casimir energies at each of suchH-saddles.
The question of which saddle dominates becomes a non-
trivial issue, generically compromising folklore on univer-
sality of such exponents. We will revisit the asymptotics of
the partition functions in Sec. IV.

II. 4D N = 1 PARTITION FUNCTIONS AND BAE

Recently the supersymmetric partition function of a four-
dimensional N ¼ 1 theory on M4 was discussed [19]
whereM4 is a torus bundle over a Riemannian surface Σg:

T2 → M4 → Σg: ð2:1Þ

The partition function is obtained by considering an
A-twisted theory on Σg via nontrivial background flux
nR ¼ g − 1 for the Uð1ÞR symmetry group. Here we give a
quick summary of results in Ref. [19]. We will use G to
denote the N ¼ 1 theory itself, while G and G are the
gauge group and the associated Lie algebra, respectively.
Before we plunge into details, a cautionary remark is in

order. Much of what follows will be phrased in terms of
gauge holonomies on T2, valued in two copies of the Cartan
torus. As was emphasized by Witten and others [36–40],
however, the space of connections on T2 and higher
dimensional torii can in general admit disconnected com-
ponents, even when the gauge group is connected. Such
possibilities are not taken into account in the computations
outlined below, so we will confine ourselves, in this paper,
to theories with G ¼ SUðrþ 1Þ, SpðrÞ.

A. A-twisted background

Compactifying on T2, one has a two-dimensional
N ¼ ð2; 2Þ supersymmetric theory with infinite Kaluza-
Klein modes. Performing the path integral via localization,
summing over the magnetic flux sector, and then evaluating
the resulting residue formulas, the partition function is
written universally as a sum over the so-called Bethe vacua,

Ω ¼
X

u�∈SBE

F 1ðu�; ν; τÞp1F 2ðu�; ν; τÞp2Hðu�; ν; τÞg−1

×
Y
α

ΠAðu�; ν; τÞnα : ð2:2Þ

where p1, p2 ∈ Z are the two Chern numbers of the circle
bundles:

p1 ¼
1

2π

Z
Σg

dAKK1
; p2 ¼

1

2π

Z
Σg

dAKK2
: ð2:3Þ

τ ¼ τ1 þ iτ2 is the modular parameter of the torus with
τ2 ¼ β2

β1
, where β1 and β2 are two radii of the torus. Note that

one can perform a modular transformation of T2 such
that ðp1; p2Þ ¼ ðp; 0Þ.

Now let us see how field theory data enter this universal
formula. The basic variables are holonomies along T2. The
gauge holonomies u1, u2, along these two circles

a1 ¼
1

2π

Z
S1β1

A; a2 ¼
1

2π

Z
S1β2

A; ð2:4Þ

of 2π period each, are combined to

u ¼ a1τ − a2 ð2:5Þ

and, similarly for the complexified flavor holonomy

ν ¼ aðFÞ1 τ − aðFÞ2 : ð2:6Þ

All of these holonomy variables obey

ua ∼ ua þ 1 ∼ ua þ τ; νA ∼ νA þ 1 ∼ νA þ τ; ð2:7Þ

under the respective large gauge transformations.
The effective action of the theory is fully governed by

two holomorphic functions W and Ω, which are called the
effective twisted superpotential and the effective dilaton.
Each component in (2.2) and (2.30) is then obtained from
those two quantities,

F 1ðu; ν; τÞ ¼ exp
�
2πi

∂W
∂τ

�
; ð2:8Þ

F 2ðu;ν;τÞ¼ exp

�
2πi

�
W−ua

∂W
∂ua −νA

∂W
∂νA − τ

∂W
∂τ

��
;

ð2:9Þ

Hðu; ν; τÞ ¼ e2πiΩðu;ν;τÞ
�
detab

∂2Wðu; ν; τÞ
∂ua∂ub

�
; ð2:10Þ

Φaðu; ν; τÞ ¼ exp

�
2πi

∂W
∂ua

�
;

ΠAðu; ν; τÞ ¼ exp

�
2πi

∂W
∂νA

�
: ð2:11Þ

For semisimple G, the W-bosons and their superpartners do
not contribute to the effective twisted superpotential, and
only charged chiral multiplets contribute. The contribution
of a single chiral multiplet is given by

WΦ ¼ −
u3

6τ
þ u2

4
−
uτ
12

þ 1

24

þ 1

ð2πiÞ2
X∞
k¼0

ðLi2ðxqkÞ − Li2ðx−1qkþ1ÞÞ; ð2:12Þ

where Li2 is a polylogarithm function. We have defined
x ¼ e2πiu and q ¼ e2πiτ.
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Classification of the Bethe vacua SBE starts with solving

1 ¼ Φa; ð2:13Þ
which can be expressed more explicitly as

Φaðu;ν;τÞ¼
Y
i

Y
ρi

Ψðρi ·uþνi;τÞρai ;

Ψðw;τÞ≡e−πiw
2=τθðw;τÞ−1;

θðw;τÞ¼ q1=12t−1=2
Y
k≥0

ð1− tqkÞð1− t−1qkþ1Þ; ð2:14Þ

with t ¼ e2πiw, where νi ≡ ν · Fi is the net sum of flavor
chemical potentials for the ith multiplet with flavor charges
Fi. The product is over chiral multiplets, labeled by i for
each gauge multiplet and the charges ρi thereof with respect
to the Cartan. Then, SBE, which is nothing but the set of the
supersymmetric vacua for the 2d twisted superpotential,
may be defined as

SBE ¼ fu�jΦaðu�; ν; τÞ ¼ 1;∀a; w · u� ≠ u�;

∀w ∈ WGg=WG: ð2:15Þ

The additional constraint, that vacua invariant under any
part of theWeyl groupWG are to be ignored, has been noted
in the past literature, most notably Refs. [41,42].
With the explicit form of W in (2.12), one can similarly

compute the rest. The effective dilaton contribution is
given by

e2πiΩ ¼
�Y

i

Y
ρi∈Ri

Ψðρi · uþ νi; τÞri−1
�

×

�
ηðτÞ−2rankðGÞ

Y
α∈g

Ψðα · u; τÞ
�
; ð2:16Þ

where the product in the second parentheses is taken over
the roots of g ¼ LieðGÞ. From the effective dilaton (2.16)
and the effective twisted superpotential (2.12), one can
obtain the handle-gluing operator H as well. The explicit
forms of the fibering operators F and the flavor flux
operators Πα are

F 1;2ðu; ν; τÞ ¼
Y
i

Y
ρi∈Ri

Ξ1;2ðρi · uþ νi; τÞ; ð2:17Þ

ΠAðu; ν; τÞ ¼
Y
i

Y
ρi∈Ri

Ψðρi · uþ νi; τÞωα
i ; ð2:18Þ

where we have defined

Ξ1ðw; τÞ ¼ e
πi
3τ2

w3−πi
6
wΓ0ðu; τÞ; ð2:19Þ

Ξ2ðw; τÞ ¼ e2πiðw
3

6τ−
w2
4
þwτ

12
þ 1

24
Þ Y∞
k¼0

fðwþ kτÞ
fð−wþ ðkþ 1ÞτÞ ; ð2:20Þ

with

Γ0ðw; τÞ ¼
Y∞
n¼0

�
1 − t−1qnþ1

1 − tqnþ1

�
nþ1

; ð2:21Þ

fðwÞ ¼ exp
�
1

2πi
Li2ðe2πiwÞ þ w logð1 − e2πiwÞ

�
: ð2:22Þ

For the flux operator, the products are taken over every
chiral multiplet and the weights of its representation. ρai is
the ath Cartan charge of the gauge weight ρi while ωα

i is the
αth Cartan charge of the flavor weight ωi. With nontrivial
background flux nα for the flavor group, the flavor flux
operator ΠA contributes to the partition function as in (2.2).
Before proceeding, however, we should mention a few

caveats. The most obvious is the presence of nonanomalous
Uð1ÞR symmetry. Since this symmetry is used for the
topological A-twisting [43], one must further require the
Uð1ÞR charges of chiral multiplets ri be integral. As such,
neither for pure N ¼ 1 Yang-Mills theories nor for typical
N ¼ 1 superconformal theories would this methodology
be applicable. Later, however, we will go to a slightly
different class of spacetime, with the same geometry but
different fluxes, so that the integrality of the Uð1ÞR charges
can be relaxed. There, the partition function formula
should be applicable to N ¼ 1 superconformal theories
with a-maximized R-charges.
A less obvious caveat, although quite rampant in the exact

partition function computations, comes from the flavor
chemical potentials. As mentioned earlier, the latter means
that the theory is artificiallymass deformed, and that wemay
not be able to recover physics of the original undeformed
theory easily. This danger is present in all exact twisted
partition function computations via the localization, but
perhaps a little more so in this class since this computation
turns on a chemical potential for each and every chiral
multiplet: Onemust always take extreme care in interpreting
the results.
With SUðNÞ theories with Nf fundamental flavors, for

example, this current computation would give a simple
numerical Witten index for all Nf if we take M4 ¼ T4.
However, such theories are often equipped with a manifold
of the vacuum moduli, which, since the number of
spacetime dimensions is larger than two, should have made
the notion of the Witten index ill defined. One must really
regard these partition functions as probing theories that are
compactified on T2 with flavor holonomies necessarily
turned on along the two circles.

B. Alternate backgrounds and superconformal index

So far we have considered an A-twisted theory, whose
supersymmetric background includes the nontrivial Uð1ÞR
gauge field of
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νR ¼ 0; nR ¼ g − 1: ð2:23Þ

On the other hand, there is another class of supersymmetric
backgrounds without the Uð1ÞR flux, which is called
“physical gauge” in Ref. [19]:

νR ¼ 1 − g
p

τ; nR ¼ 0; ð2:24Þ

with g − 1≡ 0 mod p. This is achieved by starting with
p1 ¼ p and p2 ¼ 0, and taking a large gauge transforma-
tion on R-symmetry that removes the R-flux in favor of the
R-chemical potential.

The authors of Ref. [19] proposed that the partition
function in this background can be written in a similar
manner but with different operators H, F , etc., which will
be our working assumption, below. The flux operators are

Φphys
a ðu;ν;νR;τÞ¼

Y
i

Y
ρi∈Ri

Ψðρi ·uþνiþνRðri−1Þ;τÞρai ;

Πphys
A ðu;ν;νR;τÞ¼

Y
i

Y
ρi∈Ri

Ψðρi ·uþνiþνRðri−1Þ;τÞωα
i ;

ð2:25Þ

while the fibering operator for the circle 1 is

F physðu;ν;νR;τÞ¼
�Y

i

Y
ρi∈Ri

Ξ1ðρi ·uþνiþνRðri−1Þ;τÞ
��

ð−1ÞlRðlRþ1Þ
2

rankðGÞηðτÞ2lRrankðGÞ
Y
α∈G

Ξ1ðα ·uþνR;τÞ
�
; ð2:26Þ

where

νR ¼ lRτ; lR ¼ 1 − g
p

∈ Z: ð2:27Þ

In addition, in the physical gauge, there is no effective
dilaton contribution because nR ¼ 0. Thus, the handle-
gluing operator is simply the Hessian determinant,

Hphysðu; ν; νR; τÞ ¼ det
ab

�
1

2πi
∂ logΦphys

a

∂ub
�
: ð2:28Þ

As a result, the partition function in the physical gauge is
given by

Ωphys ¼
X

u�∈S
phys
BE

F phys
1 ðu�; ν; νR; τÞpHðu�; ν; νR; τÞg−1

×
Y
α

Πphys
A ðu�; ν; νR; τÞnα ; ð2:29Þ

where we restricted ourselves to the case p1 ¼ p and
p2 ¼ 0, with the Bethe vacua

Sphys
BE ¼ fu�jΦphys

a ðu�; ν; νR; τÞ ¼ 1;∀a;
w · u� ≠ u�;∀w ∈ WGg=WG: ð2:30Þ

Furthermore, Closset et al. advocated that once we arrive at
this so-called “physical gauge,” the integral restriction on ri
can be lifted.
As such, this partition function is supposed to compute a

limit of the superconformal index [23,24] if we take g ¼ 0
and p ¼ 1,

ΩS1×S3ðq; xÞ≡ TrS3 ½ð−1ÞFq2JþRxGFe−β2H�; ð2:31Þ

where the pair of rotational chemical potentials that enter
the usual superconformal index are identified. For the
superconformal index, the large and the small radius
limits are already discussed in literature quite extensively
[16–18,20–22]. We reexamine these limits of the partition
function using the Bethe formalism. The subtlety with the
holonomy should be again present, and many results of the
previous section carry over to the new background verba-
tim. Reference [19] initially motivated this construction via
a large Uð1ÞR transformation, as outlined above, from the
A-twisted cases with p ≠ 0. This cannot be really consid-
ered a derivation since the nonintegral values of ri ’s,
inevitable for N ¼ 1 superconformal field theories, would
be detrimental to such a process. On the other hand, an
alternate justification was also given by the same authors,
where these BAE expressions for g ¼ 0, p ¼ 1 are trans-
formed to the conventional form of the superconformal
index via contour manipulations. See Eq. (4.52).

III. BETHE VACUA FOR ELONGATED T2

In this paper, for the sake of convenience, we will regard
circle 2 the Euclidean time. Then the large and the small
Euclidean times correspond to, respectively,

τ ¼ � � � þ i
β2
β1

→ i∞ or i0þ: ð3:1Þ

The small τ limit can be viewed as compactification along
circle 2, while the large τ limit would be viewed as the
compactification along circle 1. This interpretation is
possible as the size of the base Σg appears nowhere in the
partition functions, and also because only the ratio of the two
radii appears. For either compactification, the Kaluza-Klein
towers will acquire a large mass shift at typical values of
holonomy. This means that the low energy effective theory
in the remaining three dimensions would be rank-many free
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Uð1Þ theories.At such a generic pointwewill find that the 3d
theory has supersymmetry spontaneously broken and thus
cannot contribute solutions to the BAE.
What we will find is that solving 4d BAE will produce

vacua clustered at some discrete and special choices of the
holonomy. As τ → i∞, these special holonomies uH line up
along circle 1, while for the other limit τ → i0þ they line up
along circle 2. At such special places uH, i.e., at H-saddles,
with the holonomy, the gauge charge set of the chiral
multiplet will split,

fρg ¼ fλg ∪ fρ̂g; ð3:2Þ
where those chirals associated with λ’s will produce light 3d
chiral multiplets at the bottom of the KK tower, while those
associated with ρ̂will produce KK towers with no such light
3d field. The vector multiplets in the adjoint representation
would be also similarly decomposed, and a spontaneous
symmetry breaking by a Wilson line will occur

G → H; ð3:3Þ
where the unbroken, 3d gauge groupH has the same rank as
the 4d gauge group G. The new 3d gauge theoryH, typically
with smaller light field content, both vectors and chirals,
than the naive dimensional reduction of the theory G,
appears. The holonomy uH’s and the new theories there,
we will collectively call H-saddles [2].
This classification of H-saddles, to be explained in detail

below, could include some special cases. The case with
fλg ¼ fρg, for example at uH ¼ 0, would produce the 3d
theory with the same field content as the naive dimensional
reduction. Most of the related literature have assumed,
effectively, that this type of H-saddle is either the only kind
or the dominant one. The other extreme fλg ¼ ∅, or more
generally the cases where λ do not span the charge vector
space, would produce 3d theory with a pure gauge sector.
Also, H-saddles that include an Abelian subgroup in H
require more care, since a large 3d Fayet-Iliopoulos constant
can be generated even though the 4d theory had no such
Abelian factor. For the latter types ofH-saddles, a little more
care must be given, which we will go through in Secs. III C.
and III D.
While most of this section is devoted to the A-twisted

case, the “physical” version is really no different. The BAE
equations remain identical to those of the A-twisted case,
except the additional Uð1ÞR chemical potential ðri − 1ÞlRτ
for the chiral fields. As such, the large τ limit of the
“physical” version requires extra care, which will be
addressed in Sec. III. E.
A comment on a notation is in order, to avoid confusion.

For a holonomy variablewwith the natural periods, τ and 1,
we will define its “fractional” part, fw=τg, as

fw=τg≡ w=τ −m; ð3:4Þ

where

m≡ bw=τc ð3:5Þ

is an integer such that the real part of w=τ −m lies in [0, 1).
It follows that, for example,

fλ · uH=τg ¼ 0; fρ̂ · uH=τg ≠ 0; ð3:6Þ

in the large radius limit of A-twist cases (3.2), and

fλ · ũH=τ̃g ¼ 0; fρ̂ · ũH=τ̃g ≠ 0; ð3:7Þ

with ũ≡ u=τ and τ̃ ¼ −1=τ, in the small radius limit of
A-twisted cases. Note that we also use the same curly
bracket f� � �g as a symbol for sets, as is customary.
Hopefully, the distinction between these two is self-evident.

A. H-saddles in the small τ̃ = − 1=τ limit

We will start with τ → i∞, or q → 0, although the
discussion below may appear more natural in the other
limit of τ → i0þ. In the small τ limit, the role of the two
circles will be exchanged, so that our finding here will carry
over almost verbatim, via an SLð2;ZÞ action.
We start by noting that there are two different types of

solutions to the 4d BAE equation in such a limit. The first
type comes from assuming u remains finite under the
scaling, and as such we find

Ψðw; τÞ → q−1=12

t−1=2 − t1=2

Φaðu; τÞ → Φ3d
a ≡ Λa

G

Y
i

Y
ρi

½x−ρi=2y−1=2i − xρi=2y1=2i �−ρai

ð3:8Þ

with

Λa
G ¼ q

−
P

i;ρi
ρai =12; ð3:9Þ

where yi ≡ e2πiνi and xρi ≡Q
ax

ρai
a . The resulting BAE

equations, Φ3d
a ¼ 1, look exactly the same as the 3d BAE

equations [30–33] of a dimensionally reduced theory with
the same field content. The only unexpected feature is that
2πiτ now plays the role of a UV FI constant for the trace-
part Uð1Þ gauge field when the latter is present.
If
P

ρai ≠ 0, the locations of the solutions, xa, could be
too far away and conflict with the above truncation.
Thankfully, however, this never really happens for 4d
theories with no Uð1Þ factor, as is necessary for the
asymptotic freedom. With the gauge group G being at
most a product of semisimple Lie groups, we find
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Λa
G ¼ 1 ð3:10Þ

generally.2

On the other hand, a very different kind of solutions also
exist. Suppose we consider a regime where x scales to zero,
along with q → 0. For example let us look for solutions
near xnaa ∼ q. At such points q → 0 might leave a factor
ð1 − q=xρiyiÞ as well. Note that we can still make use of the
infinite product formulas only if q=xρi → 0 as well, so one
must first shift the argument ρi · u by an integral multiple of
τ, using the identity

θðw; τÞ ¼ ð−1Þmtmqm2=2θðwþmτ;wÞ; ð3:14Þ

bringing

Ψðw; τÞ ¼ ð−1ÞmΨðfw=τgτ; τÞ
¼ ð−1Þme−πiτfw=τg2þπiτfw=τgq−1=12

×
1Q

k≥0ð1 − ftgqkÞð1 − qkþ1=ftgÞ ; ð3:15Þ

where ftg≡ e2πiτfw=τg with fw=τg obtained by an additive
shift of w by −mτ for an integer m; the real part of fw=τg
lies between 0 and 1. The aim is to make the infinite
product well defined in the limit of q → 0. At generic
values of w, each of the infinite products reduces to 1,
which shows that there is no solution to 4d BAE, Φa ¼ 1.
The new type of solutions will have to cluster around

special places, called H-saddles, where the real part of ðρi ·
uþ νiÞ=τ for ρi’s are integral and not necessarily zero. In
the large τ limit, with νi kept finite, suchH-saddles, say uH,
are located at

λi · uH ≃mλiτ ð3:16Þ

for some subset λi’s of charge vectors ρi’s and accompany-
ing integers m’s. We can then invoke the language of
Wilson-line symmetry breaking and consider uH as the
point where λi is nearly massless while the others are
heavily gapped. The holonomy in question is along the
direction 1, which was the fiber circle.
In the neighborhood of uH, we write for the nearly

massless ones

λi · uþ νi ¼ mλiτ þ λi · σ þ νi; ð3:17Þ

with σ and νi understood to remain finite while τ → i∞. In
such a neighborhood of uH, then, we introduce new shifted
Cartan variables σa ≡ ðu − uHÞa such that

x
λai
a ¼ qmz

λai
a ; za ≡ e2πiσa : ð3:18Þ

The shift of ua to σa is integral in τ, so can at most change
the sign of Ψ and Φa’s, and for these light fields, we can
proceed exactly the same way as the naive limit as in (3.8).
For heavy fields, from ρ̂’s, on the other hand, the infinite
product for the relevant θ reduces to 1, and leaves behind a
prefactor only. Then, near uH, contributions to Φa from
light and heavy modes accumulate to

Φaðu; τÞ → Φ3d;H
a

≡ ð−1ÞMΛH

Y
i

Y
λi

½z−λi=2y−1=2i − zλi=2y1=2i �−λai ð3:19Þ

for some integer M, with

Λa
H ≡Y

i

Y
ρ̂i

e−πiτρ̂
a
i ðfðρ̂i·uHþρ̂i·σþνiÞ=τg2−fðρ̂i·uHþρ̂i·σþνiÞ=τgÞ;

ð3:20Þ

where we used ΛG ¼ 1.
As such, the solutions to the 4d BAE are neatly

decomposed into union of the 3d BAE solutions at these
distinct H-saddles,

fu�∶1 ¼ Φaðu�Þgτ→i∞ ¼∪uH fuH þ σ�∶1 ¼ Φ3d;H
a ðσ�Þg;

ð3:21Þ

where λi · uH=τ are real and integral for some subset λi’s of
ρi’s. For actual admissible BAE vacua, we must exclude
those solutions that are fixed under someWeyl reflection but
it is clear that this does not interfere with this classification
into clusters around H-saddles. There are two special
subclasses of H-saddles that are noteworthy. One is when
fλg ¼ fρg, which occurs when the gauge holonomy is
trivial. This of course corresponds to the naive dimensional
reduction, where the 4d BAE reduces to 1 ¼ Φ3d

a above.
That is, we included the first type of solutions on equal
footing as well, by assigning them to uH ¼ 0. The other

2This can be seen from the Weyl character formulas, with the
Cartan generators C’s in an irreducible representation R of a
semisimple gauge group G,

χRðeuÞ≡ trReu·C ¼
P

wð−1Þjwjeu·wðλRþρWÞP
wð−1Þjwjeu·wðρWÞ ; ð3:11Þ

where λR is the highest weight, ρW ≡P
α∈Δþα=2 is the Weyl

vector, and the sums on the right-hand side are over the Weyl
group. It follows that χRðeuÞ ¼ χRðewðuÞÞ for any Weyl reflection
w and thus X

ρ∈R
ρ · wðuÞ ¼

X
ρ∈R

ρ · u; ð3:12Þ

Since u is arbitrary and since this holds for anyWeyl reflection w,
it follows X

ρ∈R
ρa ¼ 0 ð3:13Þ

for each irreducible representation R of G.
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classes are when the unbroken matter charges λi’s do not
span the entire weight vector space. This means that the
reduced 3d theory includes pure gauge sectors with no chiral
fields coupled. The latter deserves a more in-depth dis-
cussion which is postponed to the end of this section, as this
requires a more explicit evaluation of ΛH ’s.

B. H-saddles in the small τ limit

We start with the identity

θðw; τÞ ¼ ie−πiw
2=τθðw=τ;−1=τÞ; ð3:22Þ

which implies that

Ψðw; τÞ ¼ i
θðw=τ;−1=τÞ ¼

i
θðw̃; τ̃Þ ;

w̃≡ w
τ
; τ̃≡ −

1

τ
: ð3:23Þ

As such, the BAE in the small τ limit can be cast as

1 ¼ Φaðu; ν; τÞ≡
Y
i

Y
ρi

Ψ̃ðρi · ũþ ν̃i; τ̃Þρai ; ð3:24Þ

with

Ψ̃ðw; τÞ ¼ ie−πiw̃
2=τ̃ 1

θðw̃; τ̃Þ ; ð3:25Þ

since the quadratic exponents in the prefactor will cancel
out for Φa thanks to gauge and axial anomaly cancellation.
This way, the small τ analysis will follow the large τ
analysis almost verbatim.
Again, there are two types of solutions. The first class

comes with finite ũ’s, or equivalently,

u ∼ τ; as τ → i0þ; ð3:26Þ

which corresponds to a trivial holonomy along the time
circle. In this obvious saddle, all chiral fields acquire finite
mass ∼νi and thus are in equal footing. The 4d BAE
reduces to, as q̃ → 0,

1 ¼ Φ̃3d
a ≡ i#

Y
i

Y
ρi

½x̃−ρi=2ỹ−1=2i − x̃ρi=2ỹ1=2i �−ρai ; ð3:27Þ

which is essentially the same equation as (3.8) of the large
radius limit, once we replace x, y, and q by x̃, ỹ, and q̃.
Similarly to the large τ limit, more solutions appear as we

allow ũ to scale with the large τ̃ ¼ −1=τ, such that,

λi · ũ ¼ mλi τ̃ þ λi · σ̃; ð3:28Þ

again exactly as before, for some proper subset λi’s of ρi ’s,
or equivalently

λi · u ≃ −mλi þ τλi · σ̃: ð3:29Þ

As in the previous large τ case, the subset λi’s represents
light degrees of freedom among the matter fields. Shifting
the tilded variables similarly, vacua around such an
H-saddle solve

1¼ Φ̃3d;H
a ≡ ð−1ÞM0=2Λ̃H

Y
i

Y
λi

½z̃−λi=2ỹ−1=2i − z̃λi=2ỹ1=2i �−λai

ð3:30Þ

for some integer M0, with

Λ̃a
H ≡Y

i

Y
ρ̂i

e−πiτ̃ρ̂
a
i ðfðρ̂i·ũHþρ̂i·σ̃þν̃iÞ=τ̃g2−fðρ̂i·ũHþρ̂i·σ̃þν̃iÞ=τ̃gÞ:

ð3:31Þ

As before, the latter ignores overall the phase factor.
The solutions to the 4d BAE can be again grouped into

fu�∶1 ¼ Φaðu�Þgτ→i0þ ¼ ∪ũH fũH þ σ̃�∶1 ¼ Φ̃3d;H
a ðσ̃�Þg;

ð3:32Þ

where, again, λi · ũH=τ̃ are real and integral for some subset
λi’s of ρi ’s. As before, the necessary exclusion of those
solutions fixed under some Weyl reflection should be
performed, which does not interfere with this H-saddle
classification of solutions. The sum includes the special
case of fλig ¼ fρig, where the 3d BAE is nothing but
(3.27). Note that the locations of H-saddles are along
direction 2 in this small τ limit while they were along
direction 1 in the large τ limit. It is reasonably clear that the
solutions to the BAE can be matched, between the large
radius limit and the small radius limit, one on one and
saddle by saddle. As before, the naive H-saddle at uH ¼ 0
as well as those that involve a pure gauge sector should be
included. See Sec. III D.

C. 3d UV couplings

In both limits, the naive reduction on either circle gives
3d BAE, 1 ¼ Φ3d or 1 ¼ Φ̃3d, whereby one recovers vacua
with negligible holonomies. This by itself does not count
all 4d BAE vacua, however. In order to account for all
vacua, one must consider the possibility of turning on some
nontrivial holonomies, leading to 1 ¼ Φ3d;H near uH in the
large radius limit, or 1 ¼ Φ̃3d;H near ũH in the small radius
limit. The holonomy in question is along circle 1 in the
large radius limit, hence along the fiber circle, and along
circle 2 in the small radius limit, hence along the time
circle, respectively. Either way, the effective 3d theory at a
given H-saddle comes with reduced field content: only
those associated with weights λi’s remain “light,” while the
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rest acquire large masses of order β2=β1 or β1=β2,
respectively.
When we consider a particularH-saddle and 3d effective

theory sitting there, the effect of the heavy modes can
manifest via induced couplings.3 In 3d theories, the
auxiliary D-term shows up as

ðζ þ σ · κ þ μ · κFÞ ·D ð3:33Þ

with the FI constant ζ, the gauge Chern-Simons level κ, and
the gauge-flavor-mixed Chern-Simons level κF. σ is the real
scalar in the Cartan part of the 3d vector multiplet while μ is
the real masses associated with the flavor symmetries.
This means that one-loop of chiral multiplet of charge Q

and an effective mass MðσÞ ¼ Q · σ þM0 will induce a
shift [29],

Δðζ þ σ · κ þ μ · κFÞ ¼ 1

2
QjQ · σ þM0j: ð3:34Þ

In the τ ¼ τ1 þ iτ2 → i∞ limit, the heavy modes have
masses M0 of order jτ2j ≫ jσj, and the leading terms will
induce ζ ∼ jτj as

ζ þ σ · κ þ μ · κF

¼ 1

2

X
i

X
ρ̂i

ρ̂i
X
n∈Z

jImðnτ þ ρ̂i · uH þ ρ̂i · σ þ νiÞj

þ 1

2

X
i

X
λi

λai
X
n∈Z

jImðnτ þ λi · σ þ νiÞj: ð3:35Þ

Regularizing the sum, we find, as τ → i∞,

ζa þ ðσ · κ þ μ · κFÞa

≃
τ2
2

X
i;ρi

ρai ðϵ̄ρi þ Imðρi · σ þ νiÞ=τ2Þ

− ðϵ̄ρi þ Imðρi · σ þ νiÞ=τ2Þ2Þ
≃
τ2
2

X
i;ρi

ðϵ̄ρi − ϵ̄2ρiÞρai

þ 1

2

X
i;ρi

ð1 − 2ϵ̄ρiÞρai Imðρi · σ þ Fi · νÞ; ð3:36Þ

where ϵ̄ρi ≡ fρi · uH=τg so that ϵ̄λi ¼ 0. Repeating the
exercise for the small τ limit, we find

ζ̃a þ ðσ̃ · κ̃ þ μ̃ · κ̃FÞa

≃
τ̃2
2

X
i;ρi

ðϵ̄ρi − ðϵ̄ρiÞ2Þρai

þ 1

2

X
i;ρi

ð1 − 2ϵ̄ρiÞρai Imðρi · σ̃ þ Fi · ν̃Þ; ð3:37Þ

while ν̃ ¼ ν=τ as with others and ϵ̄ρi ≡ fρi · ũH=τ̃g. We use
the common symbol ϵ̄ρ on the large and the small radius
limits since these two sets of numbers are really identical.
In either expressions, we can infer the UV contributions

to these couplings in 3d sense, by expanding in 1=τ2 (1=τ̃2)
and dropping λi contributions in the second sums for the
Chern-Simons level, e.g.,

ζaUVþðσ · κUVþμ · κFUVÞa

≃
τ2
2

X
i;ρ̂i

ðϵ̄ρ̂i − ϵ̄2ρ̂iÞρ̂ai þ
1

2

X
i;ρ̂i

ð1−2ϵ̄ρ̂iÞρ̂ai Imðρ̂i ·σþFi ·μÞ

ð3:38Þ
with μ ¼ ν. For the small τ limit, we take μ ¼ ν̃ and replace
σ in favor of σ̃. Although the KK mode sums associated
with the charge λ could have contributed to ζUV, they cancel
against the same contributions from ρ̂’s, thanks to the
observation we made earlier,

P
ρ ¼ 0, for each irreducible

representation for any semisimple group. With this, it is
clear that these are precisely the couplings responsible for
the prefactor ΛH and Λ̃H,

Λa
H ≃ e−2πðζUVþσ·κUVÞa ; Λ̃a

H ≃ e−2πðζ̃UVþσ̃·κ̃UVÞa ; ð3:39Þ

provided that the left-hand sides are appropriately
expanded in 1=τ2 (1=τ̃2) and truncated to the leading order.
The FI constant ζUV must be present only for the Abelian

part of the subgroup H left unbroken by the holonomy uH,
which we wish to confirm as a consistency check. Clearly
this would hold if α · ζUV ¼ 0 for any root α that belongs to
the unbroken groupsH. Since the symmetry breaking toH
is due to the holonomy, this means that the irreducible
representation Ri of G will decompose into various spin s
representations under SUð2Þα ⊂ H ⊂ G, and that

fϵ̄ρjρ ∈ Rig → fϵ̄ljRi ¼⊕l ½sl�g: ð3:40Þ
At the holonomy such that ϵ̄α ¼ 0, therefore, we have

α ·
X
ρ∈Ri

ρðϵ̄ρ− ϵ̄2ρÞ¼
X
sl

ðϵ̄l− ϵ̄2l Þ
X
μ∈½sl�

α · ðμþ�� �Þ; ð3:41Þ

where ϵ̄l denotes the common value of those ϵ̄ρ’s that fall
into the lth irreducible representation, say with spin sl, of
SUð2Þα. μ’s are the weights of spin ½sl� representation,
embedded into those ofRi, and the ellipsis denotes the part
invariant under SUð2Þα. We thus find

3Although we refer to induced 3d couplings at H-saddles here,
the computation is straightforwardly extended to arbitrary hol-
onomy values. At H-saddles, one typically considers split ρ’s to
λ’s for light modes and ρ̂’s for heavy modes, and the UV
contribution comes from the latter. At generic holonomy, how-
ever, fλg ¼ ∅ and the contribution comes from all charged chiral
multiplets.
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α · ζUV ¼ α ·

�X
l

ðϵ̄l − ϵ̄2l Þ
X
μ∈½sl�

μ

�
¼ 0; ð3:42Þ

as expected, where in the last step we again usedP
μ∈Rμ ¼ 0 for any irreducible representation R of a

(semi)simple Lie group. Generalization to the entire set
of α with ϵ̄α ¼ 0 is immediate.
Also, the Chern-Simons coefficients should be appro-

priately quantized. Indeed, we find the gauge Chern-
Simons levels in the UV

κabUV ¼ 1

2

X
i;ρ̂i

ρ̂ai ρ̂
b
i ð1 − 2ϵ̄ρ̂iÞ

¼ 1

2

X
i;ρi

ρai ρ
b
i ð1 − 2ϵ̄ρiÞ −

1

2

X
i;λi

λai λ
b
i

¼ 1

2

X
i;ρi

ρai ρ
b
i ð1þ 2bρi · uH=τcÞ −

1

2

X
i;λi

λai λ
b
i ð3:43Þ

holds since ϵ̄λ ¼ 0 and since the gauge anomaly cancella-
tion demands

P
i;ρiρ

a
i ρ

b
i ρ

b
i ¼ 0. Recall that b� � �cmeans the

real integral part, as in (3.5). All quantities in the sums are
manifestly integral, so the induced UV Chern-Simons
coefficients are integral up to the overall factor 1=2.
Exactly the same applies to κ̃UV.
The factor 1=2, which some may find troublesome, is not

a problem at all. For many theories, such as the SQCD type
where the fundamental chirals has to appear in pairs, we
expect that this is countermanded by the 4d spectrum. More
to the point, the half-quantized Chern-Simons coefficient is
usually an indication that we must be more careful about
the effective action coming from integration out of massive
fermions. The usual statement that this leads to Chern-
Simons action is known to miss the global structure of the
effective action; whenever the Chern-Simons coefficient
generated is half-integral, and thus apparently variant under
large gauge transformation, the effective action is actually
an eta-invariant with full gauge invariance [44,45].

D. Locating H-saddles with pure gauge sectors

So far we have pretended that the H-saddle would come
with charge vectors fλjϵ̄λ ¼ 0g, enough of them to span the
entire charge vector space. However, this needs not be the
case in general, as one can have 3d theories with unbroken
supersymmetry when the Chern-Simons is nontrivial. Also
a further issue arises when the unbroken gauge group H
contains a Uð1Þ factor with a UV FI constant generated. In
the latter cases, some topological vacua may appear shifted
far away from σ, σ̃ ∼Oð1Þ, potentially muddying the
classification of the H-saddles. Here we wish to address
issues related to such H-saddles.
Consider the case where H contains no Abelian sector.

Let us write

H ¼ � � � ⊕ K ⊕ � � � ; ð3:44Þ

where K is a semisimple Lie group with no light 3d chiral
multiplet coupled. Where would such an unbroken group
be found? Recall that the location of the H-saddle was
determined, so far, by the condition

ϵ̄λ ¼ 0 ð3:45Þ

for some subset of matter charges, λ’s. In this current
case, no such λ knows about K. Instead the location of the
H-saddle is determined by the spontaneous symmetry
breaking as

ϵ̄α ¼ 0; α ∈ K; ð3:46Þ

where K is the Lie algebra of K. When H contains no
Abelian subgroup, this combination of fαg ∪ fλg should
span the entire weight space ofG, the Lie algebra of G, and
again determine the acceptable positions uH discretely.
In the absence of light matter fields coupled to K, and

since no UV FI constant would exist for such non-Abelian
group, the 3d supersymmetric vacua in question are all
“topological” types [29]. For K ¼ SpðrÞ, for example,
one can take a simple basis for the Cartan Uð1Þr such that
σ ¼ P

r
1 σsCs with chiral fields in the defining representa-

tions have unit charges with respect to one and only one Cs.
As such, the reduced BAE will take the simple form, after
some rescaling

1 ¼ ðzsÞ2κ
SpðrÞ
UV ; s ¼ 1;…; r: ð3:47Þ

We remove solutions with zs ¼ �1 for some s or those with
zs ¼ zt for some s ≠ t, and identify those related by Weyl
transformations, W ¼ Sr × ðZ2Þr. Then the vacua are

labeled by unordered distinct r phases, eπin=κ
SpðrÞ
UV , with

1 ≤ n < κSpðrÞUV

� jκSpðrÞUV j − 1

r

�
: ð3:48Þ

Similarly, for K ¼ SUðrþ 1Þ, a simple choice is σ ¼P
r
1 σsCs − ðPsσsÞCrþ1 in the redundant basis, whereby

the reduced BAE equation becomes

1 ¼ ðz1=zrþ1Þκ
SUðrþ1Þ
UV ¼ � � � ¼ ðzr=zrþ1Þκ

SUðrþ1Þ
UV ð3:49Þ

with zrþ1 ≡ ½Qr
1 zs�−1 understood. Each equation yields

jκSUðrþ1Þ
UV j − 1 acceptable solutions, zs=zrþ1 ≠ 1, upon

which we further impose zs=zrþ1 ≠ zt=zrþ1 for all pairs
s < r as well. In the end, the number of acceptable Weyl-
inequivalent solutions is, again
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� jκSUðrþ1Þ
UV j − 1

r

�
: ð3:50Þ

These dovetail precisely with the 3d index computation by
Witten [46] once we extend the latter to N ¼ 2; the only
new ingredient for N ¼ 2 is to take κ0 ¼ κUV − h, where h
is the dual Coxeter number, instead of κ0 ¼ κUV − h=2, for
the bosonic theory in the end, since the adjoint fermion
content is doubled between the two. In both cases, there-
fore, a necessary condition for the existence of anH-saddle
involving a pure SpðrÞ sector or a pure SUðrþ 1Þ sector
is κUV ≥ rþ 1.
Now let us allow K to include an Abelian factor.

Unbroken Uð1Þ’s can come with large 3d FI constants as
we saw in the previous section, which will interfere with
reduction of 4d BAE to 3d BAE. If one started with 4d chiral
multiplets in real or pseudoreal representations, such FI
constants would cancel out exactly, but of course this need
not be the case. If one finds large FI constants, say at some
uH, that scale as Imτ (or Imτ̃), the reduced 3d BAE of such
Uð1Þ ⊂ K cannot be solved for σ (or σ̃) kept finite.What this
really means is that H-saddles must be looked for, with the
condition of ζUV ¼ 0 imposed simultaneously, i.e.,

ζs ∝
X
i;ρ̂i

ρ̂si ðϵ̄ρ̂i − ϵ̄2ρ̂iÞ ¼
X
i;ρi

ρsi ðϵ̄ρi − ϵ̄2ρiÞ → 0: ð3:51Þ

Recall that for this case, neither amatter charge λ nor a root α
can be invoked to fix the location of ua. Instead, we have this
ζs ¼ 0 condition, again fixing the holonomy uH to discrete
possibilities.
Once this necessary condition is met and the candidate

location for the H-saddle is found, we must decide whether
such an H-saddle will actually contribute, i.e., whether the
reduced 3d BAE admits nontrivial vacua nearby. Because
we are dealing with pure N ¼ 2 gauge theory in three
dimensions, the latter is possible only if κUV ≠ 0. At a
saddle with decoupled Uð1Þa unbroken group the actual
supersymmetric vacua are determined by the 3d BAE,

Cs ¼ ðzsÞκsUV ð3:52Þ

for some finite constant CUð1Þ, so the number of them is

jκsUVj: ð3:53Þ

Therefore, we have found that an H-saddle involving a
decoupled Uð1Þs gauge sector is possible provided that
ζsUV ¼ 0 and κsUV ≠ 0.
The question of H-saddles with K ¼ Uð1Þ ⊂ H but now

with light 3d charged matter field, a general case of
(2) above is a little more involved. Suppose we located
a candidate H-saddle using a condition of type ϵ̄λ ¼ 0 for
some Uð1Þ-coupled charge vector λ. A schematic form of
the rank 1 3d BAE at such an H-saddle is

1 ≃ qξzκ−
P

Q2=2þ
P

ðQ0Þ2=2
Q

QðyzQ − 1ÞQQ
Q0 ðzQ0 − yÞQ0 ; ð3:54Þ

or

Y
Q0
ðzQ0 − yÞQ0 ≃ qξzκ−

P
Q2=2þ

P
ðQ0Þ2=2Y

Q

ðyzQ − 1ÞQ;

ð3:55Þ

where −Q and Q0 denote, collectively, the light charges of
negative and positive signs respectively, and ξ≡ ζUV=Imτ
and κ ¼ κUV or ξ≡ ζ̃UV=Imτ̂ and κ ¼ κ̃UV, in the large or
in the small τ limits, respectively. Here, we will consider a
large τ limit, or q → 0, without loss of generality.
Suppose that ξ > 0. For ξ < 0, we get the same result

after flipping Q ↔ Q0 and κ ↔ −κ. If ξ ¼ 0, there is no
issue, to begin with, as all solutions would be Oð1Þ and do
not scale with q. Setting q ¼ 0 for the moment, we find Q0

finite solutions z ∼ y1=Q
0
to (3.55), each of which are Q0

times degenerate. As we turn back on small q, these would
split but remain finite. To enumerate the other worrisome
solutions that scale with q or 1=q, it is useful to define
k≡κ−

P
Q2=2þPðQ0Þ2=2, l≡κþP

Q2=2−
PðQ0Þ2=2.

We then find,
(i) k ≥ 0, l > 0,

l large solutions z ∼ q−ξ=l;
the total number of solutions are

PðQ0Þ2 þ l ¼
κ þP

Q2=2þPðQ0Þ2=2;
(ii) k ≥ 0, l ≤ 0,

no new solutions;
the total number is

PðQ0Þ2;
(iii) k < 0, l ≤ 0,

−k small solutions z ∼ qξ=jkj;
the total number is

PðQ0Þ2 − k ¼ −κ þP
Q2=2þPðQ0Þ2=2;

(iv) k < 0, l > 0,
l large solutions z ∼ q−ξ=l and −k small solutions

z ∼ qζ=jkj;
the total number is

PðQ0Þ2 þ l − k ¼ P
Q2.

Among these vacua, the large and the small ones z ∼ q#

should be taken only as a qualitative indication that
somewhere far away there exist supersymmetric and
topological vacua of free Uð1Þ Chern-Simons theory.
The truncation to (3.54) is justified only at finite values
of σ, and thus precise locations of these additional vacua
should be worked out by going back to the 4d BAE. Why is
the reduction to 3d theory, which has worked flawlessly so
far, compromised? Simply because the dimensional reduc-
tion ends up with 3d FI constant which still remembers the
large value of τ and thus the fact that the purported 3d
theory came from 4d theory with the extremely elongated
T2. The number of vacua found for such Uð1Þ factor in
the preceding analysis should still hold, but the precise
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locations of those at z ∼ q# are not to be trusted. Rather,
one must really view this situation as a sum of distinct
H-saddles consisting of two types. One is Uð1Þ theory with
charge matters, but with its topological vacua due to very
large FI constant excised. The others are free Uð1Þ theory
elsewhere in the u-space, with no light matter field coupled
and supersymmetric vacua, due to Chern-Simons level k or
l, as in (3.52).
To summarize, locating H-saddles involves three sets

of data,

ϵ̄λ ¼ 0; ϵ̄α ¼ 0; ζUV ¼ 0; ð3:56Þ

and one proceeds by collecting at least rank-many con-
ditions to fix discrete locations in the Cartan torus spanned
by u’s. In particular, when we end up a Uð1Þ factor coupled
with charged 3d matter and large UV FI constant ζ ∼ Imτ,
Imτ̃, we must take care to discard the far-away topological
vacua σ ∼ ζ from such an H-saddle and instead look for a
nearby saddle with a free Uð1Þ factor at vanishing FI
constant and nonvanishing Chern-Simons level. With finite
chemical potentials and a matter content symmetric under
the charge conjugation, this latter complication never
appears. On the other hand, such Uð1Þ cases will be more
typical in the large radius limit for the so-called “physical”
version, regardless of matter content, because of the large
Uð1ÞR chemical potential. Next, we now move to this last
type of H-saddles.

E. H-saddles with large chemical potentials

As we hinted already, the large radius limit of the
“physical” S1 × S3 partition function deviates a little from
the main story of this paper. Apart from why this has to be
so from the viewpoint of how these objects are constructed,
we can also trace the difference at a mathematical level to
the large Uð1ÞR chemical potential ðr − 1Þτ. The latter
shifts the argument of various operators by a large amount
in the large τ limit, common for each chiral multiplets in a
single irreducible gauge representation.
With nonintegral r’s, in particular, necessary at the

superconformal point, one immediate consequence is that,
even if the 4d theory came with charge-conjugation
symmetric gauge representation, the light 3d field content,
if any, would not be generically so; the positively charged
matter and the negatively charged matter would become
light at different holonomies. At candidate H-saddles, one
will typically encounter unbrokenUð1Þ gauge theories with
large uncanceled ζUV, which shifts the location of the
saddle to far away, and makes the search for genuine
H-saddle qualitatively different from the other cases. For
this reason, we will denote these rather distinct H-saddle
values of u’s by introducing the notation ûH.
One obvious place to look for a saddle, independent of

details, is ûH ¼ 0. Here the 4d gauge group G will descend
to 3d intact, while chiral multiplets with typical values of ri

will become all massive. As such no FI constant would be
generated, as the 3d gauge group H ¼ G would have no
Uð1Þ factor. For a qualitative understanding, we will
confine our attention to theories with a single classical
Lie group G as the gauge group and further assume that
0 < ri < 1 for all matter multiplets. Is there an H-saddle
located at the naive choice ûH ¼ 0?.
The pure G Yang-Mills-Chern-Simons theory there

would have no supersymmetric vacua unless one finds a
sufficiently large UV Chern-Simons level, which can be
easily computed as

κabUV ¼ δabγGT
ð2Þ
defκ

G
UV; ð3:57Þ

where Tð2Þ
def is that of the defining representation and γSO ¼

1=2 and γSU ¼ γSp ¼ 1.4 Then, we find

κGUV ¼ 1

2γGT
ð2Þ
def

X
i

Tð2Þ
i ð1 − 2riÞ: ð3:58Þ

On the other hand, the Adler-Bell-Jackiw anomaly can-
cellation requires

Tð2Þ
adj ¼

X
i

Tð2Þ
i ð1 − riÞ; ð3:59Þ

so that

κGUV ¼ Tð2Þ
adj

γGT
ð2Þ
def

×
X
i

Tð2Þ
i

Tð2Þ
adj

ð1=2 − riÞ

¼ Tð2Þ
adj

γGT
ð2Þ
def

·

�
1 −

3

2
·

P
iT

ð2Þ
i

3Tð2Þ
adj

�
: ð3:60Þ

Note that the second term inside the parentheses cannot
exceed 3=2, once we demand the asymptotic freedom. If
the theory contains a single type of chiral multiplets, the
asymptotic freedom combined with 0 < r implies

jκGUVj <
Tð2Þ
adj

2γGT
ð2Þ
def

¼ hG; ð3:61Þ

with the dual Coxeter number hG. Recall that the counting
of 3d vacua for pure YMCS theories is dictated by the
difference between jκj and h. This leads us to suspect that,
for all asymptotically free theories that flow to CFT, the
naive ûH ¼ 0 saddle is absent.
For SUðNcÞ theory with Nf fundamental and Nf

antifundamental chirals, e.g., (3.58) gives, since r ¼ 1 −
Nc=Nf by the ABJ anomaly cancellation,

4For actual vacuum counting via BAE, however, we restrict
ourselves at most to SU and Sp cases: See the top of Sec. II.
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κUV ¼ 2Nc − Nf ð3:62Þ

for 4d conformal field theories, 3Nc=2 ≤ Nf < 3Nc. With

jκUVj < hSUðNcÞ ¼ Nc; ð3:63Þ

(3.50) tells us that the naive saddle at the origin, ûH ¼ 0,
has no supersymmetric vacua and thus is not an H-saddle.
For SQCD theories, the saddle at origin is actually absent.
Similar considerations for SpðrÞ theory with 2Nf funda-
mental flavors show that, again there is no H-saddle at
ûH ¼ 0 for asymptotically free theories Nf ≤ 3rþ 2; for
Nf ¼ 3rþ 2, one finds κ ¼ −r.
With no H-saddle at the origin, the next places are those

holonomies with vanishing UV FI constants,

X
ρaðϵ̂ρ − ϵ̂2ρÞ ¼ 0: ð3:64Þ

Suppose that the matter content is symmetric under charge
conjugation, such that charge vectors always come in pairs
ðρ;−ρÞ. Then, places where this happens generically are

ρ · ûH ∈ τZ=2; ð3:65Þ

which allows ϵρ̂ ¼ ϵ−ρ̂ and thus pairwise cancellations in
the sum (3.64). Assuming ri ≠ 1=2, the theory reduces to
pure Yang-Mills type and the Chern-Simons level is

κabUV ¼ δabγGT
ð2Þ
defκ

G
UV þ

X
i;ρi

ρai ρ
b
i bρi · ûH=τ þ ric; ð3:66Þ

where κGUV is the Chern-Simons level at ûH ¼ 0 as in (3.60).
Coming back to SUð2Þ theory with 2Nf fundamental
flavors, we find that reduced theory is a pure SUð2Þ
YMCS with

κUV ¼ −2; 4; for Nf ¼ 3; 5; ð3:67Þ

implying 1 and 3 BAE vacua, respectively, which are
consistent with the Witten index of the original 4d theories.
Nf ¼ 4with r ¼ 1=2 at SCFTalso admit ûH ¼ τ=2 as an

H-saddle; the reduced theory is an SUð2Þ theory with
2Nf ¼ 8 fundamental chirals and vanishing UV Chern-
Simons level. The number of vacua for this 3d theory is
usually expected to be three. However, the actual theory at
this H-saddle, being a reduction from 4d where the
baryonic Uð1Þ is anomalous, and, because this theory
cannot have UV FI constant, one of these potential vacua
is pushed to the Coulombic infinity. The number of vacua
at the ûH ¼ τ=2 saddle is actually 2 which is again
consistent with the 4d Witten index. These suggest that
for SQCD theories, ûH ¼ τ=2 is the only H-saddle in the
Casimir limit.

IV. 4D THEORY AS A DISJOINT SUM OF
3D THEORIES

These discussions lead us to a clear definition of the
H-saddle for general supersymmetric gauge theories on a
compact spacetime with a small circle or a small circle
bundle. In the small radius limit, a d dimensional partition
function Ωd will reduce to a sum of (d − 1) dimensional
partition functions, ZH

d−1,

Ωd →
X
uH

cHZH
d−1 ð4:1Þ

labeled by some discrete choices of the holonomy includ-
ing the trivial one. The prefactors cH capture contributions
from the Kaluza-Klein towers as well as massive multiplets.
For the partition functions we have been studying,

Ωg;p1;p2

4 ¼
X
u�

Hg−1Fp1

1 Fp2

2 ð4:2Þ

with the two circles ðp1; p2Þ-fibered over a genus g surface,
we find that this decomposes, both in the large and in the
small τ limits,

Ωg;p1;p2

4 →
X
uH

�X
σ�

Hg−1Fp1

1 Fp2

2

�
; ð4:3Þ

where the 4d BAE vacua are reorganized into sets of 3d
BAE vacua for mutually disjoint 3d theories at various
H-saddles. As we already emphasized, we find such
decomposition even in the large τ limit, because, in effect,
this is equivalent to a small radius limit of circle 1.
For g ≠ 1, we can reorganize the sum over 3d vacua σ� at

each uH, in terms of the 3d BAE partition function, ZH
3 and

a multiplicative factor cH. The latter will generically have
an exponential behavior, interpreted as the Cardy exponent
in the small τ limit and as the Casimir energy in the large τ
limit. Previous estimates of such leading exponents have
effectively considered only the naive saddle at uH ¼ 0
[20,22]. The results from such computations, interpreted as
being related to 4d anomaly polynomials, must be therefore
questioned.

A. 4d Witten index is a sum of 3d Witten indices

Before we plunge into quantitative studies, it is worth-
while to consider the simplest case of p1;2 ¼ 0 and g ¼ 1.
For T4, the BAE computes the numerical Witten index,
with the summand at each u� equal to 1. This means that we
have an intuitive relation

IG
4 ¼

X
uH

IH
3 ; ð4:4Þ

whereby the 4d Witten is reconstructed from those
of several 3d theories sitting at distinct holonomies.
Regardless of the details of computations to follow for
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different g’s and p’s, this by itself tells us that the small
radius limit of 4d theory cannot be regarded as a single 3d
theory. If we are considering supersymmetric theories in
compact spacetime, therefore, the 4d theory in the small
radius limit should be considered as a disjoint sum of 3d
theories.
Since the same set of uH ’s enters such decompositions

for all Mg;p1;p2

4 ’s, this also means that an H-saddle will
occur if and only if the reduced 3d theory there has a
nontrivial Witten index. The latter condition can be
considered as the most important single property of
H-saddles. The class of theories we are considering in
this paper are maximally mass deformed by flavor holon-
omies so that the partition functions and Witten indices
are all integral. As such, an H-saddle would occur if and
only if the Witten index of the reduced 3d theory at the
candidate holonomy is nonvanishing.
On the other hand, the notion of anH-saddle clearly goes

beyond the particular class of theories or background
geometries we are considering in this paper. More generally
twisted partition functions are often not enumerative,
resulting in nonintegral twisted partition functions. As
we recalled in the Introduction, a twisted partition function
would generally compute the analog of the “bulk index.” In
such cases, the defining property of the H-saddle should be
extended to allow a nonvanishing supersymmetric partition
function of the reduced theory at the candidate holonomy.
If we were considering the 4d theory on S1 × R3, the

holonomies would label superselection sectors; the dimen-
sional reduction process is ambiguous until we specify the
holonomy or compute the vacuum expectation value of the
holonomy. The above relation tells us that there are discrete
choices of uH whereby the dimensional reduction produces
distinct 3d theories whose 3d supersymmetry is not
spontaneously broken, and that the 4d Witten index is
reproduced only after we sum over the Witten indices of
these 3d theories at distinct uH’s.
Such a behavior of 4d theory on a circle, producing

multiple 3d theories in the small radius limit, has been
noted previously by Seiberg and collaborators while study-
ing how 4d dualities reduce to 3d dualities [13]. As the
above relation shows, a dual pair of 4d theories would
produce, each, several 3d theories which must be collec-
tively dual to each other. Whether or not this implies
individual 3d dualities, say, in our language at H-saddle
pairs, is in principle another matter. For 4d theory as a
starting point, however, the interpretation of uH as the
superselection sector label does suggest that the duality
will hold for 3d theories pairwise, or in our terminology,
H-saddle by H-saddle.
The robust nature of the Witten index under small

deformations is often invoked to simplify index computa-
tions. One such would be the insensitivity to the size of the
circles in T4, but this, if used improperly, seems to imply
that Witten indices agree between theories in different

dimensions if one is a dimensional reduction of the other.
However, we already know, via many examples, that this
is not quite correct. For instance, Witten pointed out
how the index of 4d N ¼ 1 pure Yang-Mills is sensitive
to disconnected sectors of mutually commuting holono-
mies along T3 [40]; such sectors would be dropped if one or
more radii of T3 is taken to zero literally.
Our relation is yet another reminder that such topological

invariance argument should not be taken too far. The
problem with the zero radius limit of a spacetime circle
is that the compact space of holonomies becomes non-
compact in a zero radius limit, and cannot be considered a
small deformation. The above formula, which is far more
general than the particular class of theories here and the
partition functions thereof, gives a neat way to relate Witten
indices of gauge theories in adjacent dimensions.
We close with two simple examples. The first is the

canonical SQCD, namely SUðNÞ theories with Nf funda-
mental and Nf antifundamental chirals. For these, it is clear
that the only H-saddle is the one at uH ¼ 0, hence we have

IG
4 ¼ IH

3 juH=τ¼0; ð4:5Þ

where the reduced H theory at uH=τ ¼ 0 has the same
gauge group and the same chiral multiplet content as its 4d
cousin G. Indeed, Closset et al. [19] found

IG
4 ¼ IH

3 juH=τ¼0 ¼
�
Nf − 2

N − 1

�
: ð4:6Þ

Since the matter representation is real collectively, neither
the FI constant nor the Chern-Simon level arise at UV.
The other, less trivial, example is an SUð2Þ theory with

two fundamental chirals and two adjoint chirals. For this, a
nontrivial H-saddle at uH=τ ¼ 1=2 is present as well as the
naive one at uH ¼ 0. While we are formulating things via
the large radius limit, the small radius limit is found,
verbatim, by replacing the variables to the tilded ones with
the identical result. As such we have

IG
4 ¼

X
uH=τ¼0;1=2

IH
3 ð4:7Þ

where the 3d theory at uH=τ ¼ 1=2 has the two adjoint
chirals only. Again no UV 3d coupling is generated at either
saddle, and 3d BAE vacua can be counted straightfor-
wardly. We find

IG
4 ¼ IH

3 juH=τ¼0 þ IH
3 juH=τ¼1=2 ¼ 8þ 6 ¼ 14: ð4:8Þ

The main feature of the latter example, relative to the first,
is a chiral multiplet with gauge representation beyond the
fundamental one. In fact, the existence of a chiral multiplet
in a gauge representation larger than the defining one, for
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classical ones at least, is one obvious criterion for a
nontrivial H-saddle to exist.
Note that, of these, the first example is not compatible

with a general A-twist background, since the anomaly-free
Uð1ÞR charge is not integral. For Σg ¼ T2, however, the
A-twist is null, so we do not need to restrict the Uð1ÞR
charge to be integral. And as long as one can find non-
anomalous Uð1ÞR, its chemical potential can be turned on.
For this reason, this recursive computation of the Witten
index can be used for more examples of theories than
generic geometries of this class would allow. Of course, this
is up to the major caveat that theories being considered are
all equipped with real masses in the 3d sense, as is a
common downside of the BAE formulation. One must take
care, in general, not to confuse the Witten index computed
this way with those of the vanilla 4dN ¼ 1 theories on R4.
We close this subsection with a caveat. In relating 4d

theories to one or more 3d theories, obtained by dimen-
sional reduction at such saddles, we are always speaking of
the small radius limit. This means that constraints from the
4d anomaly, for example, should be considered valid even
in the said 3d limit. One example is the SUðNcÞ SQCD,
whose strict 3d form allows an extra Uð1Þ flavor symmetry
which would be anomalous in 4d. Our 3d theories at
H-saddles are the ones without such a global symmetry;
this affects the allowed superpotential and hence the 3d
Witten index as well.

B. Asymptotics

Now let us turn to other, more involved partition
functions. In the literature, some 4d partition functions
have been discussed with a particular interest on their
asymptotic behavior [16–18,20–22]. Especially, Ardehali
first observed the influence of the holonomy on the Cardy
limit of the superconformal index [16], i.e., the partition
function on S3 × S1, which is later extended to more
general manifolds by Di Pietro and Honda [17]. The latter
discussed the Cardy limit of the M3 × S1 partition func-
tion, with explicit examples M3 ¼ Lðn; 1Þ, Σg × S1.
On the other hand, for the Casimir limit, the role of the

holonomy is rarely discussed as far as we are aware. In this
section, we provide a unified way of examining both the
Cardy limit and the Casimir limit of the partition function,
which manifests itself in the H-saddle approach.

1. Asymptotics of H

The handle-gluing operator is, with ri being the Uð1ÞR
charge of the ith chiral multiplet,

H≡ ηðτÞ−2rankðGÞ
Y
α

Ψðα · u; τÞ
Y
i

Y
ρi

Ψðρi · uþ νi; τÞri−1

× det

�∂a logΦb

2πi

�
; ð4:9Þ

of which the last piece can, at most, contribute logarithmic
corrections in the exponent. The large and the small τ limit
of Ψ’s were already explored. These may be combined to,
for the gauge multiplet contributions, at each H-saddle,

ηðτÞ−2rankðGÞ
Y
α

Ψðα · u; τÞjτ→i∞

∼ q− dimðGÞ=12eπiτ
P

α
ϵαð1−ϵαÞ; ð4:10Þ

where ϵα ¼ fα · ðuH þ σÞ=τg are real numbers between 0
and 1,

ηðτÞ−2rankðGÞ
Y
α

Ψðα · u; τÞjτ→i0þ

∼ q̃− dimðGÞ=12eπiτ̃
P

α
ϵ̃αð1−ϵ̃αÞ; ð4:11Þ

where ϵ̃α ¼ fα · ðũH þ σ̃Þ=τ̃g are real numbers between 0
and 1. The chiral multiplet contributions can be written
similarly as

Y
i

Y
ρi

Ψðρi · uþ νi; τÞri−1
���
τ→i∞

∼ q
−
P

i

P
ρi
ðri−1Þ=12eπiτ

P
i
ðri−1Þ

P
ρ̂i
ϵρ̂i ð1−ϵρ̂i Þ; ð4:12Þ

and

Y
i

Y
ρi

Ψðρi · uþ νi; τÞri−1
���
τ→i0þ

∼ q̃
−
P

i

P
ρi
ðri−1Þ=12eπiτ̃

P
i
ðri−1Þ

P
ρ̂i
ϵ̃ρ̂i ð1−ϵ̃ρ̂i Þ; ð4:13Þ

where ϵρi¼fðρi ·ðuHþσÞþνiÞ=τg and ϵ̃ρi¼fðρi ·ðũþσ̃Þþ
ν̃iÞ=τ̃g are also real numbers between 0 and 1.

2. Asymptotics of F 1

The first fibering operator is given by

F 1 ¼
Y
i

Y
ρi

Ξ1ðρi · uþ νi; τÞ

¼
Y
i

Y
ρi

e2πið
ðρi ·uþνiÞ3

6τ2
−ρi ·uþνi

12
ÞΓ0ðρi · uþ νi; τÞ; ð4:14Þ

where

Γ0ðu; τÞ ¼
Y∞
n¼0

�
1 − x−1qnþ1

1 − xqnþ1

�
nþ1

: ð4:15Þ

To find the large radius limit of F 1, again we decompose
ρi · uþ νi into ðϵρi þmρiÞτ where ϵρi belongs in the range
0 ≤ ϵρi < 1 and mρi is the integer part. Using

Ξ1ðuþmτ; τÞ ¼ e−
πi
2
ðm2þmÞΨðu; τÞ−mΞ1ðu; τÞ ð4:16Þ
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for an integerm, one can find the large radius limit of F 1 as
follows:

F 1jτ→i∞ ∼
Y
i

Y
ρi

eπiτð
ϵ3ρi
3
þϵ2ρimρi

−ϵρimρi
−
ϵρi
6
þmρi

6
Þ; ð4:17Þ

with ρi · uþ νi ¼ ðϵρi þmρiÞτ.
The identity (4.16) also resolves an apparent puzzle with

this asymptotic formula. Note that under a large gauge
transformation ua can be shifted to ua þ τ. This will induce
shift of both ϵρ’s and mρ’s, under which the exponent of
(4.17) does not look particularly invariant. Let us first look
at how F 1 transforms. Since ρ · u will shift by ρaτ, the
transformation is

F 1 →

�Y
i

Y
ρi

ð−1Þρai Ψ−ρai

�
× F 1 ¼ Φ−1

a × F 1; ð4:18Þ

where we used
P

ρρ
a ¼ 0 for each irreducible representa-

tions, as was shown in Sec. III.2. What this formula tells us
is that although the flux operator F 1 is not invariant as a
function of u under such large gauge transformations, its
values at supersymmetric vacua, where 1 ¼ Φa, are invari-
ant. Therefore, although the leading exponent in (4.17) may
look odd, its values at H-saddles are really invariant under
ua → ua þ τ. The same kind of invariance will work for F 2

under ua → ua þ 1, for the small τ limit, as the two are
related by S-transformation.
On the other hand, the small radius limit of F 1 can be

obtained using the S-transformation. First note that Ξ1

satisfies an identity [19]

Ξ1ðu; τÞ ¼ e
πi
τ2

u3
3 Ξ2

�
u
τ
;−

1

τ

�
; ð4:19Þ

where Ξ2 is defined by

Ξ2ðu; τÞ ¼ e2πiðu
3

6τ−
u2
4
þuτ

12
þ 1

24
Þ Y∞
k¼0

fðuþ kτÞ
fð−uþ ðkþ 1ÞτÞ ; ð4:20Þ

and

fðuÞ ¼ exp

�
1

2πi
Li2ðe2πiuÞ þ u log ð1 − e2πiuÞ

�
: ð4:21Þ

Ξ2 satisfies

Ξ2ðuþmτ; τÞ ¼ e
πim
6 Ξ2ðu; τÞ; ð4:22Þ

and, as a result, Ξ1 can be written as

Ξ1ðρi · uþ νi; τÞ ¼ e−πiτ̃
2
ðϵ̃ρiþm̃ρi Þ3

3
þπiðm̃ρi Þ

6 Ξ2ðϵ̃ρi τ̃; τ̃Þ; ð4:23Þ

where ρi · ũþ ν̃i is decomposed into ðm̃ρi þ ϵ̃ρiÞτ̃ with 0 ≤
ϵ̃ρi < 1 and an integer m̃ρi. The cubic phase term will

vanish after summed over all the multiplets due to the
anomaly-free condition. fðuÞ comes from the 1-loop
determinant of a chiral multiplet on S3 and converges to
1 for large u,

fðuÞju→i∞ ¼ 1: ð4:24Þ

Thus, F 1 has the following asymptotic behavior for
τ → i0þ:

F 1jτ→i0þ ∼
Y
i

Y
ρi

eπiτ̃
2ðϵ̃

3
ρi
3
−
ϵ̃2ρi
2
þϵ̃ρi

6
Þ: ð4:25Þ

3. Asymptotics of F 2

The second fibering operator F 2 is given by

F 2 ¼
Y
i

Y
ρi

Ξ2ðρi · uþ νiÞ ð4:26Þ

¼
Y
i

Y
ρi

e2πið
ðρi ·uþνiÞ3

6τ −ðρi ·uþνiÞ2
4

þðρi ·uþνiÞτ
12

þ 1
24
Þ

×
Y∞
k¼0

fðρi · uþ νi þ kτÞ
fð−ρi · u − νi þ ðkþ 1ÞτÞ : ð4:27Þ

In the large radius limit, we find the following limit of F 2:

F 2jτ→i∞ ¼
Y
i

Y
ρi

eπiτ
2ðϵ

3
ρi
3
−
ϵ2ρi
2
þϵρi

6
Þ; ð4:28Þ

with ρi · uþ νi ¼ ðϵρi þmρiÞτ. Similarly one can also find
the small radius limit of F 2 using the S-transformation
(4.19):

F 2jτ→i0þ ¼
Y
i

Y
ρi

e−πiτ̃ð
ϵ̃3ρi
3
þϵ̃2ρimρi

−ϵ̃ρi m̃ρi
−
ϵ̃ρi
6
þmρi

6
Þ; ð4:29Þ

where ρi · ũþ ν̃i ¼ ðm̃ρi þ ϵ̃ρiÞτ̃with ϵ̃ρi ∈ ½0; 1Þ. Note that
the small and the large τ limits of F 2 mirror, under
τ → −1=τ, the large and the small τ limits of F 1, faithfully
and respectively.

4. Asymptotics of Fphys

Unlike the A-twist gauge, the physical handle-gluing
operator only contains Jacobian factor Hphys, which does
not contribute to the leading term of the partition function.
The leading contribution then only comes from F phys.
From (4.25) one can see that each component of F phys has
the following asymptotic behavior.
In the small τ limit, with

ϵ̃0ρi ¼ fðρi · ðuH þ σ̃Þ þ ν̃iÞ=τ̃ þ lRðri − 1Þ=τ̃g; ð4:30Þ
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ϵ̃0α ¼ fα · ðuH þ σ̃Þ=τ̃ þ lR=τ̃g; ð4:31Þ

we find similarly

Y
i

Y
ρi∈Ri

Ξ1ðρi · uþ νi þ lRτðri − 1Þ; τÞ
���
τ→i0þ

∼
Y
i

Y
ρi

eπiτ̃
2ððϵ̃

0
ρi

Þ3
3

−
ðϵ̃0ρi Þ

2

2
þϵ̃0ρi

6
Þ;; ð4:32Þ

and

ð−1ÞlRðlRþ1Þ
2

rankðGÞηðτÞ2lRrankðGÞ
Y
α

Ξ1ðα · uþ lRτ; τÞ
���
τ→i0þ

∼
Y
G

eπiτ̃
2ððϵ̃

0
αÞ3
3

−ðϵ̃0αÞ2
2

þϵ̃0α
6
Þ;; ð4:33Þ

where the last product is taken over all the gauge gen-
erators, again. It is important to note here that the set of
H-saddles and the subsequent values of ϵ̄’s to be used in the
subsequent expansion of the exponents are no different
from the preceding discussion of the small τ limit of
A-twisted cases. This happens because the shift due to νR is
negligible as τ → i0þ, as far as the values of uH are
concerned. Clearly this is not the case for the other
limit τ → i∞.
As we noted already in Sec. III, the large radius limit

τ → i∞ for “physical” cases follows a different pattern due
to the large shift νR ¼ lRτ ¼ 1−g

p τ. With

ϵ0ρi ¼ fðρi · ðûH þ σÞ þ νiÞ=τ þ lRðri − 1Þg; ð4:34Þ

ϵ0α ¼ fα · ðûH þ σÞ=τ þ lRg; ð4:35Þ

where m0
ρi ; m

0
α are the remaining integer parts, the expo-

nential behavior goes as

Y
i

Y
ρi∈Ri

Ξ1ðρi · uþ νi þ lRτðri − 1Þ; τÞ
���
τ→i∞

∼
Y
i

Y
ρi

eπiτð
ðϵ0ρi Þ

3

3
þðϵ0ρi Þ2m0

ρi
−ϵ0ρim

0
ρi
−
ϵ0ρi
6
þm0

ρi
6
Þ; ð4:36Þ

and

ð−1ÞlRðlRþ1Þ
2

rankðGÞηðτÞ2lRrankðGÞ
Y
α

Ξ1ðα · uþ lRτ; τÞ
���
τ→i∞

∼
Y
G

eπiτð
ðϵ0αÞ3
3

þðϵ0αÞ2m0
α−ϵ0αm0

α−
ϵ0α
6
þm0

α
6
Þ; ð4:37Þ

where the last product is taken over all generators of the
gauge group with ϵ ¼ 0 understood for the Cartan
generators.

5. H-saddles from the small radius limit of a fibered circle

We close with a minor consistency check on the notion of
the H-saddle by considering the collapsing circle with
nontrivial winding number p over the base. The Cardy limit
β1 → 0 with p1 ≠ 0 would be the canonical example, while
the Casimir limit β1 → ∞withp2 ≠ 0 shares the same issue
since as far as our partition functions goes this is equivalent
to the other Cardy limit β2 → 0. The winding number p of
the collapsing circle is not part of 3d spacetime data, so
should not enter the 3d partition functions ZH

3 ’s, since the
notion of theH-saddle relies on the existence of 3d theories
that makes sense without referring to its 4d origin. It would
be allowed to enter the coefficients cH’s which serve as the
glue between the 3d theories atH-saddles and the original 4d
theory.
In view of the lengthy discussions in Sec. III, it should be

relatively clear that the part of ðF 1Þp1 that could have
contributed to ZH

3 in the large τ limit resides entirely in Γ0

of Eq. (2.21). However the latter function reduces to 1
universally as q → 0, regardless of the field content. The
winding number p1 therefore contributes at most to cH’s, in
this limit, via the surviving exponential prefactors in front of
Γ0’s, and does not interfere with the 3d theory at the
H-saddles. Then, SLð2;ZÞ automatically implies that the
same happens for the β2 → 0 limit with p2 ≠ 0, as F 2 in
the small τ limit is nothing butF 1 in the large τ limit modulo
exponential prefactors, which are again harmless for the
issue here.
For physical cases, one should look at how F phys

behaves in the τ → i∞ limit. The relevant part of the latter
fibering operator is made up of Ξ1 ’s, or Γ0’s therein, so
again, F phys reduces to a product of exponential functions:
Thewinding number p can contribute to cH’s at most, again
as promised.

C. Cardy and Casimir

In the small and the large τ limits, we found exponential
behaviors of the partition function which differ between
different H-saddles. The partition function on A-twisted
geometries, for example, always has an H-saddle at
uH ¼ 0, and the exponential behavior there follows a
universal form,

Hg−1
���
uH¼0

∼ ½e2πiτ·ð−trfRÞ=12�g−1 or ½e2πiτ̃·ð−trfRÞ=12�g−1;
ð4:38Þ

in the respective limits of large τ or τ̃ ¼ −1=τ:trfRmeans the
trace of Uð1ÞR charge over all 4d fermions. The exponents
inferred from this universal part have been identified in the
past and given interpretation of the Casimir energy and the
Cardy exponentwith respect to the large and the small radius
limit of β2 [19]. The same expression also appeared for the
Cardy limit of SCI’s, which was then related to conformal
anomaly coefficients [18].
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Existence of H-saddles at uH ≠ 0 and the different
leading exponents at such places, however, tell us that
the Cardy exponent and the Casimir energy may be rather
different in general. In this last section, we will explore this
issue. For the sake of simplicity we will confine our
attention to pure imaginary τ ¼ iβ2=β1 and consider only
those 4d theories whose chiral field content is invariant
under the charge conjugation symmetry, ρ → −ρ.

1. A-twist

We find, at each H-saddle at uH, the leading exponents
of Hg−1 in the large τ limit is

ðg − 1Þ ×
�
−

1

12
ðtrfRÞ þ

1

2

X
α

ϵαð1 − ϵαÞ

þ 1

2

X
i

ðri − 1Þ
X
ρi

ϵρið1 − ϵρiÞ
�

ð4:39Þ

multiplied by 2πiτ, instead of the universal form

ðg − 1Þ ×
�
−

1

12
ðtrfRÞ

�
ð4:40Þ

at uH ¼ 0. Clearly the H-saddle with the dominant con-
tribution and the exponent thereof may be identified only
after comparing this expression at different H-saddles.
Furthermore, the actual exponent is given by this multiplied
by (g − 1), so the dominant contributions for g ¼ 0 and the
dominant contributions for g > 1 will generically come
from different H-saddles. For the small τ limit, the same
formulas work with ϵ’s and τ replaced by ϵ̃’s and τ̃.
Note that, once we begin to identify 3d BAE vacua and

evaluate the sum, ϵ’s at a given H-saddle would be really

ϵρ ¼ ϵ̄ρþ
ρi ·σ� þνi

τ
or ϵ̃ρ¼ ϵ̄ρþ

ρi · σ̃� þ ν̃i
τ̃

ð4:41Þ

etc., for multiple σ�’s found by solving the 3d BAE at uH.
Expanding (4.39), the leading term

ðg − 1Þ ×
�
−

1

12
ðtrfRÞ þ

1

2

X
α

ϵ̄αð1 − ϵ̄αÞ

þ 1

2

X
i

ðri − 1Þ
X
ρi

ϵ̄ρið1 − ϵ̄ρiÞ
�

ð4:42Þ

must be augmented by the subleading pieces

ðg−1Þ
τ

×

�X
α

ϵ̄ααþ
X
i

ðri−1Þ
X
ρi

ϵ̄ρiρi

�
·σ�;

−
ðg−1Þ

τ̃
×

�X
α

ϵ̄ααþ
X
i

ðri−1Þ
X
ρi

ϵ̄ρiρi

�
· σ̃�; ð4:43Þ

which, combined with the overall factor 2πiτ (2πiτ̃), supply
finite and σ� (σ̃�) dependent phases. Thus, cancellations
between 3d BAE vacua in favor of smaller exponents at a
given H-saddle cannot be ruled out in general. Although
such cancellations do not appear to be commonplace, we
will identify a few examples of this kind later.
For p1;2 ≠ 0, there is a further exponential contribution

of the form, via Fp1

1 Fp2

2 in the sum. In the large τ limit, the
additional terms, to be added to (4.39), are

p1 ×

�X
i

X
ρi

1

2

�
ϵ3ρi
3
þ ϵ2ρimρi − ϵρimρi −

ϵρi
6
þmρi

6

��

þ p2 ×

�X
i

X
ρi

τ

2

�
ϵ3ρi
3
−
ϵ2ρi
2
þ ϵρi

6

��
; ð4:44Þ

again modulo the large multiplicative factor 2πiτ. For the
small τ limit, we merely need to exchange the asymptotic
forms of F 1 and of F 2 and replace ϵρi → ϵ̃ρi , mρi → m̃ρi
and τ → τ̃.
In particular, with the restriction of the matter content to

be symmetric under the charge conjugation, all terms that
involve ρ · u cancel away leaving behind those involving
powers of νi ’s. The above then reduces to, e.g., for the large
τ limit,

p1 ×

�X
i

νi
τ

X
ρi

1

2

�
ϵ̄2ρi þ 2ϵ̄ρimρi −mρi −

1

6

��

þ p2 ×

�X
i

νi
X
ρi

1

2

�
ϵ̄2ρi − ϵ̄ρi þ

1

6

��
; ð4:45Þ

the latter of which contributes ν-dependent pieces to the
Casimir energy, while the former 1=τ term contributes a
finite imaginary piece to the exponent.

2. Physical

For the “physical” case, the H-saddle behavior is differ-
ent between the large radius limit and the small radius limit,
as we saw in the previous subsection. The small radius limit
itself is on par with that of an A-twisted case, except that
only F phys contributes the leading exponential

p×
X
i

X
ρi∈Ri

�
τ̃

2

�
ϵ̄3ρi
3
−
ϵ̄2ρi
2
þ ϵ̄ρi

6

�
þ1

2
½ρi · σ̃þ ν̃iþ lRðri−1Þ�

×

�
ϵ̄2ρi − ϵ̄ρi þ

1

6

��
; ð4:46Þ

from matters, which reduces to
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X
i

X
ρi∈Ri

�
p ×

ν̃i
2

�
ϵ̄2ρi − ϵ̄ρi þ

1

6

�

þ ð1 − gÞ × ri − 1

2

�
ϵ̄2ρi − ϵ̄ρi þ

1

6

��
; ð4:47Þ

on theories with matter content which is symmetric under
charge conjugation. The contribution from the vector is

ð1 − gÞ ×
X
G

�
1

2

�
ϵ̄2α − ϵ̄α þ

1

6

��
: ð4:48Þ

Both appear in the exponent with 2πiτ̃ multiplied.
The expression (4.47) plus (4.48), with ν̃i set to zero, has

been isolated for the high-temperature limit of the 4d
superconformal index [16], i.e., p ¼ 1 and g ¼ 0, and
govern the asymptotic behavior of the integrand prior to the
holonomy integration, called Veff as in Ref. [16] modulo a
constant shift. One subtlety is that the expressions we found
via the BAE are meant to be evaluated and used at discrete
places, u ¼ uH’s, so agreement with Ref. [16] requires that
the maximum of Veff necessarily occurs at an H-saddle. In
fact, this is very likely since Veff is a piece-wise linear
function, as a consequence of ABJ anomaly cancellation,
and the derivative changes only at points where one or more
charged fields become massless. Thus the local maximum
and minimum can only occur at places where q · u ∈ Z for
some charge q, and for a full agreement we only need to
exclude places, u0 where a vector multiplet of charge α
becomes massless and no chiral multiplets are.
Since the contributions of the chiral multiplets to Veff ,

after using the anomaly condition, cannot change abruptly
there and since contribution from the α-charged vector
will make a sharp turn, it suffices to consider how the
derivative of

Vα ¼ −ϵ2α þ ϵα −
1

6
ð4:49Þ

behaves at ϵα ¼ 0, i.e., where α · u becomes an integer. Let
us consider a small neighborhood around u0 parametrized
by −1 < t < 1 as u ¼ u0 þ tv where v is an arbitrary
direction. Depending on the sign of α · v, the integer part
of α · u ¼ nα þ tα · v changes from nα − 1 to nα or nα to
nα − 1 as t crosses t ¼ 0. Thus, the vector multiplet
contribution turns sharply at t ¼ 0. Computing the deriv-
atives before and after, it is easy to see that the turn

dVα

dt

����
t¼0þ

−
dVα

dt

����
t¼0−

¼ 2jα · vj ð4:50Þ

is positive for arbitrary v. The point u0 cannot be a local
maximum, which means that the maximum of Veff cannot
occur at such a point. It would occur at one of the
H-saddles, therefore, which gives a full agreement on

the Cardy exponent between the previous approach and
the BAE.
One can also deduce the large radius limit of the

“physical” case. Recall, for each BAE solution, the leading
exponent from F phys is given by

p×

�X
i

X
ρi∈Ri

1

2

�ðϵ0ρiÞ3
3

þðϵ0ρiÞ2m0
ρi − ϵ0ρim

0
ρi −

ϵ0ρi
6
þm0

ρi

6

�

þ
X
G

1

2

�ðϵ0αÞ3
3

þðϵ0αÞ2m0
α−ϵ0αm0

α−
ϵ0α
6
þm0

α

6

��
; ð4:51Þ

with 2πiτ multiplied. Since the partition function in total is
obtained by summing up the contributions with those
leading exponentials, the simplest guess would be that
the Casimir energy equals the smallest exponent among the
values of (4.51) evaluated at the BAE solutions.

3. Cancellations in the Casimir limit

However, we also encounter a large class of examples
where the Casimir energies do not equal the smallest
exponents computed above. The primary examples are
found in the superconformal indices, i.e., the partition
function in “physical” background with p ¼ 1, g ¼ 0. The
Casimir energy of the resulting SCI’s turns out to be equal
to the value of (4.51)at ûH ¼ 0, despite the presence of
nontrivial H-saddles. This holds, in many cases for SCI,
even with the naive ûH ¼ 0 saddle absent.
This surprising fact can be demonstrated by rewriting the

partition function as a unit circle contour integral,

X
u�∈SBE

F physðu�; ν; τÞHðu�; ν; τÞ−1

¼ 1

jWGj
Z
jxj¼1

dx
2πix

F physðx; y; qÞ; ð4:52Þ

the leading factor ofF phys, which would have generated the
holonomy-dependent Casimir energy,

�Y
i

Y
ρi∈Ri

e
πi
3τ2

½ρi·uþνiþτðri−1Þ�3−πi
6
½ρi·uþνiþτðri−1Þ�

�

×

�Y
G

e
πi
3τ2

ðα·uþτÞ3−πi
6
ðα·uþτÞ

�

¼ e
P

i
dimðRiÞ½ πi

3τ2
ðνiþτðri−1ÞÞ3−πi

6
ðνiþτðri−1ÞÞ�þπi

6
τ dimðGÞ ð4:53Þ

becomes independent of u due to anomaly conditions.
Thus, it comes out of the integral, and the leading exponent
of q is fixed by the value of (4.51) at ûH ¼ 0 [20]. When we
come back to BAE form, this happens via numerous
cancelations between BAE vacua and sometimes even
between H-saddles.
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This cancellation is possible in part because the
position of H-saddles is aligned along the real axis of
2πiu in this case. This should be contrasted to the Cardy
limit, where the H-saddles are located along the unit
circle jxj ¼ 1 so that H-saddle phenomena manifests
even in this alternate integral formula. When the
H-saddle occurs along the unit circle jxj ¼ 1, the
cancellations due to the anomaly cancellation condition
no longer works because the infinite product formula
must be rewritten in new shifted variables whenever
one crosses such an H-saddle; this was at the heart of the

H-saddle computation. The previous observation by
Ardehali on Cardy exponents [16] has effectively cap-
tured this H-phenomenon on such a unit circle version of
the superconformal indices. In contrast, such a cancella-
tion does not happen in the Cardy limit.
Something similar happens for the Casimir limit of the

A-twist case when the fibration is nontrivial. To see this, we
should keep the finite part of the leading terms of F andH.
For simplicity, we focus on the rank-1 case with p1 ¼ p,
p2 ¼ 0. For massive matter fields at a given H-saddle, uH,
the contribution from F is

Y
i

Y
ρi

eπiτð
ϵ̄3ρi
3
þϵ̄2ρimρi

−ϵ̄ρimρi
−
ϵ̄ρi
6
þmρi

6
Þþπiðϵ̄2ρiþ2ϵ̄ρimρi

−mρi
−1
6
ÞðρiσþνiÞ−πi

2
ðm2

ρi
þmρi

Þ: ð4:54Þ

For massless matter fields, i.e., for ρi ¼ λi such that ϵλi ¼ 0, we have an additional factor

×ð1 − zλiyiÞmλi ð4:55Þ

with z ¼ e2πiσ . Using mλi ¼ λiuH=τ, the contribution from massless fields can be written as follows:

Y
i

Y
λi

e−
πi
2
ðλ2i u2H=τ2þλiuH=τÞqλiuH=τ=12z−λi=12y−1=12i ½z−λi=2y−1=2i − zλi=2y1=2i �λiuH=τ

¼
Y
i

Y
λi

e−
πi
2
ðλ2i u2H=τ2þλiuH=τ−2MuH=τÞqλiuH=τ=12z−λi=12y−1=12i ΛuH=τ

H ðΦ3d;H
a Þ−uH=τ; ð4:56Þ

whereM ¼ P
i

P
ρi
mρiρi andΛH is defined in (3.20). Note that uH=τ is a rational number in [0, 1). Thus, at σ ¼ σ�, the last

factor becomes a root of unity,

ðΦ3d;H
a Þ−uH=τjσ¼σ� ¼ e−2πikuH=τ: ð4:57Þ

H consists of two parts: e2πiΩ and H. For massive matter fields, the leading term of e2πiΩ is given byY
i

Y
ρi

eπiτðri−1Þð−ϵ̄
2
ρi
þϵ̄ρi−

1
6
Þþπiðri−1Þð−2ϵ̄ρiþ1ÞðρiσþνiÞþπiðri−1Þmρi ; ð4:58Þ

while for massless matter fields, we have an additional factor

×ð1 − zλiyiÞ−ðri−1Þ: ð4:59Þ

The same expansion can be made for vector fields, by replacing ρi → α and ri → 2. Moreover, for SUð2Þ, H is explicitly
written as

X
i

X
ρi

jρij2
�
1

2
− fðρiðûH þ σÞ þ νiÞ=τgþ

X∞
k¼0

fxρiHzρiyigqk
1 − fxρiHzρiyigqk

−
X∞
k¼0

fx−ρiH z−ρi y−1i gqkþ1

1 − fx−ρiH z−ρiy−1i gqkþ1

�
: ð4:60Þ

For massive fields, the first line is the leading contribution
of order q0 while for massless fields, there is an extraOðq0Þ
contribution þ zλi yi

1−zλi yi
. A similar expansion is made for

physical gauge as well by replacing νi → νi þ νRðri − 1Þ.

4. Explicit examples with G=SUð2Þ: The Casimir limit

We now explore some explicit examples for the Casimir
limit; recall that this side is prone to further subtleties
beyond H-saddles. Let us discuss the A-twist case first.
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Considering asymptotically free theories of SUð2Þ, allowed
representations are those with isospin 1

2
≤ s ≤ 3

2
. For a

model with few number of matters, BAE tends to be trivial
due to a lack of enough flavor symmetry and cannot be
discussed using the A-twist formalism. The Intrligator-
Seiberg-Shenker model is such an example [47]. It has no
anomaly-free flavor symmetry and, as a result, has the fixed
anomaly-free R-charge R ¼ 3=5, which allows A-twist
only on a manifold of genus g ∈ 5Z due to the Dirac
quantization condition for R-charges. Thus, we relegate the
discussion of this model to the physical gauge case, and
here consider SUð2Þ with fundamentals and adjoints.
The RGG anomaly condition restricts R-charges of

fundamentals and adjoints such that

XNf

i¼1

ðri − 1Þ þ 4
XNa

j¼1

ðr̃j − 1Þ þ 4 ¼ 0; ð4:61Þ

where ri and r̃j are the R-charges of fundamentals and
adjoints respectively. For simplicity, we take

ri ¼ 1þ 4ðNa − 1Þ
Nf

; r̃j ¼ 0: ð4:62Þ

With one adjoint, the numbers of flavors allowed by the
asymptotically free condition are Nf ¼ 2, 4, 6. In those
cases, however, the exponent (4.39) is independent of u, so
not very interesting in our discussion. Instead, we discuss
the SUð2Þ model with two fundamentals and two adjoints.
Because of the adjoints, the H-saddles for this model are
located at uH=τ ¼ 0 and uH=τ ¼ 1=2.
Take the H-saddle at uH=τ ¼ 1=2. At this H-saddle only

the vector field and the adjoint matter fields are massless
while the fundamental matter fields become massive. Thus,
the reduced BAE is given by

Q
2
j¼1ðz2 − wjÞ2Q
2
j¼1ð1 − z2wjÞ2

¼ 1: ð4:63Þ

The equation has eight solutions, which are classified into
two classes S� satisfying

Q
2
j¼1ðz2 − wjÞQ
2
j¼1ð1 − z2wjÞ

����
z¼z�

¼ �1; z� ∈ S�: ð4:64Þ

For positive sign, the equation reduces to

z4 ¼ 1; ð4:65Þ

which has solutions z ¼ �1, �i. Among them, since
z ¼ �1 are Weyl invariant, only z ¼ �i are relevant
solutions. For negative sign, on the other hand, the equation
can be reorganized into

ð1þ w1Þð1þ w2Þ

¼ z4ðw1 þ w2Þ − 2z2ð1þ w1w2Þ þ w1 þ w2

ð1 − z2Þ2 : ð4:66Þ

The fibering operator and the handle-gluing operator at
uH=τ ¼ 1=2 are expanded as follows:

F ¼ e
πi
τ2
fðνi;μiÞ

w7=12
1 w7=12

2

Q
2
j¼1ð1− z2wjÞQ
2
j¼1ðz2 −wjÞ

þOðq1
2Þ;

H ¼ q
7
12 ×

4e
πi
τ hðνi;μiÞð1− w1Þð1−w2Þð1−w1w2Þ

w3=2
1 w3=2

2

×
z4ðw1 þw2Þ− 2z2ð1þw1w2Þ þw1 þ w2

ð1− z2Þ2 þOðq13
12Þ;

ð4:67Þ

where

fðνi; μiÞ ¼
2

3
ν31 þ

2

3
ν32 þ μ31 þ μ32; ð4:68Þ

hðνi; μiÞ ¼ −4ν21 − 4ν2 þ 3μ21 þ 3μ22: ð4:69Þ

One immediately notes that the leading term of F is
proportional to the square root of BAE. Thus,

F jz¼z� ¼
�e

πi
τ2
fðνi;μiÞ

w7=12
1 w7=12

2

þOðq1
2Þ; z� ∈ S�nf�1g: ð4:70Þ

Similarly, the leading term of H is also simplified at each
BAE solution as follows:

Hjz¼z� ¼ q
7
12×

ð3∓ 1Þeπi
τ hðνi;μiÞð1−w2

1Þð1−w2
2Þð1−w1w2Þ

w3=2
1 w3=2

2

þOðq13
12Þ; ð4:71Þ

where z� ∈ S�nf�1g and we have used (4.66) for z� ∈ S−.
As a result, the generic leading term at uH=τ ¼ 1=2 is

given by

X
z�∈S�nf�1g

FpHg−1
���
z¼z�

∼ q
7
12
ðg−1Þ × ½2g þ ð−1Þp4g�eπi

τ2
pfðνi;μiÞþπi

τ ðg−1Þhðνi;μiÞ

×
½ð1 − w2

1Þð1 − w2
2Þð1 − w1w2Þ�g−1

w
7
12
pþ3

2
ðg−1Þ

1 w
7
12
pþ3

2
ðg−1Þ

2

: ð4:72Þ

Unless g ¼ 0 and p is odd, this term does not vanish, and
the leading q-exponent is given by

FpHg−1juH=τ¼1=2 ∼ q
7
12
ðg−1Þ: ð4:73Þ
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On the other hand, if g ¼ 0 and p is odd, this naive leading
term cancels out. In such cases, we numerically find the
true leading term, which turns out to be of order q

5
12.

At uH=τ ¼ 0, on the other hand, the reduced BAE is
given by

Q
2
i¼1ðz − yiÞ

Q
2
j¼1ðz2 − wjÞ2Q

2
i¼1ð1 − zyiÞ

Q
2
j¼1ð1 − z2wjÞ2

¼ 1; ð4:74Þ

with the anomaly-free condition y1y2w4
1w

4
2 ¼ 1. Since it is

difficult to solve this equation analytically, instead, we tried
numerical analysis for a given random phase values of yi,
wj and found

FpHg−1
���
uH=τ¼0

∼ q−
5
12
ðg−1Þ; ð4:75Þ

which shows the exact agreement with the leading
exponent at uH=τ ¼ 0 predicted by (4.39). Thus, there is
no cancellation of the leading terms at uH=τ ¼ 0.
Combining these results at uH=τ ¼ 0 and at

uH=τ ¼ 1=2, the leading term of the total partition function
is given by

Ωg;p ∼

(
q−

7
12; g ¼ 0; peven;

q−
5
12
ðg−1Þ; otherwise

ð4:76Þ

for SUð2Þ theory with two fundamental chirals and two
adjoint chirals.
Next, we move on to the physical gauge case. As

advocated by Closset et al. [33], the integer quantization
condition for R-charges can now be relaxed, and we can
consider theories that flow to nontrivial superconformal
points. The superconformal R-charge is then determined
by the anomaly-free condition and the a maximization.
For physical gauge, a canonical example with potential
H-saddles is the ISS model, which is the SUð2Þ model with
a single isospin-3=2matter. From the condition in Sec. III D,
one can determine the H-saddles in the large radius limit as

ûH=τ ¼
6

35
;

3

10
;

1

2
;

7

10
;

29

35
: ð4:77Þ

Note that for physical gauge in the large radius limit, BAE
does depend on the manifold because it contains lR ¼ 1−g

p .
For simplicity we stick to lR ¼ 1 cases.
As we mentioned, for p ¼ 1, g ¼ 0, i.e., the super-

conformal index, the partition function can be written as the
unit circle contour integral, which predicts the Casimir
energy

E0¼
X

ρ∈½3=2�

1

2

�ðϵ0ρÞ3
3

þðϵ0ρÞ2m0
ρ−ϵ0ρm0

ρ−
ϵ0ρ
6
þm0

ρ

6

�����
ϵ0ρ¼3

5
;m0

ρ¼−1

þ
X
α∈½1�

1

2

�ðϵ0αÞ3
3

þðϵ0αÞ2m0
α−ϵ0αm0

α−
ϵ0α
6
þm0

α

6

�����
ϵ0α¼0;m0

α¼1

¼ 511

1500
: ð4:78Þ

On the other hand, for eachH-saddle, the reduced BAE and
the leading terms of ðF physÞpHg−1 are given by

−z7 ¼ 1 at ûH=τ ¼
6

35
;

z−2 ¼ 1 at ûH=τ ¼
3

10
;

z8 ¼ 1 at ûH=τ ¼
1

2
;

z−2 ¼ 1 at ûH=τ ¼
7

10
;

−z7 ¼ 1 at ûH=τ ¼
29

35
; ð4:79Þ

and

q−
23

10500 ×
1

7z2
at ûH=τ ¼

6

35
;

q
61
1500 ×

z
2

at ûH=τ ¼
3

10
;

q
211
1500 ×

ð1 − z2Þ2
8z6

at ûH=τ ¼
1

2
;

q
61
1500 ×

z
2

at ûH=τ ¼
7

10
;

q−
23

10500 ×

�
−

1

7z5

�
at ûH=τ ¼

29

35
; ð4:80Þ

with z ¼ e2πiσ . Note that z ¼ �1 at ûH=τ ¼ 1=2 are Weyl
invariant and again excluded from the solution set. One can
see that those leading contributions all vanish for p ¼ 1 as
expected. We also confirmed numerically that the sublead-
ing terms with q-exponents less than 511

1500
are all canceled

out such that the true leading term of the total partition
function is of order q

511
1500. Note that the value happens to

coincide with the would-be exponent at ûH=τ ¼ 0, even
though the tower sits at the ûH=τ ¼ 1=2 saddle. This is one
example of cancellations for SCI’s which was advertised
previously.
On the other hand, such cancellations in favor of the

would-be exponent at uH ¼ 0 does not necessarily happen
for general values of p. For p ¼ −2, g ¼ 3, as the second
example, the leading ðF physÞpHg−1 is given by
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q
23
5250 × 49z4 at ûH=τ ¼

6

35
;

q−
61
750 ×

4

z2
at ûH=τ ¼

3

10
;

q−
211
750 ×

64z12

ð1 − z2Þ4 at ûH=τ ¼
1

2
;

q−
61
750 ×

4

z2
at ûH=τ ¼

7

10
;

q
23
5250 × 49z10 at ûH=τ ¼

29

35
: ð4:81Þ

The locations of H-saddles are the same as those of p ¼ 1,
g ¼ 0 because the two geometries share the same lR ¼ 1.
Substituting the BAE solutions at each H-saddle, the
leading terms are evaluated as

q
23
5250 × 0 at ûH=τ ¼

6

35
;

q−
61
750 × 8 at ûH=τ ¼

3

10
;

q−
211
750 × 72 at ûH=τ ¼

1

2
;

q−
61
750 × 8 at ûH=τ ¼

7

10
;

q
23
5250 × 0 at ûH=τ ¼

29

35
: ð4:82Þ

Thus, the leading q-exponent − 211
750

persists in this case,
meaning that the nontrivial ûH=τ ¼ 1=2 saddle is dominant
and the leading exponent there suffers no cancellations, in
contrast to the p ¼ 1 case.

5. Anomaly or not

Several observations relating these asymptotic coeffi-
cients to the axial and to the conformal anomalies were
made recently [18,20–22,48]. One well-known example is
a relation between the Cardy exponent and the sum of
Uð1ÞR charges of fermions, on par with (4.40), which, for
superconformal cases, translates to “a − c” where a and c
are the usual conformal anomaly coefficients.
One main consequence of our investigation is that such a

connection cannot be trusted in general. Whenever the
matter content involves gauge representation beyond the
simplest ones, H-saddles will tend to appear at uH ≠ 0,
some of which could dominate the naive one at uH ¼ 0
easily. The canonical example of SQCD escapes this, since
the chiral multiplets are all in the fundamental representa-
tion. It probably explains why this rather generic phe-
nomenon has so far failed to be noticed. For SCI’s, such a
deviation from ð1−gÞ

12
· trfR has been observed first by

Ardehali [16] and subsequently by Di Pietro and Honda
[17] for a handful of examples, but, as we saw, this
deviation is more of a rule than an exception.

We also saw that something similar happens with the
Casimir limit as well. We again find that the notion of
H-saddles would be valid even in the large radius limit
provided that there are two circles in the spacetime, at least
for computation of the partition functions. This will gen-
erally complicate the asymptotics of typical partition func-
tions, just as in the Cardy limit. For this Casimir energy side,
however, the connection to the global anomaly [20,22] is a
little more robust than the Cardy side, although somewhat
dependent on the background geometry; SCI’s, in particular,
turned out to enjoy a rather special structure such that this
naive Casimir energy, apparently from uH ¼ 0, stands
uncorrected even though nontrivial H-saddles exist, and,
more surprisingly, even when the naive uH ¼ 0 saddle is
absent, due to magical cancellations between BAE vacua or
even betweenH-saddles. For general partition functions, for
example with p > 1, such cancellations are more scarce.
Much of this section explored such diverse forms of the

Casimir energies and the Cardy exponents, and gave
precise methods for isolating these, albeit with no obvious
universal formula.

V. SUMMARY

We have introduced the notion of the holonomy saddle,
or H-saddle, and explored how the phenomenon manifests
in d ¼ 4 N ¼ 1 massive gauge theories.
Certain discrete values of the gauge holonomy are found

to support d ¼ 3 N ¼ 2 supersymmetric gauge theories.
When the space is taken to be noncompact, the existence of
multipleH-saddles means that a theoryG compactified on a
small circle admits multiple superselection sectors at dis-
crete holonomy values uH’s, where supersymmetric vacua
are clustered which are in turn attributable to an effective 3d
theoryH. Such anH-theory tends to have generally a smaller
light field content than the naive dimensional reduction, due
to the symmetry breaking by the Wilson line, although one
also typically finds the naive saddle at uH ¼ 0 as well. This
observation dovetails nicely against some of the existing
studies of 4d-to-3d and 3d-to-2d reduction of dualities
[13,14], where one finds that a single dual pair typically
generates multiple dual pairs in the lower dimensions.
Its manifestation in the compact spacetime equipped

with a circle, on the other hand, implies precise relations
between the twisted partition function of the G theory and
those of the subsequent H theories, to which we have
devoted the bulk of the computations. As such, the Witten
index of the G theory would be generally a sum of Witten
indices of the H theories, which explains, in part, how the
number of the supersymmetric vacua differs between two
theories in the adjacent dimensions even with the same
supermultiplet content. This also offers a definite method
for reconstructing one from the others.
We also investigated the consequences for supersym-

metry-preserving torus-fibered compact spacetimes by
observing how the twisted partition functions behave in
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a small radius limit of one of the two circle fibers. The 4d
twisted partition function reduces to a sum of 3d partition
functions in those limits, modulo exponential prefactors
which are interpreted either as the Cardy or as the Casimir
behavior, depending on which direction is taken to be the
Euclidean time. The results on such exponents are gen-
erally different from the existing claims, as the latter tends
to focus, effectively, on the naive saddle at uH ¼ 0.
In the current examples of partition functions and

theories, which admit the BAE description, H-saddles
are located by asking which subset of chiral matter fields
become light at which discrete values of the holonomy. FI
constants and Chern-Simons levels, generated by KK
modes, can further complicate the pattern, which we
also delineated in much detail. The characterization of
H-saddles should be a bit more general, however: an
H-saddle would appear in the holonomy space wherever
the dimensionally reduced theory admits supersymmetric
vacua, normalizable or non-normalizable [2]. This general
criterion for H-saddles should be valid for any super-
ysmmetric gauge theories, as long as the gauge holonomy
is not exactly flat at the quantum level.

What we have not explored here is how this phenomenon
relates to and interacts with the matter of disconnected
holonomy sectors, well known in the context of the 4d
Witten index computations of pure Yang-Mills theories.
Since ourH-saddles would occur already for the holonomy
on S1 and since the corresponding discrete choices uH arise
from the dynamics rather than from the topology, it is clear
that the topological consideration must be separately
considered as well for a more general gauge group G.
An immediate question is how the discussion here should
be generalized when G is not simply connected [40] or
when the so-called “triple” is relevant [36–39]. We suspect
we will encounter more issues related to such holonomy
saddles and holonomy islands in the near future.
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