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In a previous work we suggested a self-gravitating electromagnetic monopole solution in a string-
inspired model involving global spontaneous breaking of a SO(3) internal symmetry and Kalb-Ramond
(KR) axions, stemming from an antisymmetric tensor field in the massless string multiplet. These axions
carry a charge, which, in our model, also plays the role of the magnetic charge. The resulting geometry is
close to that of a Reissner-Nordström (RN) black hole with charge proportional to the KR-axion charge. We
proposed the existence of a thin shell structure surrounding a (large inner) core as the dominant mass
contribution to the energy functional. Although the resulting energy was finite, and proportional to the KR-
axion charge, the size of the shell was not determined and left as a phenomenological parameter. In the
current article, we propose a new way to calculate the size of the thin shell: string theory considerations
suggest that the short-distance physics inside the inner core may be dominated by a positive cosmological
constant term proportional to the scale of the spontaneous symmetry breaking of SO(3). The size of the
shell is estimated by matching the RN metric of the shell to the de Sitter metric inside the core. The
matching entails the Israel junction conditions for the metric and its first derivatives at the inner boundary of
the shell, and determines the inner mass-shell radius. The axion charge plays an important role in
guaranteeing the positivity of the “mass coefficient” of the gravitational potential term appearing in the
metric; so, the KR electromagnetic monopole shows normal attractive gravitational effects. This is to be
contrasted with the axion-less global monopole case where such a matching is known to yield a negative
“mass coefficient” (and, hence, a repulsive gravitational effect). The total energy of our monopole within
the shell is calculated. As a result of the violation of Birkhoff’s theorem (due to the formal divergence of the
energy functional in the absence of a large distance cutoff), the total energy does not have to equal the mass
coefficient. However, for phenomenologically relevant sets of parameters, the ratio of the total energy and
the mass coefficient in the shell is close to 1. The gravitational “effective mass coefficient” in the shell
can be made equal to the total energy outside the core by a small decrease in the cosmological constant
in the de Sitter region. This is achieved through a dilaton potential which is suitably negative inside the
de-Sitter region, but vanishes outside that region.
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I. INTRODUCTION: A REVIEW OF THE MODEL

Recently [1] the authors have formulated a novel
magnetic monopole solution in a string-inspired model,
involving the coupling of self-interacting scalar fields,
responsible for the spontaneous breaking of a global SO
(3) symmetry, to a Kalb-Ramond (KR) field, associated
with the spin-one antisymmetric tensor field of the string
gravitational multiplet. The model generalizes the gravita-
tional monopole model [2] and contains, in addition,
electromagnetic Uð1Þ gauge fields, which couple to the

KR field via a dilaton field—the dilaton is the scalar field of
the string gravitational multiplet.
The low energy effective Lagrangian1 of the model is

L ¼ ð−gÞ1=2

8>><
>>:

1
2
∂μ χ

A∂μ χA − λ
4
ð χA χA − η2Þ2 − R

þ 1
2
∂μΦ∂μΦ − VðΦÞ

− 1
12
e−2ΦHρμνHρμν − 1

4
e−Φfμνfμν

9>>=
>>;: ð1Þ

In the above expression, −g denotes the determinant of
the metric, χA; A ¼ 1, 2, 3, are the scalar fields responsible
for the spontaneous breaking of the SO(3) internal
symmetry via their vacuum expectation value (v.e.v.) η;
Hμνρ ¼ ∂ ½μBνρ� is the totally antisymmetric field strength ofPublished by the American Physical Society under the terms of
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1The Lagrangian is inspired by perturbative weakly coupled
string theory.
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the antisymmetric tensor field Bμν ¼ −Bνμ (with ½…�
denoting antisymmetrization of the respective indices);
fμν is the Maxwell tensor of the electromagnetic Uð1Þ
gauge field; Φ, the dilaton field, is stabilized (in perturba-
tive string theory) to a constant value Φ ¼ Φ0 at the
minimum of VðΦÞ with VðΦ0Þ ¼ 0. For a core region
surrounding the monopole center where gravity is strong,
the underlying string theory may be strongly coupled. In
this core region the behavior of the dilaton may result in a
regularization of the associated space-time singularity [1]
of the monopole. This regularization and its ramification is
the subject of this paper.
For the lowest order string effective action [3,4] in terms

of the gravitational multiplet, it is known that the field
strength Hμνρ plays the role of a totally antisymmetric
torsion in a generalized Christoffel connection. In four
space-time dimensions, the dual of the torsion is a
pseudoscalar (KR axion) field bðxÞ [5],

Hμνρ ¼ ϵμνρσe2Φ∂σbðxÞ ð2Þ

with ϵμνρσ the covariant Levi-Civita antisymmetric symbol.
As discussed in [1], the classical radial solution for bðrÞ
reads2:

b0ðrÞ ¼ ζ

r2

ffiffiffiffiffiffiffiffiffi
AðrÞ
BðrÞ

s
ð3Þ

where r is the radial distance (with dimension of length)
from the centre of the configuration. The quantity ζ is a
dimensionless constant of integration which measures the
strength of the KR field strength and the pseudoscalar field
bðxÞ has mass dimension one. We call ζ the KR-axion
charge.
The (dimensionless) quantities AðrÞ and BðrÞ are

radial functions appearing in the solution for the metric
tensor [1]

gμν ¼

0
BBB@

BðrÞ
−AðrÞ

−r2

−r2sin2θ

1
CCCA: ð4Þ

We have from [1]: AðrÞBðrÞ ¼ 1þOðr2Þ, for r → 0, while
AðrÞBðrÞ ¼ 1þOðr−2Þ for r → ∞. In the current work we
shall adopt the following approximate relations for the
entire range of r

AðrÞBðrÞ ≈ 1;

BðrÞ ¼ 1 − 8πGη2 −
2mG
r

þ 8πGp
r2

; ð5Þ

where m is the Schwarzschild mass of the monopole, r is
the radial distance from the centre, both having the
appropriate dimensions and G is Newton’s gravitational
constant of four dimensional space time. For the solution
[1] of phenomenological relevance to current colliders
(i.e., with a detectable monopole mass): if 8πGη2 ≪ 1,
with η assumed to be much lower than the Planck scale, the
monopole might have a mass Oð10 TeVÞ. The solution (5)
is the Reissiner-Nordström (RN) expression [6] for a
magnetic black hole and is compatible with the asymptotic
forms studied in [1] and so the expression (5) provides a
good approximation for our purposes. From (3) and (5) we
obtain the following solution for the KR axion

b0ðrÞ ¼ ζ

r2BðrÞ : ð6Þ

It will be convenient to use dimensionless variables, and so
we will now work in units of 8πG ¼ 1. In these units the
metric function BðrÞ (5) become:

BðrÞ ¼ 1 − η2 −
2M
r

þ p
r2

p ¼ 2ζ2; M≡ m
8π

; r →
rffiffiffiffiffiffi
8π

p ; ð7Þ

with r, M and η dimensionless (or, equivalently, expressed
in reduced Planck mass scale units, in which the Planck
mass is MP ¼ l−1

P ¼ ffiffiffiffiffiffi
8π

p
, with lP the Planck length).

As discussed in detail in [1], the solution for the
electromagnetic Uð1Þ Maxwell tensor is [1]:

fμν ¼

0
BBB@

0 0 0 0

0 0 0 0

0 0 0 2r sin θWðrÞ
0 0 −2r sin θWðrÞ 0

1
CCCA; ð8Þ

with

WðrÞ ¼ ζ

r
; ð9Þ

for all r.

2In [1] we fixed the dilaton to a constant background Φ0 such
that the string coupling gs ¼ eΦ0 ¼ 1ffiffi

2
p , which is compatible with

the order of magnitude of string couplings g2s
4π ¼ 1

20
characteristic

of phenomenologically relevant models,. We also absorbed
the factor e−Φ0=2 in a redefinition of the electromagnetic field
strength fμν, so that one has a canonically normalized Maxwell
term in (1). It is with these conventions that the normalization of
the axion charge ζ in (3) is fixed. An arbitrary constant value of
Φ0 can thus be absorbed in an appropriate normalization of ζ.
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The associated magnetic field has only a radial compo-
nent, which in contravariant form reads [1]:

Br ¼ 1ffiffiffiffiffiffi−gp ηrθϕfθϕ ¼
ffiffiffiffiffiffiffi
2

AB

r
WðrÞ
r

≃
ffiffiffi
2

p
ζ

r2
; ð10Þ

where we took into account Eqs. (4) and (5). From this it
follows that the magnetic charge is g ¼ � ffiffiffi

2
p

ς. The electric
field and charge are zero. It is evident from (5) that the
constant p is the square of the magnetic charge,

p ¼ g2 ¼ 2ζ2; ð11Þ

and thus the KR-axion charge provides the (Dirac)
magnetic charge in this model [1], via the RN geometry
(5) [(7)],

g ¼
ffiffiffi
2

p
ζ: ð12Þ

Dirac quantization then leads to large values of the KR
axion charge ζ (in our natural units), since the Dirac
quantization condition is

ge ¼ n
2
; n ∈ Zþ: ð13Þ

The global gravitational monopole is known to modify the
four-dimensional asymptotic space-time to that of a curved
space-time with a conical singularity, corresponding to a
deficit angle 8πGη2 (cf. (5) with scalar curvature

R ∝
16πGη2

r2
: ð14Þ

Similar features remain for the RN geometry in [1].
For the scalar triplet field, associated with the sponta-

neous symmetry breaking of the global SO(3) symmetry,
we made the ansatz [1]

χAðrÞ ¼ ηfðrÞ x
A

r
; A ¼ 1; 2; 3; ð15Þ

where xA, A ¼ 1, 2, 3 are Cartesian spatial coordinates,
with the asymptotic behavior

fðr → 0Þ ≃ f0r → 0 f0 ¼ constant ∈ R;

fðr → ∞Þ → 1: ð16Þ

In [1] we adopted a heuristic approach to demonstrating
the finiteness of the monopole mass, based on the

assumption of a bag-like structure. Specifically, we assumed
that the entirety of the mass resides inside a bag of radius Lc,
and, in fact, within a thin shell bounded by the (large) shell
radius, yielding the following estimate for the total energy of
the magnetic monopole [1]:

E ≃ 4π

Z
Lc

αLc

drr2

2
666664

2WðrÞ2
BðrÞr2 þ

b0ðrÞ2
4

þ

η2
�

fðrÞ2
BðrÞr2 þ

f0ðrÞ2
2

�
þ

λη4

4BðrÞ ðfðrÞ2 − 1Þ2

3
777775; ð17Þ

where 0 < α < 1 is a dimensionless phenomenological
parameter determining the mass shell thickness. Inside the
shell, there are non-trivial configurations of the KR axion,
electromagnetic field, and the scalar triplet fields χA, A ¼ 1,
2, 3 responsible for the SO(3) spontaneous symmetry
breaking in the model. Upon the assumption of large Lc
and αLc (as compared to the Planck length), one obtains
from (17)

E ≃
1

α
ð1 − αÞ

�
9πζ2 −

4π

λ

�
1

Lc
þ 4πη2ð1 − αÞLc;

Lc; αLc ≫ 1: ð18Þ

In arriving at the above result we used (9), as well as
the asymptotic behavior of the scalar triplet χA, A ¼ 1,
2, 3, for λη2r ≫ 1, i.e., fðrÞ ≃ 1 − 2

λη2r2, found in [1]. As

in [1] we will ignore the 1=λ terms in (18) since we are
working in the large λ ≫ 1 limit; we note the relative
minus sign of this term relative to the ζ2 term in (18).
(This observation also corrects a typographical error in
the corresponding formula for the total monopole
energy in [1].)
We have assumed (as in [1]) that the solution (9) for

the electromagnetic field is valid for both small and large
r. This follows from the dilaton equation of motion of the
original Lagrangian (1) of the model [1], which requires
that the (covariant) square of the electromagnetic tensor
fμνfμν is proportional to the KR kinetic term ∂μb∂μb.
Since the solution for the b-field (3) is valid uniformly
for r (both small and large r, compared to the Planck
length), the kinetic term for b is ζ2=r4 in leading order
for the two limits; the ansatz (8) then implies the validity
of (9) for both large and small r. It should also be
remarked that the metric in [1] is not rigorously RN,
since the product AðrÞBðrÞ is not exactly 1 for all r, but
resembles a RN space-time to a very good approximation
in the limit of both large and small r. Moreover, these
two asymptotic RN space-times are characterized by
charge parameters, which differ from each other by terms
of order 1=λ; thus only in the limit λ → ∞ does one
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obtain the same RN metric in the r → 0 and r → ∞
limits [1]. In view of the small-r regularization of the KR
self-gravitating monopole solution (using de Sitter space-
time in a core region) to be discussed in the next Sec. II,
we will only be interested in the large r limit. The radius
δ of the core region will turn out to be much larger than
the Planck length scale but, in a string theory with large
extra dimensions, it can be of order of the string
scale [3,4].
The assumption of a single RN space-time outside the de

Sitter region is valid for all λ. We assumed in [1] strong
coupling λ ≫ 1 in order to ensure that the scalar triplet
fields are near their vacuum expectation value, i.e., large
quantum fluctuations are suppressed in the respective path
integral; we obtain Lc by minimizing the right-hand side of
(18) with respect to Lc:

Lc ≃
3

2

ffiffiffi
1

α

r
jζj
η
; ð19Þ

which implies

E ≃ 12π

ffiffiffi
1

α

r
ð1 − αÞjζjη: ð20Þ

In [1] the parameter α could not be estimated. In general,ffiffiffi
α

p
, and hence the size of the shell, could depend on the

coupling λ, but it was the assumption in [1] that any
potential λ-dependence in αwas such that the terms of order
Oð1λÞ [that were ignored in deriving (19) and (20)] were
subleading.
It is the purpose of this note to attempt a resolution of

these important issues by demonstrating in detail the
emergence of such baglike shell structures in our self-
gravitating monopole solution on implementing a string
theory inspired regularization of the physical singularity
at r → 0 (14). This regularization allows us to calculate
the finite monopole mass in terms of the parameters of
the model (1), by providing a natural estimate of the
parameter α.

II. REGULARIZING THE CURVATURE
SINGULARITY OF THE KR ELECTROMAGNETIC

MONOPOLE

For a self-gravitating KR electromagnetic monopole [1],
the metric assumes the static RN form (4), (5), with an
angular deficit proportional to η2. We may regularize the
associated curvature singularity (14) by considering a
(small) region around the singularity and replacing the
space-time inside it by an appropriate space-time of de
Sitter type of radius δ. (See Fig. 1, where the white (dark)
shaded region corresponds to the de Sitter (RN with angular
deficit) space-times.). The outer space-time corresponds to

the RN metric (4).3 The cutoff radius δ of the appropriate
boundary that separates the two space times may be
determined by employing the well-known procedure ini-
tiated by Israel [7] based on the matching of two spherical
regions in space, an inner and an outer one, described
by different metrics. The regions are separated by a
“thin-shell.” We assume, following [8], that the energy-
momentum tensor vanishes on this interface hyperplane,
and so no energy flow occurs through the boundary surface
at r ¼ δ.
The matching conditions (“Israel conditions”) amount to

demanding the continuity of the metric and its derivatives
on the thin shell. This implies continuity of the curvature
and thus (in view of the Einstein equations) the stress-
energy tensor of the model. This procedure was applied to a
regularization of the self-gravitating global monopole of [2]
in [9], and for the conventional RNmetric in [8,10]. (In [10]
it was also argued that, for (restricted) stability, the

3In the context of our string/brane-theory inspired model, with
its low-energy Lagrangian (1), this regularization may be under-
stood as follows: the regularization concerns the ultraviolet
region near the centre of the black hole/monopole, r → 0, where
gravity is strong and so a strongly coupled string theory might
be expected, with a string coupling gsðr → 0Þ ¼ eΦðr→0Þ ≫ 1.
Consequently, a nonconstant nature of the dilaton, ignored in our
analysis outside the core region, becomes important. From the
effective Lagrangian (1) we note that the dilaton does not couple
directly to the terms involving the scalar triplet fields χa, a ¼ 1,
2, 3. As a result, although the scalar fields go to zero as r → 0, the
contribution of the term 1

4
λη4 from the scalar potential remains,

and is independent of the dilaton. The antisymmetric tensor and
electromagnetic terms, on the other hand, are suppressed due to
the dilaton prefactors (which are inversely proportional to powers
of the string coupling). This is implied by (1) on using the dilaton
equation of motion and requiring that, in the strong coupling
limit of string theory, the field strength Hμνρ (2) remains finite.
Furthermore, in the de Sitter region, higher-order derivative terms
in the string effective action become important, whose form leads
for to Born-Infeld type electromagnetism [3]. Both the dilaton
prefactors and the Born-Infeld form of the electromagnetic terms
imply a subdominant role compared to that of the 1

4
λη4 in the

effective action (see Ref. [4] for more details). One might expect
that strong string couplings characterize length scales of order of
the string length, and indeed the radius of the de Sitter-
domination region δ may be identified with the corresponding
string length scale ls ¼ 1=Ms, where Ms is the corresponding
string mass scale. As we shall see later on, the scale δ is much
larger than the four-dimensional Planck length, which implies a
large string length scale. However, the above arguments are rather
heuristic and valid only within the context of our low energy
effective Lagrangian (1), which describes the tree-level dynamics
of an underlying string theory model. Hence they do not
constitute a “derivation” of our regularization procedure in the
context of a microscopic string theory model. For strong string
couplings, string loop corrections become important, and the
nonperturbative action is not known in closed form. However, for
our purposes of regularizing the black hole singularity, such
heuristic constructions suffice to give a plausible justification for
using de Sitter space as a way of regularizing the black-hole
singularity in our string-inspired field theory model.
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perturbed shell has to satisfy a certain polytropic equation
of state). For a different approach to the regularization of
black-hole singularities see [11].

A. Israel conditions for regularized KR monopole

In our baglike model for the KR magnetic monopole [1],
the outer core radius Lc is determined by minimization of
the energy functional integrated over the shell region
between the radius δ (to be identified with the lower
integration limit αLc) and Lc in (17). The radius Lc is
assumed to be sufficiently large to act as an upper spatial
cutoff for the otherwise divergent energy of the monopole.
This divergence (which is shared with the global monopole
case of [2]) is due to the existence of the deficit η2 in the
induced space-time (which differentiates it from the stan-
dard Minkowski space-time). No matching conditions are
required on the outer core surface of radius Lc ≫ 1, since
the RN space-time with deficit extends formally to infinity.
In terms of spherical polar coordinates r, θ, φ we

consider the following infinitesimal line element for the
regularized space-time:

ds2reg ¼ fðrÞdt2 − dr2

fðrÞ − r2ðdθ2 þ sin2 θdφ2Þ; ð21Þ

where the distribution function fðr; δÞ is defined as
follows:

fðr; δÞ ¼ B1ðrÞΘðδ − rÞ þ BðrÞΘðr − δÞ;

B1ðrÞ ¼ 1 −
1

3
Λr2; Λ > 0; ð22Þ

with BðrÞ given in (7) and the positive parameter Λ will
be chosen later. In our static case, the Israel matching
conditions are:

B1ðr ¼ δÞ ¼ Bðr ¼ δÞ;
d
dr

B1ðrÞ
���
r¼δ

¼ d
dr

BðrÞ
���
r¼δ

; ð23Þ

which imply

Λ
3
¼ η2 þ 2M

δ
−
2ζ2

δ2
;

−
2

3
Λδ ¼ 2M

δ2
−
4ζ2

δ3
: ð24Þ

These determine the cutoff radius δ > 0 and the “mass
coefficient” M of the metric (7) in terms of the de Sitter
parameter Λ > 0

4:

δ ¼ ηffiffiffiffiffiffi
2Λ

p
 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8ζ2Λ

η4

s !
1=2

> 0;

2M ¼ −
2

3
Λδ3 þ 4ζ2

δ
: ð25Þ

We note from (25) that in the absence of the KR-axion
charge (i.e., ζ ¼ 0, the global monopole case [2]), the mass
coefficient M ¼ − 2Λ

3
δ3 < 0 is negative; since this coef-

ficient appears in the gravitational potential, this case
implies repulsive gravitational effects of the global monop-
ole, as discussed in [9]. The situation changes drastically
for the KR electromagnetic monopole case [1]; since, as
can be deduced from (25), in the presence of sufficiently
large ζ2, [necessary for the Dirac quantization condition
(13)], strong coupling and appropriate values of Λ > 0
and δ > 0

5 it is quite possible that the negative term in the
right-hand side of (25) is subdominant when compared to
the positive term. In this case one could obtainM > 0, thus
implying normal attractive gravitational effects for our KR
monopole. This is indeed the case in our problem, as we
show in the next subsection.
Before doing so, it must be noted that the presence of a

de Sitter (positive cosmological constant) space-time in the

 δ

Asymptotic Minkowski with deficit

cL 

δδ

RN with deficit

δ
De Sitter

FIG. 1. The regularized self-gravitating KR electromagnetic
monopole. Israel matching conditions apply at the inner shell
radius δ between the inner-shell de Sitter space time and the
exterior RN space time with an angular deficit proportional to the
SO(3) spontaneous symmetry breaking scale η2. The dark shaded
area depicts the area where most of the mass of the monopole lies.
The outer radius of the shaded boundary, Lc, is sufficiently large
(compared to the Planck length), so that, at this boundary, the RN
space time with the angular deficit ∝ η2 is, to a very good
approximation, an asymptotic Minkowski space time with the
same angular deficit. Hence no additional matching is required
at the core radius Lc, as the RN space extends formally from
δ to infinity. This is indicated by the dashed-line outer boundary
(at Lc) of the dark shaded region.

4As can be readily seen from (24), the interior region of radius
δ (Fig. 1) cannot be a flat empty space with zero cosmological
constant.

5δ is not necessarily small, as we shall see below.
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interior region 0 < r < δ implies stability of the resulting
KR monopole, as a consequence of a balance between the
de-Sitter-induced repulsive forces and the positive-mass-
induced (normal gravitational) attractive forces on the
surface δ. This contrasts with the situation for the original
global monopole solution of [2] where there is still an
ongoing debate [12] on its stability. We may therefore
consider the de Sitter regularization as a necessary physical
property of our self-gravitating KR monopole which can
guarantee its stability.

B. Regularization scheme:
Similar to global monopole case

To this end, we first require that the regularizing
cosmological constant Λ in the inner de Sitter space-time
coincides with the vacuum (dark) energy of the gravita-
tional Lagrangian (1) in the absence of any other matter
fields apart from the scalars χA (that is, ignoring KR axions
and electromagnetic fields, for reasons stated previously).
A vacuum energy Λ arises on noting that χA → 0 in the
inner de Sitter region, compatible with the small r behavior
(16). This interpretation ensures the same regularization
process in the cases of both global and KR electromagnetic
monopoles. We can then identify [9]:

Λ ¼ 1

4
λη4 > 0; for λ > 0: ð26Þ

The following regime of parameters characterizes the
phenomenologically interesting KR electromagnetic mono-
pole of [1], which we now use:

λ≫1; jζj≫1; λζ2≫1; η2≪1; λη2≪1: ð27Þ

In this regime, we obtain from (25) and (26):

δ ∼ 23=4jζj1=2λ−1=4η−1

¼ 23=4
jζj
η
ðζ2λÞ−1=4 ≫ 1;

0 < M ¼ m
8π

∼ 0.79jζjηðλζ2Þ1=4; ð28Þ

where we took into account (27) and (7). We thus observe
that in this case, both the cutoff δ and the mass coefficient
M are proportional to the KR-axion charge ζ (or equiv-
alently the magnetic charge of the monopole), and M is
positive, implying normal (attractive) gravitational effects,
in contrast to the regularized global monopole case [9].
Phenomenologically we are interested in M ≪ 1, which
can be arranged for sufficiently small 0 < η ≪ 1. Taking
into account (27), we observe that the monopole mass is
much larger than the SO(3) spontaneous symmetry break-
ing scale, M ≫ η.

By identifying

δ ¼ αLc ð29Þ

we can obtain from (28) and (19) the following estimate for
the parameter 0 < α < 1:

0 < α ¼ 1.26ðλζ2Þ−1=2 ≪ 1; ð30Þ

in view of (27).
Despite the smallness of

ffiffiffi
α

p
, however, both the cutoff

δ ¼ αLc and the shell radius Lc are much larger than the
Planck scale, consistent with the assumptions and estimates
of [1]. Moreover, since

ffiffiffi
α

p
∝ λ−1=4, ignoring terms ofOð1λÞ

for strong coupling λ in the estimate (19) is consistent.
Thus, although the baglike RN shell (dark shaded region in
Fig. 1) is not so thin, nonetheless the most significant
contributions to the energy integral (17) come indeed from
large radial distances in the integrand, in qualitative agree-
ment to the estimates in [1].
With the value of α ≪ 1 (30), the total energy (18)

becomes to leading order:

E ≃ 8πð1.34ðλζ2Þ1=4jζjηÞ; ð31Þ

where we pulled out explicitly the coefficient 8π, which
facilitates a direct comparison with the monopole mass
m ¼ 8πM (28). From (31), (28) we obtain for the ratio

E=m ∼ 1.7; ð32Þ

implying that, as a result of the divergent nature of the
energy due to the angular deficit η2 in the asymptotic space-
time, the mass coefficient appearing in the gravitational
potential is different from the total energy (which in a flat
space time would be considered as the total monopole rest
mass). This violation of the weak equivalence principle
and the invalidity of Birkhoff’s theorem (due to the linear
dependence of E on the cutoff Lc) are related. However, the
order of magnitude of both terms in the regularized black
hole is the same; this is to be expected for large cores, since
the space-time in their exterior is practically flat Minkowski
(with a small deficit angle, see Fig. 1).
We should remark at this point that for an extended

object, such as the regularized monopole, we should be
careful to use the “correct type” of mass in the presence of a
gravitational field. In the next section we shall elaborate on
this issue by defining properly the concept of an “effective
mass” for our monopole solution in the presence of the de-
Sitter regularizing core region.

III. EFFECTIVE MASS CONCEPT IN THE
REGULARIZED KR MONOPOLE SPACE-TIME

Wewould like to place the above results, especially (32),
within the framework of standard concepts of mass in
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general relativity. In [13] it was pointed out that in the
(conventional) RN solution to the Einstein field equations,
charge, like mass, admits a space-time signature, since it
induces curvature of space-time. In view of the proportion-
ality of the charge ζ to the total mass M (28) or energy E
(31), this is exactly what happens in our self-gravitating KR
magnetic monopole case.
In [13] it is argued that a spatial spherical surface of

radius R, with the singularity of the RN located at the centre
of the sphere, and argues that one can define two kinds of
“effective mass” consistent with general relativity: one is an
effective massMInt

eff enclosed by the surface of radius R (that
is, associated with the inner region corresponding to radial
distances r < R) and the other is an effective mass MExt

eff
associated with the exterior region r > R, extending up to
spatial infinity.
The effective mass contained in a region r < δ can be

calculated using Whittaker’s theorem [13,14], according to
which

MInt
eff ¼

1

4π

I
v2

dv2V;ini; ni ¼ ðV; 0; 0Þ ð33Þ

where, in spherical polars, dv2 ¼ δ2 sin θdθdϕ and V2

denotes the temporal component of the metric tensor,
as defined by the invariant line element ds2 ¼
V2dt2 − gijdxidxj.
In the case of the RN metric (in units of the gravitational

constant G ¼ 1
8π)

V2 ¼ 1 −
2M
r

þQ2

r2
: ð34Þ

with M the Schwarzschild mass (28) and Q the charge,
one has

V ¼
�
1 −

2M
r

þQ2

r2

�
1=2

: ð35Þ

On substituting in (33) with δ ¼ R, one obtains [13]:

MInt
eff ¼ M −

Q2

R
: ð36Þ

The effective mass associated with the exterior region
r > R, has also been calculated in [13] and the result is

MExt
eff ¼ Q2

R
; ð37Þ

so that the sum

Mtot
eff ≡MInt

eff þMExt
eff ¼ M: ð38Þ

The reader should notice the negative mass contribution in
the right-hand-side of (36), which is compensated by the
respective positive contribution in the effective mass of
the exterior region (37), so that the sumMtot

eff (38) yields the
Schwarzschild mass M of the RN black hole. The effective
mass (36) appears [13] in the expression for the radial
acceleration of a neutral test particle falling into the RN
black hole (τ is the proper time):

d2r
dτ2

¼ −
1

r2

�
M −

Q2

r

�
; ð39Þ

implying that the gravitational field, which in general varies
with the distance r, becomes repulsive when the effective
massM − Q2

r becomes negative at r < Q2=M. Thus, neutral
matter falling into the RN black hole will ultimately
accumulate on a (2þ 1)-dimensional hypersurface for

which the effective mass M − Q2

r ¼ 0.
One may then attempt to apply the above considerations

of [13] on this surface, by defining appropriately the two
types of effective mass discussed previously. However,
there are important differences. First, in view of the deficit
angle η2, the total energy in the exterior region is divergent
formally and we cut such a divergence off using a bag
model, and second, the inner region enclosed by the
spherical surface of radius δ (25) is described by a different
(de Sitter) space-time, which acts as a regulator of the RN
singularity. Nonetheless, there are some features of our
regularized solution that are in qualitative agreement with
the RN analysis of [13] as far as the geometrical role of the
charge is concerned. Let us see what implications such
considerations have on our understanding of relations like
(32) that we have found above to characterize our solution.
In our problem, in the exterior region we do have a RN-

like geometry (5), with the (magnetic monopole) chargeQ2

being sourced by the KR axion charge:

Q2 ¼ 2ζ2 ¼ g2 ð40Þ
on account of (11). In the context of our baglike model of
the monopole [1], the total energy (31) when expressed in
terms of δ (28), using (40), yields

E ≃ 1.13
Q2

δ
: ð41Þ

The effective mass contained in the region r < δ can be
calculated usingWhittaker’s theorem [13,14](33), using the
de Sitter metric (22), for which

V ¼
�
1 −

1

3
Λr2
�

1=2
; ð42Þ

with Λ given in (26). Then, from (33) we obtain a negative
effective mass (consistent with the repulsive gravitational
nature of de Sitter space time)
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MInt
eff ¼ −

1

3
Λδ3 < 0: ð43Þ

If one requires (as in the RN case) that the sum of both
exterior and interior effective masses should equal the
Schwarzschild mass [(38)] then in our case one should have

MExt
eff ¼ Q2

δ
ð44Þ

which is consistent with (37) for R ¼ δ. From (28), (43),
and (44), one can verify the validity of (38) since

MExt
eff ¼ 3

2
M and MInt

eff ¼ −
1

2
M: ð45Þ

From (41) and (44) we observe that we obtain a value
for the total energy E in the shell slightly larger than the
effective mass MExt

eff in the region exterior to the core.6

This can be attributed to the nonzero contributions of the
KR axion bðxÞ and electromagnetic fields to the energy
functional E (31), as well as the gravitational self-binding
energy. Generically, in nearly flat space-times, as is the
case in the exterior region of the core, one can define
the total energy of an extended object as the integral of the
temporal component of the stress tensor over a spatial
volume Etotal ¼

R
dVT00. Under the assumptions that the

components of the total momentum vector of the system are
zero and the object is considered “quasistatic,” that is, there
is no significant energy present in the form of gravitational
waves, then the object’s “mass” m̃ can be defined as (in
units of the speed of light in vacuo):

m̃ ¼ Etotal þ Ebinding; ð46Þ

where Ebinding < 0 denotes the Newtonian gravitational
self-binding energy. In our case, for large core radius,
the criterion of (approximate) space-time flatness, along
with the other assumptions, is satisfied; one may thus
identify Etotal ¼ E and m̃ ¼ MExt

eff in (46). Hence, the fact
that the total energy is larger than the mass is naturally
explained.
We also note that, for us, the role of the infalling neutral

matter is played by the KR axion pseudoscalar field, which
thus will accumulate on the surface of radius δ, since it is on
this surface that the radial acceleration will vanish (39).

We can summarize that, in view of the negative effective
mass contributions of the de Sitter regulator, the weak
equivalence principle, where one would equate the total
energy E with the inertial mass, fails. However, this should
be expected for gravitating extended objects, as is our case,
given that the weak equivalence principle characterizes
pointlike masses. Nevertheless, since the core radius is very
large (compared to the Planck length), it is expected that
such discrepancies will be small, since gravitational effects
in the exterior of the core would be suppressed. This is
indeed the situation that characterizes our case, where the
gravitational total energy (41) is found to be almost the
same magnitude as the effective mass of the monopole (44).
From the approximate validity of the weak equivalence
principle, we can conclude that the motion of our monopole
is akin to a point particle.
It is interesting to note, though, that the weak-

equivalence principle can be accommodated exactly
through a choice of the value of our regularizing cosmo-
logical constant Λ in the core region, such that

E
MExt

eff
¼ 1; MExt

eff ¼ Q2

δ
: ð47Þ

In this scheme, the positive contributions to the total energy
functional from the cosmological constant, KR axion, and
electromagnetic fields will screen the negative binding
energy due to the gravitational effects [cf. (46)], leading to
(47). This choice of regularization scheme is consistent
with a negative dilaton potential in the de Sitter region,
where the string theory [the ultraviolet (UV) completion of
our low energy model] is strongly coupled and such a
potential might be generated, for example, through non-
perturbative string-loop corrections. Outside this region,
where string theory is weakly coupled and our low energy
model is an effective description of the dynamics, the tree
level dilaton potential vanishes due to arguments based
on conformal invariance [3]. In this way, our asymptotic
solutions (which are valid outside the de Sitter region)
are not affected. Consequently we can introduce, instead
of (26), a regularized Λξ:

Λξ ¼ 1

4
ξ2λη4 > 0; for λ > 0; ð48Þ

with ξ ∈ R a real number to be determined. We obtain
from (25) and (27):

δ ≃ 23=4jξj jζj
η
ðζ2λÞ−1=4;

mξ ≃ 8π

�
21=4

jξj −
1

6
25=4jξj5

�
jζjðλζ2Þ1=4η; ð49Þ

and from (29) we also obtain

6The reader should recall that the total energy (41), in terms
of the Schwarzschild mass (28), is given by (32) [which also
stems from (41), (44), and (45)]. In our discussion of the weak
equivalence principle in this section, we relate the shell energy E
to the exterior effective massMExt

eff , rather than the Schwarzschild
mass M, since the latter contains contributions [cf. (38)] from
both the (de Sitter) core and exterior regions of the self-
gravitating KR monopole.

NICK E MAVROMATOS and SARBEN SARKAR PHYS. REV. D 97, 125010 (2018)

125010-8



0 < α ¼ 1.26ξ2ðλζ2Þ−1=2 ≪ 1; ð50Þ

since we expect jξj ¼ Oð1Þ, given that the role of ξ is to
set the ratio in (32) to one. On account of (48), we obtain
for the energy (18):

Eξ ≃ 1.13jξ2jQ
2

δ
ð51Þ

instead of (41). Hence, requiring

ξ2 ¼ 1

1.13
≃ 0.89 ð52Þ

we ensure (47). This implies a smaller cosmological
constant than previously chosen (26).

IV. CONCLUSIONS

In this paper we have regularized the curvature singu-
larity characterizing our recent self-gravitating KR electro-
magnetic monopole solution [1]. The regularization was
achieved by cutting off the singular region by means of a de
Sitter space implied by the scalar sector of the theory. The
pertinent positive cosmological constant was proportional
to the fourth power of the spontaneous symmetry breaking
scale η of the internal SO(3) symmetry of the model. We
employed Israel-junction conditions when matching this
interior region with the Reisssner-Norström (RN) black-
hole space-time that characterizes the outer region. This
regularization and our earlier bag-like structure [1] allows,
in a self-consistent way, for a calculation of both the finite
total energy E of the monopole, and the mass coefficient m
appearing in the appropriate gravitational potential term of
the RN metric. Notably in this case, m cannot be identified
necessarily with the total energy, due to the divergent
infrared behavior of the latter. This feature also character-
izes the global monopole case [2], in the absence of the KR
charge. However, in this latter case, the above matching
leads to a negative gravitational mass coefficientm < 0 and
thus repulsive gravitational effects [9].
By contrast, in our KR electromagnetic monopole case,

the gravitational mass coefficientm turns out to be positive,
but proportional to the KR axion charge, whose role is thus
crucial in ensuring normal (attractive) gravitational effects
of the KR monopole. The pertinent calculations of the total
energy E of the monopole and m have been performed
within a phenomenologically interesting regime of the
parameters of the model, in which the scale η is assumed
much smaller than the Planck scale, since our interest is to
consider monopoles with masses within the range of
current or future colliders. When employing a regulariza-
tion using a de Sitter space-time region with the value of the
cosmological constant used in the global monopole case,
we find that E ≠ m. (Although both quantities in the ratio

are of the same order of magnitude, with values very close
to each other.) This small violation of the weak equivalence
principle is to be expected since we deal in our case with
gravitational effects that have nontrivial contributions to the
effective mass. We put our result into context by comparing
with studies of conventional RN solutions [13]; we can
obtain agreement between the two approaches, in the sense
of (38), by choosing a cosmological constant which is
slightly reduced in this case as compared to that of the
global monopole case [9]. We have speculated that, from a
microscopic view point, such a regularization might arise
from a nontrivial dilaton dynamics inside the core de Sitter
region, giving rise to a negative dilaton potential in that
region. Outside the region, the dilaton is stabilized to a
constant value, corresponding to a zero value of its
potential, and thus the asymptotic solutions of Ref. [1]
are not affected.
We reiterate that, the interpretation of the de Sitter space

regularization of our monopole core as a repulsive gravi-
tational force, allows us to understand the stability of the
self-gravitating KR solution; the stability is a consequence
of a balance of these repulsive forces with the attractive
gravitational forces of the positive mass parameter of the
RN space-time in the exterior region, at the radius δ where
the Israel matching conditions of the two metrics are
enforced. The nontrivial KR-axion charge ζ of our model
is crucial to produce this balance.
By considering, in detail, phenomenologically realistic

microscopic scenarios for the KR monopole it would be
possible to determine the symmetry breaking scale η from
first principles, and thus make definite predictions for the
monopole mass. Moreover, the role of the various fields, like
the scalars χA, would also be elucidated, and this will lead to
a better understanding of the production mechanism of such
monopoles. Since the KR electromagnetic monopoles are
composite, nonpointlike, objects, their production at col-
liders is expected to be strongly suppressed, according to
generic arguments [15]. However, non-suppressed produc-
tion may be expected for such objects in environments with
high temperature and/or strong external magnetic fields, as a
consequence of a thermal Schwinger-like mechanism,
according to recent arguments [16]. Hence, the demonstra-
tion from first principles of how a low mass KR monopole
arises in the physical spectrum of microscopic models, is a
pressing issue, not only of theoretical, but also of direct
experimental relevance. We hope to attempt to answer (some
of) the above questions in the future.

ACKNOWLEDGMENTS

The work of N. E. M. and S. S. is partially supported by
Science and Technology Facilities Council (UK) under the
research Grant No. ST/P000258/1.

REGULARIZED KALB-RAMOND MAGNETIC MONOPOLE … PHYS. REV. D 97, 125010 (2018)

125010-9



[1] N. E. Mavromatos and S. Sarkar, Magnetic monopoles from
global monopoles in the presence of a Kalb-Ramond field,
Phys. Rev. D 95, 104025 (2017).

[2] M. Barriola and A. Vilenkin, Gravitational Field of a Global
Monopole, Phys. Rev. Lett. 63, 341 (1989).

[3] D. J. Gross and J. H. Sloan, The quartic effective action
for the heterotic string, Nucl. Phys. B291, 41 (1987); R. R.
Metsaev and A. A. Tseytlin, Order alpha-prime (two loop)
equivalence of the string equations of motion and the sigma
model Weyl invariance conditions: Dependence on the
dilaton and the antisymmetric tensor, Nucl. Phys. B293,
385 (1987); M. J. Duncan, N. Kaloper, and K. A. Olive,
Axion hair and dynamical torsion from anomalies, Nucl.
Phys. B387, 215 (1992); R. T. Hammond, Torsion gravity,
Rep. Prog. Phys. 65, 599 (2002).

[4] B. Zwiebach, A First Course in String Theory (Cambridge
University Press, Cambridge, England, 2009), p. 673.

[5] I. Antoniadis, C. Bachas, J. R. Ellis, and D. V. Nanopoulos,
Cosmological string theories and discrete inflation, Phys.
Lett. B 211, 393 (1988); An expanding universe in string
theory, Nucl. Phys. B328, 117 (1989).

[6] H. Reissner, Über die Eigengravitation des elektrischen Feldes
nach der Einsteinschen Theorie, Ann. Phys. (Berlin) 355, 106
(1916); G. Nordström, Verhandl. Koninkl. Ned. Akad.
Wetenschap., Afdel. Natuurk., Amsterdam 26, 1201 (1918).

[7] W. Israel, Singular hypersurfaces and thin shells in general
relativity, Nuovo Cimento B 44, 1 (1966); Erratum, Nuovo
Cimento B 48, 463 (1967).

[8] O. B. Zaslavskii, Classical model of elementary particle
with Bertotti-Robinson core and extremal black holes, Phys.
Rev. D 70, 104017 (2004).

[9] D. Harari and C. Lousto, Repulsive gravitational effects of
global monopoles, Phys. Rev. D 42, 2626 (1990).

[10] S. H. Mazharimousavi and M. Halilsoy, Ternary cubic forms
having bounded invariants, and the existence of a positive
proportion of elliptic curves having rank 0, arXiv:1703
.05286v2, and references therein.

[11] F. R. Klinkhamer, Black-hole solution without curvature
singularity, Mod. Phys. Lett. A 28, 1350136 (2013); Black-
hole solution without curvature singularity and closed

timelike curves, Acta Phys. Polon. B 45, 5 (2014); A
new type of nonsingular black-hole solution in general
relativity, Mod. Phys. Lett. A 29, 1430018 (2014); F. R.
Klinkhamer and C. Rahmede, A nonsingular spacetime
defect, Phys. Rev. D 89, 084064 (2014).

[12] A. S. Goldhaber, Collapse of a ‘Global Monopole’, Phys.
Rev. Lett. 63, 2158 (1989); In the original suggestion of
Goldhaber that global monopoles are not stable against
“angular” collapse, there is an ongoing debate on this
issue; for a partial list of references see: S. H. Rhie and
D. P. Bennett, Global Monopoles Do Not ‘Collapse’, Phys.
Rev. Lett. 67, 1173 (1991); L. Perivolaropoulos, Instabil-
ities and interactions of global topological defects, Nucl.
Phys. B375, 665 (1992); G. W. Gibbons, M. E. Ortiz, F.
Ruiz Ruiz, and T. M. Samols, Semilocal strings and
monopoles, Nucl. Phys. B385, 127 (1992); M. Hindmarsh,
Semilocal topological defects, Nucl. Phys. B392, 461
(1993); G. Arreaga, I. Cho, and J. Guven, Stability of
self-gravitating magnetic monopoles, Phys. Rev. D 62,
043520 (2000); A. Achucarro and J. Urrestilla, The (In)
stability of Global Monopoles Revisited, Phys. Rev. Lett.
85, 3091 (2000); R. Gregory and C. Santos, Space-time
structure of the global vortex, Classical Quantum Gravity
20, 21 (2003); E. R. Bezerra de Mello, Reply on comment
on ‘Gravitating magnetic monopole in the global monop-
ole space-time’, Phys. Rev. D 68, 088702 (2003); S. B.
Gudnason and J. Evslin, Global monopoles of charge 2,
Phys. Rev. D 92, 045044 (2015).

[13] G. E. Marsh, Charge, geometry, and effective mass, Found.
Phys. 38, 293 (2008).

[14] E. T. Whittaker, On Gauss’ theorem and the concept of mass
in general relativity, Proc. R. Soc. A 149, 384 (1935).

[15] A. K. Drukier and S. Nussinov, Monopole Pair Creation in
Energetic Collisions: Is It Possible?, Phys. Rev. Lett. 49,
102 (1982).

[16] O. Gould and A. Rajantie, Thermal Schwinger pair pro-
duction at arbitrary coupling, Phys. Rev. D 96, 076002
(2017); Magnetic Monopole Mass Bounds from Heavy Ion
Collisions and Neutron Stars, Phys. Rev. Lett. 119, 241601
(2017).

NICK E MAVROMATOS and SARBEN SARKAR PHYS. REV. D 97, 125010 (2018)

125010-10

https://doi.org/10.1103/PhysRevD.95.104025
https://doi.org/10.1103/PhysRevLett.63.341
https://doi.org/10.1016/0550-3213(87)90465-2
https://doi.org/10.1016/0550-3213(87)90077-0
https://doi.org/10.1016/0550-3213(87)90077-0
https://doi.org/10.1016/0550-3213(92)90052-D
https://doi.org/10.1016/0550-3213(92)90052-D
https://doi.org/10.1088/0034-4885/65/5/201
https://doi.org/10.1016/0370-2693(88)91882-5
https://doi.org/10.1016/0370-2693(88)91882-5
https://doi.org/10.1016/0550-3213(89)90095-3
https://doi.org/10.1002/andp.19163550905
https://doi.org/10.1002/andp.19163550905
https://doi.org/10.1007/BF02710419
https://doi.org/10.1007/BF02712210
https://doi.org/10.1007/BF02712210
https://doi.org/10.1103/PhysRevD.70.104017
https://doi.org/10.1103/PhysRevD.70.104017
https://doi.org/10.1103/PhysRevD.42.2626
http://arXiv.org/abs/1703.05286v2
http://arXiv.org/abs/1703.05286v2
https://doi.org/10.1142/S0217732313501368
https://doi.org/10.5506/APhysPolB.45.5
https://doi.org/10.1142/S0217732314300183
https://doi.org/10.1103/PhysRevD.89.084064
https://doi.org/10.1103/PhysRevLett.63.2158
https://doi.org/10.1103/PhysRevLett.63.2158
https://doi.org/10.1103/PhysRevLett.67.1173
https://doi.org/10.1103/PhysRevLett.67.1173
https://doi.org/10.1016/0550-3213(92)90115-R
https://doi.org/10.1016/0550-3213(92)90115-R
https://doi.org/10.1016/0550-3213(92)90097-U
https://doi.org/10.1016/0550-3213(93)90681-E
https://doi.org/10.1016/0550-3213(93)90681-E
https://doi.org/10.1103/PhysRevD.62.043520
https://doi.org/10.1103/PhysRevD.62.043520
https://doi.org/10.1103/PhysRevLett.85.3091
https://doi.org/10.1103/PhysRevLett.85.3091
https://doi.org/10.1088/0264-9381/20/1/302
https://doi.org/10.1088/0264-9381/20/1/302
https://doi.org/10.1103/PhysRevD.68.088702
https://doi.org/10.1103/PhysRevD.92.045044
https://doi.org/10.1007/s10701-008-9209-1
https://doi.org/10.1007/s10701-008-9209-1
https://doi.org/10.1098/rspa.1935.0069
https://doi.org/10.1103/PhysRevLett.49.102
https://doi.org/10.1103/PhysRevLett.49.102
https://doi.org/10.1103/PhysRevD.96.076002
https://doi.org/10.1103/PhysRevD.96.076002
https://doi.org/10.1103/PhysRevLett.119.241601
https://doi.org/10.1103/PhysRevLett.119.241601

