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We investigate the Schwinger pair production phenomena in spatially homogeneous strong electric
fields. We first consider scalar QED in four-dimensions and discuss the potential ambiguity in the adiabatic
order assignment for the electromagnetic potential required to fix the renormalization subtractions. We
argue that this ambiguity can be solved by invoking the conformal anomaly when both electric and
gravitational backgrounds are present. We also extend the adiabatic regularization method for spinor QED
in two-dimensions and find consistency with the chiral anomaly. We focus on the issue of the
renormalization of the electric current (j#) generated by the created pairs. We illustrate how to implement
the renormalization of the electric current for the Sauter pulse.
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I. INTRODUCTION

A time-dependent gravitational field yields the creation
operators of quantum fields to evolve into a superposition
of creation and annihilation operators. This produces the
spontaneous creation of particle-antiparticle pairs [1-4].
This effect was first discovered and widely analyzed in the
physical context of an expanding universe [5,6]. In the early
seventies, a similar transformation between creation and
annihilation operators was proved to occur for accelerated
observers in the Rindler wedge of Minkowski space [7] and
also in the spacetime describing a gravitational collapse
forming a black hole [8]. Subsequent investigations con-
cluded that gravitons are also created by the expansion of
the universe [9,10]. Shortly after the proposal of the
inflationary universe [11], the creation of scalar perturba-
tions was analyzed in [12]. A similar superposition of
creation and annihilation operators takes place if the
quantized field is coupled to a time-varying scalar field
background. Therefore, particle creation can be enhanced
after the end of inflation, when the inflation, regarded as an
external scalar field coupled to quantized matter fields,
starts to rapidly oscillate in time [13].

In this paper we want to focus on the particle creation
phenomena caused by a time varying background gauge
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field. These electromagnetic processes are strongly moti-
vated by the upcoming high intensity and ultrashort laser
experiments [14,15], which will allow us to understand
nonperturbative regimes in QED where vacuum particle
creation becomes relevant [16]. The most paradigmatic
example of this is the pair-production by a strong and
spatially homogeneous electric field E(7) = E(f)X, where
one assumes a configuration with an initial vanishing
electric field E(¢) — 0 as t - —oo, an intermediate period
with a smoothly varying electric field, and a final decay to a
zero electric field E(f) — 0 when t — +-oc0. A prototype for
this is the pulsed configuration E = (Eycosh™2(wyt),0,0).
In the limit @, — 0 one recovers the constant electric field,
which is actually an inherent assumption in the well-known
Schwinger effect [17]. Schwinger’s derivation, extending
previous work by Sauter [18] and Heisenberg and Euler
[19], is obtained within the effective action formalism in
quantum electrodynamics (QED). It has been of great
interest in theoretical research over many years [20-29]
and it may be at the border of being experimentally verified.

A fundamental problem in gravitational processes is the
calculation of the expectation values (7,,), which, in
addition to provide definite quantities for energy density,
pressure, or radiation fluxes, would act as the proper source
for the (semiclassical) Einstein’s equations. The computa-
tions are involved, as we have to deal with ultraviolet (UV)
divergences not present in Minkowski space. The corre-
sponding subtractions needed for renormalization requires
more sophisticated methods. Equivalently, in a time-de-
pendent electric field the proper source of the Maxwell
equations is the electric current which again possesses UV
divergences. In this paper we analyze the renormalization
of the electric current (j,) for spatially homogeneous
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electric fields, like the pulsed configuration mentioned
above, by importing and extending renormalization meth-
ods originally proposed in cosmological scenarios [30-36].
The electric current is probably the most important local
observable to be consider in a near-future detection of the
Schwinger effect. Therefore, the renormalization of both
observables (T,,) and (j,) merit a detailed and simulta-
neous analysis. Moreover, new interests in cosmological
scenarios of the Schwinger effect [37,38] demand the need
of a regularization method involving both electric and
gravitational fields.

The goal of this paper is to further extend the adiabatic
regularization method for scalar [30-32] and Dirac fields
[33-36] living in a Friedmann-Lemaitre-Robertson-Walker
(FLRW) spacetime by adding the interaction with an
external homogeneous electric field. The organization of
the paper is as follows. In Sec. II we first consider scalar
QED in four-dimensions and analyze the ambiguity in the
adiabatic order assignment for the electromagnetic poten-
tial. We fix the ambiguity by invoking agreement with the
trace anomaly when both electric and gravitational fields
are present. In Sec. III we further extend the adiabatic
scheme for Dirac fermions in two-dimensions. We find
consistency with the axial anomaly. In Sec. IV we illustrate
how to evaluate the renormalized electric current for the
Sauter pulse in flat space using the improved renormaliza-
tion methods introduced in Sec. III. Finally, in Sec. V we
summarize our conclusions.

II. SCALAR QED IN FLRW SPACETIME,
ADIABATIC EXPANSION, AND
RENORMALIZATION

Let us consider a quantized charged scalar field in a
FLRW metric of the form ds® = dt* — a*(t)dx*. The scalar
field obeys the Klein-Gordon field equation (we assume a
generic coupling & to the scalar curvature)

(D,D* + m* + ER)¢p = 0, (1)

where

D,p = (V,+iqA,)p. (2)
Assuming that the electric field is spatially homogeneous and
the magnetic field is zero, we take the electric field in the
direction of the x axis. For our purposes it is very convenient
to choose a gauge such that only the x-component of the
vector potential is nonvanishing: A, = (0,-A(z).0,0).
Therefore, the field strength is given by Fy =
(—A(1),0,0) and the Klein-Gordon equation becomes

2
220+ ?¢Hm+&w 0.

3)

\va a-
— ¢ +35g+
a a

The quantized field is expanded in Fourier modes as

Plx) = e Thi(1) + Ble T (1),

¢fza:i/d3
)

where AL, Bl and Az, By are the usual creation and
annihilation operators. The mode functions 4;(¢) must obey
the Wronskian consistency condition

h,—{»h;—g - h;_;.h,—g = 2i. (5)

Substituting (4) into (3) we get the equation

. 1?2 Ak 2A2 72
O R R G
a a a

n (65 - 5) g) hy = 0. (6)

One can then write the vacuum expectation values for the
stress-energy tensor as an integral over modes, producing
an expression as

(T — / PrT (%, 1), (7)

In general, the above integral is ultraviolet divergent. To
renormalize (7), one should identify the subtraction terms
that can serve to remove the parts of T"”(k t) which would
diverge when integrated over k A physically motivated
procedure for doing this is to perform an adiabatic
expansion of the mode functions h;(z), in powers of
a(t), a(t), a(t), etc., and also in powers of A(z), A(r),
A(1), etc., around the free solutions. The mode expansion is
then plugged in T””(k t) to generate an adiabatic series.
The minimal number of terms in this series are subtracted
from T#(k,t) to cancel out all UV divergences. This
method was first developed in the context of a scalar field
living in spatially homogeneous cosmological backgrounds
[30-32] and without any additional external field. For more
recent studies see [33-36,39]. It was also applied, in the
absence of gravity, to the pair-creation in a strong electric
field scenario in [40-44]. Here we will reexamine the
method when both the gravitational and the electric back-
grounds are present. We will show that a consistent
adiabatic order assignment is necessary for the method
to agree with the combined conformal anomaly generated
by the gravitational and the electromagnetic fields.

A. Adiabatic expansion

The adiabatic expansion for the scalar field modes is
based on the usual WKB ansatz. For reasons to be
explained later (see Sec. III) we shall not assume a priori
the WKB ansatz. Instead, we will assume a most general
ansatz by expanding the modes as follows
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Q; (1) = a)];—i—a)(l) +o® 4.

= H (e [ a0

—— +H (1) + (8)

NV

where w; = \/m2+% and Hp(r) and Qp(t) are real
functions. One can substitute the above ansatz into
Eq. (6) and the Wronskian condition (5). We then get
the equations (we drop the k index for simplicity)

. Ak 2A? 3\ @
H—HQz—l—{wz—Zq——x—l—q . +(6g——>“—2
a a a 4/ a
N g
+<6§——>9]H—0
2)a
QH? = 1. 9)

We have to solve order by order to obtain the different
terms of the expansion. As usual [1], we will consider a(¢)
of adiabatic order zero, a(t) of adiabatic order one, etc.

factor a(¢) is zero, while that of a(t), or the field A(z), is
unity. [We will reexamine this point in connection with the
trace anomaly in subsection C.] Therefore, A(7) will be of
adiabatic order 2, A(¢) of order 3 and so on. The adiabatic
order 0 coincides with the solution for A(¢) = 0:

0 = w (10)
1
HO = N (11)
and hence
1 i [y 24 Ear
W= [z (12)

aze
Jm? K
m —|—a2

1. First adiabatic order

By keeping only terms of first adiabatic order in (9), the
system of two equations gives

2qAk,

612

200 VWHO) — H© =0,

However, to get an unique series expansion we have to 20HOHD 1 WO gO) — 0, (13)
assign also an adiabatic order to the vector potential o
function A(r). We will choose A(t) to be of adiabatic ~ The solution is
order 1. This assignment of adiabatic order 1 is consistent k.gA k.qA
with the scaling dimension of the field A(z), as it possesses HY = 52 52" ol = — 2 - (14)
. . . . . 2a°w a‘w
the same dimensions as a. The mass dimension of the scale|
2. Second adiabatic order
In the same way, the second-order terms of (9) give
.. 2A? 3\ &2 3\ d 2qgAk
7O — (200@ + (01)? +‘1_2+ 662 “_2+ 662 )2 VHO 4+ [ —20W e -4 ) HO =0,
a 4/ a 2/)a a
o@D (HOY? 4+ 20V HOHD + (HV)? 4 20HPHO =0,  (15)
which has as solutions
2) 3¢a  3a  3Ea*  3a’  KqPA? PA o 3d°
o\ =—— - - -—+—,
aw 4aw o 8dw 2d'0® 2d0 40”80’
HO) 5k2g%A%  g*A? 3éa 3a 3éa® 3a? 1) 3w’ 16
T30 dde T 207 80 2d0 | 160 | 8072 1607 (16)

3. Third and fourth adiabatic order

The same procedure can be repeated for all higher orders.
The third- and fourth-order terms of the expansion are
explicitly written in Appendix A.

B. Conformal anomaly

We check now the consistency of our adiabatic expan-
sion. A nontrivial test for our proposal is to reproduce the
trace anomaly for the quantized charged scalar field for
& =1/6 and m = 0. To evaluate the trace anomaly in the

adiabatic regularization method, we have to start with a
massive field and take the massless limit at the end of the
calculation. Moreover, for a massive charged field
T}, = 2m*¢¢’. However, this formal identification does
not imply that (T%) ., = 2m*(¢¢"),.,. The divergences of
the stress-energy tensor components have terms of fourth
adiabatic order, while the divergences of (¢¢") involve
only terms till second adiabatic order. Therefore, in order to
evaluate the trace anomaly by using the above formal
expression, the adiabatic subtractions for (¢¢") should also
include subtractions up to fourth adiabatic order. The same
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argument has been used to work out the trace anomaly of a
real scalar field [1]. Therefore,

(Th)en = Im2m2() = (97) @), (17)

The fourth-order subtraction term, which produces a non-
zero finite contribution when the mass vanishes, is codified
in (") *). The piece m?(¢¢") .., vanishes when m?> — 0.
The remaining term produces the anomaly. We will now
calculate this term.

Let us first consider the two-point function for our the
complex scalar field

09) = 55y [ Pk 9

and, using the adiabatic expansion for the modes, one can
evaluate the corresponding n-order adiabatic terms

DO )" = 5 [ Py

271- 0 )
= ko |(|h=|2) W dk dk
st [ g e

(19)

where we have chosen a preferred direction k|| = k,. After
some computation, the trace anomaly is finally given by

<TZ>ren = lim —2m2<¢¢%>(4>

m2=0

B a® N i’ n a®a a’d g*A?

C2407%a  2407%a®  8072a® 80n2a®  48r%a?
(20)

This last term is in full agreement with the well-known
trace anomaly for a background electromagnetic field in
Minkowski spacetime [45]. The remaining terms reproduce
the trace anomaly of the gravitational FLRW background.
The result is twice the value obtained for a real scalar field
[1]. In covariant form, we get

1 1
—— {0OR-(R™R,, — =R
1440;:2{ ( w3 >}

q2

9672

<Tﬁ>ren =

+ S F, P, (21)

The ability to reproduce the conformal anomaly is a
nontrivial test for our renormalization scheme.

C. Discussion on the adiabatic order assignment

In most references in the literature [37,38,40-44] the
vector potential is assumed of adiabatic order 0, which
differs from our previous assumption. This means that the
adiabatic expansion proposed here and its physical conse-
quences will be potentially different from those considered
in the previous literature on this topic. Assuming A(¢) of
adiabatic order zero, the leading adiabatic order of the

modes would be
ot ]2 B2 2qAke , ?A% 5
B zf m -&—a2 2 + 2 1

(22)

AL !
k

2 | B _2qAk, | ¢*A?
\/m +a2 a? + a?

A natural question now is to investigate whether this
alternative adiabatic order assignment, is also able to
reproduce the trace anomaly. The adiabatic order of
the modes is given in Appendix B. When gravity is
included, the result for the trace anomaly is problematic.
Performing the adiabatic subtraction for the stress-energy
tensor until the fourth adiabatic order, as usual for quan-
tized fields interacting with gravity [1,4,30-32], one gets
for the trace anomaly (T%)., = lim,._, —2m>{¢¢p")®.
The result is

1 1
™ —=——_{0OR-(R*R, ——-R?
< #>ren 144071'2 { ( 122 3 > }

G2iA? T4 a2 A? PaAA
9072m2a® 14407 *m*a*  7207°m2a’®
q*A? 7q4AZ4 qZA(3>A
T l602mia? T 14402 miat T 12022 mia?

(23)

The terms involving A(7) and their derivatives do not
reproduce the expected contribution to the trace anomaly
i
9672
m — 0. To reproduce the electromagnetic piece of the trace
anomaly (which is then of second adiabatic order), one is
forced to remove gravity (i.e., take a(z) = 1) and renorm-
alize the stress-energy tensor until the second adiabatic
order only. This way one would obtain

F, F*. In fact these terms are infrared divergent as

2
a= : T q v
<T//;>ren1 = _Z’igr_l?om2<¢¢ >(2) = 967[2 FMI/F” . (24)

If one ignores the gravitational background and take
a(t) = 1, it is then perfectly consistent to choose A(¢) of
adiabatic order zero. However, if one includes gravity the
renormalization with the zeroth adiabatic order assignment
for A(t) seems to be not consistent with the trace anomaly.
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This is an important novelty of this paper and we will go
back to this point when consider the trace anomaly of Dirac
fermions.

III. SPINOR QED IN TWO DIMENSIONS,
ADIABATIC EXPANSION,
AND RENORMALIZATION

In two dimensions, the Dirac equation in presence of an
external homogeneous electric field and a background
metric of the FLRW form ds? = dt* — a*(t)dx? is

(iy'V, —m)y =0, (25)

where V, =0, —T', — igA, and T, is the spin connection.
y¥(x) are the spacetime-dependent Dirac matrices satisfy-
ing the anticommutation relations {y#,7*} = 2¢**. These
gamma matrices are related with the Minkowskian ones by
7°(¢) =" and y'(t) = y'/a(t), and the components of the
spin connections are Iy =0 and T, = (a/2)yoy;.
Therefore, y*T’, = —%yo and we fix a gauge for the
potential as A, = (0,—A(¢)). The Dirac equation (25)
becomes

.. . A
<iy060 + ég}/o + (é@l + %) y' - m)l// =0. (26)

From now on we will use the Weyl representation (with
r’=rH

r=(1o) =) ()
(27)

Expanding the field in momentum modes w(t,x) =
STy (t) e, Eq. (26) is converted into

(80 + % + é (k+qA)y> + imyo) v =0. (28)

We can construct two independent spinor solutions

B pikx hi(t)

uk(t?x) - \/% (—hg(f)) (29)
e ()

vi(t,x) = e (h’_*k(t) >, (30)

where hi () and hi!(t) are appropriate solutions of the
equations

it =2 (k + qA)hL — imh!! =0 (31)
a

hl! é (k + gA)h!! — imh! = 0. (32)

The normalization condition |A!|*> + |h!/|?> = 1 leads to
the usual Dirac scalar products

(g, up) = /dxau,tuk/ =6(k - k') (33)
(v, vp) = /dxav,tvk/ =6(k—Kk) (34)
(g, vp) = /dxaulvk/ =0. (35)

This condition guarantees the anticommutation relations
for the creation and annihilation operators B, and Dy,
defined by the expansion of the Dirac field operator in
terms of the above spinors

Wit = [ dkiBan(0) + Dlag(r.). (30
The usual equal-time anticommutation relation holds

{walt, ), wj(t,9)} = 8(x = y)8up. (37)

A. Adiabatic expansion

As explained above, the Dirac equation splits into a
system of two coupled equation for 4} and A%. Our aim
here is to obtain a self-consistent adiabatic expansion for
these two functions /4 and h{/. Inspired by the adiabatic
expansion for Dirac fermions in a four-dimensional FLRW
spacetime [33-36], we propose the following ansatz (for
simplicity in the notation we omit the index k in the
functions F, G and ;)

_k/a _i ["oar

hl = @ F lf (1)t

{= /"5, R e (3%)
k N

hll = — j@ —;w/aG([)e_,f Q) (39)

m? + k?/a*. We find

where w =
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. . k 2 -
(w—k/a) (F—iQF—i(k—i—qA)F) + o L im2G=0
a al2w-a

(40)
(0 +k/a) (G — QG+~ (k + qA)G>
a
km?a )
—_—— im°F = 41
oy G+im 0 (41)
and the normalization condition
k —k
M|G|2 +w—/cz|F|2: 1. (42)
20 0]

As in previous sections, we have also assumed that A(r) is
of adiabatic order 1. The zeroth adiabatic order solution is
the Minkowskian solution with vanishing electric field

—k/a _.
hl(O) — w —itw 43
V"o, ¢ (43)
W10) — _, ,CO —’2_ k/ae—it(u (44)
@

We expand the functions F, G, Q adiabatically

F=1+F1) 4+ F® ... (45)
G=1+GY +G? 4..., (46)
Q=0o+o") +o® +..., (47)

We recursively calculate order by order the higher-order
adiabatic terms. We split the functions F(*) and G into real
and imaginary parts: F" =F\" +iF{", G" =G\" +iG".

The results up to second order are as follows.
1. First adiabatic order

By keeping only terms of first adiabatic order in (41), the
system of three equations gives

(w—k/a) <—ia)F(1) —iwM _ékF(l) _éqA>

LR AL G — o (48)
a

(0 —k/a)(FY) + FV*) + (0 + k/a) (G + GV*) = 0.
(50)

We now treat independently the real and imaginary parts.
We obtain for the imaginary part

1 1
(w—Fk/a) (—wch” — V) == kFV ——qA) +m*G =0
a a
(51)
1 |
(w+k/a) (—wGi” — o) + kG +—qA) +m2FY =0
a a
(52)

(0 —k/a)2F") + (0 + k/a)(2G") = 0. (53)

The solution is

F(l) - _qA(w—l—k/a) G(l) B qA(a)—k/a)
o a0 T 2a0®
kqA
() = 1=
@ e (54)
On the other hand, the real part of the system gives
1 1 1 k I’n2 a 1
(55)
1 1 1 k m2 a 1
(56)

These two equations are not independent. The obtained
solution is

ka

(1)
-, Gy’ = M(1), 57
2a%w J () ( )

FiY = M(1)
where M(7) is an arbitrary first-order adiabatic function.
We have checked that physical expectation values of local
observables are independent to any potential ambiguity in
the choice for M(¢). For simplicity we choose

ka
M(f) = —— 58
(1) e (58)
and then
Wy ka
By =—iwa="%" (59)
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2. Second adiabatic order

In the same way, we solve the second-order terms of (41) and find

FO _ A’kg* SA’m*q® AP ka m2a a 5km*a? ka? s5m*a*  13m?a? 3a?
Y240’ 8alw* 2% 8a*w®  Saw* 8aw?® 16w’ 167w 1640 340t 324d20*’
G _ A’kg®>  SA’m*q* AP ki m?i a  Skm*a? ka? Sm*a®>  13m’a’  3d?
Y2830 8atwt  2d%0? | 8a’w’ | 8awt 8aw? 16a30° 1630w’ 1642w’ ' 32420t 324 w?’
2. . 5 42 5 2:2 2 2A2
w(z):_ma3 - mzas_ n21a3 qu 3 (60)
daw 4daw  8a‘w 8a*wa 2a w
|
o o SmigAd 3qAa p A Elr;i Irleszisglllltsleads immediately to the axial anomaly in two
J 4a’w* 4a’w?®  2aw*’
G? =N 61 , A
’ ( ) ( ) <vujﬁ>ren = q— = _igﬂDF;ws

Again we have the same ambiguity for N(¢). We choose for
simplicity:
Sm’qAa  3qAa  qA
N() = S — e = .
8a‘w 8a‘w” 4daw

(62)

B. Chiral anomaly

To test the self-consistency of the above adiabatic
expansion we are going to show how the chiral anomaly
is obtained from it. We will consider the axial current

I =9rry, (63)
which is conserved in the massless limit. To evaluate the
expectation value (V) we will reintroduce the mass and
evaluate the right-hand-side of

(Viia) = 2im{@ry), (64)
in the limit m — 0. Since the formal expression for (V, /)
has divergences till second adiabatic order for a generic

metric we need to perform subtractions in (yy w) up to
second adiabatic order. Therefore,

(Vuhen = —lim2im(r ). (65
By writing (V,/4) in terms of {h, h'}
_ 1 fe
W) = g [ AR BN, (66)

and using our adiabatic series expansion, we arrive at

_ © im
(rw)? = ma dkg (FY -G + F Gl
iqA

(1) (1)
- Gy'F,’) = .
J ) 2ram

(67)

(68)

ar 2w

where €' = |g|~!/? = a~'. This result reproduces exactly
the chiral anomaly for spinor QED, [1,46]. For a massive
field we obtain (V,/4)en = — 3= “F,, 4 2im@y°y) en-
The axial anomaly in two dimensions is the hallmark of the
particle creation process caused by the electric field [47]. A
manifestation of a similar phenomenon for photons in a
gravitational scenario has been pointed out in [48].

C. Conformal anomaly
It is very easy to see how the method accounts for the
trace anomaly. The trace of the energy momentum tensor
can be written as:
T, = mpy. (69)
After renormalization we have a residual contribution when
the mass goes to zero

<TZ>ren = lim — m(J’V/)(Z) (70)

m—0

By using the adiabatic expansion we can write:

<l/_/l//>(2) 1 oodk(hl*hll +h11*h1)(2)

" 27a )
-1 [+3]

—— [T a2 (FP + 6P + PG + RV G
27a o @

(71)
After integrating the corresponding adiabatic terms:
@ — 4 . 72
o)™ =15 (72)
By using (70) we get
.. R
<Tll:>ren - . (73)

_12;m:_%’
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where in the last step we have used the expression of
the two-dimensional scalar curvature in the terms of the
expansion factor. The result agrees with the value of the
trace anomaly for a Dirac spinor in two dimensions [49],
which in turn coincides with the trace anomaly of a real
scalar field [4,50,51].

We would like to stress that, if one assumes the zeroth
adiabatic order for A(7), the result for the trace anomaly is
the following

(Tie)ren = (74)

.. 242
lim |4 __4A” |
m—-0| 12za 6zm*a*

We find again a very unpleasant result, like (23) for scalar
fields in four-dimensions. In the massless limit the above
quantity is divergent and does not match the expected
result. By contrast, the adiabatic order one for A gives the
right result (73) for the conformal anomaly.

IV. RENORMALIZED CURRENT FOR A PULSED
ELECTRIC FIELD IN SPINOR QED,

A. Vacuum choice for the Sauter pulse

We consider now the Sauter pulse in a two-dimensional
Minkowski space. It is driven by the electric field E=

Eycosh™2(wyt), with potential A(r) :—i—g(tanh(a)ot) +1).
From the Dirac equation we find the coupled equations:

W — PR — imhl =0 (75)
W' 4+ iPh!T — imh! = 0, (76)

where we have defined P = k + gA(t). One can decouple
these equations and obtain

(02 —iP+ P>+ m*)h =0 (77)
(02 +iP + P2 + m*)h!" = 0. (78)

The solution to the above equations, with the appropriated
boundary conditions at t = —oo, are given in terms of
hypergeometric functions [52-54]

—k
W=\ Fab @ -af (79)
i wo+k o, B
Bl — 27F(a b e t) (1 — 1), (80)
0]

where 7 = 1/2(1 + tanh(wy?)), a = —iq%—l—a—l—ﬂ, b=
1+iq%+a+ﬁ,c: 1 + 2a and

i
— _ kZ 27
a —2w0 +m
[ C]Eo 2 2
f=—[(k=2"2) +m2 (81)
2600 @

a’ and b’ are obtained from a, b by replacing E, — —E and
k — —k. In the limit t - —oo or 7 — 0, both solutions have
the asymptotic behavior corresponding to positive frequency
modes

+k .
w—e—lwt_ (82)

B
T 2w

B. Renormalization of the electric current

The two-dimensional electric current defined as the
source of the Maxwell equation:

0, = j (83)

is j# = —quy*y. The formal expectation values (j*),
expressed in terms of A/, h'l, are given by

0 == [T ) 9

G == [T - ). )

For the O-component it is easy to see that after renormal-
ization and taking into account the normalization condition,
it vanishes (j°),, = 0. In order to renormalize the non-
vanishing component of the electric current, the zeroth and
first adiabatic orders need to be subtracted, i.e.,

" q [
(F ren = E/ dk[|h"[> =[R2 = (|RT12 =[B! 2)©)

= (|n" P = |p' )], (36)

>. (87)

For simplicity we assume g > 0. The above integral is finite
and one can estimate it easily by numerical integration (see
Fig. 1). We find a consistent behavior for (j*).... The induced
current appears once the pulse starts and it depends on the
values of the external parameters. E, = m?/q is the critical
Schwinger value for pair production. Note that for wy — 0,
i.e., the constant electric field configuration of the traditional
Schwinger effect, (j*),., = o0. We will interpret this behav-
ior later on.

After some calculations we find

2

. q [> )2 Kk _gm
oy 4T g p - pp - X4
() ren 271'/_00 (' "= 1] o o

ren
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FT T — —T — — T T —T L— — L
20} 1
_ s A
E r
’S.\
‘ \%
W% 10p ]
l“ 0T
U
[ , ]
o0sf S ]
b " 4
A
2,
b " i
0'0 Cr 1 1 1 1 i n n n 1 n n n n 1 n n n n 17
-20 =T 0 10 20
mt
FIG. 1. Renormalized electric current (87) (jx),., for Ey = 2E,

and wy = 0.25m (thick line), wy = 0.35m (dashed line) and w, =
0.5m (black line) in natural units.

C. Adiabatic regime and particle creation

Let us consider the adiabatic expansion for the renor-
malized electric current itself. In this case, after subtracting
the zeroth and first adiabatic order, and assuming an
adiabatic configuration for A(z), we find:
14°A% A

.

_ _ (n>3)
30m*zr  6mix

() ren = () 4+ 003 =
(88)

where O3 are terms with adiabatic order higher than 3.
We note first that, assuming that at early times the electric
configuration is of the form E(r) > 0 and E(r) > 0, and
taking into account that

A(t) = - /_ " arE(r), (89)

[Se]
the renormalized current always takes positive values
(7%)en > 0 at early times, irrespective of the quantum state.
We can also compare the above expansion with the
exact result for the electric current for the Sauter pulse

[T T T T T T T T T T T T T T T T T T T T ™
0030
0025}

0.020F

Ec
<j>

% 0015}
0010

0.005F

I e —

and third
adiabatic order approximation (88) (j,)®) for E, = E, and w, =
0.5m in natural units.

FIG. 2. Renormalized electric current (87) (%)

ren

(see Fig. 2). We observe that the configuration A(¢) defined
by the Sauter pulse is only adiabatic at early times, and
ceases to be adiabatic around the instant mr ~ —4, time
before reaching the critical electric field needed for pair
production. The non-adiabatic period extends to all times
in the (Schwinger) limit @, — 0, and particles are created
without end. Hence (j*),., diverges, as note before. [Note
that, in contrast, a configuration of the form A(r) =
—Ey(tanh(wgt) + 1), which corresponds to the electric
field E = Eyw,, is adiabatic for wy — 0 and the mean
particle number (N) would be zero, in agreement with the
adiabatic theorem].

D. Backreaction

An important effect due to particle creation is the
backreaction of the current production into the former
electric field. Let us briefly illustrate this effect within our
approach for renormalizing the electric current. In the case
of the Sauter pulse the induced electric current behaves as a
smooth function and we can mimic it with a simple analytic
function. Let us consider the pulse with @y = 0.5m and
Ey = 4E.. In this case we found that the electric current can
be parametrize by a smooth function (see Fig. 3) such as:

3

Y1) = 20

c

(1 4 tanh(Kmr)) (90)

where in this case K = 0.75. The induced electric current
also acts as source of the electromagnetic field according to
the semiclassical Maxwell equations:

" = (j*)ten o1
In our case this translates into A(f) = (j),.,(t). We can
easily integrate this equation and find the backreaction
contribution to the electric field E(¢) = —A(t):

— 77— —T—T—T—

15} .- J

10} 4
A I
?\ [

\%

1% T

05} 4

0-0 Cr T T T T T T n n n 1 n n n n 1 n n n n 17

-20 -10 0 10 20

mt
FIG. 3. (j).n for Eg =4E, and wy = 0.5m in the case of

numerical calculation (dashed line) and analytic function
(black line).

125012-9



ANTONIO FERREIRO and JOSE NAVARRO-SALAS

PHYS. REV. D 97, 125012 (2018)

—r—— 77— T

FIG. 4. Original electric field E(¢) (continuous line) and the
electric field produced by particle creation (dashed line) in the
case of Ey = 4E,, wy = 0.5m and a coupling of ¢*>/m> = 0.1

2

Z_ [—log {(2 cosh(Kmt)} — Kmt]

Ebr(t) (92)

c

where the integration constant is fixed in order to have
vanishing potential/field at t — —oo0.

The electric field produced by backreaction to the
particle creation becomes relevant once the pulse is almost
over, when it reaches the critical electric field E,. (see
Fig. 4). It behaves now as a lineal function in time and goes
in the opposite direction as the original electric field. The
backreaction is significant around mt = 3.

V. SUMMARY

When a quantum field is coupled to a classical, non-
adiabatic time-dependent background, particles are pro-
duced. As a consequence new UV divergences in local
observables emerge. In cosmological scenarios, adiabatic
regularization provides a very efficient method to identify
and remove the unwanted divergences. In the case of an
electric field background with sufficient high intensity,
pairs of particles and antiparticles are produced via the
Schwinger effect. Equivalent to gravitational particle pro-
duction, this generates divergences in quadratic observables
such as the energy momentum tensor (7,,) or the electric

current (j#) and a renormalization mechanism is needed in
order to predict finite quantities.

In this paper we have improved the adiabatic regulari-
zation method to include homogeneous electric fields. Our
extension of the method has two folds. On the one hand, we
have reexamined the method to deal with both electric and
gravitational fields on an equal footing and for a quantized
scalar field. In doing this we have fixed an inherent
ambiguity of the method. The adiabatic order assignment
of the vector potential has been traditionally assumed in the
literature of zero order. Here we have argued that the correct
adiabatic order assignment is one, instead of zero, at least if
a gravitational field is present. This problem has been fixed
by invoking the conformal anomaly. On the other hand, we
have extended the adiabatic method to deal with fermions
in two-dimensions. We have checked the consistency of our
method by reproducing both the axial and conformal
anomalies. We have also shown that only the adiabatic
order assignment one for A yields the right expressions for
the anomalies when gravity is present. One of the main
advantages of the adiabatic method in the capability to
perform numerical computations. To briefly illustrate how
to deal with the renormalized electric current predicted by
our method we have analyzed numerically the electric
current induced by a Sauter pulse.
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APPENDIX A: ADIABATIC EXPANSION WITH
A(t) ASSUMED OF ADIABATIC ORDER ONE

In this appendix we provide the terms of the adiabatic
expansion of the scalar field modes, up to fourth order, not
included in the main text. The third order terms are

W) KA kA | kgA SkqAd  3kgAd | 19k.qAd? | 3kEqAd
20°0°  2a*@®  4ad*0®  4d’et  4d’o’ 8a’w’ a‘*o’
9k.qAd® 3k, EqAid  Sk,gAd  k.qaA  Sk.qAi®
8a‘*w’ o’ 4a’w’ o’ 2a30*
HO) 15k3g3A3 3 5k.q>A3 3 k. gA 5k.gAd 9k .qAd 3 47k .qA@? 3 15k, EqAa?
T 166032 8440 T 8420°% ' 8220 2 T 1620 2 32420372 At a2
9% qa*  15k.EqAd  19k.qAd  k.gaA  5Sk.qAad Al
324402 430 16830°? " 28302 4dPw"' 2 (A1)
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Finally, the fourth-order terms are

A BI2gPAY SKAGPAY 9gRaPA? 3gREPA 103K2GRPA 9K qPERA?

o =~ 8a*w® | 4a%0°  8abw!  16d*@®  2d%e’ 164w’ 20w
_19470’A7 145647 0°A7 5qPaw A’ 25KGqPa @A’ 5qPAA’ 3qPEIAT 21kqRdA’
16420’ 16a*w’ 4a3Q* 2a° @ 8w’ 2a3w0? 8w’
22 EGAY  3PDA?  15K2P0A%  PaAA 112G AA 5¢PA®A 25K2¢4PAmA
28w 8aw*  8d*a® dod 2d0° 4il0*  dd*e®
GPAA  BKAPAA 98t 27&dt 63at 2970 gPAP 5KAgPA 578dPat
42 4dte® 2400’ 8dte® | 12840’ 128w 4d’w’ | 8d*e®  8d’w
5742w 9&4*  3&d? 9i? 13¢% 1563w 15a3@  9&%q%a  15&a%a
64a2w> 2820°  2820° 32d20° 30° 280" | 16430 Lo’ 8acw?
27a%a  S7éw’d  STw*d  156awmd  9&a’e  9d%d  99a e  9fdwm  9dd
38D 8aw® | 3aw’ | 4dle* | 4dte* 32420 320° | daw®  16a0’
3aa®  150’d 150 Seow 3Ed 3a® @
T 16a%0? + daw*  16aw* 8@ 4daw®  16aw®  160*
) 5q*A*  45kiq*A* | 195Kiq*A*  94PaPAT  15¢7EaPA7 ASTIAGPAPAT 135kiqPEAPA?
32a*@0”?  32a°0"3?  128a0'7?  64at@®/? 8atw’/? 128a°w!3/2 16a°w!3/2
41420 AY  8T1K2q**A? 5420w A?  65K2qg*aw A’ 19¢20AY  15¢%EdA?  207k2qRaA?
64a2w13/2 1286140)17/2 8a3wll/2 86156015/2 32a3w9/2 86130)9/2 64a5w13/2
135K2q2E6A? 9¢%wA? 117K P0AY  PaAA  TK2GRPaAA 5¢PA0A  65K2¢*AmA
]6a5wl3/2 326120)”/2 646146015/2 2613609/2 2a5w13/2 861260”/2 166140)15/2
PAA  9RGPPAA 4584t 278t 994* 621" PA% 5k24RA?

82077 1640 | 807 T 3247 51240 | 5120777 | 8207  16a' @

141&a%*  141d°0° 458242 39¢&a? 4542 2960 15603 158w

32200”35620 | 8209 1622077 T 128202 128077 | 483w 3230l
45252 231Ea%a 8lda 141&ata 14laPa 15&awa 27&d%0 27426

207@%@

430°”?  32830°7 ' 1284%0°2 ' 32a0"? 12840 8202 16a20''? ' 1284%w'' 2 128w"/2

27¢aw 2746 3aa 150a 150d 50 w 3¢a’ 3'a’ )

h 16aw''/?  64aw''/? * 32a%2@%/? - Baw!'/? " 32aw'/? " 160'3? " 8aw’/? a 32aw°/? - 32p!/2’

APPENDIX B: ADIABATIC EXPANSION WITH A(t) ASSUMED OF ADIABATIC ORDER ZERO

The adiabatic expansion of the modes is then

2gk, A g*A? . 1
a)(o):\/a)z— P + 5 ZQ H<0):W

B —6aQ%i — 3Q%4% — 2a%2Q0 + 3a2Q?

2aQ%i — Q242 4+ 2a2Q0 — 3a2Q?

H®?

16a22Q°2 @ 82200
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) _ 3¢Ed 3 1564Q 154 Q458G 278aQ 1418aQ° 39¢&i? 27 €
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