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We prove a no-go theorem for the construction of a Galilean boost invariant and z ≠ 2 anisotropic scale
invariant field theory with a finite dimensional basis of fields. Two point correlators in such theories, we
show, grow unboundedly with spatial separation. Correlators of theories with an infinite dimensional basis
of fields, for example, labeled by a continuous parameter, do not necessarily exhibit this bad behavior.
Hence, such theories behave effectively as if in one extra dimension. Embedding the symmetry algebra into
the conformal algebra of one higher dimension also reveals the existence of an internal continuous
parameter. Consideration of isometries shows that the nonrelativistic holographic picture assumes a
canonical form, where the bulk gravitational theory lives in a space-time with one extra dimension. This can
be contrasted with the original proposal by Balasubramanian and McGreevy, and by Son, where the metric
of a (dþ 2)-dimensional space-time is proposed to be dual of a d-dimensional field theory. We provide
explicit examples of theories living at fixed point with anisotropic scaling exponent z ¼ 2l

lþ1
, l ∈ Z.
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I. INTRODUCTION

Gravity duals of nonrelativistic field theories have been
proposed in [1,2]. It has been observed inRef. [1] that one can
consistently define an algebra with Galilean boost invariance
and arbitrary anisotropic scaling exponent z.While themetric
having isometry of this generalized Schrödinger group has
been used with the holographic dictionary to construct
correlators of a putative field theory [3–9], there is no explicit
field theoretic realization of such a symmetry for z ≠ 2.1 One
surprising feature, noted as a “strange aspect” in Ref. [1], is
that,unlike in thecanonicalAdS=CFTcorrespondence,where
theconformal field theory (CFT) ind dimensions is dual to the
gravity in (dþ 1) dimensions, in the nonrelativistic case the
metric is of a space-timewith two additional dimensions. The
(dþ 2)-dimensional metric, having isometries of the
d-dimensional generalized Schrödinger group, is given by
[1,2]

ds2 ¼ L2

�
−
dt2

r2z
þ 2dξdtþ dx2

r2
þ dr2

r2

�
; ð1Þ

where ξ is the extra dimension having no analogous
appearance in the relativistic AdS-CFT correspondence.
The metric is invariant under the required anisotropic scaling
symmetry

xi → λxi; t → λzt; r → λr; ξ → λ2−zξ; ð2Þ

and under Galilean boosts

xi → xi þ vit; ξ → ξ −
1

2
ð2vixi þ v2tÞ: ð3Þ

For z ¼ 2, an explicit construction of Galilean boost invariant
field theory in ðd − 1Þ þ 1 dimensions has been known. Thus
a question arises naturally as towhether one can get rid of the
extra ξ direction and reduce the correspondence to a canonical
correspondence between a d-dimensional quantum field
theory on flat space and a (dþ 1)-dimensional gravitational
theory. This was answered positively in Ref. [10]. But for
z ≠ 2 we do not know of any explicit d-dimensional field
theoretic example having the generalized Schrödinger sym-
metry, nor do we know an example of a (dþ 1)-dimensional
metric having the same set of isometries. Thus the strange
aspect of d-(dþ 2) correspondence appears to persist
for z ≠ 2.
In this paper, we initiate a field theoretic study of z ≠ 2

theories.2 We prove a no-go theorem for the construction
of a space-time translation invariant, rotation invariant,
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1We note that just matching the isometries is necessary but not
sufficient for the existence of a holographic description. Here we
just seek a group invariant field theory, which may or may not
have a gravity dual.

2Theories with z ¼ 2 have been studied from a field theoretic
point of view in many works; see, e.g., Refs. [11–14]. The z ¼ ∞
case without particle number symmetry has been explored in
Refs. [15,16].
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Galilean boost invariant,3 and z ≠ 2 anisotropic scale
invariant field theory with a finite number4 of fields in d
dimensions. Two point correlators in such theories, we
show, grow unboundedly with spatial separation. By
contrast, correlators of theories with an infinite number
of fields, e.g., labeled by a continuous parameter, do not
necessarily exhibit this bad behavior. Hence, such theories
behave effectively as a (dþ 1)-dimensional theory. In the
context of holography, this explains the strange aspect; the
z ≠ 2 theories indeed provide us with the possibility of a
canonical realization of holography; i.e., a (dþ 1)-
dimensional theory is dual to a (dþ 2)-dimensional geom-
etry. The z ¼ 2 case is special in that respect since it is
possible to obtain a d-dimensional theory with a finite
number of fields such that the symmetries on the field
theory side match the isometries of a (dþ 2)-dimensional
geometry. The special role of z ¼ 2 has been emphasized in
the context of the holographic dictionary in Refs. [8,9]. For
z ¼ 2, the dual space-time can be made into a (dþ 1)-
dimensional one via Kaluza-Klein reduction of the (dþ 2)-
dimensional metric [10]. This is possible since, for z ¼ 2,
the extra direction ξ does not scale by the transformations
given in Eq. (2). The scaling of ξ given in Eq. (2) can be
verified on the field theory side of the duality by embedding
the d-dimensional generalized Schrödinger group into the
conformal group of one higher dimension, i.e., SOðd; 2Þ.
By contrast, since for z ≠ 2 the ξ direction does scales, any
attempt to compactify the extra direction ξ is at odds with
the continuous scaling symmetry. The no-go theorem that
we have proved is consistent with the argument in
Ref. [17], based on the consistency of the thermodynamic
equation of state, that a perfect fluid with z ≠ 2 Schrödinger
symmetry and discrete spectrum for the energy and particle
number,H andN, cannot exist. In Sec. IV, we present some
fixed point theories with z ¼ 2l

lþ1
, with l ∈ Z.

Before delving into a technical proof, we present a
physical argument for our main result.5 Consider a theory
invariant under z ¼ 2 Schrödinger symmetry, where, under
a boost [1],

ϕðx; tÞ ↦ exp

�
−{n

�
1

2
v2tþ v · x

��
ϕðx − vt; tÞ; ð4Þ

where ½N;ϕ� ¼ nϕ. In turn, the state of a particle with
momentum k ¼ 0, i.e., ϕ†

k¼0j0i, transforms under the boost
by v as follows:

jvi≡ e−{K·vϕ†
k¼0j0i

¼
Z

dx exp

�
{n

�
1

2
v2tþ v · x

��
ϕ†ðx − vt; tj0i

¼ exp

�
{
nv2

2
t

�
ϕ†
k¼nvj0i: ð5Þ

This has the interpretation of having a boosted particle
moving with momentum nv and kinetic energy − 1

2
nv2. A

positive value of n results in decreasing energy with
increasing boost. Therefore, negative semidefiniteness of
n is required for stability. In case of more than a single
species of particle, the matrix N appearing in ½N;Φ†� ¼
−NΦ† has to be negative semidefinite. As we will see, from
the symmetry algebra it follows that for a theory with a
finite number of fields with z ≠ 2 the trace of N must
vanish, spoiling the negative semidefiniteness and the
stability in the sense discussed above; by contrast, for
z ¼ 2 there is no constraint on the trace of N. The above is
merely a heuristic argument, giving intuition behind the
technical result presented below.

II. GENERALIZED SCHRÖDINGER ALGEBRA
AND ITS REPRESENTATION

The Galilean algebra consists of generators correspond-
ing to spatial translations, Pi, time translation, H, Galilean
boosts, Ki, rotations, Mij, along with a particle number
generator, N, such that they satisfy the following commu-
tation relations [11–14]:

½Mij; N� ¼ ½Pi; N� ¼ ½Ki; N� ¼ ½H;N� ¼ 0;

½Mij; Pk� ¼ {ðδikPj − δjkPiÞ;
½Mij; Kk� ¼ {ðδikKj − δjkKiÞ;
½Mij;Mkl� ¼ {ðδikMjl − δjkMil þ δilMkj − δjlMkiÞ;

½Pi; Pj� ¼ ½Ki; Kj� ¼ 0; ½Ki; Pj� ¼ {δijN;

½H;N� ¼ ½H;Pi� ¼ ½H;Mij� ¼ 0;

½H;Ki� ¼ −{Pi: ð6Þ

The algebra can be enhanced by appending a dilatation
generatorD,6 which scales space and time separately, in the
following way:

xi → λxi; t → λzt: ð7Þ

The commutators of D with the rest of the generators are
given by

3Here by Galilean boost invariance, we mean invariance under
both the boost and Uð1Þ particle number symmetries. The Uð1Þ
naturally arises as a commutator of generators of boosts and
translations.

4More precisely, a finite-dimensional basis of operators as
defined below Eq. (12).

5We thank John McGreevy for discussions leading to this
argument.

6This enhanced algebra corresponds to that of deformed ISIM(2)
[18], with the following identification: H ↦ Pþ, N ↦ P−,
Ki ↦ Mþi, and D ↦ − 1

b N where bðz − 1Þ ¼ 1.
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½D;Pi� ¼ {Pi; ½D;Ki� ¼ ð1− zÞ{Ki; ½D;H� ¼ z{H;

½D;N� ¼ {ð2− zÞN; ½Mij;D� ¼ 0: ð8Þ

The physical interpretation of N is subtle. For z ¼ 2 it is
usually thought of as a particle number symmetry gen-
erator. The subtlety in the context of holography has been
explored in [10]. For the rest of this work, we take an
agnostic viewpoint and treat N as a generator of symmetry
without specifying its physical origin. This will enable us to
explore all the possibilities, as allowed by symmetries. The
case z ¼ 2 is very special in that one can append an
additional generator C of special conformal transforma-
tions. Thus one can have the full Schrödinger algebra
for z ¼ 2 [13,14,19–23]. When z ≠ 2, the generator cor-
responding to special conformal transformation is not
available.
In what follows, we will assume (unless otherwise

specified) that the field theory lives in d ¼ ðd − 1Þ þ 1
dimensions and that the vacuum is invariant under Galilean
boosts, i.e., Kij0i ¼ h0jKi ¼ 0.
The field representation is built by defining local

operators Φ such that H and P act canonically,

½H;Φ� ¼ −{∂tΦ; ½Pi;Φ� ¼ {∂iΦ: ð9Þ

We consider representations of the little group, generated
byD,Ki,N, andMij, that keeps the origin, ð0; 0Þ, invariant.
The fields Φ have definite transformation properties under
D, Ki, and N,7

½D;Φðx ¼ 0; t ¼ 0Þ� ¼ {DΦðx ¼ 0; t ¼ 0Þ; ð10Þ

½N;Φðx ¼ 0; t ¼ 0Þ� ¼ NΦðx ¼ 0; t ¼ 0Þ; ð11Þ

½Ki;Φðx ¼ 0; t ¼ 0Þ� ¼ KiΦðx ¼ 0; t ¼ 0Þ; ð12Þ

where D, N , and Ki are linear operators. We refer
to the smallest nontrivial irreducible representation
in Eqs. (10)–(12) as “the basis of operators.”8 For
Lagrangian theories the basis of operators corresponds to
the elementary fields from which the Lagrangian is con-
structed. Henceforth, we restrict our attention to the basis of
operators, and we continue to denote byD,N , and Ki their
linear representations. In the finite dimensional case, we
denote these by finite dimensional matrices Δ, N, and Ki,
respectively.

Consider Gαβ ≡ h0jΦαðx; tÞΦβð0; 0Þj0i. Using Eqs. (9),
the commutator in (12) translates, in the finite dimensional
case, to

½Ki;Φ� ¼ ð−{t∂iIþ xiNþ KiÞΦ; ð13Þ

where xi ¼ xi. Galilean boost invariance of the vacuum,
Kij0i ¼ h0jKi ¼ 0, then gives

h0j½Ki;Φαðx; tÞΦβð0; 0Þ�j0i ¼ 0

⇒ ð−{t∂iδασ þ xiNασ þKiασÞGσβ þ KiβσGασ ¼ 0:

Using the fact that ½N;Ki� ¼ 0, the solution to the above
differential equation is given by

Gαβ ¼
�
e−{

jxj2
2t Ne−{

x·K
t CðtÞe−{x·KTt

�
αβ
;

where CðtÞ is an as yet undetermined matrix function of t.
The norm is defined as jxj2 ≡P

iðxiÞ2 while the dot
product is defined as x · K ¼ P

ixiKi. Similarly, one can
consider G0

αβ ≡ h0jΦαðx; tÞΦ†
βð0; 0Þj0i which is given by

G0
αβ ¼

�
e−{

jxj2
2t Ne−{

x·K
t C0ðtÞe{x·K†t

�
αβ
;

where C0ðtÞ is as yet undetermined.
Since ½D;N� ¼ {ð2 − zÞN, we have

½Δ;N� ¼ ð2 − zÞN;

and this leads to TrðNÞ ¼ 0; similarly, for z ≠ 1 we have
TrðKiÞ ¼ 0. Now using Jordan-Chevalley decomposition,
we can write

N ¼ N1 þ N2; ½N1;N2� ¼ 0;

K ¼ K1 þ K2; ½K1;K2� ¼ 0;

where K1 and N1 are diagonalizable matrices while N2 and
K2 are nilpotent matrices (here and below we suppress the
vector index in K and K1;2 to avoid clutter). Let us define
diagonal matrices DN1

and DK1
such that

PNDN1
P−1
N ¼ N1; PKDK1

P−1
K ¼ K1; ð14Þ

where PN and PK diagonalize N1 and K1, respectively. The
zero trace condition leads to TrðK1Þ ¼ TrðDK1

Þ ¼ 0 and
TrðN1Þ ¼ TrðDN1

Þ ¼ 0, which in turn implies that either
all the diagonal entries of DN1

(or DK1
) are zero, in which

case N (or K) is a nilpotent matrix, or there has to be both
positive and negative entries. We can then recast the
correlators as follows:

7The fields Φ also have definite transformation properties
under Mij, but this will not play a role in the discussion below.

8For example, the free Schrödinger field theory is invariant
under z ¼ 2 Schrödinger algebra and the single field ϕ
forms a one-dimensional irreducible representation of the little
group, i.e., ½D;ϕð0; 0Þ� ¼ { d

2
ϕð0; 0Þ; ½N;ϕð0; 0Þ� ¼ Nϕð0; 0Þ,

and ½Ki;ϕð0; 0Þ� ¼ 0.
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Gαβ ¼
�
e
jxj2
2{tN1e

jxj2
2{tN2e

x·K1
{t e

x·K2
{t CðtÞe

x·KT
1

{t e
x·KT

1
{t

�
αβ
; ð15Þ

G0
αβ ¼

�
e
jxj2
2{tN1e

jxj2
2{tN2e

x·K1
{t e

x·K2
{t C0ðtÞe−

x·K†
1

{t e−
x·K†

2
{t

�
αβ
: ð16Þ

It follows that when N1 ≠ 0, e
jxj2
2{tN1 ¼ PNe

jxj2
2{t DN1P−1

N has
exponential growth for imaginary time irrespective of how
we do the analytical continuation of the correlator to
imaginary time. This growth cannot be overcome by any
of the other terms as nilpotency of N2 guarantees that

e−{
jxj2
2t N2 ¼

Xl¼M−1

l¼0

�
−{

jxj2
2t

�
l

Nl
2 ; ð17Þ

where NM
2 ¼ 0 for some integerM. Also, terms such as e{

x·K
t

cannot suppress the exponential growth arising from N1.

If instead N1 ¼ 0, then e−{
jxj2
2t N2 gives polynomial growth

with x. We employ the same technique to establish the
effect of e{

x·K
t . If K1 ≠ 0, there will be exponential growth

for some entries, while terms involving K2 are poly-
nomial in nature, giving exponential growth as a whole.
Alternatively, if K1 ¼ 0, then K is nilpotent and we have
polynomial growth.
We note that only when z ¼ 2 or the representation is

infinite, we cannot implement the TrðNÞ ¼ 0 condition and
the above argument fails. This is expected for z ¼ 2 since
the two point correlator is well behaved in this case, which
corresponds to the Schrödinger field theory [19–22]. We
conclude that in the finite dimensional case for z ≠ 2 a
quantum field theory with the symmetry of the algebra in
Eqs. (6) and (8) is ill-behaved. For example, since corre-
lators grow with spatial separation cluster decomposition
fails. The same conclusion can be drawn via an independent
argument in the case that Δ is diagonal; see Appendix.
Therefore, for z ≠ 2 we are left to consider infinite

dimensional representations. In this case we can display
explicitly an example that does not obviously lead to
problematic quantum field theories. To achieve this, we
introduce fields ψ labeled by a new noncompact variable ξ,
such that

½N;ψ � ¼ {∂ξψ ; ð18Þ

½D;ψ � ¼ {ðzt∂t þ xi∂i þ ð2 − zÞξ∂ξ þ ΔψÞψ ; ð19Þ

½Ki;ψ � ¼ ð−{t∂i þ {xi∂ξÞψ : ð20Þ

Thus, D ¼ ð2 − zÞξ∂ξ þ Δψ , N ¼ {∂ξ, and Ki ¼ 0. Note
that ξ must be a noncompact variable, or else scaling
symmetry is broken. To be concrete,

½ξ; ∂ξ� ¼ −1; ½ξ∂ξ; ∂ξ� ¼ −∂ξ ð21Þ

are well defined only when ξ is a noncompact variable. If
we take a Fourier transform with respect to ξ, it becomes
obvious that N is diagonal while D is not diagonal. This,
however, is immaterial, since in terms of a new variable
ξ0 ¼ ln jξj, N is nondiagonal and D is diagonal.
We say ψ is a primary operator if ½Ki;ψðx ¼ 0;

t ¼ 0; ξÞ� ¼ 0, that is, Ki ¼ 0; this was assumed in the
commutation relations (20). Once again, one can invoke the
Galilean boost invariance of the vacuum to obtain the form
of the two point correlator of primaries ψ and ϕ. This is
most easily computed in terms of the Fourier transformed
operators, e.g., ψðx; t; m1Þ ¼

R
dξψðx; t; ξÞe{mξ; we obtain

h0jψðx; t; m1Þϕð0; 0; m2Þj0i

¼
8<
:

hðtÞδðm1 þm2Þfðt2−zmz
1Þ exp

�
{m1jxj2

2t

�
; z ≠ 0

hðtÞδðm1 þm2Þfðm1Þ exp
�
{m1jxj2

2t

�
; z ¼ 0

;

ð22Þ

where hðtÞ is an as yet undetermined function of t.
Evidently, Eq. (22) is consistent with the correlator of
the z ¼ 2 theory [13,14]. For z ≠ 2, rewriting in terms of ξ,
we obtain

h0jψðx; t; ξÞϕð0; 0; 0Þj0i

∝

8<
:

hðtÞt1−2=zg̃
�
jxj2−2tξ
2t2=z

�
; z ≠ 0

h̃ðtÞf̃
�
jxj2
2t − ξ

�
¼ h̃ðtÞ

�
jxj2
2t − ξ

�
−Δ=2

; z ¼ 0
;

ð23Þ

where g̃ðsÞ ¼ R
dye−{ysgðyÞ, gðyÞ ¼ fðyzÞ, and yz ¼

mzt2−z. When z ¼ 0, we use the fact that f̃ has to scale
covariantly under z ¼ 0 scaling, where f̃ is the Fourier
transform of f; here hðtÞ must be a power law of t with t−α

such that the scaling dimensions of ψ and ϕ add up to
αzþ ð2 − zÞ for z ≠ 0 and Δ for z ¼ 0 with h̃ðtÞ being any
function of t.

III. NULL REDUCTION AND EMBEDDING
INTO CONFORMAL GROUP SO(d; 2)

A standard trick to obtain a d-dimensional z ¼ 2
Schrödinger invariant theory is to start with a conformal
field theory in dþ 1 dimensions and perform a null cone
reduction [24–29]. This is possible because the Schrödinger
group, SchðdÞ, can be embedded into SOðd; 2Þ. Next we
show that the generalized Schrödinger group can also be
embedded into SOðd; 2Þ. A similar embedding has been
considered in [18] in the context of the Lie algebra of the
deformed ISIM(2) group.
If the generators of SOðd; 2Þ are given by PðrÞ

μ , MðrÞ
μν ,

DðrÞ, and CðrÞ
μ where PðrÞ

μ are translation generators, MðrÞ
μν
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are Lorentz generators, DðrÞ is the relativistic scaling

generator, and CðrÞ
μ are special conformal generators [here

the superscript “(r)” denotes the relativistic generators],
then the following generators generate the generalized
Schrödinger algebra:

Ki ¼ MðrÞ
i− ; H ¼ PðrÞ

þ ; N ¼ PðrÞ
− ; ð24Þ

Mij ¼ MðrÞ
ij ; Pi ¼ PðrÞ

i ; ð25Þ

D ¼ DðrÞ þ ð1 − zÞMðrÞ
þ−: ð26Þ

It is straightforward to verify that D scales x− → λ2−zx−.
Only for z ¼ 2 does x− not scale and one is able to do a null
cone reduction via compactification in the x− direction,
yielding a discrete spectra for N. On the other hand, for
z ≠ 2, even via null cone reduction one cannot truly get rid
of the x− direction since any compactification in the x−

direction would spoil the scaling symmetry. As a result, for
z ≠ 2 the null reduction always leaves a continuous spectra
for the generator N.

IV. EXPLICIT (d + 1)-DIMENSIONAL EXAMPLES

A. z= 0

Here we provide an explicit example of a generalized
Schrödinger invariant theory in ðd − 1Þ þ 1 dimensions
with z ¼ 0 and verify that the two point correlator indeed
conforms to the general form given in Eq. (23).
We consider a Lagrangian model given by

L ¼ ϕ†ð2∂t∂ξ −∇2 þ 2{∂ξÞϕ; ð27Þ

and the two point correlator is given by9

hϕϕ†i ∝
�
1

t

�d−1
2

exp ½−{t�
�jxj2

2t
− ξ

�−d−1
2

: ð28Þ

In dþ 1 dimensions, d−1
2

¼ ðdþ1Þ−2
2

is precisely the dimen-
sion of a free relativistic scalar. This is because the
generalized Schrödinger algebra can be embedded into
the conformal group of one higher dimension, as men-
tioned in Sec. III.
For z ¼ 0, t does not scale. One may contemplate

perturbing the Gaussian fixed point by marginal
operators constructed out of powers of ∂t, for example,
ϕ† exp ð{∂tÞ∂ξϕ. However, Galilean boost invariance
requires that ∂t appears in the combination with other
derivatives shown in Eq. (27). By contrast, in the models
presented in Refs. [15,16], whereN ¼ 0 and the Lagrangian

is invariant under x → x and t → λt, arbitrary powers of
spatial derivatives are allowed.

B. z = 2l
l+ 1, l ∈ Z, l ≥ 1

These series of examples are given by the following
Lagrangian:

Ll ¼ ϕ†ð2∂t∂ξ −∇2 þ 2gð{∂ξÞlþ1Þϕ ð29Þ

The two point correlators, after partial Fourier transforma-
tion, are given by

Gðx; t; mÞ ∝ t−
d−1
2 m

d−3
2 exp

�
{

�
mjxj2
2t

− gmlt

��
; ð30Þ

where z ¼ 2l
lþ1

. One can Fourier transform10 to obtain the
correlator in position space-time only depending on the
analytical ease to do so. For d ¼ 3, l ¼ 2, i.e., z ¼ 4

3
, we

have

Gðx; t; ξÞ ∝ t−1
1ffiffiffiffi
gt

p exp

�
{ðx2 − 2ξtÞ2

16gt3

�
; ð32Þ

which is consistent with Eq. (23) for z ≠ 0. After perform-
ing a Euclidean rotation, t → −iτ, ξ → iξ, one finds good
behavior of this correlator at large spatial separation (as
long as g < 0).
One can add classically marginal interactions to

the model in (29). For example, one may add
ðϕϕ†Þn−1ϕð{∂ξÞkϕ† with k ¼ ðlþ 1Þ½ðd − 1Þβ þ d − 2�
and n ¼ 2β þ 3, where β is a non-negative integer.
Furthermore, one can have supersymmetric generalizations
of z ≠ 2 theories, much as the z ¼ 2 case presented in [31]
where supersymmetry is an internal symmetry exchanging
fermionic and bosonic fields.

9The correlator in (28) follows from (27) only after restricting
the field ϕ to positive ξ-Fourier modes; see the footnote below
Eq. (30) for more details.

10Care is needed regarding the allowed values of m. The
correlator in (30) is most readily obtained by Fourier transform of

Gðk; t; mÞ ∝ exp

�
−{t

�jkj2
2m

þ gml

��
: ð31Þ

For even, positive l, the integral over k is well defined only for
Imðt=mÞ < 0, and the result can be analytically continued to all
values of t=m. The integral overm requires ImðtÞ < 0 (for g > 0),
and again one analytically continues to all values of t. For odd
(and positive) l, the Fourier transform with respect to m
is ill-behaved for any value of t, because there is no deformation
of the contour of integration that can render the integral of
exp ½{ðmjxj2

2t − gmltÞ� overm finite. Both for l odd and for l ¼ 0, a
sensible way to make this integral well defined is to restrict it to
m > 0. This is, in fact, how we obtained the correlator for the
z ¼ l ¼ 0 in Eq. (28). Strictly speaking, these are not Lagrangian
theories; these systems are close analogues of the chiral boson,
where the Fourier modes are restricted [30].
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V. CONCLUSION

The most natural way to realize the Schrödinger algebra
and its z ≠ 2 avatar in a gravity dual of a d-dimensional
nonrelativistic field theory with Galilean boost and scale
invariance with dynamical exponent z is via isometries of
the bulk metric. As it turns out, the dual metric is of a
(dþ 2)-dimensional space-time [1,2]. By contrast, for the
canonical notion of gauge-gravity duality the bulk gravi-
tational theory lives in one extra dimensional space-time.
Above we have expounded the presence of the two extra
dimensions in the duality. We showed that on the field
theory side of the duality, for z ≠ 2, one needs to have an
internal continuous parameter, effectively making the field
theory (dþ 1)-dimensional. Any attempt to construct a z ≠
2 nonrelativistic field theory with Galilean boost and
scale invariance with a finite number of fields is bound
to run into trouble, since correlators will grow with
separation and will fail to exhibit cluster decomposition.
This result follows solely from constraints that the sym-
metry algebra places on two point correlators. It is
important to have the particle number symmetry for the
no-go theorem. Without particle number symmetry, there
are indeed examples of Galilean boost invariant z ≠ 2
theories [32]. Examples of theories with z ¼ ∞ anisotropic
scaling symmetry based on warped conformal field theories
are discussed in Refs. [15,16].
Only for z ¼ 2 is a consistent d-dimensional field

theoretic realization of the symmetry, with a finite number
of fields, possible, and therefore a conventional (dþ 1)-
dimensional gravity dual is available. On the gravity side,
the metric dual to a z ¼ 2 Schrödinger theory has a
direction ξ which does not scale, and can therefore be
compactified. The Kaluza-Klein reduction of the momen-
tum conjugate to ξ generates a discrete spectrum for N that
matches onto a d-dimensional field theory. The ξ direction
for z ≠ 2 duals scales, forbidding any such compactifica-
tion. One can also see this by embedding the generalized
Schrödinger group into SOðd; 2Þ; see Sec. III.
That there is no impediment to constructing a sensible

z ≠ 2 nonrelativistic field theory with Galilean boost and
scale invariance for an infinite number of fields is most
easily established by giving explicit examples. Above we
presented explicit examples of Galilean boost invariant
theories, with z ¼ 2l

lþ1
.

Given that we have explicit examples and the generic
form of the correlator, several new questions come to mind.
One can ask how one may couple these theories to gravity.
Nonrelativistic theory coupled to gravity gives a natural
framework to study Ward identity anomalies and scale
anomalies [25,28,33–42]. Since these theories are intrinsi-
cally (dþ 1)-dimensional, the use of Newton-Cartan geom-
etry is not a natural choice. It would also be interesting to
understand the dispersion relation of Goldstone bosons,
arising from spontaneous breaking of z ≠ 2 scale sym-
metry; the z ¼ 2 case has been studied in [43].
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APPENDIX: DIAGONALIZABLE AND FINITE
DIMENSIONAL DILATATION GENERATOR

In this appendix, we rederive some of the results in
Sec. II under the stronger assumption that the matrix Δ is
both diagonal and finite dimensional. This discussion is
intended for clarity, since it is less abstract than the one
presented in the main text.
We recall that

½D; Φ̃ðx ¼ 0; t ¼ 0Þ� ¼ {DΦ̃ðx ¼ 0; t ¼ 0Þ ðA1Þ

and D is renamed as Δ in the finite dimensional case.
To warm up, we show that both D and N are Hermitian

only if z ¼ 2 or N ¼ 0. From ½D;N� ¼ {ð2 − zÞN, it
follows that

½D;N � ¼ ð2 − zÞN : ðA2Þ

Since D and N are assumed Hermitian, ½D;N �† ¼
−½D;N � ¼ −ð2 − zÞN . Hence

−ð2 − zÞN ¼ ½D;N �† ¼ ð2 − zÞN † ¼ ð2 − zÞN ;

which can only hold for z ¼ 2 or N ¼ 0. If one assumes
N ≠ 0 for some field, then z ¼ 2. One can have z ≠ 2 and
Hermiticity ifN ¼ 0 for all fields. In this case the generator
N is superfluous, and one can extend the algebra by
including the generator of special conformal transforma-
tions.11 Below we assume N does not identically vanish.
Similarly, both D and K are Hermitian only if z ¼ 1
or K ¼ 0.
Now we consider the finite dimensional case where Δ is

diagonal. Alternatively, one can consider the case that Δ is
Hermitian (and therefore, as just proved,N is not Hermitian).
In the finite dimensional, Hermitian case, one can always
choose to diagonalize Δ. Since Δ is diagonal, ½Δ;N� ¼
ð2 − zÞN implies that ðΔαα − Δββ þ z − 2ÞNαβ ¼ 0 (no
summation over indices α, β is implicit), which, in turn,
for z ≠ 2 implies thatNαα ¼ 0 and at least one ofNαβ andNβα

vanish. This implies that N is nilpotent,

NM ¼ 0; ðA3Þ

for some integer M no larger than the dimension of the
representation. One can show this, without loss of generality,

11There are indeed examples of z ≠ 2 theories without particle
number symmetry; see, for example, Refs. [15,16,32].
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by arranging the components of the fields Φ̃α so that N is an
upper triangular matrix. This result will play a pivotal
role below.
Similarly, we assume that the field Φ̃ð0; 0Þ has the

following commutation relation:

½Ki; Φ̃ðx ¼ 0; t ¼ 0Þ� ¼ KiΦ̃ðx ¼ 0; t ¼ 0Þ: ðA4Þ

For a finite dimensional case, we denote Ki by Ki. By the
same argument as above, one can show that either z ¼ 1 or
Ki ¼ 0 or Ki is nilpotent. Thus we have

KLi
i ¼ 0; ðA5Þ

for some integer Li no larger than the dimension of the
representation. One can consider the operator

Φ≡ Yi¼d−1

i¼1

KLi−1
i ðΦ̃Þ; ðA6Þ

where for any operator A and B, the action of the operator
on the field is defined via

AðΦ̃Þ≡ ½A; Φ̃�; ðA7Þ

BAðΦ̃Þ≡ BðAðΦ̃ÞÞ: ðA8Þ

It can easily be verified that

½Ki;Φðx ¼ 0; t ¼ 0Þ� ¼ 0; ðA9Þ

½D;Φðx ¼ 0; t ¼ 0Þ� ¼ {Δ0Φðx ¼ 0; t ¼ 0Þ; ðA10Þ

½N;Φðx; tÞ� ¼ NΦðx; tÞ; ðA11Þ

where Δ0 ¼ ðΔ − ðz − 1ÞPiðLi − 1ÞÞ. We call “primary
operators” those that satisfy (A9). One could have consid-
ered operators obtained from these by analogous operations
as above, i.e., operators of the form ½NM−1;Φ�, but that
would not suffice to reveal the problems associated with
finite dimensional representations.
Consider the two point correlator of primary

operators in such a realization of the algebra, Gαβ ≡
h0jΦαðx; tÞΦβð0; 0Þj0i. Using Eqs. (9), the commutator
in (A9) translates to

½Ki;Φ� ¼ ð−{t∂iIþ xiNÞΦ: ðA12Þ

Galilean boost invariance of the vacuum, Kij0i¼h0jKi¼0,
then gives

h0j½K;Φαðx; tÞΦβð0; 0Þ�j0i ¼ 0

⇒ ð−{t∂iδασ þ xiNασÞGσβ ¼ 0:

The solution to the above differential equation is given by

Gαβ ¼ ½e−{jxj
2

2t N�αγCγβðtÞ¼
XM−1

l¼0

1

l!

�
−{

jxj2
2t

�
l

ðNlCðtÞÞαβ;

ðA13Þ

where jxj2 ¼ P
iðxiÞ2, C is an as yet undetermined matrix

function of t alone; the scaling symmetry implies thatCαβ has
a power law dependence on t. The above correlator (A13)
is consistent with the one given in (15) with N1 ¼ K1 ¼
K2 ¼ 0. The exponential becomes a finite degree polynomial
because N is nilpotent, and this is very specific to z ≠ 2
theories. As explained above, the correlators are badly
behaved: polynomial rather than exponential dependence
on jxj leads to growth with spatial separation (and hence,
cluster decomposition fails). In contrast, for z ¼ 2 the
matrix N is diagonal and there is no truncation of the
expansion of the exponential. An additional constraint
on the correlator follows from requiring that h0j½N;
Φαðx; tÞΦβð0; 0Þ�j0i ¼ 0, which implies NGþGNT ¼ 0.
Consider next G0

αβ ¼ h0jΦαðx; tÞΦ†
βð0; 0Þj0i. This is

similarly given by

G0
αβ ¼

�
exp

�
−{

jxj2
2t

N

�
C0ðtÞ

�
αβ

ðA14Þ

for some undetermined matrixC0 such thatC0
αβ is a function

of t alone. Invariance under N implies that NG0−G0N†¼0.
Notice that the condition on G0 is different from that on G;
one may have nontrivial solutions to one but not the other.
For example, one can consider the two component field,
Φα¼1;2, characterized by

N ¼
�
0 1

0 0

�
; C0 ¼ gðtÞ

�
0 1

1 0

�
;

gðtÞ ¼ t−ðΔ11þΔ22Þ=z

Δ ¼
�Δ11 0

0 Δ22

�
; Δ22 − Δ11 ¼ ð2 − zÞ;

G0 ¼ t−ðΔ11þΔ22Þ=z
�
1 −{ jxj

2

2t

0 1

��
0 1

1 0

�

¼ t−ðΔ11þΔ22Þ=z
�
−{ jxj

2

2t 1

1 0

�
:

Note that for this example Gαβ ¼ 0 so consideration of the
long distance behavior of this correlator alone does not, by
itself, suggest the theory is ill-behaved.
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