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We consider the UV divergences up to sub-subleading order for the four-point on-shell scattering
amplitudes in D ¼ 8 supersymmetric Yang-Mills theory in the planar limit. We trace how the leading,
subleading, etc divergences appear in all orders of perturbation theory. The structure of these divergences is
typical for any local quantum field theory independently on renormalizability. We show how the
generalized renormalization group equations allow one to evaluate the leading, subleading, etc.
contributions in all orders of perturbation theory starting from one-, two-, etc. loop diagrams respectively.
We focus then on subtraction scheme dependence of the results and show that in full analogy with
renormalizable theories the scheme dependence can be absorbed into the redefinition of the couplings. The
only difference is that the role of the couplings play dimensionless combinations like g2s2 or g2t2, where s
and t are the Mandelstam variables.
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I. INTRODUCTION

In recent years maximally supersymmetric gauge theo-
ries attracted much attention and served as a theoretical
playground promising new insight in to the nature of gauge
theories beyond usual perturbation theory. This became
possible due to the development of new computational
techniques such as the spinor helicity and the on-shell
momentum superspace formalism [1]. The most successful
examples are the N ¼ 4 SYM theory in D ¼ 4 [2] and the
N ¼ 8 SUGRA [3]. These theories are believed to possess
several remarkable properties, among which are total or
partial cancelation of UV divergences, factorization of
higher loop corrections and possible integrability. The
success of factorization leading to the BDS ansatz [2]
for the amplitudes in D ¼ 4 N ¼ 4 SYM stimulated
similar activity in other models and dimensions [4]. The
universality of the developed methods allows one to apply
them to SYM theories in dimensions higher than 4 [5,6].
In this paper, we focus on the on-shell 4-point amplitude

as the simplest structure and analyze the UV divergences in
maximally SYM theories inD ¼ 8 dimensions in all loops.
This theory has no IR divergences even on shell but since
the gauge coupling g2 here has dimension −4, it is non-
renormalizable by power counting.

Applying first the color decomposition of the ampli-
tudes, we are left with the partial amplitudes. Within the
spinor-helicity formalism the tree level partial amplitudes
depend on the Mandelstam variables s, t and u and have a
relatively simple universal form. The advantage of the
superspace formalism is that the tree level amplitudes
always factorize so that the ratio of the loop corrections
to the tree level expression can be expressed in terms of
pure scalar master integrals shown in Fig. 1 [7].
Within the dimensional regularization (dimensional

reduction) the UV divergences manifest themselves as
the pole terms with the numerators being the polynomials
over the kinematic variables. In D-dimensions the first UV
divergences start from L ¼ 6=ðD-4Þ loops, consequently,
in D ¼ 8 and they start already at one loop. Notice that all

FIG. 1. The universal expansion for the four-point scattering
amplitude in SYM theories in terms of master integrals. The
connected strokes on the lines mean the square of the flowing
momentum.
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simple loops as well as triangles completely cancel
in all orders of perturbation theory (PT). This is the
consequence of maximal supersymmetry and it seems this
is maximal it can do. InD ¼ 4 this leads to the cancellation
of all the UV divergences since boxes are finite, however, in
higher dimensions the UV divergences remain non-
renormalizable.
In recent papers [8–10], we considered the leading

and subleading UV divergences of the on-shell scatte-
ring amplitudes for all three cases of maximally super-
symmetric SYM theories, D ¼ 6 (N ¼ 2 SUSY), D ¼ 8
(N ¼ 1 SUSY) and D ¼ 10 (N ¼ 1 SUSY). We obtained
the recursive relations that allow one to get the leading and
subleading divergences in all loops in a pure algebraic way.
Then we constructed the differential equations which are
the generalization of the renormalization group (RG)
equations for nonrenormalizable theories. Similar to the
renormalizable theories, these equations lead to summation
of the leading (and subleading) divergences in all loops. In
paper [11] we concentrated on solving these equations.
In this paper we summarize all previous results with

addition of the sub-subleading case and focus on the
scheme dependence of the counter terms. We consider
the transition from the minimal to nonminimal subtraction
scheme and show that it is equivalent to the redefinition of
the couplings played by dimensionless combinations g2s2

or g2t2. This redefinition, however, differs from a simple
multiplication due to the dependence on kinematic factors.
When integrated inside the diagrams this factors lead to the
more complicated procedure which manifests itself already
in the recurrence relations.

II. RECURRENCE RELATIONS FOR THE
LEADING, SUBLEADING, AND SUB-SUBLEADING

DIVERGENCES IN D= 8 N = 1 SYM THEORY

Any local quantum field theory has a remarkable
property that after performing the incomplete R-operation,
the so-called R0-operation, the remaining UV divergences
are always local. This property allows one to construct the
so called recurrence relations which relate the divergent
contributions in all orders of PT with the lower order ones.
In renormalizable theories this relations are known as pole
equations (within dimensional regularization) and are
governed by the renormalization group [12]. The same
is true though technically is more complicated in any local
theory as we have demonstrated in [9,10]. We remind here
some features of this procedure.
The incomplete R-operation (R0-operation) subtracts

only the subdivergences of a given graph, while the full
R operation is defined as

RG ¼ ð1 −KÞR0G; ð1Þ

where K is an operator that singles out the singular part of
the graph and KR0G- is the counter term corresponding to
the graph G. After applying the R0-operation to a given

graph in the nth order of PT one gets the following series of
terms

R0Gn ¼
AðnÞ

n ðμ2Þnϵ
ϵn

þAðnÞ
n−1ðμ2Þðn−1Þϵ

ϵn
þ � � � þAðnÞ

1 ðμ2Þϵ
ϵn

þ BðnÞ
n ðμ2Þnϵ
ϵn−1

þ BðnÞ
n−1ðμ2Þðn−1Þϵ

ϵn−1
þ � � � þ BðnÞ

1 ðμ2Þϵ
ϵn−1

þ CðnÞn ðμ2Þnϵ
ϵn−2

þ CðnÞn−1ðμ2Þðn−1Þϵ
ϵn−2

þ � � � þ CðnÞ1 ðμ2Þϵ
ϵn−2

þ lower pole terms; ð2Þ

where the terms like
AðnÞ

k ðμ2Þkϵ
ϵn or

BðnÞ
k ðμ2Þkϵ
ϵn−1

come from the
k-loop graph which survives after subtraction of the
(n − k)-loop counterterm. The resulting expression has to
be local, hence do not contain terms like logl μ2=ϵk, from
any l and k. This requirement leads to the sequence of

relations for AðnÞ
i ;BðnÞ

i and CðnÞi which can be solved in
favor of the lowest order terms

AðnÞ
n ¼ ð−1Þnþ1

AðnÞ
1

n
;

BðnÞ
n ¼ ð−1Þn

�
2

n
BðnÞ
2 þ n − 2

n
BðnÞ
1

�
;

CðnÞ
n ¼ ð−1Þnþ1

�
3

n
CðnÞ
3 þ 2ðn − 3Þ

n
CðnÞ
2

þ ðn − 2Þðn − 3Þ
2n

CðnÞ
1

�
: ð3Þ

It is useful also to write down the local expression for the
KR0 terms (counterterms) equal to

KR0Gn¼
Xn
k¼1

�
AðnÞ

k

ϵn
þBðnÞ

k

ϵn−1
þ CðnÞk

ϵn−2

�
≡AðnÞ0

n

ϵn
þBðnÞ0

n

ϵn−1
þCðnÞ

0
n

ϵn−2
:

ð4Þ
Then one has, respectively

AðnÞ0
n ¼ ð−1Þnþ1AðnÞ

n ¼ AðnÞ
1

n
;

BðnÞ0
n ¼

�
2

nðn − 1ÞB
ðnÞ
2 þ 2

n
BðnÞ
1

�
;

CðnÞ0
n ¼

�
2

ðn − 1Þðn − 2Þ
3

n
CðnÞ
3 þ 2

n − 1

3

n
CðnÞ
2 þ 3

n
CðnÞ
1

�
:

ð5Þ
This means that performing the R0-operation one can

take care only of the one-, two-, three-loop diagrams
surviving after contraction and get the desired leading
pole terms via Eq. (3) in the leading, subleading and
sub-subleading order, respectively. They can be calculated
in all loops pure algebraically.
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Remind how this procedure works in case of the ladder-
type diagrams shown in Fig. 2 [10]. Consider first the
leading order. Since the horizontal ladder-type diagrams in
the leading order depend only on s further on we simplify

the notation AðnÞ
n ¼ sn−1An and A

ðnÞ0
n ¼ sn−1A0

n. Calculating
now the one-loop diagrams shown in the first and third
rows of Fig. 2 and substituting them into Eq. (3) we obtain
the recurrence relation in the leading order

nAn ¼ −
2

4!
An−1 þ

2

5!

Xn−2
k¼1

AkAn−1−k; n ≥ 2; ð6Þ

where A1 ¼ 1=3!. Using this recurrence relation one can
calculate the leading divergence in any loop order starting
from the one-loop one pure algebraically.
In subleading order one has the terms linear in t. To

separate them we use the notation BðnÞ
n ¼ sn−1Bns−1 þ

sn−2tBtn and BðnÞ0
n ¼ sn−1B0

ns−1 þ sn−2tB0
tn. To get the

recurrence relation in subleading case one has to calculate
the two-loop diagrams shown in the second and the last
rows of Fig. 2. We start with the primed quantities since
they actually enter the recurrence relations

B0
tn ¼ −

2

nðn − 1ÞB
0
tn−2

10

5!5!
þ 2

n
B0
tn−1

2

5!
; ð7Þ

B0
sn ¼

2

nðn − 1Þ
�
−A0

n−2
2321

5!5!2
− B0

sn−2
18

4!5!
þ B0

tn−2
44

5!5!

−
Xn−3
k¼1

A0
kA

0
n−2−k

938

4!5!15
−
Xn−3
k¼1

A0
kB

0
sn−2−k

1

5!2
þ
Xn−3
k¼1

A0
kB

0
tn−2−k

442

5!5!12

−
Xn−kþl<n−2

k;l¼1

A0
kA

0
lA

0
n−2−k−l

8

5!5!

46

15
−

Xn−kþl<n−2

k;l¼1

A0
kA

0
lB

0
sn−2−k−l

12

5!5!

þ
Xn−kþl<n−2

k;l¼1

A0
kA

0
lB

0
tn−2−k−l

4

5!5!
þ

Xn−kþl<n−2

k;l¼1

B0
kA

0
lA

0
sn−2−k−l

2

5!5!

�

þ 2

n

�
A0
n−1

19

34!
þ B0

sn−1
2

4!
− B0

tn−1
4

5!
þ
Xn−2
k¼1

A0
kA

0
n−1−k

2

5!

46

15
þ
Xn−2
k¼1

A0
kB

0
sn−1−k

4

5!
−
Xn−2
k¼1

A0
kB

0
tn−1−k

2

5!

�
: ð8Þ

where B0
s1 ¼ B0

t1 ¼ 0, B0
s2 ¼ −5=3!=4!=12, B0

t2 ¼ −1=3!=4!=6. And similar for the unprimed ones. Recurrence relations
for the sub-subleading divergences are too lengthy to present them here.
Solution of the recurrence relations (6), (7), (8) are complicated. However, since we actually need the sum of the series we

perform the summation multiplying both sides of Eq. (10) by zn−1 and take the sum from 3 to infinity. After some algebraic
manipulation, introducing the notation ΣA ¼ P∞

n¼1 Anð−zÞn we finally transform the recurrence relations to differential
equations. In the leading order one has (hereafter z≡ g2s2=ϵ)

d
dz

ΣA ¼ −
1

3!
þ 2

4!
ΣA −

2

5!
Σ2
A: ð9Þ

A similar differential equation can be obtained for Σ0
sB ¼ P∞

2 znB0
sn and Σ0

tB ¼ P∞
2 znB0

tn,

d2Σ0
tBðzÞ
dz2

−
1

30

dΣ0
tBðzÞ
dz

þ Σ0
tBðzÞ
720

¼ −
1

432
; ð10Þ

FIG. 2. R0-operation for the horizontal ladder in D ¼ 8.
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d2Σ0
sBðzÞ
dz2

þ f1ðzÞ
dΣ0

sBðzÞ
dz

þ f2ðzÞΣ0
sBðzÞ ¼ f3ðzÞ; ð11Þ

with

f1ðzÞ ¼ −
1

6
þ ΣA

15
;

f2ðzÞ ¼
1

80
−

ΣA

120
þ Σ2

A

600
þ 1

15

dΣA

dz
;

f3ðzÞ ¼
2321

5!5!2
ΣA þ 11

1800
Σ0
tB −

469

5!90
Σ2
A

−
442

5!5!6
ΣAΣ0

tB þ 23

6750
Σ3
A þ 1

1200
Σ2
AΣ0

tB

−
19

36

dΣA

dz
−

1

15

dΣ0
tB

dz
þ 23

225

dΣ2
A

dz

þ 1

30

dðΣAΣ0
tBÞ

dz
−

3

32
:

Solutions to these equations are simple only for the
leading order (9). Indeed solution to Eq. (9) is [9]

ΣAðzÞ ¼ −
ffiffiffiffiffiffiffiffi
5=3

p 4 tanðz=ð8 ffiffiffiffiffi
15

p ÞÞ
1 − tanðz=ð8 ffiffiffiffiffi

15
p ÞÞ ffiffiffiffiffiffiffiffi

5=3
p : ð12Þ

It has infinite number of poles and no limit when z → ∞. In
subleading order there is no simple analytic solution,
however, qualitatively it behaves similar to (12) [10].

One can construct also similar recurrence relations in
general case including all diagrams of PT. In [9], we
constructed the full recurrence relation for the leading
divergences. It has been done by consistent application of
the R0-operation and integration over the remaining tri-
angle and bubble diagrams with the help of Feynman
parameters. Denoting by Snðs; tÞ and Tnðs; tÞ the sum of all
contributions in the nth order of PT in s and t channels,
respectively, we got the following recursive relations:

nSnðs; tÞ ¼ −2s2
Z

1

0

dx
Z

x

0

dyyð1 − xÞðSn−1ðs; t0Þ þ Tn−1ðs; t0ÞÞjt0¼txþuy

þ s4
Z

1

0

dxx2ð1 − xÞ2
Xn−2
k¼1

X2k−2
p¼0

1

p!ðpþ 2Þ!
dp

dt0p
ðSkðs; t0Þ þ Tkðs; t0ÞÞ

×
dp

dt0p
ðSn−1−kðs; t0Þ þ Tn−1−kðs; t0ÞÞjt0¼−sxðtsxð1 − xÞÞp; ð13Þ

where S1 ¼ 1
12
; T1 ¼ 1

12
, u ¼ −s − t.

As in the ladder case, this recurrence relation takes into account all the diagrams of a given order of PT and allows one to
sum all orders of PT. This can be achieved by multiplying both sides of Eq. (13) by ð−zÞn−1, where z ¼ g2

ϵ and summing up
from n ¼ 2 to infinity. Denoting the sum by Σðs; t; zÞ ¼ P∞

n¼1 Snðs; tÞð−zÞn, we finally get the following differential
equation

d
dz

Σðs; t; zÞ ¼ −
1

12
þ 2s2

Z
1

0

dx
Z

x

0

dyyð1 − xÞðΣðs; t0; zÞ þ Σðt0; s; zÞÞjt0¼txþuy

− s4
Z

1

0

dxx2ð1 − xÞ2
X∞
p¼0

1

p!ðpþ 2Þ!
�

dp

dt0p
ðΣðs; t0; zÞ þ Σðt0; s; zÞÞjt0¼−sx

�
2

ðtsxð1 − xÞÞp: ð14Þ

The same equations with the replacement s ↔ t are valid
for Σðt; s; zÞ.
As one can see, Eq. (14) is integro-differential and

cannot be treated analytically. Instead, we performed a

numerical study of this equation [11]. The result is shown
in Fig. 3. One can see that all the curves practically have the
same behaviour. It is clearly seen that the numerical curve
reproduces both poles and is close to the ladder

Numerical solution 0

Numerical solution 1

The ladder sequence

PT series: 15 terms

Pade approximation [7,6]

2 4 6 8 10 12
x

–2

–1

1

2

FIG. 3. Comparison of various approaches to solve Eq. (14).
The red and black lines are the numerical solutions described in
the previous section between before the first pole and between the
first and the second ones. The green one is the PT. The blue one is
the Pade approximation. And last one is yellow which represents
the Ladder analytical solution.
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approximation. This comparison justifies our conclusion
that the ladder approximation reproduces the correct
behavior of the function.
Our analysis shows that in the leading and subleading

orders summation of the UV divergences leads to the sum
which is a function with infinite number of poles for
any choice of kinematics. This function has no limit when
z → ∞ (ϵ → 0). This means that the UV finiteness is not
reached when the sum over all loops is taken into account.
This limit would correspond to removing the UV regu-
larization. One can see that summation of the whole infinite
series does not improve the situation. One can not just
remove the UV regularization and get a finite theory.

III. THE SCHEME DEPENDENCE

The problem with nonrenormalizable interactions is not
that the scattering amplitudes can not be made finite. After
all one can subtract all UV divergences in a minimal way.
The problem is that the structure of the counter terms does
not repeat the original Lagrangian and one gets new
structures with increasing power of momenta at each step
of perturbation theory. This means that subtracting the UV
divergence each time, one has to define the normalization
of a new operator, thus having a new arbitrary constant. The
number of these constants is infinite. However, as we have
found out, all the higher order divergences are related via
the generalized RG equations. This means that the above
mentioned arbitrariness of the counterterms, and hence of
the finite parts, is also restricted and one may hope to relate
them. In what follows we study this problem and consider
the arbitrariness in the counterterms that appears when
going from the minimal to nonminimal subtraction scheme.

A. The subleading case

All the calculations presented so far were based on the
minimal subtraction scheme. Obviously, the leading diver-
gences are scheme independent but the subleading ones
depend on a scheme. However, this dependence in all
orders of PT is defined by a single arbitrary constant.
Indeed, all the recurrence relations obtained above are
scheme independent. The only dependence on the sub-
traction scheme is contained in subtraction of a single one-
loop box-type diagram. If one chooses the one-loop
counterterm in the form

A0
1 þ B0

s1 ¼
1

6ϵ
ð1þ c1ϵÞ ð15Þ

(c1 ¼ 0 corresponds to the minimal subtraction scheme),
then using the recurrence relations for the subleading
divergences, one gets the following additional term to
the sum of the counterterms in all orders of PT (remind the
notation z≡ g2s2=ϵ)

ΔΣ0
sB ¼ c1z

dΣ0
A

dz
: ð16Þ

Thus, the arbitrariness in the definition of the counterterms
with an infinite number of derivatives is reduced in the
leading order to the choice of the single parameter c1. It is
equivalent to renormalization of the coupling constant in
the following form:

z → zð1þ c1ϵÞ: ð17Þ

This is exactly what happens with renormalizable inter-
actions except that the coupling g2 here has dimension −4
and one has to choose the dimensionless combination g2s2.
Obviously, keeping both s and t, we also have g2t2. Hence,
one can not just say that the change of the subtraction
scheme is equivalent to the redefinition of a single coupling
g2, instead there are two of them and this redefinition
depends on kinematics.

B. The sub-subleading case

Consider now what happens in the sub-subleading order.
In this case, the dependence on the subtraction scheme is
contained also in the two-loop box-type diagram.
Following the subleading case, we choose the counterterm
in the form

A0
2 þ B0

2 ¼
s

3!4!ϵ2

�
1 −

5

12
ϵþ 2c1ϵþ c2ϵ2

�
; ð18Þ

where c1 comes from the one-loop counterterm and c2 is
the new subtraction constant. Using the recurrence relation
for the sub-subleading divergences, one gets the following
additional term proportional to c2 in all orders of PT

ΔΣ0
sC ¼ c2z2

dΣ0
A

dz
: ð19Þ

This corresponds to the shift of the coupling constant (we
put here t ¼ 0 for simplicity)

z → zð1þ c1ϵÞ þ z2c2ϵ2: ð20Þ

This simple pattern obviously has a one-loop origin since it
comes from the leading divergences and they are defined by
the one-loop box diagram.
The situation with dependence on c1 in the sub-sub-

leading order is more complicated. There are two contri-
butions here: the linear and quadratic. The quadratic
dependence obviously appears from the substitution of
expression (17) into the minimal scheme counter term Σ0

A,
which gives the second derivative of Σ0

A. However, this is
not the only contribution. The redefinition of the coupling
in fact contains an extra part compared to (20) which is
proportional to c21
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z → zð1þ c1ϵÞ þ z2ðc2 þ c21=4!Þϵ2: ð21Þ

It gives the first derivative of Σ0
A. All together the full

quadratic dependence has the form

ΔΣ0
sC ¼ −c21

z
4!

�
dΣ0

A

dz
− 12

d2Σ0
A

dz2

�
: ð22Þ

Using the recurrence relations in the sub-subleading order,
we have checked that this result is valid in all orders of PT.
This dependence on c21 seems to have a general nature

valid also for the cn1 contributions in the next orders. To
check it, we calculated the first terms proportional to c31
using theR0-operation in 5-, 6- and 7-loop ladder type box
diagrams. The result is

ΔR0
5boxes ¼

s4

777600ϵ2
c31; ð23Þ

ΔR0
6boxes ¼

s5

4665600ϵ3
c31; ð24Þ

ΔR0
7boxes ¼

11s6

447897600ϵ4
c31: ð25Þ

And though we do not have the all loop recurrence relation
in this case, the equations written above suggest the
following general expression:

ΔΣ0
sC ¼ c31

z
6!

�
dΣ0

A

dz
− 30

d2Σ0
A

dz2
þ 120

d3Σ0
A

dz3

�
: ð26Þ

We checked also the c41 term

ΔR0
7boxes ¼

s6

13996800ϵ3
c41; ð27Þ

ΔR0
8boxes ¼

s7

671846400ϵ4
c41; ð28Þ

and conject a similar expression

ΔΣ0
sC ¼ −c41

z
4!6!

×

�
dΣ0

A

dz
− 78

d2Σ0
A

dz2
þ 720

d3Σ0
A

dz3
− 1440

d4Σ0
A

dz4

�
:

ð29Þ

The situation with the linear term is not that straightfor-
ward. It is not given by the leading term only but involves
also the subleading one. And since the subleading terms
depend not only on s but also on t, one cannot ignore the
t-dependence anymore. It’s clearly seen in the third order of
PT. Namely, if we consider the R0-operation of the 3-loop
box diagram in the minimal and nonminimal schemes and

calculate the arbitrariness ΔΣ0
sC, the latter is independent of

the t contribution. The reason is that while the two loop box
contains the t contribution in the subleading order, the
arbitrariness is contained only in the s term. At the same
time, when one evaluates the sub-subleading divergence in
the 3-loop box diagram using the R0-operation, one has a
nonzero contribution from both the s and t terms in the last
diagram in Fig. 4. The two expressions are obviously
different

ΔΣ0
sCð3-loopÞ ¼ −

719c1s2

1036800ϵ
; ð30Þ

whereas Σ0
sB in 3 loops has the following form:

Σ0
sBð3-loopÞ ¼ −

71s2

345600ϵ2
: ð31Þ

To take care of this missing t contribution, one has to
consider the general case when both the s and t depend-
ences of the amplitude are left. We, however, suggest
proceeding in a different way. We subtract the unmatched t
contribution from Σ0

sB and compare it with ΔΣ0
sC. We call it

Σ0trunc
sB . Introducing the initial data bs0½2� ¼ ð2�5sc1Þ=1728

into the recurrence relation at 2 loops and excluding the
contribution of the t term from Σ0

sB, we found out that in the
third order

Σ0trunc
sB ð3-loopÞ ¼ −

719s2

3110400ϵ2
: ð32Þ

Taking the derivative with respect to z, one reproduces the
desired result

ΔΣ0
sCð3-loopÞ ¼ c1z

dΣ0trunc
sB

dz
ð3-loopÞ: ð33Þ

The situation repeats itself in the fourth order of PT
being even more tricky. In this case, the contribution
of the last diagram in Fig. 5 to the sub-subleading
divergence ∼c1 contains the above mentioned t term part.
Extracting this part, we get the following sub-subleading
divergence ∼c1:

FIG. 4. R0-operation for the 3-loop box diagram.

FIG. 5. R0-operation for the 4-loop box diagram.
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ΔΣ0trunc
sC ð4-loopÞ ¼ −

2471c1s3

37324800ϵ2
: ð34Þ

At the same time, the subleading term Σ0
sB also has the t

term contribution. Excluding this term, we get the truncated
expression for Σ0

sB in 4-loops

Σ0trunc
sB ð4-loopÞ ¼ −

2471s3

149299200ϵ3
: ð35Þ

One can see that they coincide and are related by

ΔΣ0trunc
sC ð4-loopÞ ¼ c1z

dΣ0trunc
sB ð4-loopÞ

dz
: ð36Þ

These formulas show us the way how the one-loop
constant c1 enters the full answer. It comes from the
redefinition of the coupling in a straightforward way

z → zð1þ c1ϵÞ þ z2ðc2 − c21=4!Þϵ2 þ z3c31=6!ϵ
3

− z4c41=4!6!ϵ
4 þ � � � : ð37Þ

Note that while expansion of Σ0
A starts with the first power

of z, the extra terms like (22) start with z2 and (29) with z3,
etc. This means that the lowest terms must cancel. This
happens when the coefficients of Eqs. (22) and (29) are
chosen in a proper way. In fact one can just calculate these
coefficients from the requirement of cancelation of the
lowest terms. This means that the series (37) is actually
uniquely fixed.

IV. CONCLUSION

Our main concern here was the understanding of the
structure of UV divergences in supersymmetric gauge
theory with maximal supersymmetry. The example of D ¼
8 N ¼ 1 SYM theory is instructive and contains all the
main features of a class of maximally supersymmetric YM
theories. We restricted ourselves to the on-shell scattering
amplitudes since after all it is the S-matrix that we want to
make finite.
Our main results can be formulated as follows:
(1) The on-shell scattering amplitudes contain UV

divergences that start from one loop and do not

cancel (except for the all loop cancellation of
bubbles and triangles).

(2) These divergences possess an increasing powers of
momenta (derivatives) when increasing the order of
PT. For the four-point scattering amplitude this
manifests itself as increasing power of the Mandel-
stam variables s or t. This means that the theory is
not renormalizable by power counting.

(3) Nevertheless, all the higher loop divergences are
related to the lower loop ones via explicit pole
equations which are the generalization of the RG
equations to the case of nonrenormalizable theories.
The leading divergences are governed by the
one-loop counter term, the subleading ones—by
the two-loop counterterm, etc. This is happening
exactly like in the well-known case of renormaliz-
able interactions.

(4) The summation of the leading and subleading
divergences can be performed by solving the gen-
eralized RG equations. These solutions obey the
characteristic property that they possess an infinite
number of poles as functions of z ¼ g2s2=ϵ. This
means that they do not have limit when z → ∞
(ϵ → 0) which would correspond to the finite answer
when removing the regularization, i.e., the all loop
summation of the leading divergences do not lead to
the finite theory.

(5) The trouble with nonrenormlizable interactions is
not that they cannot be made finite, but an infinite
arbitrariness of the counterterms and, hence, of the
finite parts. We have demonstrated how this arbi-
trariness may be reduced to the redefinition of the set
of dimensionless couplings g2s2 (and g2t2) which are
momentum dependent. This is the difference from
renormalizable case where one has just one coupling
g2. We have not yet find out how to treat these
momentum dependent couplings so that to make
sense of nonrenormalizable theory.
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